/src/skia/src/gpu/ganesh/geometry/GrPathUtils.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2011 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #include "src/gpu/ganesh/geometry/GrPathUtils.h" |
9 | | |
10 | | #include "include/core/SkMatrix.h" |
11 | | #include "include/core/SkRect.h" |
12 | | #include "include/private/base/SkAssert.h" |
13 | | #include "include/private/base/SkFloatingPoint.h" |
14 | | #include "src/core/SkGeometry.h" |
15 | | #include "src/core/SkPathEnums.h" |
16 | | #include "src/core/SkPointPriv.h" |
17 | | #include "src/gpu/tessellate/WangsFormula.h" |
18 | | |
19 | | #include <algorithm> |
20 | | |
21 | | using namespace skia_private; |
22 | | |
23 | | static const SkScalar kMinCurveTol = 0.0001f; |
24 | | |
25 | 626k | static float tolerance_to_wangs_precision(float srcTol) { |
26 | | // You should have called scaleToleranceToSrc, which guarantees this |
27 | 626k | SkASSERT(srcTol >= kMinCurveTol); |
28 | | |
29 | | // The GrPathUtil API defines tolerance as the max distance the linear segment can be from |
30 | | // the real curve. Wang's formula guarantees the linear segments will be within 1/precision |
31 | | // of the true curve, so precision = 1/srcTol |
32 | 626k | return 1.f / srcTol; |
33 | 626k | } |
34 | | |
35 | 626k | uint32_t max_bezier_vertices(uint32_t chopCount) { |
36 | 626k | static constexpr uint32_t kMaxChopsPerCurve = 10; |
37 | 626k | static_assert((1 << kMaxChopsPerCurve) == GrPathUtils::kMaxPointsPerCurve); |
38 | 626k | return 1 << std::min(chopCount, kMaxChopsPerCurve); |
39 | 626k | } |
40 | | |
41 | | SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol, |
42 | | const SkMatrix& viewM, |
43 | 11.7k | const SkRect& pathBounds) { |
44 | | // In order to tesselate the path we get a bound on how much the matrix can |
45 | | // scale when mapping to screen coordinates. |
46 | 11.7k | SkScalar stretch = viewM.getMaxScale(); |
47 | | |
48 | 11.7k | if (stretch < 0) { |
49 | | // take worst case mapRadius amoung four corners. |
50 | | // (less than perfect) |
51 | 17.1k | for (int i = 0; i < 4; ++i) { |
52 | 13.7k | SkMatrix mat; |
53 | 13.7k | mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, |
54 | 13.7k | (i < 2) ? pathBounds.fTop : pathBounds.fBottom); |
55 | 13.7k | mat.postConcat(viewM); |
56 | 13.7k | stretch = std::max(stretch, mat.mapRadius(SK_Scalar1)); |
57 | 13.7k | } |
58 | 3.42k | } |
59 | 11.7k | SkScalar srcTol = 0; |
60 | 11.7k | if (stretch <= 0) { |
61 | | // We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the |
62 | | // max of the path pathBounds width and height. |
63 | 536 | srcTol = std::max(pathBounds.width(), pathBounds.height()); |
64 | 11.2k | } else { |
65 | 11.2k | srcTol = devTol / stretch; |
66 | 11.2k | } |
67 | 11.7k | if (srcTol < kMinCurveTol) { |
68 | 2.92k | srcTol = kMinCurveTol; |
69 | 2.92k | } |
70 | 11.7k | return srcTol; |
71 | 11.7k | } |
72 | | |
73 | 601k | uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) { |
74 | 601k | return max_bezier_vertices(skgpu::wangs_formula::quadratic_log2( |
75 | 601k | tolerance_to_wangs_precision(tol), points)); |
76 | 601k | } |
77 | | |
78 | | uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0, |
79 | | const SkPoint& p1, |
80 | | const SkPoint& p2, |
81 | | SkScalar tolSqd, |
82 | | SkPoint** points, |
83 | 1.07G | uint32_t pointsLeft) { |
84 | 1.07G | if (pointsLeft < 2 || |
85 | 1.07G | (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) { |
86 | 540M | (*points)[0] = p2; |
87 | 540M | *points += 1; |
88 | 540M | return 1; |
89 | 540M | } |
90 | | |
91 | 539M | SkPoint q[] = { |
92 | 539M | { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
93 | 539M | { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
94 | 539M | }; |
95 | 539M | SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; |
96 | | |
97 | 539M | pointsLeft >>= 1; |
98 | 539M | uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); |
99 | 539M | uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); |
100 | 539M | return a + b; |
101 | 1.07G | } |
102 | | |
103 | 25.4k | uint32_t GrPathUtils::cubicPointCount(const SkPoint points[], SkScalar tol) { |
104 | 25.4k | return max_bezier_vertices(skgpu::wangs_formula::cubic_log2( |
105 | 25.4k | tolerance_to_wangs_precision(tol), points)); |
106 | 25.4k | } |
107 | | |
108 | | uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0, |
109 | | const SkPoint& p1, |
110 | | const SkPoint& p2, |
111 | | const SkPoint& p3, |
112 | | SkScalar tolSqd, |
113 | | SkPoint** points, |
114 | 3.58M | uint32_t pointsLeft) { |
115 | 3.58M | if (pointsLeft < 2 || |
116 | 3.58M | (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd && |
117 | 1.79M | SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) { |
118 | 1.79M | (*points)[0] = p3; |
119 | 1.79M | *points += 1; |
120 | 1.79M | return 1; |
121 | 1.79M | } |
122 | 1.78M | SkPoint q[] = { |
123 | 1.78M | { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, |
124 | 1.78M | { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, |
125 | 1.78M | { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } |
126 | 1.78M | }; |
127 | 1.78M | SkPoint r[] = { |
128 | 1.78M | { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, |
129 | 1.78M | { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } |
130 | 1.78M | }; |
131 | 1.78M | SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; |
132 | 1.78M | pointsLeft >>= 1; |
133 | 1.78M | uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); |
134 | 1.78M | uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); |
135 | 1.78M | return a + b; |
136 | 3.58M | } |
137 | | |
138 | 533k | void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) { |
139 | | // We want M such that M * xy_pt = uv_pt |
140 | | // We know M * control_pts = [0 1/2 1] |
141 | | // [0 0 1] |
142 | | // [1 1 1] |
143 | | // And control_pts = [x0 x1 x2] |
144 | | // [y0 y1 y2] |
145 | | // [1 1 1 ] |
146 | | // We invert the control pt matrix and post concat to both sides to get M. |
147 | | // Using the known form of the control point matrix and the result, we can |
148 | | // optimize and improve precision. |
149 | | |
150 | 533k | double x0 = qPts[0].fX; |
151 | 533k | double y0 = qPts[0].fY; |
152 | 533k | double x1 = qPts[1].fX; |
153 | 533k | double y1 = qPts[1].fY; |
154 | 533k | double x2 = qPts[2].fX; |
155 | 533k | double y2 = qPts[2].fY; |
156 | | |
157 | | // pre-calculate some adjugate matrix factors for determinant |
158 | 533k | double a2 = x1*y2-x2*y1; |
159 | 533k | double a5 = x2*y0-x0*y2; |
160 | 533k | double a8 = x0*y1-x1*y0; |
161 | 533k | double det = a2 + a5 + a8; |
162 | | |
163 | 533k | if (!SkIsFinite(det) |
164 | 533k | || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) { |
165 | | // The quad is degenerate. Hopefully this is rare. Find the pts that are |
166 | | // farthest apart to compute a line (unless it is really a pt). |
167 | 650 | SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]); |
168 | 650 | int maxEdge = 0; |
169 | 650 | SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]); |
170 | 650 | if (d > maxD) { |
171 | 186 | maxD = d; |
172 | 186 | maxEdge = 1; |
173 | 186 | } |
174 | 650 | d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]); |
175 | 650 | if (d > maxD) { |
176 | 499 | maxD = d; |
177 | 499 | maxEdge = 2; |
178 | 499 | } |
179 | | // We could have a tolerance here, not sure if it would improve anything |
180 | 650 | if (maxD > 0) { |
181 | | // Set the matrix to give (u = 0, v = distance_to_line) |
182 | 647 | SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; |
183 | | // when looking from the point 0 down the line we want positive |
184 | | // distances to be to the left. This matches the non-degenerate |
185 | | // case. |
186 | 647 | lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side); |
187 | | // first row |
188 | 647 | fM[0] = 0; |
189 | 647 | fM[1] = 0; |
190 | 647 | fM[2] = 0; |
191 | | // second row |
192 | 647 | fM[3] = lineVec.fX; |
193 | 647 | fM[4] = lineVec.fY; |
194 | 647 | fM[5] = -lineVec.dot(qPts[maxEdge]); |
195 | 647 | } else { |
196 | | // It's a point. It should cover zero area. Just set the matrix such |
197 | | // that (u, v) will always be far away from the quad. |
198 | 3 | fM[0] = 0; fM[1] = 0; fM[2] = 100.f; |
199 | 3 | fM[3] = 0; fM[4] = 0; fM[5] = 100.f; |
200 | 3 | } |
201 | 533k | } else { |
202 | 533k | double scale = 1.0/det; |
203 | | |
204 | | // compute adjugate matrix |
205 | 533k | double a3, a4, a6, a7; |
206 | 533k | a3 = y2-y0; |
207 | 533k | a4 = x0-x2; |
208 | | |
209 | 533k | a6 = y0-y1; |
210 | 533k | a7 = x1-x0; |
211 | | |
212 | | // this performs the uv_pts*adjugate(control_pts) multiply, |
213 | | // then does the scale by 1/det afterwards to improve precision |
214 | 533k | fM[0] = (float)((0.5*a3 + a6)*scale); |
215 | 533k | fM[1] = (float)((0.5*a4 + a7)*scale); |
216 | 533k | fM[2] = (float)((0.5*a5 + a8)*scale); |
217 | 533k | fM[3] = (float)(a6*scale); |
218 | 533k | fM[4] = (float)(a7*scale); |
219 | 533k | fM[5] = (float)(a8*scale); |
220 | 533k | } |
221 | 533k | } |
222 | | |
223 | | //////////////////////////////////////////////////////////////////////////////// |
224 | | |
225 | | // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2) |
226 | | // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w |
227 | | // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w |
228 | 109 | void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) { |
229 | 109 | SkMatrix& klm = *out; |
230 | 109 | const SkScalar w2 = 2.f * weight; |
231 | 109 | klm[0] = p[2].fY - p[0].fY; |
232 | 109 | klm[1] = p[0].fX - p[2].fX; |
233 | 109 | klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY; |
234 | | |
235 | 109 | klm[3] = w2 * (p[1].fY - p[0].fY); |
236 | 109 | klm[4] = w2 * (p[0].fX - p[1].fX); |
237 | 109 | klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY); |
238 | | |
239 | 109 | klm[6] = w2 * (p[2].fY - p[1].fY); |
240 | 109 | klm[7] = w2 * (p[1].fX - p[2].fX); |
241 | 109 | klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY); |
242 | | |
243 | | // scale the max absolute value of coeffs to 10 |
244 | 109 | SkScalar scale = 0.f; |
245 | 1.09k | for (int i = 0; i < 9; ++i) { |
246 | 981 | scale = std::max(scale, SkScalarAbs(klm[i])); |
247 | 981 | } |
248 | 109 | SkASSERT(scale > 0.f); |
249 | 109 | scale = 10.f / scale; |
250 | 1.09k | for (int i = 0; i < 9; ++i) { |
251 | 981 | klm[i] *= scale; |
252 | 981 | } |
253 | 109 | } |
254 | | |
255 | | //////////////////////////////////////////////////////////////////////////////// |
256 | | |
257 | | namespace { |
258 | | |
259 | | // a is the first control point of the cubic. |
260 | | // ab is the vector from a to the second control point. |
261 | | // dc is the vector from the fourth to the third control point. |
262 | | // d is the fourth control point. |
263 | | // p is the candidate quadratic control point. |
264 | | // this assumes that the cubic doesn't inflect and is simple |
265 | | bool is_point_within_cubic_tangents(const SkPoint& a, |
266 | | const SkVector& ab, |
267 | | const SkVector& dc, |
268 | | const SkPoint& d, |
269 | | SkPathFirstDirection dir, |
270 | 10.1k | const SkPoint p) { |
271 | 10.1k | SkVector ap = p - a; |
272 | 10.1k | SkScalar apXab = ap.cross(ab); |
273 | 10.1k | if (SkPathFirstDirection::kCW == dir) { |
274 | 7.88k | if (apXab > 0) { |
275 | 3.70k | return false; |
276 | 3.70k | } |
277 | 7.88k | } else { |
278 | 2.22k | SkASSERT(SkPathFirstDirection::kCCW == dir); |
279 | 2.22k | if (apXab < 0) { |
280 | 1.49k | return false; |
281 | 1.49k | } |
282 | 2.22k | } |
283 | | |
284 | 4.91k | SkVector dp = p - d; |
285 | 4.91k | SkScalar dpXdc = dp.cross(dc); |
286 | 4.91k | if (SkPathFirstDirection::kCW == dir) { |
287 | 4.18k | if (dpXdc < 0) { |
288 | 1.10k | return false; |
289 | 1.10k | } |
290 | 4.18k | } else { |
291 | 729 | SkASSERT(SkPathFirstDirection::kCCW == dir); |
292 | 729 | if (dpXdc > 0) { |
293 | 206 | return false; |
294 | 206 | } |
295 | 729 | } |
296 | 3.60k | return true; |
297 | 4.91k | } |
298 | | |
299 | | void convert_noninflect_cubic_to_quads(const SkPoint p[4], |
300 | | SkScalar toleranceSqd, |
301 | | TArray<SkPoint, true>* quads, |
302 | | int sublevel = 0, |
303 | | bool preserveFirstTangent = true, |
304 | 1.97M | bool preserveLastTangent = true) { |
305 | | // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is |
306 | | // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. |
307 | 1.97M | SkVector ab = p[1] - p[0]; |
308 | 1.97M | SkVector dc = p[2] - p[3]; |
309 | | |
310 | 1.97M | if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) { |
311 | 8.07k | if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) { |
312 | 507 | SkPoint* degQuad = quads->push_back_n(3); |
313 | 507 | degQuad[0] = p[0]; |
314 | 507 | degQuad[1] = p[0]; |
315 | 507 | degQuad[2] = p[3]; |
316 | 507 | return; |
317 | 507 | } |
318 | 7.56k | ab = p[2] - p[0]; |
319 | 7.56k | } |
320 | 1.96M | if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) { |
321 | 1.19k | dc = p[1] - p[3]; |
322 | 1.19k | } |
323 | | |
324 | 1.96M | static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; |
325 | 1.96M | static const int kMaxSubdivs = 10; |
326 | | |
327 | 1.96M | ab.scale(kLengthScale); |
328 | 1.96M | dc.scale(kLengthScale); |
329 | | |
330 | | // c0 and c1 are extrapolations along vectors ab and dc. |
331 | 1.96M | SkPoint c0 = p[0] + ab; |
332 | 1.96M | SkPoint c1 = p[3] + dc; |
333 | | |
334 | 1.96M | SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1); |
335 | 1.96M | if (dSqd < toleranceSqd) { |
336 | 985k | SkPoint newC; |
337 | 985k | if (preserveFirstTangent == preserveLastTangent) { |
338 | | // We used to force a split when both tangents need to be preserved and c0 != c1. |
339 | | // This introduced a large performance regression for tiny paths for no noticeable |
340 | | // quality improvement. However, we aren't quite fulfilling our contract of guaranteeing |
341 | | // the two tangent vectors and this could introduce a missed pixel in |
342 | | // AAHairlinePathRenderer. |
343 | 983k | newC = (c0 + c1) * 0.5f; |
344 | 983k | } else if (preserveFirstTangent) { |
345 | 1.06k | newC = c0; |
346 | 1.06k | } else { |
347 | 1.06k | newC = c1; |
348 | 1.06k | } |
349 | | |
350 | 985k | SkPoint* pts = quads->push_back_n(3); |
351 | 985k | pts[0] = p[0]; |
352 | 985k | pts[1] = newC; |
353 | 985k | pts[2] = p[3]; |
354 | 985k | return; |
355 | 985k | } |
356 | 984k | SkPoint choppedPts[7]; |
357 | 984k | SkChopCubicAtHalf(p, choppedPts); |
358 | 984k | convert_noninflect_cubic_to_quads( |
359 | 984k | choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false); |
360 | 984k | convert_noninflect_cubic_to_quads( |
361 | 984k | choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent); |
362 | 984k | } |
363 | | |
364 | | void convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4], |
365 | | SkScalar toleranceSqd, |
366 | | SkPathFirstDirection dir, |
367 | | TArray<SkPoint, true>* quads, |
368 | 25.2k | int sublevel = 0) { |
369 | | // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is |
370 | | // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. |
371 | | |
372 | 25.2k | SkVector ab = p[1] - p[0]; |
373 | 25.2k | SkVector dc = p[2] - p[3]; |
374 | | |
375 | 25.2k | if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) { |
376 | 229 | if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) { |
377 | 0 | SkPoint* degQuad = quads->push_back_n(3); |
378 | 0 | degQuad[0] = p[0]; |
379 | 0 | degQuad[1] = p[0]; |
380 | 0 | degQuad[2] = p[3]; |
381 | 0 | return; |
382 | 0 | } |
383 | 229 | ab = p[2] - p[0]; |
384 | 229 | } |
385 | 25.2k | if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) { |
386 | 2 | dc = p[1] - p[3]; |
387 | 2 | } |
388 | | |
389 | | // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the |
390 | | // constraint that the quad point falls between the tangents becomes hard to enforce and we are |
391 | | // likely to hit the max subdivision count. However, in this case the cubic is approaching a |
392 | | // line and the accuracy of the quad point isn't so important. We check if the two middle cubic |
393 | | // control points are very close to the baseline vector. If so then we just pick quadratic |
394 | | // points on the control polygon. |
395 | | |
396 | 25.2k | SkVector da = p[0] - p[3]; |
397 | 25.2k | bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero || |
398 | 25.2k | SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero; |
399 | 25.2k | if (!doQuads) { |
400 | 25.2k | SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da); |
401 | 25.2k | if (invDALengthSqd > SK_ScalarNearlyZero) { |
402 | 25.2k | invDALengthSqd = SkScalarInvert(invDALengthSqd); |
403 | | // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a. |
404 | | // same goes for point c using vector cd. |
405 | 25.2k | SkScalar detABSqd = ab.cross(da); |
406 | 25.2k | detABSqd = SkScalarSquare(detABSqd); |
407 | 25.2k | SkScalar detDCSqd = dc.cross(da); |
408 | 25.2k | detDCSqd = SkScalarSquare(detDCSqd); |
409 | 25.2k | if (detABSqd * invDALengthSqd < toleranceSqd && |
410 | 25.2k | detDCSqd * invDALengthSqd < toleranceSqd) { |
411 | 4.53k | doQuads = true; |
412 | 4.53k | } |
413 | 25.2k | } |
414 | 25.2k | } |
415 | 25.2k | if (doQuads) { |
416 | 4.54k | SkPoint b = p[0] + ab; |
417 | 4.54k | SkPoint c = p[3] + dc; |
418 | 4.54k | SkPoint mid = b + c; |
419 | 4.54k | mid.scale(SK_ScalarHalf); |
420 | | // Insert two quadratics to cover the case when ab points away from d and/or dc |
421 | | // points away from a. |
422 | 4.54k | if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) { |
423 | 16 | SkPoint* qpts = quads->push_back_n(6); |
424 | 16 | qpts[0] = p[0]; |
425 | 16 | qpts[1] = b; |
426 | 16 | qpts[2] = mid; |
427 | 16 | qpts[3] = mid; |
428 | 16 | qpts[4] = c; |
429 | 16 | qpts[5] = p[3]; |
430 | 4.52k | } else { |
431 | 4.52k | SkPoint* qpts = quads->push_back_n(3); |
432 | 4.52k | qpts[0] = p[0]; |
433 | 4.52k | qpts[1] = mid; |
434 | 4.52k | qpts[2] = p[3]; |
435 | 4.52k | } |
436 | 4.54k | return; |
437 | 4.54k | } |
438 | | |
439 | 20.6k | static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; |
440 | 20.6k | static const int kMaxSubdivs = 10; |
441 | | |
442 | 20.6k | ab.scale(kLengthScale); |
443 | 20.6k | dc.scale(kLengthScale); |
444 | | |
445 | | // c0 and c1 are extrapolations along vectors ab and dc. |
446 | 20.6k | SkVector c0 = p[0] + ab; |
447 | 20.6k | SkVector c1 = p[3] + dc; |
448 | | |
449 | 20.6k | SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1); |
450 | 20.6k | if (dSqd < toleranceSqd) { |
451 | 10.1k | SkPoint cAvg = (c0 + c1) * 0.5f; |
452 | 10.1k | bool subdivide = false; |
453 | | |
454 | 10.1k | if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) { |
455 | | // choose a new cAvg that is the intersection of the two tangent lines. |
456 | 6.51k | ab = SkPointPriv::MakeOrthog(ab); |
457 | 6.51k | SkScalar z0 = -ab.dot(p[0]); |
458 | 6.51k | dc = SkPointPriv::MakeOrthog(dc); |
459 | 6.51k | SkScalar z1 = -dc.dot(p[3]); |
460 | 6.51k | cAvg.fX = ab.fY * z1 - z0 * dc.fY; |
461 | 6.51k | cAvg.fY = z0 * dc.fX - ab.fX * z1; |
462 | 6.51k | SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX; |
463 | 6.51k | z = sk_ieee_float_divide(1.0f, z); |
464 | 6.51k | cAvg.fX *= z; |
465 | 6.51k | cAvg.fY *= z; |
466 | 6.51k | if (sublevel <= kMaxSubdivs) { |
467 | 3.56k | SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg); |
468 | 3.56k | SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg); |
469 | | // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know |
470 | | // the distances and tolerance can't be negative. |
471 | | // (d0 + d1)^2 > toleranceSqd |
472 | | // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd |
473 | 3.56k | SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd); |
474 | 3.56k | subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd; |
475 | 3.56k | } |
476 | 6.51k | } |
477 | 10.1k | if (!subdivide) { |
478 | 8.10k | SkPoint* pts = quads->push_back_n(3); |
479 | 8.10k | pts[0] = p[0]; |
480 | 8.10k | pts[1] = cAvg; |
481 | 8.10k | pts[2] = p[3]; |
482 | 8.10k | return; |
483 | 8.10k | } |
484 | 10.1k | } |
485 | 12.5k | SkPoint choppedPts[7]; |
486 | 12.5k | SkChopCubicAtHalf(p, choppedPts); |
487 | 12.5k | convert_noninflect_cubic_to_quads_with_constraint( |
488 | 12.5k | choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1); |
489 | 12.5k | convert_noninflect_cubic_to_quads_with_constraint( |
490 | 12.5k | choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1); |
491 | 12.5k | } |
492 | | } // namespace |
493 | | |
494 | | void GrPathUtils::convertCubicToQuads(const SkPoint p[4], |
495 | | SkScalar tolScale, |
496 | 2.49k | TArray<SkPoint, true>* quads) { |
497 | 2.49k | if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) { |
498 | 795 | return; |
499 | 795 | } |
500 | 1.69k | if (!SkIsFinite(tolScale)) { |
501 | 0 | return; |
502 | 0 | } |
503 | 1.69k | SkPoint chopped[10]; |
504 | 1.69k | int count = SkChopCubicAtInflections(p, chopped); |
505 | | |
506 | 1.69k | const SkScalar tolSqd = SkScalarSquare(tolScale); |
507 | | |
508 | 3.57k | for (int i = 0; i < count; ++i) { |
509 | 1.87k | SkPoint* cubic = chopped + 3*i; |
510 | 1.87k | convert_noninflect_cubic_to_quads(cubic, tolSqd, quads); |
511 | 1.87k | } |
512 | 1.69k | } |
513 | | |
514 | | void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4], |
515 | | SkScalar tolScale, |
516 | | SkPathFirstDirection dir, |
517 | 55 | TArray<SkPoint, true>* quads) { |
518 | 55 | if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) { |
519 | 0 | return; |
520 | 0 | } |
521 | 55 | if (!SkIsFinite(tolScale)) { |
522 | 0 | return; |
523 | 0 | } |
524 | 55 | SkPoint chopped[10]; |
525 | 55 | int count = SkChopCubicAtInflections(p, chopped); |
526 | | |
527 | 55 | const SkScalar tolSqd = SkScalarSquare(tolScale); |
528 | | |
529 | 110 | for (int i = 0; i < count; ++i) { |
530 | 55 | SkPoint* cubic = chopped + 3*i; |
531 | 55 | convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads); |
532 | 55 | } |
533 | 55 | } |