/src/skia/src/gpu/ganesh/GrDrawingManager.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2015 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #include "src/gpu/ganesh/GrDrawingManager.h" |
9 | | |
10 | | #include <algorithm> |
11 | | #include <memory> |
12 | | |
13 | | #include "include/gpu/GrBackendSemaphore.h" |
14 | | #include "include/gpu/GrDirectContext.h" |
15 | | #include "include/gpu/GrRecordingContext.h" |
16 | | #include "include/private/chromium/GrDeferredDisplayList.h" |
17 | | #include "src/base/SkTInternalLList.h" |
18 | | #include "src/gpu/ganesh/GrBufferTransferRenderTask.h" |
19 | | #include "src/gpu/ganesh/GrBufferUpdateRenderTask.h" |
20 | | #include "src/gpu/ganesh/GrClientMappedBufferManager.h" |
21 | | #include "src/gpu/ganesh/GrCopyRenderTask.h" |
22 | | #include "src/gpu/ganesh/GrDDLTask.h" |
23 | | #include "src/gpu/ganesh/GrDeferredDisplayListPriv.h" |
24 | | #include "src/gpu/ganesh/GrDirectContextPriv.h" |
25 | | #include "src/gpu/ganesh/GrGpu.h" |
26 | | #include "src/gpu/ganesh/GrMemoryPool.h" |
27 | | #include "src/gpu/ganesh/GrNativeRect.h" |
28 | | #include "src/gpu/ganesh/GrOnFlushResourceProvider.h" |
29 | | #include "src/gpu/ganesh/GrOpFlushState.h" |
30 | | #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
31 | | #include "src/gpu/ganesh/GrRenderTargetProxy.h" |
32 | | #include "src/gpu/ganesh/GrRenderTask.h" |
33 | | #include "src/gpu/ganesh/GrRenderTaskCluster.h" |
34 | | #include "src/gpu/ganesh/GrResourceAllocator.h" |
35 | | #include "src/gpu/ganesh/GrResourceProvider.h" |
36 | | #include "src/gpu/ganesh/GrSurfaceProxyPriv.h" |
37 | | #include "src/gpu/ganesh/GrTTopoSort.h" |
38 | | #include "src/gpu/ganesh/GrTexture.h" |
39 | | #include "src/gpu/ganesh/GrTextureProxy.h" |
40 | | #include "src/gpu/ganesh/GrTextureProxyPriv.h" |
41 | | #include "src/gpu/ganesh/GrTextureResolveRenderTask.h" |
42 | | #include "src/gpu/ganesh/GrTracing.h" |
43 | | #include "src/gpu/ganesh/GrTransferFromRenderTask.h" |
44 | | #include "src/gpu/ganesh/GrWaitRenderTask.h" |
45 | | #include "src/gpu/ganesh/GrWritePixelsRenderTask.h" |
46 | | #include "src/gpu/ganesh/ops/OpsTask.h" |
47 | | #include "src/gpu/ganesh/ops/SoftwarePathRenderer.h" |
48 | | #include "src/gpu/ganesh/surface/SkSurface_Ganesh.h" |
49 | | #include "src/text/gpu/SDFTControl.h" |
50 | | |
51 | | using namespace skia_private; |
52 | | |
53 | | /////////////////////////////////////////////////////////////////////////////////////////////////// |
54 | | GrDrawingManager::GrDrawingManager(GrRecordingContext* rContext, |
55 | | const PathRendererChain::Options& optionsForPathRendererChain, |
56 | | bool reduceOpsTaskSplitting) |
57 | | : fContext(rContext) |
58 | | , fOptionsForPathRendererChain(optionsForPathRendererChain) |
59 | | , fPathRendererChain(nullptr) |
60 | | , fSoftwarePathRenderer(nullptr) |
61 | 2.58k | , fReduceOpsTaskSplitting(reduceOpsTaskSplitting) { |
62 | 2.58k | } |
63 | | |
64 | 2.58k | GrDrawingManager::~GrDrawingManager() { |
65 | 2.58k | this->closeAllTasks(); |
66 | 2.58k | this->removeRenderTasks(); |
67 | 2.58k | } |
68 | | |
69 | 36.8k | bool GrDrawingManager::wasAbandoned() const { |
70 | 36.8k | return fContext->abandoned(); |
71 | 36.8k | } |
72 | | |
73 | 0 | void GrDrawingManager::freeGpuResources() { |
74 | 0 | for (int i = fOnFlushCBObjects.size() - 1; i >= 0; --i) { |
75 | 0 | if (!fOnFlushCBObjects[i]->retainOnFreeGpuResources()) { |
76 | | // it's safe to just do this because we're iterating in reverse |
77 | 0 | fOnFlushCBObjects.removeShuffle(i); |
78 | 0 | } |
79 | 0 | } |
80 | | |
81 | | // a path renderer may be holding onto resources |
82 | 0 | fPathRendererChain = nullptr; |
83 | 0 | fSoftwarePathRenderer = nullptr; |
84 | 0 | } |
85 | | |
86 | | // MDB TODO: make use of the 'proxies' parameter. |
87 | | bool GrDrawingManager::flush(SkSpan<GrSurfaceProxy*> proxies, |
88 | | SkSurfaces::BackendSurfaceAccess access, |
89 | | const GrFlushInfo& info, |
90 | 18.4k | const skgpu::MutableTextureState* newState) { |
91 | 18.4k | GR_CREATE_TRACE_MARKER_CONTEXT("GrDrawingManager", "flush", fContext); |
92 | | |
93 | 18.4k | if (fFlushing || this->wasAbandoned()) { |
94 | 0 | if (info.fSubmittedProc) { |
95 | 0 | info.fSubmittedProc(info.fSubmittedContext, false); |
96 | 0 | } |
97 | 0 | if (info.fFinishedProc) { |
98 | 0 | info.fFinishedProc(info.fFinishedContext); |
99 | 0 | } |
100 | 0 | return false; |
101 | 0 | } |
102 | | |
103 | 18.4k | SkDEBUGCODE(this->validate()); |
104 | | |
105 | | // As of now we only short-circuit if we got an explicit list of surfaces to flush. |
106 | 18.4k | if (!proxies.empty() && !info.fNumSemaphores && !info.fFinishedProc && |
107 | 18.4k | access == SkSurfaces::BackendSurfaceAccess::kNoAccess && !newState) { |
108 | 0 | bool allUnused = std::all_of(proxies.begin(), proxies.end(), [&](GrSurfaceProxy* proxy) { |
109 | 0 | bool used = std::any_of(fDAG.begin(), fDAG.end(), [&](auto& task) { |
110 | 0 | return task && task->isUsed(proxy); |
111 | 0 | }); |
112 | 0 | return !used; |
113 | 0 | }); |
114 | 0 | if (allUnused) { |
115 | 0 | if (info.fSubmittedProc) { |
116 | 0 | info.fSubmittedProc(info.fSubmittedContext, true); |
117 | 0 | } |
118 | 0 | return false; |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | 18.4k | auto dContext = fContext->asDirectContext(); |
123 | 18.4k | SkASSERT(dContext); |
124 | 18.4k | dContext->priv().clientMappedBufferManager()->process(); |
125 | | |
126 | 18.4k | GrGpu* gpu = dContext->priv().getGpu(); |
127 | | // We have a non abandoned and direct GrContext. It must have a GrGpu. |
128 | 18.4k | SkASSERT(gpu); |
129 | | |
130 | 18.4k | fFlushing = true; |
131 | | |
132 | 18.4k | auto resourceProvider = dContext->priv().resourceProvider(); |
133 | 18.4k | auto resourceCache = dContext->priv().getResourceCache(); |
134 | | |
135 | | // Semi-usually the GrRenderTasks are already closed at this point, but sometimes Ganesh needs |
136 | | // to flush mid-draw. In that case, the SkGpuDevice's opsTasks won't be closed but need to be |
137 | | // flushed anyway. Closing such opsTasks here will mean new ones will be created to replace them |
138 | | // if the SkGpuDevice(s) write to them again. |
139 | 18.4k | this->closeAllTasks(); |
140 | 18.4k | fActiveOpsTask = nullptr; |
141 | | |
142 | 18.4k | this->sortTasks(); |
143 | | |
144 | 18.4k | if (!fCpuBufferCache) { |
145 | | // We cache more buffers when the backend is using client side arrays. Otherwise, we |
146 | | // expect each pool will use a CPU buffer as a staging buffer before uploading to a GPU |
147 | | // buffer object. Each pool only requires one staging buffer at a time. |
148 | 2.58k | int maxCachedBuffers = fContext->priv().caps()->preferClientSideDynamicBuffers() ? 2 : 6; |
149 | 2.58k | fCpuBufferCache = GrBufferAllocPool::CpuBufferCache::Make(maxCachedBuffers); |
150 | 2.58k | } |
151 | | |
152 | 18.4k | GrOpFlushState flushState(gpu, resourceProvider, &fTokenTracker, fCpuBufferCache); |
153 | | |
154 | 18.4k | GrOnFlushResourceProvider onFlushProvider(this); |
155 | | |
156 | | // Prepare any onFlush op lists (e.g. atlases). |
157 | 18.4k | bool preFlushSuccessful = true; |
158 | 22.8k | for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { |
159 | 22.8k | preFlushSuccessful &= onFlushCBObject->preFlush(&onFlushProvider); |
160 | 22.8k | } |
161 | | |
162 | 18.4k | bool cachePurgeNeeded = false; |
163 | | |
164 | 18.4k | if (preFlushSuccessful) { |
165 | 18.4k | bool usingReorderedDAG = false; |
166 | 18.4k | GrResourceAllocator resourceAllocator(dContext); |
167 | 18.4k | if (fReduceOpsTaskSplitting) { |
168 | 18.4k | usingReorderedDAG = this->reorderTasks(&resourceAllocator); |
169 | 18.4k | if (!usingReorderedDAG) { |
170 | 17.3k | resourceAllocator.reset(); |
171 | 17.3k | } |
172 | 18.4k | } |
173 | | |
174 | | #if 0 |
175 | | // Enable this to print out verbose GrOp information |
176 | | SkDEBUGCODE(SkDebugf("RenderTasks (%d):\n", fDAG.count())); |
177 | | for (const auto& task : fDAG) { |
178 | | SkDEBUGCODE(task->dump(/* printDependencies */ true);) |
179 | | } |
180 | | #endif |
181 | | |
182 | 18.4k | if (!resourceAllocator.failedInstantiation()) { |
183 | 18.4k | if (!usingReorderedDAG) { |
184 | 30.2k | for (const auto& task : fDAG) { |
185 | 30.2k | SkASSERT(task); |
186 | 30.2k | task->gatherProxyIntervals(&resourceAllocator); |
187 | 30.2k | } |
188 | 17.3k | resourceAllocator.planAssignment(); |
189 | 17.3k | } |
190 | 18.4k | resourceAllocator.assign(); |
191 | 18.4k | } |
192 | | |
193 | 18.4k | cachePurgeNeeded = !resourceAllocator.failedInstantiation() && |
194 | 18.4k | this->executeRenderTasks(&flushState); |
195 | 18.4k | } |
196 | 18.4k | this->removeRenderTasks(); |
197 | | |
198 | 18.4k | gpu->executeFlushInfo(proxies, access, info, newState); |
199 | | |
200 | | // Give the cache a chance to purge resources that become purgeable due to flushing. |
201 | 18.4k | if (cachePurgeNeeded) { |
202 | 3.28k | resourceCache->purgeAsNeeded(); |
203 | 3.28k | cachePurgeNeeded = false; |
204 | 3.28k | } |
205 | 22.9k | for (GrOnFlushCallbackObject* onFlushCBObject : fOnFlushCBObjects) { |
206 | 22.9k | onFlushCBObject->postFlush(fTokenTracker.nextFlushToken()); |
207 | 22.9k | cachePurgeNeeded = true; |
208 | 22.9k | } |
209 | 18.4k | if (cachePurgeNeeded) { |
210 | 18.4k | resourceCache->purgeAsNeeded(); |
211 | 18.4k | } |
212 | 18.4k | fFlushing = false; |
213 | | |
214 | 18.4k | return true; |
215 | 18.4k | } |
216 | | |
217 | 0 | bool GrDrawingManager::submitToGpu(GrSyncCpu sync) { |
218 | 0 | if (fFlushing || this->wasAbandoned()) { |
219 | 0 | return false; |
220 | 0 | } |
221 | | |
222 | 0 | auto direct = fContext->asDirectContext(); |
223 | 0 | if (!direct) { |
224 | 0 | return false; // Can't submit while DDL recording |
225 | 0 | } |
226 | 0 | GrGpu* gpu = direct->priv().getGpu(); |
227 | 0 | return gpu->submitToGpu(sync); |
228 | 0 | } |
229 | | |
230 | 18.4k | bool GrDrawingManager::executeRenderTasks(GrOpFlushState* flushState) { |
231 | | #if GR_FLUSH_TIME_OP_SPEW |
232 | | SkDebugf("Flushing %d opsTasks\n", fDAG.size()); |
233 | | for (int i = 0; i < fDAG.size(); ++i) { |
234 | | if (fDAG[i]) { |
235 | | SkString label; |
236 | | label.printf("task %d/%d", i, fDAG.size()); |
237 | | fDAG[i]->dump(label, {}, true, true); |
238 | | } |
239 | | } |
240 | | #endif |
241 | | |
242 | 18.4k | bool anyRenderTasksExecuted = false; |
243 | | |
244 | 126k | for (const auto& renderTask : fDAG) { |
245 | 126k | if (!renderTask || !renderTask->isInstantiated()) { |
246 | 0 | continue; |
247 | 0 | } |
248 | | |
249 | 126k | SkASSERT(renderTask->deferredProxiesAreInstantiated()); |
250 | | |
251 | 126k | renderTask->prepare(flushState); |
252 | 126k | } |
253 | | |
254 | | // Upload all data to the GPU |
255 | 18.4k | flushState->preExecuteDraws(); |
256 | | |
257 | | // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources |
258 | | // for each command buffer associated with the oplists. If this gets too large we can cause the |
259 | | // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we |
260 | | // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some |
261 | | // memory pressure. |
262 | 18.4k | static constexpr int kMaxRenderTasksBeforeFlush = 100; |
263 | 18.4k | int numRenderTasksExecuted = 0; |
264 | | |
265 | | // Execute the normal op lists. |
266 | 126k | for (const auto& renderTask : fDAG) { |
267 | 126k | SkASSERT(renderTask); |
268 | 126k | if (!renderTask->isInstantiated()) { |
269 | 0 | continue; |
270 | 0 | } |
271 | | |
272 | 126k | if (renderTask->execute(flushState)) { |
273 | 126k | anyRenderTasksExecuted = true; |
274 | 126k | } |
275 | 126k | if (++numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { |
276 | 876 | flushState->gpu()->submitToGpu(GrSyncCpu::kNo); |
277 | 876 | numRenderTasksExecuted = 0; |
278 | 876 | } |
279 | 126k | } |
280 | | |
281 | 18.4k | SkASSERT(!flushState->opsRenderPass()); |
282 | 18.4k | SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextFlushToken()); |
283 | | |
284 | | // We reset the flush state before the RenderTasks so that the last resources to be freed are |
285 | | // those that are written to in the RenderTasks. This helps to make sure the most recently used |
286 | | // resources are the last to be purged by the resource cache. |
287 | 18.4k | flushState->reset(); |
288 | | |
289 | 18.4k | return anyRenderTasksExecuted; |
290 | 18.4k | } GrDrawingManager::executeRenderTasks(GrOpFlushState*) Line | Count | Source | 230 | 18.4k | bool GrDrawingManager::executeRenderTasks(GrOpFlushState* flushState) { | 231 | | #if GR_FLUSH_TIME_OP_SPEW | 232 | | SkDebugf("Flushing %d opsTasks\n", fDAG.size()); | 233 | | for (int i = 0; i < fDAG.size(); ++i) { | 234 | | if (fDAG[i]) { | 235 | | SkString label; | 236 | | label.printf("task %d/%d", i, fDAG.size()); | 237 | | fDAG[i]->dump(label, {}, true, true); | 238 | | } | 239 | | } | 240 | | #endif | 241 | | | 242 | 18.4k | bool anyRenderTasksExecuted = false; | 243 | | | 244 | 126k | for (const auto& renderTask : fDAG) { | 245 | 126k | if (!renderTask || !renderTask->isInstantiated()) { | 246 | 0 | continue; | 247 | 0 | } | 248 | | | 249 | 126k | SkASSERT(renderTask->deferredProxiesAreInstantiated()); | 250 | | | 251 | 126k | renderTask->prepare(flushState); | 252 | 126k | } | 253 | | | 254 | | // Upload all data to the GPU | 255 | 18.4k | flushState->preExecuteDraws(); | 256 | | | 257 | | // For Vulkan, if we have too many oplists to be flushed we end up allocating a lot of resources | 258 | | // for each command buffer associated with the oplists. If this gets too large we can cause the | 259 | | // devices to go OOM. In practice we usually only hit this case in our tests, but to be safe we | 260 | | // put a cap on the number of oplists we will execute before flushing to the GPU to relieve some | 261 | | // memory pressure. | 262 | 18.4k | static constexpr int kMaxRenderTasksBeforeFlush = 100; | 263 | 18.4k | int numRenderTasksExecuted = 0; | 264 | | | 265 | | // Execute the normal op lists. | 266 | 126k | for (const auto& renderTask : fDAG) { | 267 | 126k | SkASSERT(renderTask); | 268 | 126k | if (!renderTask->isInstantiated()) { | 269 | 0 | continue; | 270 | 0 | } | 271 | | | 272 | 126k | if (renderTask->execute(flushState)) { | 273 | 126k | anyRenderTasksExecuted = true; | 274 | 126k | } | 275 | 126k | if (++numRenderTasksExecuted >= kMaxRenderTasksBeforeFlush) { | 276 | 876 | flushState->gpu()->submitToGpu(GrSyncCpu::kNo); | 277 | 876 | numRenderTasksExecuted = 0; | 278 | 876 | } | 279 | 126k | } | 280 | | | 281 | 18.4k | SkASSERT(!flushState->opsRenderPass()); | 282 | 18.4k | SkASSERT(fTokenTracker.nextDrawToken() == fTokenTracker.nextFlushToken()); | 283 | | | 284 | | // We reset the flush state before the RenderTasks so that the last resources to be freed are | 285 | | // those that are written to in the RenderTasks. This helps to make sure the most recently used | 286 | | // resources are the last to be purged by the resource cache. | 287 | 18.4k | flushState->reset(); | 288 | | | 289 | 18.4k | return anyRenderTasksExecuted; | 290 | 18.4k | } |
Unexecuted instantiation: GrDrawingManager::executeRenderTasks(GrOpFlushState*) |
291 | | |
292 | 21.0k | void GrDrawingManager::removeRenderTasks() { |
293 | 126k | for (const auto& task : fDAG) { |
294 | 126k | SkASSERT(task); |
295 | 126k | if (!task->unique() || task->requiresExplicitCleanup()) { |
296 | | // TODO: Eventually uniqueness should be guaranteed: http://skbug.com/7111. |
297 | | // DDLs, however, will always require an explicit notification for when they |
298 | | // can clean up resources. |
299 | 1.03k | task->endFlush(this); |
300 | 1.03k | } |
301 | 126k | task->disown(this); |
302 | 126k | } |
303 | 21.0k | fDAG.clear(); |
304 | 21.0k | fReorderBlockerTaskIndices.clear(); |
305 | 21.0k | fLastRenderTasks.reset(); |
306 | 21.0k | } |
307 | | |
308 | 18.4k | void GrDrawingManager::sortTasks() { |
309 | | // We separately sort the ranges around non-reorderable tasks. |
310 | 21.7k | for (size_t i = 0, start = 0, end; start < SkToSizeT(fDAG.size()); ++i, start = end + 1) { |
311 | 3.28k | end = i == fReorderBlockerTaskIndices.size() ? fDAG.size() : fReorderBlockerTaskIndices[i]; |
312 | 3.28k | SkSpan span(fDAG.begin() + start, end - start); |
313 | | |
314 | 3.28k | SkASSERT(std::none_of(span.begin(), span.end(), [](const auto& t) { |
315 | 3.28k | return t->blocksReordering(); |
316 | 3.28k | })); |
317 | 3.28k | SkASSERT(span.end() == fDAG.end() || fDAG[end]->blocksReordering()); |
318 | | |
319 | | #if defined(SK_DEBUG) |
320 | | // In order to partition the dag array like this it must be the case that each partition |
321 | | // only depends on nodes in the partition or earlier partitions. |
322 | 0 | auto check = [&](const GrRenderTask* task, auto&& check) -> void { |
323 | 0 | SkASSERT(GrRenderTask::TopoSortTraits::WasOutput(task) || |
324 | 0 | std::find_if(span.begin(), span.end(), [task](const auto& n) { |
325 | 0 | return n.get() == task; })); |
326 | 0 | for (int i = 0; i < task->fDependencies.size(); ++i) { |
327 | 0 | check(task->fDependencies[i], check); |
328 | 0 | } |
329 | 0 | }; |
330 | 0 | for (const auto& node : span) { |
331 | 0 | check(node.get(), check); |
332 | 0 | } |
333 | | #endif |
334 | | |
335 | 3.28k | bool sorted = GrTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>(span, start); |
336 | 3.28k | if (!sorted) { |
337 | 0 | SkDEBUGFAIL("Render task topo sort failed."); |
338 | 0 | } |
339 | | |
340 | | #ifdef SK_DEBUG |
341 | 0 | if (sorted && !span.empty()) { |
342 | | // This block checks for any unnecessary splits in the opsTasks. If two sequential |
343 | | // opsTasks could have merged it means the opsTask was artificially split. |
344 | 0 | auto prevOpsTask = span[0]->asOpsTask(); |
345 | 0 | for (size_t j = 1; j < span.size(); ++j) { |
346 | 0 | auto curOpsTask = span[j]->asOpsTask(); |
347 | | |
348 | 0 | if (prevOpsTask && curOpsTask) { |
349 | 0 | SkASSERT(!prevOpsTask->canMerge(curOpsTask)); |
350 | 0 | } |
351 | |
|
352 | 0 | prevOpsTask = curOpsTask; |
353 | 0 | } |
354 | 0 | } |
355 | | #endif |
356 | 3.28k | } |
357 | 18.4k | } GrDrawingManager::sortTasks() Line | Count | Source | 308 | 18.4k | void GrDrawingManager::sortTasks() { | 309 | | // We separately sort the ranges around non-reorderable tasks. | 310 | 21.7k | for (size_t i = 0, start = 0, end; start < SkToSizeT(fDAG.size()); ++i, start = end + 1) { | 311 | 3.28k | end = i == fReorderBlockerTaskIndices.size() ? fDAG.size() : fReorderBlockerTaskIndices[i]; | 312 | 3.28k | SkSpan span(fDAG.begin() + start, end - start); | 313 | | | 314 | 3.28k | SkASSERT(std::none_of(span.begin(), span.end(), [](const auto& t) { | 315 | 3.28k | return t->blocksReordering(); | 316 | 3.28k | })); | 317 | 3.28k | SkASSERT(span.end() == fDAG.end() || fDAG[end]->blocksReordering()); | 318 | | | 319 | | #if defined(SK_DEBUG) | 320 | | // In order to partition the dag array like this it must be the case that each partition | 321 | | // only depends on nodes in the partition or earlier partitions. | 322 | | auto check = [&](const GrRenderTask* task, auto&& check) -> void { | 323 | | SkASSERT(GrRenderTask::TopoSortTraits::WasOutput(task) || | 324 | | std::find_if(span.begin(), span.end(), [task](const auto& n) { | 325 | | return n.get() == task; })); | 326 | | for (int i = 0; i < task->fDependencies.size(); ++i) { | 327 | | check(task->fDependencies[i], check); | 328 | | } | 329 | | }; | 330 | | for (const auto& node : span) { | 331 | | check(node.get(), check); | 332 | | } | 333 | | #endif | 334 | | | 335 | 3.28k | bool sorted = GrTTopoSort<GrRenderTask, GrRenderTask::TopoSortTraits>(span, start); | 336 | 3.28k | if (!sorted) { | 337 | 0 | SkDEBUGFAIL("Render task topo sort failed."); | 338 | 0 | } | 339 | | | 340 | | #ifdef SK_DEBUG | 341 | | if (sorted && !span.empty()) { | 342 | | // This block checks for any unnecessary splits in the opsTasks. If two sequential | 343 | | // opsTasks could have merged it means the opsTask was artificially split. | 344 | | auto prevOpsTask = span[0]->asOpsTask(); | 345 | | for (size_t j = 1; j < span.size(); ++j) { | 346 | | auto curOpsTask = span[j]->asOpsTask(); | 347 | | | 348 | | if (prevOpsTask && curOpsTask) { | 349 | | SkASSERT(!prevOpsTask->canMerge(curOpsTask)); | 350 | | } | 351 | | | 352 | | prevOpsTask = curOpsTask; | 353 | | } | 354 | | } | 355 | | #endif | 356 | 3.28k | } | 357 | 18.4k | } |
Unexecuted instantiation: GrDrawingManager::sortTasks() |
358 | | |
359 | | // Reorder the array to match the llist without reffing & unreffing sk_sp's. |
360 | | // Both args must contain the same objects. |
361 | | // This is basically a shim because clustering uses LList but the rest of drawmgr uses array. |
362 | | template <typename T> |
363 | 1.09k | static void reorder_array_by_llist(const SkTInternalLList<T>& llist, TArray<sk_sp<T>>* array) { |
364 | 1.09k | int i = 0; |
365 | 108k | for (T* t : llist) { |
366 | | // Release the pointer that used to live here so it doesn't get unreffed. |
367 | 108k | [[maybe_unused]] T* old = array->at(i).release(); |
368 | 108k | array->at(i++).reset(t); |
369 | 108k | } |
370 | 1.09k | SkASSERT(i == array->size()); |
371 | 1.09k | } |
372 | | |
373 | 18.4k | bool GrDrawingManager::reorderTasks(GrResourceAllocator* resourceAllocator) { |
374 | 18.4k | SkASSERT(fReduceOpsTaskSplitting); |
375 | | // We separately sort the ranges around non-reorderable tasks. |
376 | 18.4k | bool clustered = false; |
377 | 18.4k | SkTInternalLList<GrRenderTask> llist; |
378 | 21.7k | for (size_t i = 0, start = 0, end; start < SkToSizeT(fDAG.size()); ++i, start = end + 1) { |
379 | 3.28k | end = i == fReorderBlockerTaskIndices.size() ? fDAG.size() : fReorderBlockerTaskIndices[i]; |
380 | 3.28k | SkSpan span(fDAG.begin() + start, end - start); |
381 | 3.28k | SkASSERT(std::none_of(span.begin(), span.end(), [](const auto& t) { |
382 | 3.28k | return t->blocksReordering(); |
383 | 3.28k | })); |
384 | | |
385 | 3.28k | SkTInternalLList<GrRenderTask> subllist; |
386 | 3.28k | if (GrClusterRenderTasks(span, &subllist)) { |
387 | 1.09k | clustered = true; |
388 | 1.09k | } |
389 | | |
390 | 3.28k | if (i < fReorderBlockerTaskIndices.size()) { |
391 | 0 | SkASSERT(fDAG[fReorderBlockerTaskIndices[i]]->blocksReordering()); |
392 | 0 | subllist.addToTail(fDAG[fReorderBlockerTaskIndices[i]].get()); |
393 | 0 | } |
394 | 3.28k | llist.concat(std::move(subllist)); |
395 | 3.28k | } |
396 | 18.4k | if (!clustered) { |
397 | 17.3k | return false; |
398 | 17.3k | } |
399 | | |
400 | 115k | for (GrRenderTask* task : llist) { |
401 | 115k | task->gatherProxyIntervals(resourceAllocator); |
402 | 115k | } |
403 | 1.09k | if (!resourceAllocator->planAssignment()) { |
404 | 0 | return false; |
405 | 0 | } |
406 | 1.09k | if (!resourceAllocator->makeBudgetHeadroom()) { |
407 | 7 | auto dContext = fContext->asDirectContext(); |
408 | 7 | SkASSERT(dContext); |
409 | 7 | dContext->priv().getGpu()->stats()->incNumReorderedDAGsOverBudget(); |
410 | 7 | return false; |
411 | 7 | } |
412 | 1.09k | reorder_array_by_llist(llist, &fDAG); |
413 | | |
414 | 1.09k | int newCount = 0; |
415 | 97.5k | for (int i = 0; i < fDAG.size(); i++) { |
416 | 96.4k | sk_sp<GrRenderTask>& task = fDAG[i]; |
417 | 96.4k | if (auto opsTask = task->asOpsTask()) { |
418 | 70.4k | size_t remaining = fDAG.size() - i - 1; |
419 | 70.4k | SkSpan<sk_sp<GrRenderTask>> nextTasks{fDAG.end() - remaining, remaining}; |
420 | 70.4k | int removeCount = opsTask->mergeFrom(nextTasks); |
421 | 70.4k | for (const auto& removed : nextTasks.first(removeCount)) { |
422 | 11.5k | removed->disown(this); |
423 | 11.5k | } |
424 | 70.4k | i += removeCount; |
425 | 70.4k | } |
426 | 96.4k | fDAG[newCount++] = std::move(task); |
427 | 96.4k | } |
428 | 1.09k | fDAG.resize_back(newCount); |
429 | 1.09k | return true; |
430 | 1.09k | } |
431 | | |
432 | 21.0k | void GrDrawingManager::closeAllTasks() { |
433 | 138k | for (auto& task : fDAG) { |
434 | 138k | if (task) { |
435 | 138k | task->makeClosed(fContext); |
436 | 138k | } |
437 | 138k | } |
438 | 21.0k | } |
439 | | |
440 | 0 | GrRenderTask* GrDrawingManager::insertTaskBeforeLast(sk_sp<GrRenderTask> task) { |
441 | 0 | if (!task) { |
442 | 0 | return nullptr; |
443 | 0 | } |
444 | 0 | if (fDAG.empty()) { |
445 | 0 | return fDAG.push_back(std::move(task)).get(); |
446 | 0 | } |
447 | 0 | if (!fReorderBlockerTaskIndices.empty() && fReorderBlockerTaskIndices.back() == fDAG.size()) { |
448 | 0 | fReorderBlockerTaskIndices.back()++; |
449 | 0 | } |
450 | 0 | fDAG.push_back(std::move(task)); |
451 | 0 | auto& penultimate = fDAG.fromBack(1); |
452 | 0 | fDAG.back().swap(penultimate); |
453 | 0 | return penultimate.get(); |
454 | 0 | } |
455 | | |
456 | 138k | GrRenderTask* GrDrawingManager::appendTask(sk_sp<GrRenderTask> task) { |
457 | 138k | if (!task) { |
458 | 0 | return nullptr; |
459 | 0 | } |
460 | 138k | if (task->blocksReordering()) { |
461 | 0 | fReorderBlockerTaskIndices.push_back(fDAG.size()); |
462 | 0 | } |
463 | 138k | return fDAG.push_back(std::move(task)).get(); |
464 | 138k | } |
465 | | |
466 | 0 | static void resolve_and_mipmap(GrGpu* gpu, GrSurfaceProxy* proxy) { |
467 | 0 | if (!proxy->isInstantiated()) { |
468 | 0 | return; |
469 | 0 | } |
470 | | |
471 | | // In the flushSurfaces case, we need to resolve MSAA immediately after flush. This is |
472 | | // because clients expect the flushed surface's backing texture to be fully resolved |
473 | | // upon return. |
474 | 0 | if (proxy->requiresManualMSAAResolve()) { |
475 | 0 | auto* rtProxy = proxy->asRenderTargetProxy(); |
476 | 0 | SkASSERT(rtProxy); |
477 | 0 | if (rtProxy->isMSAADirty()) { |
478 | 0 | SkASSERT(rtProxy->peekRenderTarget()); |
479 | 0 | gpu->resolveRenderTarget(rtProxy->peekRenderTarget(), rtProxy->msaaDirtyRect()); |
480 | 0 | gpu->submitToGpu(GrSyncCpu::kNo); |
481 | 0 | rtProxy->markMSAAResolved(); |
482 | 0 | } |
483 | 0 | } |
484 | | // If, after a flush, any of the proxies of interest have dirty mipmaps, regenerate them in |
485 | | // case their backend textures are being stolen. |
486 | | // (This special case is exercised by the ReimportImageTextureWithMipLevels test.) |
487 | | // FIXME: It may be more ideal to plumb down a "we're going to steal the backends" flag. |
488 | 0 | if (auto* textureProxy = proxy->asTextureProxy()) { |
489 | 0 | if (textureProxy->mipmapsAreDirty()) { |
490 | 0 | SkASSERT(textureProxy->peekTexture()); |
491 | 0 | gpu->regenerateMipMapLevels(textureProxy->peekTexture()); |
492 | 0 | textureProxy->markMipmapsClean(); |
493 | 0 | } |
494 | 0 | } |
495 | 0 | } Unexecuted instantiation: GrDrawingManager.cpp:resolve_and_mipmap(GrGpu*, GrSurfaceProxy*) Unexecuted instantiation: GrDrawingManager.cpp:resolve_and_mipmap(GrGpu*, GrSurfaceProxy*) |
496 | | |
497 | | GrSemaphoresSubmitted GrDrawingManager::flushSurfaces(SkSpan<GrSurfaceProxy*> proxies, |
498 | | SkSurfaces::BackendSurfaceAccess access, |
499 | | const GrFlushInfo& info, |
500 | 18.4k | const skgpu::MutableTextureState* newState) { |
501 | 18.4k | if (this->wasAbandoned()) { |
502 | 0 | if (info.fSubmittedProc) { |
503 | 0 | info.fSubmittedProc(info.fSubmittedContext, false); |
504 | 0 | } |
505 | 0 | if (info.fFinishedProc) { |
506 | 0 | info.fFinishedProc(info.fFinishedContext); |
507 | 0 | } |
508 | 0 | return GrSemaphoresSubmitted::kNo; |
509 | 0 | } |
510 | 18.4k | SkDEBUGCODE(this->validate()); |
511 | | |
512 | 18.4k | auto direct = fContext->asDirectContext(); |
513 | 18.4k | SkASSERT(direct); |
514 | 18.4k | GrGpu* gpu = direct->priv().getGpu(); |
515 | | // We have a non abandoned and direct GrContext. It must have a GrGpu. |
516 | 18.4k | SkASSERT(gpu); |
517 | | |
518 | | // TODO: It is important to upgrade the drawingmanager to just flushing the |
519 | | // portion of the DAG required by 'proxies' in order to restore some of the |
520 | | // semantics of this method. |
521 | 18.4k | bool didFlush = this->flush(proxies, access, info, newState); |
522 | 18.4k | for (GrSurfaceProxy* proxy : proxies) { |
523 | 0 | resolve_and_mipmap(gpu, proxy); |
524 | 0 | } |
525 | | |
526 | 18.4k | SkDEBUGCODE(this->validate()); |
527 | | |
528 | 18.4k | if (!didFlush || (!direct->priv().caps()->backendSemaphoreSupport() && info.fNumSemaphores)) { |
529 | 0 | return GrSemaphoresSubmitted::kNo; |
530 | 0 | } |
531 | 18.4k | return GrSemaphoresSubmitted::kYes; |
532 | 18.4k | } |
533 | | |
534 | 2.67k | void GrDrawingManager::addOnFlushCallbackObject(GrOnFlushCallbackObject* onFlushCBObject) { |
535 | 2.67k | fOnFlushCBObjects.push_back(onFlushCBObject); |
536 | 2.67k | } |
537 | | |
538 | | #if defined(GR_TEST_UTILS) |
539 | 0 | void GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject* cb) { |
540 | 0 | int n = std::find(fOnFlushCBObjects.begin(), fOnFlushCBObjects.end(), cb) - |
541 | 0 | fOnFlushCBObjects.begin(); |
542 | 0 | SkASSERT(n < fOnFlushCBObjects.size()); |
543 | 0 | fOnFlushCBObjects.removeShuffle(n); |
544 | 0 | } Unexecuted instantiation: GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject*) Unexecuted instantiation: GrDrawingManager::testingOnly_removeOnFlushCallbackObject(GrOnFlushCallbackObject*) |
545 | | #endif |
546 | | |
547 | 241k | void GrDrawingManager::setLastRenderTask(const GrSurfaceProxy* proxy, GrRenderTask* task) { |
548 | | #ifdef SK_DEBUG |
549 | | if (auto prior = this->getLastRenderTask(proxy)) { |
550 | | SkASSERT(prior->isClosed() || prior == task); |
551 | | } |
552 | | #endif |
553 | 241k | uint32_t key = proxy->uniqueID().asUInt(); |
554 | 241k | if (task) { |
555 | 138k | fLastRenderTasks.set(key, task); |
556 | 138k | } else if (fLastRenderTasks.find(key)) { |
557 | 103k | fLastRenderTasks.remove(key); |
558 | 103k | } |
559 | 241k | } |
560 | | |
561 | 447k | GrRenderTask* GrDrawingManager::getLastRenderTask(const GrSurfaceProxy* proxy) const { |
562 | 447k | auto entry = fLastRenderTasks.find(proxy->uniqueID().asUInt()); |
563 | 447k | return entry ? *entry : nullptr; |
564 | 447k | } |
565 | | |
566 | 89.0k | skgpu::ganesh::OpsTask* GrDrawingManager::getLastOpsTask(const GrSurfaceProxy* proxy) const { |
567 | 89.0k | GrRenderTask* task = this->getLastRenderTask(proxy); |
568 | 89.0k | return task ? task->asOpsTask() : nullptr; |
569 | 89.0k | } |
570 | | |
571 | 0 | void GrDrawingManager::moveRenderTasksToDDL(GrDeferredDisplayList* ddl) { |
572 | 0 | SkDEBUGCODE(this->validate()); |
573 | | |
574 | | // no renderTask should receive a new command after this |
575 | 0 | this->closeAllTasks(); |
576 | 0 | fActiveOpsTask = nullptr; |
577 | |
|
578 | 0 | this->sortTasks(); |
579 | |
|
580 | 0 | fDAG.swap(ddl->fRenderTasks); |
581 | 0 | SkASSERT(fDAG.empty()); |
582 | 0 | fReorderBlockerTaskIndices.clear(); |
583 | |
|
584 | 0 | for (auto& renderTask : ddl->fRenderTasks) { |
585 | 0 | renderTask->disown(this); |
586 | 0 | renderTask->prePrepare(fContext); |
587 | 0 | } |
588 | |
|
589 | 0 | ddl->fArenas = std::move(fContext->priv().detachArenas()); |
590 | |
|
591 | 0 | fContext->priv().detachProgramData(&ddl->fProgramData); |
592 | |
|
593 | 0 | SkDEBUGCODE(this->validate()); |
594 | 0 | } Unexecuted instantiation: GrDrawingManager::moveRenderTasksToDDL(GrDeferredDisplayList*) Unexecuted instantiation: GrDrawingManager::moveRenderTasksToDDL(GrDeferredDisplayList*) |
595 | | |
596 | | void GrDrawingManager::createDDLTask(sk_sp<const GrDeferredDisplayList> ddl, |
597 | 0 | sk_sp<GrRenderTargetProxy> newDest) { |
598 | 0 | SkDEBUGCODE(this->validate()); |
599 | |
|
600 | 0 | if (fActiveOpsTask) { |
601 | | // This is a temporary fix for the partial-MDB world. In that world we're not |
602 | | // reordering so ops that (in the single opsTask world) would've just glommed onto the |
603 | | // end of the single opsTask but referred to a far earlier RT need to appear in their |
604 | | // own opsTask. |
605 | 0 | fActiveOpsTask->makeClosed(fContext); |
606 | 0 | fActiveOpsTask = nullptr; |
607 | 0 | } |
608 | | |
609 | | // Propagate the DDL proxy's state information to the replay target. |
610 | 0 | if (ddl->priv().targetProxy()->isMSAADirty()) { |
611 | 0 | auto nativeRect = GrNativeRect::MakeIRectRelativeTo( |
612 | 0 | ddl->characterization().origin(), |
613 | 0 | ddl->priv().targetProxy()->backingStoreDimensions().height(), |
614 | 0 | ddl->priv().targetProxy()->msaaDirtyRect()); |
615 | 0 | newDest->markMSAADirty(nativeRect); |
616 | 0 | } |
617 | 0 | GrTextureProxy* newTextureProxy = newDest->asTextureProxy(); |
618 | 0 | if (newTextureProxy && skgpu::Mipmapped::kYes == newTextureProxy->mipmapped()) { |
619 | 0 | newTextureProxy->markMipmapsDirty(); |
620 | 0 | } |
621 | | |
622 | | // Here we jam the proxy that backs the current replay SkSurface into the LazyProxyData. |
623 | | // The lazy proxy that references it (in the DDL opsTasks) will then steal its GrTexture. |
624 | 0 | ddl->fLazyProxyData->fReplayDest = newDest.get(); |
625 | | |
626 | | // Add a task to handle drawing and lifetime management of the DDL. |
627 | 0 | SkDEBUGCODE(auto ddlTask =) this->appendTask(sk_make_sp<GrDDLTask>(this, |
628 | 0 | std::move(newDest), |
629 | 0 | std::move(ddl))); |
630 | 0 | SkASSERT(ddlTask->isClosed()); |
631 | |
|
632 | 0 | SkDEBUGCODE(this->validate()); |
633 | 0 | } Unexecuted instantiation: GrDrawingManager::createDDLTask(sk_sp<GrDeferredDisplayList const>, sk_sp<GrRenderTargetProxy>) Unexecuted instantiation: GrDrawingManager::createDDLTask(sk_sp<GrDeferredDisplayList const>, sk_sp<GrRenderTargetProxy>) |
634 | | |
635 | | #ifdef SK_DEBUG |
636 | 0 | void GrDrawingManager::validate() const { |
637 | 0 | if (fActiveOpsTask) { |
638 | 0 | SkASSERT(!fDAG.empty()); |
639 | 0 | SkASSERT(!fActiveOpsTask->isClosed()); |
640 | 0 | SkASSERT(fActiveOpsTask == fDAG.back().get()); |
641 | 0 | } |
642 | |
|
643 | 0 | for (int i = 0; i < fDAG.size(); ++i) { |
644 | 0 | if (fActiveOpsTask != fDAG[i].get()) { |
645 | | // The resolveTask associated with the activeTask remains open for as long as the |
646 | | // activeTask does. |
647 | 0 | bool isActiveResolveTask = |
648 | 0 | fActiveOpsTask && fActiveOpsTask->fTextureResolveTask == fDAG[i].get(); |
649 | 0 | bool isAtlas = fDAG[i]->isSetFlag(GrRenderTask::kAtlas_Flag); |
650 | 0 | SkASSERT(isActiveResolveTask || isAtlas || fDAG[i]->isClosed()); |
651 | 0 | } |
652 | 0 | } |
653 | | |
654 | | // The active opsTask, if any, should always be at the back of the DAG. |
655 | 0 | if (!fDAG.empty()) { |
656 | 0 | if (fDAG.back()->isSetFlag(GrRenderTask::kAtlas_Flag)) { |
657 | 0 | SkASSERT(fActiveOpsTask == nullptr); |
658 | 0 | SkASSERT(!fDAG.back()->isClosed()); |
659 | 0 | } else if (fDAG.back()->isClosed()) { |
660 | 0 | SkASSERT(fActiveOpsTask == nullptr); |
661 | 0 | } else { |
662 | 0 | SkASSERT(fActiveOpsTask == fDAG.back().get()); |
663 | 0 | } |
664 | 0 | } else { |
665 | 0 | SkASSERT(fActiveOpsTask == nullptr); |
666 | 0 | } |
667 | 0 | } |
668 | | #endif // SK_DEBUG |
669 | | |
670 | 138k | void GrDrawingManager::closeActiveOpsTask() { |
671 | 138k | if (fActiveOpsTask) { |
672 | | // This is a temporary fix for the partial-MDB world. In that world we're not |
673 | | // reordering so ops that (in the single opsTask world) would've just glommed onto the |
674 | | // end of the single opsTask but referred to a far earlier RT need to appear in their |
675 | | // own opsTask. |
676 | 96.2k | fActiveOpsTask->makeClosed(fContext); |
677 | 96.2k | fActiveOpsTask = nullptr; |
678 | 96.2k | } |
679 | 138k | } |
680 | | |
681 | | sk_sp<skgpu::ganesh::OpsTask> GrDrawingManager::newOpsTask(GrSurfaceProxyView surfaceView, |
682 | 99.5k | sk_sp<GrArenas> arenas) { |
683 | 99.5k | SkDEBUGCODE(this->validate()); |
684 | 99.5k | SkASSERT(fContext); |
685 | | |
686 | 99.5k | this->closeActiveOpsTask(); |
687 | | |
688 | 99.5k | sk_sp<skgpu::ganesh::OpsTask> opsTask(new skgpu::ganesh::OpsTask( |
689 | 99.5k | this, std::move(surfaceView), fContext->priv().auditTrail(), std::move(arenas))); |
690 | | |
691 | 99.5k | SkASSERT(this->getLastRenderTask(opsTask->target(0)) == opsTask.get()); |
692 | | |
693 | 99.5k | this->appendTask(opsTask); |
694 | | |
695 | 99.5k | fActiveOpsTask = opsTask.get(); |
696 | | |
697 | 99.5k | SkDEBUGCODE(this->validate()); |
698 | 99.5k | return opsTask; |
699 | 99.5k | } |
700 | | |
701 | | void GrDrawingManager::addAtlasTask(sk_sp<GrRenderTask> atlasTask, |
702 | 0 | GrRenderTask* previousAtlasTask) { |
703 | 0 | SkDEBUGCODE(this->validate()); |
704 | 0 | SkASSERT(fContext); |
705 | |
|
706 | 0 | if (previousAtlasTask) { |
707 | 0 | previousAtlasTask->makeClosed(fContext); |
708 | 0 | for (GrRenderTask* previousAtlasUser : previousAtlasTask->dependents()) { |
709 | | // Make the new atlas depend on everybody who used the old atlas, and close their tasks. |
710 | | // This guarantees that the previous atlas is totally out of service before we render |
711 | | // the next one, meaning there is only ever one atlas active at a time and that they can |
712 | | // all share the same texture. |
713 | 0 | atlasTask->addDependency(previousAtlasUser); |
714 | 0 | previousAtlasUser->makeClosed(fContext); |
715 | 0 | if (previousAtlasUser == fActiveOpsTask) { |
716 | 0 | fActiveOpsTask = nullptr; |
717 | 0 | } |
718 | 0 | } |
719 | 0 | } |
720 | |
|
721 | 0 | atlasTask->setFlag(GrRenderTask::kAtlas_Flag); |
722 | 0 | this->insertTaskBeforeLast(std::move(atlasTask)); |
723 | |
|
724 | 0 | SkDEBUGCODE(this->validate()); |
725 | 0 | } Unexecuted instantiation: GrDrawingManager::addAtlasTask(sk_sp<GrRenderTask>, GrRenderTask*) Unexecuted instantiation: GrDrawingManager::addAtlasTask(sk_sp<GrRenderTask>, GrRenderTask*) |
726 | | |
727 | | GrTextureResolveRenderTask* GrDrawingManager::newTextureResolveRenderTaskBefore( |
728 | 0 | const GrCaps& caps) { |
729 | | // Unlike in the "new opsTask" case, we do not want to close the active opsTask, nor (if we are |
730 | | // in sorting and opsTask reduction mode) the render tasks that depend on any proxy's current |
731 | | // state. This is because those opsTasks can still receive new ops and because if they refer to |
732 | | // the mipmapped version of 'proxy', they will then come to depend on the render task being |
733 | | // created here. |
734 | | // |
735 | | // Add the new textureResolveTask before the fActiveOpsTask (if not in |
736 | | // sorting/opsTask-splitting-reduction mode) because it will depend upon this resolve task. |
737 | | // NOTE: Putting it here will also reduce the amount of work required by the topological sort. |
738 | 0 | GrRenderTask* task = this->insertTaskBeforeLast(sk_make_sp<GrTextureResolveRenderTask>()); |
739 | 0 | return static_cast<GrTextureResolveRenderTask*>(task); |
740 | 0 | } |
741 | | |
742 | | void GrDrawingManager::newTextureResolveRenderTask(sk_sp<GrSurfaceProxy> proxy, |
743 | | GrSurfaceProxy::ResolveFlags flags, |
744 | 0 | const GrCaps& caps) { |
745 | 0 | SkDEBUGCODE(this->validate()); |
746 | 0 | SkASSERT(fContext); |
747 | |
|
748 | 0 | if (!proxy->requiresManualMSAAResolve()) { |
749 | 0 | SkDEBUGCODE(this->validate()); |
750 | 0 | return; |
751 | 0 | } |
752 | | |
753 | 0 | GrRenderTask* lastTask = this->getLastRenderTask(proxy.get()); |
754 | 0 | if (!proxy->asRenderTargetProxy()->isMSAADirty() && (!lastTask || lastTask->isClosed())) { |
755 | 0 | SkDEBUGCODE(this->validate()); |
756 | 0 | return; |
757 | 0 | } |
758 | | |
759 | 0 | this->closeActiveOpsTask(); |
760 | |
|
761 | 0 | auto resolveTask = sk_make_sp<GrTextureResolveRenderTask>(); |
762 | | // Add proxy also adds all the needed dependencies we need |
763 | 0 | resolveTask->addProxy(this, std::move(proxy), flags, caps); |
764 | |
|
765 | 0 | auto task = this->appendTask(std::move(resolveTask)); |
766 | 0 | task->makeClosed(fContext); |
767 | | |
768 | | // We have closed the previous active oplist but since a new oplist isn't being added there |
769 | | // shouldn't be an active one. |
770 | 0 | SkASSERT(!fActiveOpsTask); |
771 | 0 | SkDEBUGCODE(this->validate()); |
772 | 0 | } Unexecuted instantiation: GrDrawingManager::newTextureResolveRenderTask(sk_sp<GrSurfaceProxy>, GrSurfaceProxy::ResolveFlags, GrCaps const&) Unexecuted instantiation: GrDrawingManager::newTextureResolveRenderTask(sk_sp<GrSurfaceProxy>, GrSurfaceProxy::ResolveFlags, GrCaps const&) |
773 | | |
774 | | void GrDrawingManager::newWaitRenderTask(const sk_sp<GrSurfaceProxy>& proxy, |
775 | | std::unique_ptr<std::unique_ptr<GrSemaphore>[]> semaphores, |
776 | 0 | int numSemaphores) { |
777 | 0 | SkDEBUGCODE(this->validate()); |
778 | 0 | SkASSERT(fContext); |
779 | |
|
780 | 0 | sk_sp<GrWaitRenderTask> waitTask = sk_make_sp<GrWaitRenderTask>(GrSurfaceProxyView(proxy), |
781 | 0 | std::move(semaphores), |
782 | 0 | numSemaphores); |
783 | |
|
784 | 0 | if (fActiveOpsTask && (fActiveOpsTask->target(0) == proxy.get())) { |
785 | 0 | SkASSERT(this->getLastRenderTask(proxy.get()) == fActiveOpsTask); |
786 | 0 | this->insertTaskBeforeLast(waitTask); |
787 | | // In this case we keep the current renderTask open but just insert the new waitTask |
788 | | // before it in the list. The waitTask will never need to trigger any resolves or mip |
789 | | // map generation which is the main advantage of going through the proxy version. |
790 | | // Additionally we would've had to temporarily set the wait task as the lastRenderTask |
791 | | // on the proxy, add the dependency, and then reset the lastRenderTask to |
792 | | // fActiveOpsTask. Additionally we make the waitTask depend on all of fActiveOpsTask |
793 | | // dependencies so that we don't unnecessarily reorder the waitTask before them. |
794 | | // Note: Any previous Ops already in fActiveOpsTask will get blocked by the wait |
795 | | // semaphore even though they don't need to be for correctness. |
796 | | |
797 | | // Make sure we add the dependencies of fActiveOpsTask to waitTask first or else we'll |
798 | | // get a circular self dependency of waitTask on waitTask. |
799 | 0 | waitTask->addDependenciesFromOtherTask(fActiveOpsTask); |
800 | 0 | fActiveOpsTask->addDependency(waitTask.get()); |
801 | 0 | } else { |
802 | | // In this case we just close the previous RenderTask and start and append the waitTask |
803 | | // to the DAG. Since it is the last task now we call setLastRenderTask on the proxy. If |
804 | | // there is a lastTask on the proxy we make waitTask depend on that task. This |
805 | | // dependency isn't strictly needed but it does keep the DAG from reordering the |
806 | | // waitTask earlier and blocking more tasks. |
807 | 0 | if (GrRenderTask* lastTask = this->getLastRenderTask(proxy.get())) { |
808 | 0 | waitTask->addDependency(lastTask); |
809 | 0 | } |
810 | 0 | this->setLastRenderTask(proxy.get(), waitTask.get()); |
811 | 0 | this->closeActiveOpsTask(); |
812 | 0 | this->appendTask(waitTask); |
813 | 0 | } |
814 | 0 | waitTask->makeClosed(fContext); |
815 | |
|
816 | 0 | SkDEBUGCODE(this->validate()); |
817 | 0 | } Unexecuted instantiation: GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> const&, std::__1::unique_ptr<std::__1::unique_ptr<GrSemaphore, std::__1::default_delete<GrSemaphore> > [], std::__1::default_delete<std::__1::unique_ptr<GrSemaphore, std::__1::default_delete<GrSemaphore> > []> >, int) Unexecuted instantiation: GrDrawingManager::newWaitRenderTask(sk_sp<GrSurfaceProxy> const&, std::__1::unique_ptr<std::__1::unique_ptr<GrSemaphore, std::__1::default_delete<GrSemaphore> > [], std::__1::default_delete<std::__1::unique_ptr<GrSemaphore, std::__1::default_delete<GrSemaphore> > []> >, int) |
818 | | |
819 | | void GrDrawingManager::newTransferFromRenderTask(const sk_sp<GrSurfaceProxy>& srcProxy, |
820 | | const SkIRect& srcRect, |
821 | | GrColorType surfaceColorType, |
822 | | GrColorType dstColorType, |
823 | | sk_sp<GrGpuBuffer> dstBuffer, |
824 | 0 | size_t dstOffset) { |
825 | 0 | SkDEBUGCODE(this->validate()); |
826 | 0 | SkASSERT(fContext); |
827 | 0 | this->closeActiveOpsTask(); |
828 | |
|
829 | 0 | GrRenderTask* task = this->appendTask(sk_make_sp<GrTransferFromRenderTask>( |
830 | 0 | srcProxy, srcRect, surfaceColorType, dstColorType, |
831 | 0 | std::move(dstBuffer), dstOffset)); |
832 | |
|
833 | 0 | const GrCaps& caps = *fContext->priv().caps(); |
834 | | |
835 | | // We always say skgpu::Mipmapped::kNo here since we are always just copying from the base |
836 | | // layer. We don't need to make sure the whole mip map chain is valid. |
837 | 0 | task->addDependency( |
838 | 0 | this, srcProxy.get(), skgpu::Mipmapped::kNo, GrTextureResolveManager(this), caps); |
839 | 0 | task->makeClosed(fContext); |
840 | | |
841 | | // We have closed the previous active oplist but since a new oplist isn't being added there |
842 | | // shouldn't be an active one. |
843 | 0 | SkASSERT(!fActiveOpsTask); |
844 | 0 | SkDEBUGCODE(this->validate()); |
845 | 0 | } Unexecuted instantiation: GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> const&, SkIRect const&, GrColorType, GrColorType, sk_sp<GrGpuBuffer>, unsigned long) Unexecuted instantiation: GrDrawingManager::newTransferFromRenderTask(sk_sp<GrSurfaceProxy> const&, SkIRect const&, GrColorType, GrColorType, sk_sp<GrGpuBuffer>, unsigned long) |
846 | | |
847 | | void GrDrawingManager::newBufferTransferTask(sk_sp<GrGpuBuffer> src, |
848 | | size_t srcOffset, |
849 | | sk_sp<GrGpuBuffer> dst, |
850 | | size_t dstOffset, |
851 | 0 | size_t size) { |
852 | 0 | SkASSERT(src); |
853 | 0 | SkASSERT(dst); |
854 | 0 | SkASSERT(srcOffset + size <= src->size()); |
855 | 0 | SkASSERT(dstOffset + size <= dst->size()); |
856 | 0 | SkASSERT(src->intendedType() == GrGpuBufferType::kXferCpuToGpu); |
857 | 0 | SkASSERT(dst->intendedType() != GrGpuBufferType::kXferCpuToGpu); |
858 | |
|
859 | 0 | SkDEBUGCODE(this->validate()); |
860 | 0 | SkASSERT(fContext); |
861 | |
|
862 | 0 | this->closeActiveOpsTask(); |
863 | |
|
864 | 0 | sk_sp<GrRenderTask> task = GrBufferTransferRenderTask::Make(std::move(src), |
865 | 0 | srcOffset, |
866 | 0 | std::move(dst), |
867 | 0 | dstOffset, |
868 | 0 | size); |
869 | 0 | SkASSERT(task); |
870 | |
|
871 | 0 | this->appendTask(task); |
872 | 0 | task->makeClosed(fContext); |
873 | | |
874 | | // We have closed the previous active oplist but since a new oplist isn't being added there |
875 | | // shouldn't be an active one. |
876 | 0 | SkASSERT(!fActiveOpsTask); |
877 | 0 | SkDEBUGCODE(this->validate()); |
878 | 0 | } Unexecuted instantiation: GrDrawingManager::newBufferTransferTask(sk_sp<GrGpuBuffer>, unsigned long, sk_sp<GrGpuBuffer>, unsigned long, unsigned long) Unexecuted instantiation: GrDrawingManager::newBufferTransferTask(sk_sp<GrGpuBuffer>, unsigned long, sk_sp<GrGpuBuffer>, unsigned long, unsigned long) |
879 | | |
880 | | void GrDrawingManager::newBufferUpdateTask(sk_sp<SkData> src, |
881 | | sk_sp<GrGpuBuffer> dst, |
882 | 0 | size_t dstOffset) { |
883 | 0 | SkASSERT(src); |
884 | 0 | SkASSERT(dst); |
885 | 0 | SkASSERT(dstOffset + src->size() <= dst->size()); |
886 | 0 | SkASSERT(dst->intendedType() != GrGpuBufferType::kXferCpuToGpu); |
887 | 0 | SkASSERT(!dst->isMapped()); |
888 | |
|
889 | 0 | SkDEBUGCODE(this->validate()); |
890 | 0 | SkASSERT(fContext); |
891 | |
|
892 | 0 | this->closeActiveOpsTask(); |
893 | |
|
894 | 0 | sk_sp<GrRenderTask> task = GrBufferUpdateRenderTask::Make(std::move(src), |
895 | 0 | std::move(dst), |
896 | 0 | dstOffset); |
897 | 0 | SkASSERT(task); |
898 | |
|
899 | 0 | this->appendTask(task); |
900 | 0 | task->makeClosed(fContext); |
901 | | |
902 | | // We have closed the previous active oplist but since a new oplist isn't being added there |
903 | | // shouldn't be an active one. |
904 | 0 | SkASSERT(!fActiveOpsTask); |
905 | 0 | SkDEBUGCODE(this->validate()); |
906 | 0 | } Unexecuted instantiation: GrDrawingManager::newBufferUpdateTask(sk_sp<SkData>, sk_sp<GrGpuBuffer>, unsigned long) Unexecuted instantiation: GrDrawingManager::newBufferUpdateTask(sk_sp<SkData>, sk_sp<GrGpuBuffer>, unsigned long) |
907 | | |
908 | | sk_sp<GrRenderTask> GrDrawingManager::newCopyRenderTask(sk_sp<GrSurfaceProxy> dst, |
909 | | SkIRect dstRect, |
910 | | const sk_sp<GrSurfaceProxy>& src, |
911 | | SkIRect srcRect, |
912 | | GrSamplerState::Filter filter, |
913 | 38.6k | GrSurfaceOrigin origin) { |
914 | 38.6k | SkDEBUGCODE(this->validate()); |
915 | 38.6k | SkASSERT(fContext); |
916 | | |
917 | | // It'd be nicer to check this in GrCopyRenderTask::Make. This gets complicated because of |
918 | | // "active ops task" tracking. dst will be the target of our copy task but it might also be the |
919 | | // target of the active ops task. We currently require the active ops task to be closed before |
920 | | // making a new task that targets the same proxy. However, if we first close the active ops |
921 | | // task, then fail to make a copy task, the next active ops task may target the same proxy. This |
922 | | // will trip an assert related to unnecessary ops task splitting. |
923 | 38.6k | if (src->framebufferOnly()) { |
924 | 0 | return nullptr; |
925 | 0 | } |
926 | | |
927 | 38.6k | this->closeActiveOpsTask(); |
928 | | |
929 | 38.6k | sk_sp<GrRenderTask> task = GrCopyRenderTask::Make(this, |
930 | 38.6k | std::move(dst), |
931 | 38.6k | dstRect, |
932 | 38.6k | src, |
933 | 38.6k | srcRect, |
934 | 38.6k | filter, |
935 | 38.6k | origin); |
936 | 38.6k | if (!task) { |
937 | 0 | return nullptr; |
938 | 0 | } |
939 | | |
940 | 38.6k | this->appendTask(task); |
941 | | |
942 | 38.6k | const GrCaps& caps = *fContext->priv().caps(); |
943 | | // We always say skgpu::Mipmapped::kNo here since we are always just copying from the base layer |
944 | | // to another base layer. We don't need to make sure the whole mip map chain is valid. |
945 | 38.6k | task->addDependency( |
946 | 38.6k | this, src.get(), skgpu::Mipmapped::kNo, GrTextureResolveManager(this), caps); |
947 | 38.6k | task->makeClosed(fContext); |
948 | | |
949 | | // We have closed the previous active oplist but since a new oplist isn't being added there |
950 | | // shouldn't be an active one. |
951 | 38.6k | SkASSERT(!fActiveOpsTask); |
952 | 38.6k | SkDEBUGCODE(this->validate()); |
953 | 38.6k | return task; |
954 | 38.6k | } |
955 | | |
956 | | bool GrDrawingManager::newWritePixelsTask(sk_sp<GrSurfaceProxy> dst, |
957 | | SkIRect rect, |
958 | | GrColorType srcColorType, |
959 | | GrColorType dstColorType, |
960 | | const GrMipLevel levels[], |
961 | 0 | int levelCount) { |
962 | 0 | SkDEBUGCODE(this->validate()); |
963 | 0 | SkASSERT(fContext); |
964 | |
|
965 | 0 | this->closeActiveOpsTask(); |
966 | 0 | const GrCaps& caps = *fContext->priv().caps(); |
967 | | |
968 | | // On platforms that prefer flushes over VRAM use (i.e., ANGLE) we're better off forcing a |
969 | | // complete flush here. |
970 | 0 | if (!caps.preferVRAMUseOverFlushes()) { |
971 | 0 | this->flushSurfaces(SkSpan<GrSurfaceProxy*>{}, |
972 | 0 | SkSurfaces::BackendSurfaceAccess::kNoAccess, |
973 | 0 | GrFlushInfo{}, |
974 | 0 | nullptr); |
975 | 0 | } |
976 | |
|
977 | 0 | GrRenderTask* task = this->appendTask(GrWritePixelsTask::Make(this, |
978 | 0 | std::move(dst), |
979 | 0 | rect, |
980 | 0 | srcColorType, |
981 | 0 | dstColorType, |
982 | 0 | levels, |
983 | 0 | levelCount)); |
984 | 0 | if (!task) { |
985 | 0 | return false; |
986 | 0 | } |
987 | | |
988 | 0 | task->makeClosed(fContext); |
989 | | |
990 | | // We have closed the previous active oplist but since a new oplist isn't being added there |
991 | | // shouldn't be an active one. |
992 | 0 | SkASSERT(!fActiveOpsTask); |
993 | 0 | SkDEBUGCODE(this->validate()); |
994 | 0 | return true; |
995 | 0 | } Unexecuted instantiation: GrDrawingManager::newWritePixelsTask(sk_sp<GrSurfaceProxy>, SkIRect, GrColorType, GrColorType, GrMipLevel const*, int) Unexecuted instantiation: GrDrawingManager::newWritePixelsTask(sk_sp<GrSurfaceProxy>, SkIRect, GrColorType, GrColorType, GrMipLevel const*, int) |
996 | | |
997 | | /* |
998 | | * This method finds a path renderer that can draw the specified path on |
999 | | * the provided target. |
1000 | | * Due to its expense, the software path renderer has split out so it can |
1001 | | * can be individually allowed/disallowed via the "allowSW" boolean. |
1002 | | */ |
1003 | | skgpu::ganesh::PathRenderer* GrDrawingManager::getPathRenderer( |
1004 | | const PathRenderer::CanDrawPathArgs& args, |
1005 | | bool allowSW, |
1006 | | PathRendererChain::DrawType drawType, |
1007 | 51.4k | PathRenderer::StencilSupport* stencilSupport) { |
1008 | 51.4k | if (!fPathRendererChain) { |
1009 | 421 | fPathRendererChain = |
1010 | 421 | std::make_unique<PathRendererChain>(fContext, fOptionsForPathRendererChain); |
1011 | 421 | } |
1012 | | |
1013 | 51.4k | auto pr = fPathRendererChain->getPathRenderer(args, drawType, stencilSupport); |
1014 | 51.4k | if (!pr && allowSW) { |
1015 | 0 | auto swPR = this->getSoftwarePathRenderer(); |
1016 | 0 | if (PathRenderer::CanDrawPath::kNo != swPR->canDrawPath(args)) { |
1017 | 0 | pr = swPR; |
1018 | 0 | } |
1019 | 0 | } |
1020 | | |
1021 | | #if GR_PATH_RENDERER_SPEW |
1022 | | if (pr) { |
1023 | | SkDebugf("getPathRenderer: %s\n", pr->name()); |
1024 | | } |
1025 | | #endif |
1026 | | |
1027 | 51.4k | return pr; |
1028 | 51.4k | } |
1029 | | |
1030 | 7.24k | skgpu::ganesh::PathRenderer* GrDrawingManager::getSoftwarePathRenderer() { |
1031 | 7.24k | if (!fSoftwarePathRenderer) { |
1032 | 327 | fSoftwarePathRenderer.reset(new skgpu::ganesh::SoftwarePathRenderer( |
1033 | 327 | fContext->priv().proxyProvider(), |
1034 | 327 | fOptionsForPathRendererChain.fAllowPathMaskCaching)); |
1035 | 327 | } |
1036 | 7.24k | return fSoftwarePathRenderer.get(); |
1037 | 7.24k | } |
1038 | | |
1039 | 9.78k | skgpu::ganesh::AtlasPathRenderer* GrDrawingManager::getAtlasPathRenderer() { |
1040 | 9.78k | if (!fPathRendererChain) { |
1041 | 387 | fPathRendererChain = std::make_unique<PathRendererChain>(fContext, |
1042 | 387 | fOptionsForPathRendererChain); |
1043 | 387 | } |
1044 | 9.78k | return fPathRendererChain->getAtlasPathRenderer(); |
1045 | 9.78k | } |
1046 | | |
1047 | 14.6k | skgpu::ganesh::PathRenderer* GrDrawingManager::getTessellationPathRenderer() { |
1048 | 14.6k | if (!fPathRendererChain) { |
1049 | 382 | fPathRendererChain = std::make_unique<PathRendererChain>(fContext, |
1050 | 382 | fOptionsForPathRendererChain); |
1051 | 382 | } |
1052 | 14.6k | return fPathRendererChain->getTessellationPathRenderer(); |
1053 | 14.6k | } |
1054 | | |
1055 | 220k | void GrDrawingManager::flushIfNecessary() { |
1056 | 220k | auto direct = fContext->asDirectContext(); |
1057 | 220k | if (!direct) { |
1058 | 0 | return; |
1059 | 0 | } |
1060 | | |
1061 | 220k | auto resourceCache = direct->priv().getResourceCache(); |
1062 | 220k | if (resourceCache && resourceCache->requestsFlush()) { |
1063 | 0 | if (this->flush({}, SkSurfaces::BackendSurfaceAccess::kNoAccess, GrFlushInfo(), nullptr)) { |
1064 | 0 | this->submitToGpu(GrSyncCpu::kNo); |
1065 | 0 | } |
1066 | 0 | resourceCache->purgeAsNeeded(); |
1067 | 0 | } |
1068 | 220k | } |