Coverage Report

Created: 2024-05-20 07:14

/src/skia/third_party/externals/libjpeg-turbo/jdcoefct.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdcoefct.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1994-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
8
 * Copyright (C) 2010, 2015-2016, 2019-2020, 2022, D. R. Commander.
9
 * Copyright (C) 2015, 2020, Google, Inc.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains the coefficient buffer controller for decompression.
14
 * This controller is the top level of the JPEG decompressor proper.
15
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
16
 *
17
 * In buffered-image mode, this controller is the interface between
18
 * input-oriented processing and output-oriented processing.
19
 * Also, the input side (only) is used when reading a file for transcoding.
20
 */
21
22
#include "jinclude.h"
23
#include "jdcoefct.h"
24
#include "jpegcomp.h"
25
26
27
/* Forward declarations */
28
METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
29
                                  JSAMPIMAGE output_buf);
30
#ifdef D_MULTISCAN_FILES_SUPPORTED
31
METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
32
#endif
33
#ifdef BLOCK_SMOOTHING_SUPPORTED
34
LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
35
METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
36
                                      JSAMPIMAGE output_buf);
37
#endif
38
39
40
/*
41
 * Initialize for an input processing pass.
42
 */
43
44
METHODDEF(void)
45
start_input_pass(j_decompress_ptr cinfo)
46
25.0k
{
47
25.0k
  cinfo->input_iMCU_row = 0;
48
25.0k
  start_iMCU_row(cinfo);
49
25.0k
}
50
51
52
/*
53
 * Initialize for an output processing pass.
54
 */
55
56
METHODDEF(void)
57
start_output_pass(j_decompress_ptr cinfo)
58
5.48k
{
59
5.48k
#ifdef BLOCK_SMOOTHING_SUPPORTED
60
5.48k
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
61
62
  /* If multipass, check to see whether to use block smoothing on this pass */
63
5.48k
  if (coef->pub.coef_arrays != NULL) {
64
4.54k
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
65
623
      coef->pub.decompress_data = decompress_smooth_data;
66
3.92k
    else
67
3.92k
      coef->pub.decompress_data = decompress_data;
68
4.54k
  }
69
5.48k
#endif
70
5.48k
  cinfo->output_iMCU_row = 0;
71
5.48k
}
72
73
74
/*
75
 * Decompress and return some data in the single-pass case.
76
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
77
 * Input and output must run in lockstep since we have only a one-MCU buffer.
78
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
79
 *
80
 * NB: output_buf contains a plane for each component in image,
81
 * which we index according to the component's SOF position.
82
 */
83
84
METHODDEF(int)
85
decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
86
122k
{
87
122k
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
88
122k
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
89
122k
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
90
122k
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
91
122k
  int blkn, ci, xindex, yindex, yoffset, useful_width;
92
122k
  JSAMPARRAY output_ptr;
93
122k
  JDIMENSION start_col, output_col;
94
122k
  jpeg_component_info *compptr;
95
122k
  inverse_DCT_method_ptr inverse_DCT;
96
97
  /* Loop to process as much as one whole iMCU row */
98
304k
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
99
181k
       yoffset++) {
100
943k
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
101
762k
         MCU_col_num++) {
102
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
103
762k
      jzero_far((void *)coef->MCU_buffer[0],
104
762k
                (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
105
762k
      if (!cinfo->entropy->insufficient_data)
106
223k
        cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
107
762k
      if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
108
        /* Suspension forced; update state counters and exit */
109
209
        coef->MCU_vert_offset = yoffset;
110
209
        coef->MCU_ctr = MCU_col_num;
111
209
        return JPEG_SUSPENDED;
112
209
      }
113
114
      /* Only perform the IDCT on blocks that are contained within the desired
115
       * cropping region.
116
       */
117
762k
      if (MCU_col_num >= cinfo->master->first_iMCU_col &&
118
762k
          MCU_col_num <= cinfo->master->last_iMCU_col) {
119
        /* Determine where data should go in output_buf and do the IDCT thing.
120
         * We skip dummy blocks at the right and bottom edges (but blkn gets
121
         * incremented past them!).  Note the inner loop relies on having
122
         * allocated the MCU_buffer[] blocks sequentially.
123
         */
124
761k
        blkn = 0;               /* index of current DCT block within MCU */
125
1.66M
        for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
126
903k
          compptr = cinfo->cur_comp_info[ci];
127
          /* Don't bother to IDCT an uninteresting component. */
128
903k
          if (!compptr->component_needed) {
129
0
            blkn += compptr->MCU_blocks;
130
0
            continue;
131
0
          }
132
903k
          inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
133
903k
          useful_width = (MCU_col_num < last_MCU_col) ?
134
694k
                         compptr->MCU_width : compptr->last_col_width;
135
903k
          output_ptr = output_buf[compptr->component_index] +
136
903k
                       yoffset * compptr->_DCT_scaled_size;
137
903k
          start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
138
903k
                      compptr->MCU_sample_width;
139
1.93M
          for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
140
1.03M
            if (cinfo->input_iMCU_row < last_iMCU_row ||
141
1.03M
                yoffset + yindex < compptr->last_row_height) {
142
919k
              output_col = start_col;
143
1.88M
              for (xindex = 0; xindex < useful_width; xindex++) {
144
969k
                (*inverse_DCT) (cinfo, compptr,
145
969k
                                (JCOEFPTR)coef->MCU_buffer[blkn + xindex],
146
969k
                                output_ptr, output_col);
147
969k
                output_col += compptr->_DCT_scaled_size;
148
969k
              }
149
919k
            }
150
1.03M
            blkn += compptr->MCU_width;
151
1.03M
            output_ptr += compptr->_DCT_scaled_size;
152
1.03M
          }
153
903k
        }
154
761k
      }
155
762k
    }
156
    /* Completed an MCU row, but perhaps not an iMCU row */
157
181k
    coef->MCU_ctr = 0;
158
181k
  }
159
  /* Completed the iMCU row, advance counters for next one */
160
122k
  cinfo->output_iMCU_row++;
161
122k
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
162
121k
    start_iMCU_row(cinfo);
163
121k
    return JPEG_ROW_COMPLETED;
164
121k
  }
165
  /* Completed the scan */
166
730
  (*cinfo->inputctl->finish_input_pass) (cinfo);
167
730
  return JPEG_SCAN_COMPLETED;
168
122k
}
169
170
171
/*
172
 * Dummy consume-input routine for single-pass operation.
173
 */
174
175
METHODDEF(int)
176
dummy_consume_data(j_decompress_ptr cinfo)
177
0
{
178
0
  return JPEG_SUSPENDED;        /* Always indicate nothing was done */
179
0
}
180
181
182
#ifdef D_MULTISCAN_FILES_SUPPORTED
183
184
/*
185
 * Consume input data and store it in the full-image coefficient buffer.
186
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
187
 * ie, v_samp_factor block rows for each component in the scan.
188
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
189
 */
190
191
METHODDEF(int)
192
consume_data(j_decompress_ptr cinfo)
193
7.94M
{
194
7.94M
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
195
7.94M
  JDIMENSION MCU_col_num;       /* index of current MCU within row */
196
7.94M
  int blkn, ci, xindex, yindex, yoffset;
197
7.94M
  JDIMENSION start_col;
198
7.94M
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
199
7.94M
  JBLOCKROW buffer_ptr;
200
7.94M
  jpeg_component_info *compptr;
201
202
  /* Align the virtual buffers for the components used in this scan. */
203
19.1M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
204
11.2M
    compptr = cinfo->cur_comp_info[ci];
205
11.2M
    buffer[ci] = (*cinfo->mem->access_virt_barray)
206
11.2M
      ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
207
11.2M
       cinfo->input_iMCU_row * compptr->v_samp_factor,
208
11.2M
       (JDIMENSION)compptr->v_samp_factor, TRUE);
209
    /* Note: entropy decoder expects buffer to be zeroed,
210
     * but this is handled automatically by the memory manager
211
     * because we requested a pre-zeroed array.
212
     */
213
11.2M
  }
214
215
  /* Loop to process one whole iMCU row */
216
19.9M
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
217
12.0M
       yoffset++) {
218
427M
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
219
415M
         MCU_col_num++) {
220
      /* Construct list of pointers to DCT blocks belonging to this MCU */
221
415M
      blkn = 0;                 /* index of current DCT block within MCU */
222
1.05G
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
223
644M
        compptr = cinfo->cur_comp_info[ci];
224
644M
        start_col = MCU_col_num * compptr->MCU_width;
225
1.53G
        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
226
887M
          buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
227
2.02G
          for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
228
1.13G
            coef->MCU_buffer[blkn++] = buffer_ptr++;
229
1.13G
          }
230
887M
        }
231
644M
      }
232
415M
      if (!cinfo->entropy->insufficient_data)
233
98.9M
        cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
234
      /* Try to fetch the MCU. */
235
415M
      if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
236
        /* Suspension forced; update state counters and exit */
237
811
        coef->MCU_vert_offset = yoffset;
238
811
        coef->MCU_ctr = MCU_col_num;
239
811
        return JPEG_SUSPENDED;
240
811
      }
241
415M
    }
242
    /* Completed an MCU row, but perhaps not an iMCU row */
243
12.0M
    coef->MCU_ctr = 0;
244
12.0M
  }
245
  /* Completed the iMCU row, advance counters for next one */
246
7.94M
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
247
7.92M
    start_iMCU_row(cinfo);
248
7.92M
    return JPEG_ROW_COMPLETED;
249
7.92M
  }
250
  /* Completed the scan */
251
23.2k
  (*cinfo->inputctl->finish_input_pass) (cinfo);
252
23.2k
  return JPEG_SCAN_COMPLETED;
253
7.94M
}
254
255
256
/*
257
 * Decompress and return some data in the multi-pass case.
258
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
259
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
260
 *
261
 * NB: output_buf contains a plane for each component in image.
262
 */
263
264
METHODDEF(int)
265
decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
266
456k
{
267
456k
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
268
456k
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
269
456k
  JDIMENSION block_num;
270
456k
  int ci, block_row, block_rows;
271
456k
  JBLOCKARRAY buffer;
272
456k
  JBLOCKROW buffer_ptr;
273
456k
  JSAMPARRAY output_ptr;
274
456k
  JDIMENSION output_col;
275
456k
  jpeg_component_info *compptr;
276
456k
  inverse_DCT_method_ptr inverse_DCT;
277
278
  /* Force some input to be done if we are getting ahead of the input. */
279
456k
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
280
456k
         (cinfo->input_scan_number == cinfo->output_scan_number &&
281
456k
          cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
282
0
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
283
0
      return JPEG_SUSPENDED;
284
0
  }
285
286
  /* OK, output from the virtual arrays. */
287
1.67M
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
288
1.21M
       ci++, compptr++) {
289
    /* Don't bother to IDCT an uninteresting component. */
290
1.21M
    if (!compptr->component_needed)
291
0
      continue;
292
    /* Align the virtual buffer for this component. */
293
1.21M
    buffer = (*cinfo->mem->access_virt_barray)
294
1.21M
      ((j_common_ptr)cinfo, coef->whole_image[ci],
295
1.21M
       cinfo->output_iMCU_row * compptr->v_samp_factor,
296
1.21M
       (JDIMENSION)compptr->v_samp_factor, FALSE);
297
    /* Count non-dummy DCT block rows in this iMCU row. */
298
1.21M
    if (cinfo->output_iMCU_row < last_iMCU_row)
299
1.20M
      block_rows = compptr->v_samp_factor;
300
8.99k
    else {
301
      /* NB: can't use last_row_height here; it is input-side-dependent! */
302
8.99k
      block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
303
8.99k
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
304
8.99k
    }
305
1.21M
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
306
1.21M
    output_ptr = output_buf[ci];
307
    /* Loop over all DCT blocks to be processed. */
308
3.78M
    for (block_row = 0; block_row < block_rows; block_row++) {
309
2.57M
      buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
310
2.57M
      output_col = 0;
311
2.57M
      for (block_num = cinfo->master->first_MCU_col[ci];
312
59.7M
           block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
313
57.1M
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
314
57.1M
                        output_col);
315
57.1M
        buffer_ptr++;
316
57.1M
        output_col += compptr->_DCT_scaled_size;
317
57.1M
      }
318
2.57M
      output_ptr += compptr->_DCT_scaled_size;
319
2.57M
    }
320
1.21M
  }
321
322
456k
  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
323
453k
    return JPEG_ROW_COMPLETED;
324
3.16k
  return JPEG_SCAN_COMPLETED;
325
456k
}
326
327
#endif /* D_MULTISCAN_FILES_SUPPORTED */
328
329
330
#ifdef BLOCK_SMOOTHING_SUPPORTED
331
332
/*
333
 * This code applies interblock smoothing; the first 9 AC coefficients are
334
 * estimated from the DC values of a DCT block and its 24 neighboring blocks.
335
 * We apply smoothing only for progressive JPEG decoding, and only if
336
 * the coefficients it can estimate are not yet known to full precision.
337
 */
338
339
/* Natural-order array positions of the first 9 zigzag-order coefficients */
340
207k
#define Q01_POS  1
341
207k
#define Q10_POS  8
342
207k
#define Q20_POS  16
343
207k
#define Q11_POS  9
344
207k
#define Q02_POS  2
345
83.1k
#define Q03_POS  3
346
83.0k
#define Q12_POS  10
347
83.0k
#define Q21_POS  17
348
83.0k
#define Q30_POS  24
349
350
/*
351
 * Determine whether block smoothing is applicable and safe.
352
 * We also latch the current states of the coef_bits[] entries for the
353
 * AC coefficients; otherwise, if the input side of the decompressor
354
 * advances into a new scan, we might think the coefficients are known
355
 * more accurately than they really are.
356
 */
357
358
LOCAL(boolean)
359
smoothing_ok(j_decompress_ptr cinfo)
360
4.54k
{
361
4.54k
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
362
4.54k
  boolean smoothing_useful = FALSE;
363
4.54k
  int ci, coefi;
364
4.54k
  jpeg_component_info *compptr;
365
4.54k
  JQUANT_TBL *qtable;
366
4.54k
  int *coef_bits, *prev_coef_bits;
367
4.54k
  int *coef_bits_latch, *prev_coef_bits_latch;
368
369
4.54k
  if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
370
3.12k
    return FALSE;
371
372
  /* Allocate latch area if not already done */
373
1.42k
  if (coef->coef_bits_latch == NULL)
374
1.42k
    coef->coef_bits_latch = (int *)
375
1.42k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
376
1.42k
                                  cinfo->num_components * 2 *
377
1.42k
                                  (SAVED_COEFS * sizeof(int)));
378
1.42k
  coef_bits_latch = coef->coef_bits_latch;
379
1.42k
  prev_coef_bits_latch =
380
1.42k
    &coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS];
381
382
2.29k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
383
1.66k
       ci++, compptr++) {
384
    /* All components' quantization values must already be latched. */
385
1.66k
    if ((qtable = compptr->quant_table) == NULL)
386
412
      return FALSE;
387
    /* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */
388
1.25k
    if (qtable->quantval[0] == 0 ||
389
1.25k
        qtable->quantval[Q01_POS] == 0 ||
390
1.25k
        qtable->quantval[Q10_POS] == 0 ||
391
1.25k
        qtable->quantval[Q20_POS] == 0 ||
392
1.25k
        qtable->quantval[Q11_POS] == 0 ||
393
1.25k
        qtable->quantval[Q02_POS] == 0 ||
394
1.25k
        qtable->quantval[Q03_POS] == 0 ||
395
1.25k
        qtable->quantval[Q12_POS] == 0 ||
396
1.25k
        qtable->quantval[Q21_POS] == 0 ||
397
1.25k
        qtable->quantval[Q30_POS] == 0)
398
299
      return FALSE;
399
    /* DC values must be at least partly known for all components. */
400
957
    coef_bits = cinfo->coef_bits[ci];
401
957
    prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];
402
957
    if (coef_bits[0] < 0)
403
87
      return FALSE;
404
870
    coef_bits_latch[0] = coef_bits[0];
405
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
406
8.70k
    for (coefi = 1; coefi < SAVED_COEFS; coefi++) {
407
7.83k
      if (cinfo->input_scan_number > 1)
408
4.39k
        prev_coef_bits_latch[coefi] = prev_coef_bits[coefi];
409
3.43k
      else
410
3.43k
        prev_coef_bits_latch[coefi] = -1;
411
7.83k
      coef_bits_latch[coefi] = coef_bits[coefi];
412
7.83k
      if (coef_bits[coefi] != 0)
413
7.32k
        smoothing_useful = TRUE;
414
7.83k
    }
415
870
    coef_bits_latch += SAVED_COEFS;
416
870
    prev_coef_bits_latch += SAVED_COEFS;
417
870
  }
418
419
623
  return smoothing_useful;
420
1.42k
}
421
422
423
/*
424
 * Variant of decompress_data for use when doing block smoothing.
425
 */
426
427
METHODDEF(int)
428
decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
429
179k
{
430
179k
  my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
431
179k
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
432
179k
  JDIMENSION block_num, last_block_column;
433
179k
  int ci, block_row, block_rows, access_rows;
434
179k
  JBLOCKARRAY buffer;
435
179k
  JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row;
436
179k
  JBLOCKROW next_block_row, next_next_block_row;
437
179k
  JSAMPARRAY output_ptr;
438
179k
  JDIMENSION output_col;
439
179k
  jpeg_component_info *compptr;
440
179k
  inverse_DCT_method_ptr inverse_DCT;
441
179k
  boolean change_dc;
442
179k
  JCOEF *workspace;
443
179k
  int *coef_bits;
444
179k
  JQUANT_TBL *quanttbl;
445
179k
  JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num;
446
179k
  int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12,
447
179k
      DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24,
448
179k
      DC25;
449
179k
  int Al, pred;
450
451
  /* Keep a local variable to avoid looking it up more than once */
452
179k
  workspace = coef->workspace;
453
454
  /* Force some input to be done if we are getting ahead of the input. */
455
179k
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
456
179k
         !cinfo->inputctl->eoi_reached) {
457
0
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
458
      /* If input is working on current scan, we ordinarily want it to
459
       * have completed the current row.  But if input scan is DC,
460
       * we want it to keep two rows ahead so that next two block rows' DC
461
       * values are up to date.
462
       */
463
0
      JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0;
464
0
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
465
0
        break;
466
0
    }
467
0
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
468
0
      return JPEG_SUSPENDED;
469
0
  }
470
471
  /* OK, output from the virtual arrays. */
472
385k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
473
206k
       ci++, compptr++) {
474
    /* Don't bother to IDCT an uninteresting component. */
475
206k
    if (!compptr->component_needed)
476
0
      continue;
477
    /* Count non-dummy DCT block rows in this iMCU row. */
478
206k
    if (cinfo->output_iMCU_row + 1 < last_iMCU_row) {
479
204k
      block_rows = compptr->v_samp_factor;
480
204k
      access_rows = block_rows * 3; /* this and next two iMCU rows */
481
204k
    } else if (cinfo->output_iMCU_row < last_iMCU_row) {
482
684
      block_rows = compptr->v_samp_factor;
483
684
      access_rows = block_rows * 2; /* this and next iMCU row */
484
841
    } else {
485
      /* NB: can't use last_row_height here; it is input-side-dependent! */
486
841
      block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
487
841
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
488
841
      access_rows = block_rows; /* this iMCU row only */
489
841
    }
490
    /* Align the virtual buffer for this component. */
491
206k
    if (cinfo->output_iMCU_row > 1) {
492
204k
      access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */
493
204k
      buffer = (*cinfo->mem->access_virt_barray)
494
204k
        ((j_common_ptr)cinfo, coef->whole_image[ci],
495
204k
         (cinfo->output_iMCU_row - 2) * compptr->v_samp_factor,
496
204k
         (JDIMENSION)access_rows, FALSE);
497
204k
      buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */
498
204k
    } else if (cinfo->output_iMCU_row > 0) {
499
684
      buffer = (*cinfo->mem->access_virt_barray)
500
684
        ((j_common_ptr)cinfo, coef->whole_image[ci],
501
684
         (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
502
684
         (JDIMENSION)access_rows, FALSE);
503
684
      buffer += compptr->v_samp_factor; /* point to current iMCU row */
504
841
    } else {
505
841
      buffer = (*cinfo->mem->access_virt_barray)
506
841
        ((j_common_ptr)cinfo, coef->whole_image[ci],
507
841
         (JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
508
841
    }
509
    /* Fetch component-dependent info.
510
     * If the current scan is incomplete, then we use the component-dependent
511
     * info from the previous scan.
512
     */
513
206k
    if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row)
514
45.0k
      coef_bits =
515
45.0k
        coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS);
516
161k
    else
517
161k
      coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
518
519
    /* We only do DC interpolation if no AC coefficient data is available. */
520
206k
    change_dc =
521
206k
      coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 &&
522
206k
      coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 &&
523
206k
      coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1;
524
525
206k
    quanttbl = compptr->quant_table;
526
206k
    Q00 = quanttbl->quantval[0];
527
206k
    Q01 = quanttbl->quantval[Q01_POS];
528
206k
    Q10 = quanttbl->quantval[Q10_POS];
529
206k
    Q20 = quanttbl->quantval[Q20_POS];
530
206k
    Q11 = quanttbl->quantval[Q11_POS];
531
206k
    Q02 = quanttbl->quantval[Q02_POS];
532
206k
    if (change_dc) {
533
82.0k
      Q03 = quanttbl->quantval[Q03_POS];
534
82.0k
      Q12 = quanttbl->quantval[Q12_POS];
535
82.0k
      Q21 = quanttbl->quantval[Q21_POS];
536
82.0k
      Q30 = quanttbl->quantval[Q30_POS];
537
82.0k
    }
538
206k
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
539
206k
    output_ptr = output_buf[ci];
540
    /* Loop over all DCT blocks to be processed. */
541
564k
    for (block_row = 0; block_row < block_rows; block_row++) {
542
358k
      buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
543
544
358k
      if (block_row > 0 || cinfo->output_iMCU_row > 0)
545
357k
        prev_block_row =
546
357k
          buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];
547
841
      else
548
841
        prev_block_row = buffer_ptr;
549
550
358k
      if (block_row > 1 || cinfo->output_iMCU_row > 1)
551
355k
        prev_prev_block_row =
552
355k
          buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];
553
2.46k
      else
554
2.46k
        prev_prev_block_row = prev_block_row;
555
556
358k
      if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row)
557
357k
        next_block_row =
558
357k
          buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];
559
841
      else
560
841
        next_block_row = buffer_ptr;
561
562
358k
      if (block_row < block_rows - 2 ||
563
358k
          cinfo->output_iMCU_row + 1 < last_iMCU_row)
564
355k
        next_next_block_row =
565
355k
          buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];
566
2.29k
      else
567
2.29k
        next_next_block_row = next_block_row;
568
569
      /* We fetch the surrounding DC values using a sliding-register approach.
570
       * Initialize all 25 here so as to do the right thing on narrow pics.
571
       */
572
358k
      DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0];
573
358k
      DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0];
574
358k
      DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0];
575
358k
      DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0];
576
358k
      DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0];
577
358k
      output_col = 0;
578
358k
      last_block_column = compptr->width_in_blocks - 1;
579
358k
      for (block_num = cinfo->master->first_MCU_col[ci];
580
1.28M
           block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
581
        /* Fetch current DCT block into workspace so we can modify it. */
582
931k
        jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
583
        /* Update DC values */
584
931k
        if (block_num == cinfo->master->first_MCU_col[ci] &&
585
931k
            block_num < last_block_column) {
586
83.5k
          DC04 = (int)prev_prev_block_row[1][0];
587
83.5k
          DC09 = (int)prev_block_row[1][0];
588
83.5k
          DC14 = (int)buffer_ptr[1][0];
589
83.5k
          DC19 = (int)next_block_row[1][0];
590
83.5k
          DC24 = (int)next_next_block_row[1][0];
591
83.5k
        }
592
931k
        if (block_num + 1 < last_block_column) {
593
489k
          DC05 = (int)prev_prev_block_row[2][0];
594
489k
          DC10 = (int)prev_block_row[2][0];
595
489k
          DC15 = (int)buffer_ptr[2][0];
596
489k
          DC20 = (int)next_block_row[2][0];
597
489k
          DC25 = (int)next_next_block_row[2][0];
598
489k
        }
599
        /* If DC interpolation is enabled, compute coefficient estimates using
600
         * a Gaussian-like kernel, keeping the averages of the DC values.
601
         *
602
         * If DC interpolation is disabled, compute coefficient estimates using
603
         * an algorithm similar to the one described in Section K.8 of the JPEG
604
         * standard, except applied to a 5x5 window rather than a 3x3 window.
605
         *
606
         * An estimate is applied only if the coefficient is still zero and is
607
         * not known to be fully accurate.
608
         */
609
        /* AC01 */
610
931k
        if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
611
839k
          num = Q00 * (change_dc ?
612
481k
                (-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 -
613
481k
                 13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 +
614
481k
                 3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 -
615
481k
                 DC21 - DC22 + DC24 + DC25) :
616
839k
                (-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15));
617
839k
          if (num >= 0) {
618
640k
            pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
619
640k
            if (Al > 0 && pred >= (1 << Al))
620
28.4k
              pred = (1 << Al) - 1;
621
640k
          } else {
622
199k
            pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
623
199k
            if (Al > 0 && pred >= (1 << Al))
624
15.3k
              pred = (1 << Al) - 1;
625
199k
            pred = -pred;
626
199k
          }
627
839k
          workspace[1] = (JCOEF)pred;
628
839k
        }
629
        /* AC10 */
630
931k
        if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
631
863k
          num = Q00 * (change_dc ?
632
481k
                (-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 +
633
481k
                 13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 -
634
481k
                 13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 +
635
481k
                 3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) :
636
863k
                (-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23));
637
863k
          if (num >= 0) {
638
618k
            pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
639
618k
            if (Al > 0 && pred >= (1 << Al))
640
58.1k
              pred = (1 << Al) - 1;
641
618k
          } else {
642
244k
            pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
643
244k
            if (Al > 0 && pred >= (1 << Al))
644
55.7k
              pred = (1 << Al) - 1;
645
244k
            pred = -pred;
646
244k
          }
647
863k
          workspace[8] = (JCOEF)pred;
648
863k
        }
649
        /* AC20 */
650
931k
        if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
651
863k
          num = Q00 * (change_dc ?
652
481k
                (DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 -
653
481k
                 5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) :
654
863k
                (-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23));
655
863k
          if (num >= 0) {
656
519k
            pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
657
519k
            if (Al > 0 && pred >= (1 << Al))
658
57.8k
              pred = (1 << Al) - 1;
659
519k
          } else {
660
343k
            pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
661
343k
            if (Al > 0 && pred >= (1 << Al))
662
55.5k
              pred = (1 << Al) - 1;
663
343k
            pred = -pred;
664
343k
          }
665
863k
          workspace[16] = (JCOEF)pred;
666
863k
        }
667
        /* AC11 */
668
931k
        if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
669
857k
          num = Q00 * (change_dc ?
670
481k
                (-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 +
671
481k
                 9 * DC19 + DC21 - DC25) :
672
857k
                (DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 -
673
376k
                 DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09));
674
857k
          if (num >= 0) {
675
687k
            pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
676
687k
            if (Al > 0 && pred >= (1 << Al))
677
25.5k
              pred = (1 << Al) - 1;
678
687k
          } else {
679
169k
            pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
680
169k
            if (Al > 0 && pred >= (1 << Al))
681
25.0k
              pred = (1 << Al) - 1;
682
169k
            pred = -pred;
683
169k
          }
684
857k
          workspace[9] = (JCOEF)pred;
685
857k
        }
686
        /* AC02 */
687
931k
        if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
688
811k
          num = Q00 * (change_dc ?
689
481k
                (2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 +
690
481k
                 7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) :
691
811k
                (-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15));
692
811k
          if (num >= 0) {
693
533k
            pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
694
533k
            if (Al > 0 && pred >= (1 << Al))
695
36.4k
              pred = (1 << Al) - 1;
696
533k
          } else {
697
277k
            pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
698
277k
            if (Al > 0 && pred >= (1 << Al))
699
37.0k
              pred = (1 << Al) - 1;
700
277k
            pred = -pred;
701
277k
          }
702
811k
          workspace[2] = (JCOEF)pred;
703
811k
        }
704
931k
        if (change_dc) {
705
          /* AC03 */
706
481k
          if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) {
707
481k
            num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19);
708
481k
            if (num >= 0) {
709
370k
              pred = (int)(((Q03 << 7) + num) / (Q03 << 8));
710
370k
              if (Al > 0 && pred >= (1 << Al))
711
0
                pred = (1 << Al) - 1;
712
370k
            } else {
713
111k
              pred = (int)(((Q03 << 7) - num) / (Q03 << 8));
714
111k
              if (Al > 0 && pred >= (1 << Al))
715
0
                pred = (1 << Al) - 1;
716
111k
              pred = -pred;
717
111k
            }
718
481k
            workspace[3] = (JCOEF)pred;
719
481k
          }
720
          /* AC12 */
721
481k
          if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) {
722
481k
            num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19);
723
481k
            if (num >= 0) {
724
310k
              pred = (int)(((Q12 << 7) + num) / (Q12 << 8));
725
310k
              if (Al > 0 && pred >= (1 << Al))
726
0
                pred = (1 << Al) - 1;
727
310k
            } else {
728
171k
              pred = (int)(((Q12 << 7) - num) / (Q12 << 8));
729
171k
              if (Al > 0 && pred >= (1 << Al))
730
0
                pred = (1 << Al) - 1;
731
171k
              pred = -pred;
732
171k
            }
733
481k
            workspace[10] = (JCOEF)pred;
734
481k
          }
735
          /* AC21 */
736
481k
          if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) {
737
481k
            num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19);
738
481k
            if (num >= 0) {
739
323k
              pred = (int)(((Q21 << 7) + num) / (Q21 << 8));
740
323k
              if (Al > 0 && pred >= (1 << Al))
741
0
                pred = (1 << Al) - 1;
742
323k
            } else {
743
157k
              pred = (int)(((Q21 << 7) - num) / (Q21 << 8));
744
157k
              if (Al > 0 && pred >= (1 << Al))
745
0
                pred = (1 << Al) - 1;
746
157k
              pred = -pred;
747
157k
            }
748
481k
            workspace[17] = (JCOEF)pred;
749
481k
          }
750
          /* AC30 */
751
481k
          if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) {
752
480k
            num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19);
753
480k
            if (num >= 0) {
754
377k
              pred = (int)(((Q30 << 7) + num) / (Q30 << 8));
755
377k
              if (Al > 0 && pred >= (1 << Al))
756
0
                pred = (1 << Al) - 1;
757
377k
            } else {
758
103k
              pred = (int)(((Q30 << 7) - num) / (Q30 << 8));
759
103k
              if (Al > 0 && pred >= (1 << Al))
760
0
                pred = (1 << Al) - 1;
761
103k
              pred = -pred;
762
103k
            }
763
480k
            workspace[24] = (JCOEF)pred;
764
480k
          }
765
          /* coef_bits[0] is non-negative.  Otherwise this function would not
766
           * be called.
767
           */
768
481k
          num = Q00 *
769
481k
                (-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 -
770
481k
                 6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 -
771
481k
                 8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 -
772
481k
                 6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 -
773
481k
                 2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25);
774
481k
          if (num >= 0) {
775
282k
            pred = (int)(((Q00 << 7) + num) / (Q00 << 8));
776
282k
          } else {
777
199k
            pred = (int)(((Q00 << 7) - num) / (Q00 << 8));
778
199k
            pred = -pred;
779
199k
          }
780
481k
          workspace[0] = (JCOEF)pred;
781
481k
        }  /* change_dc */
782
783
        /* OK, do the IDCT */
784
931k
        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
785
931k
                        output_col);
786
        /* Advance for next column */
787
931k
        DC01 = DC02;  DC02 = DC03;  DC03 = DC04;  DC04 = DC05;
788
931k
        DC06 = DC07;  DC07 = DC08;  DC08 = DC09;  DC09 = DC10;
789
931k
        DC11 = DC12;  DC12 = DC13;  DC13 = DC14;  DC14 = DC15;
790
931k
        DC16 = DC17;  DC17 = DC18;  DC18 = DC19;  DC19 = DC20;
791
931k
        DC21 = DC22;  DC22 = DC23;  DC23 = DC24;  DC24 = DC25;
792
931k
        buffer_ptr++, prev_block_row++, next_block_row++,
793
931k
          prev_prev_block_row++, next_next_block_row++;
794
931k
        output_col += compptr->_DCT_scaled_size;
795
931k
      }
796
358k
      output_ptr += compptr->_DCT_scaled_size;
797
358k
    }
798
206k
  }
799
800
179k
  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
801
178k
    return JPEG_ROW_COMPLETED;
802
623
  return JPEG_SCAN_COMPLETED;
803
179k
}
804
805
#endif /* BLOCK_SMOOTHING_SUPPORTED */
806
807
808
/*
809
 * Initialize coefficient buffer controller.
810
 */
811
812
GLOBAL(void)
813
jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
814
9.42k
{
815
9.42k
  my_coef_ptr coef;
816
817
9.42k
  coef = (my_coef_ptr)
818
9.42k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
819
9.42k
                                sizeof(my_coef_controller));
820
9.42k
  cinfo->coef = (struct jpeg_d_coef_controller *)coef;
821
9.42k
  coef->pub.start_input_pass = start_input_pass;
822
9.42k
  coef->pub.start_output_pass = start_output_pass;
823
9.42k
#ifdef BLOCK_SMOOTHING_SUPPORTED
824
9.42k
  coef->coef_bits_latch = NULL;
825
9.42k
#endif
826
827
  /* Create the coefficient buffer. */
828
9.42k
  if (need_full_buffer) {
829
8.15k
#ifdef D_MULTISCAN_FILES_SUPPORTED
830
    /* Allocate a full-image virtual array for each component, */
831
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
832
    /* Note we ask for a pre-zeroed array. */
833
8.15k
    int ci, access_rows;
834
8.15k
    jpeg_component_info *compptr;
835
836
29.3k
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
837
21.1k
         ci++, compptr++) {
838
21.1k
      access_rows = compptr->v_samp_factor;
839
21.1k
#ifdef BLOCK_SMOOTHING_SUPPORTED
840
      /* If block smoothing could be used, need a bigger window */
841
21.1k
      if (cinfo->progressive_mode)
842
7.55k
        access_rows *= 5;
843
21.1k
#endif
844
21.1k
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
845
21.1k
        ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
846
21.1k
         (JDIMENSION)jround_up((long)compptr->width_in_blocks,
847
21.1k
                               (long)compptr->h_samp_factor),
848
21.1k
         (JDIMENSION)jround_up((long)compptr->height_in_blocks,
849
21.1k
                               (long)compptr->v_samp_factor),
850
21.1k
         (JDIMENSION)access_rows);
851
21.1k
    }
852
8.15k
    coef->pub.consume_data = consume_data;
853
8.15k
    coef->pub.decompress_data = decompress_data;
854
8.15k
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
855
#else
856
    ERREXIT(cinfo, JERR_NOT_COMPILED);
857
#endif
858
8.15k
  } else {
859
    /* We only need a single-MCU buffer. */
860
1.26k
    JBLOCKROW buffer;
861
1.26k
    int i;
862
863
1.26k
    buffer = (JBLOCKROW)
864
1.26k
      (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
865
1.26k
                                  D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
866
13.8k
    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
867
12.6k
      coef->MCU_buffer[i] = buffer + i;
868
12.6k
    }
869
1.26k
    coef->pub.consume_data = dummy_consume_data;
870
1.26k
    coef->pub.decompress_data = decompress_onepass;
871
1.26k
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
872
1.26k
  }
873
874
  /* Allocate the workspace buffer */
875
9.42k
  coef->workspace = (JCOEF *)
876
9.42k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
877
9.42k
                                sizeof(JCOEF) * DCTSIZE2);
878
9.42k
}