Coverage Report

Created: 2024-05-20 07:14

/src/skia/third_party/externals/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
11.1k
{
79
11.1k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
11.1k
  int ci, blkn, dctbl, actbl;
81
11.1k
  d_derived_tbl **pdtbl;
82
11.1k
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
11.1k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
11.1k
      cinfo->Ah != 0 || cinfo->Al != 0)
90
10.6k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
26.7k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
15.5k
    compptr = cinfo->cur_comp_info[ci];
94
15.5k
    dctbl = compptr->dc_tbl_no;
95
15.5k
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
15.5k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
15.5k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
15.5k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
15.5k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
15.5k
    entropy->saved.last_dc_val[ci] = 0;
104
15.5k
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
42.0k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
30.8k
    ci = cinfo->MCU_membership[blkn];
109
30.8k
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
30.8k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
30.8k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
30.8k
    if (compptr->component_needed) {
115
30.8k
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
30.8k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
30.8k
    } else {
119
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
0
    }
121
30.8k
  }
122
123
  /* Initialize bitread state variables */
124
11.1k
  entropy->bitstate.bits_left = 0;
125
11.1k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
11.1k
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
11.1k
  entropy->restarts_to_go = cinfo->restart_interval;
130
11.1k
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
35.7k
{
144
35.7k
  JHUFF_TBL *htbl;
145
35.7k
  d_derived_tbl *dtbl;
146
35.7k
  int p, i, l, si, numsymbols;
147
35.7k
  int lookbits, ctr;
148
35.7k
  char huffsize[257];
149
35.7k
  unsigned int huffcode[257];
150
35.7k
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
35.7k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
47
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
35.7k
  htbl =
160
35.7k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
35.7k
  if (htbl == NULL)
162
51
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
35.7k
  if (*pdtbl == NULL)
166
10.9k
    *pdtbl = (d_derived_tbl *)
167
10.9k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
10.9k
                                  sizeof(d_derived_tbl));
169
35.7k
  dtbl = *pdtbl;
170
35.7k
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
35.7k
  p = 0;
175
605k
  for (l = 1; l <= 16; l++) {
176
570k
    i = (int)htbl->bits[l];
177
570k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
3.07M
    while (i--)
180
2.50M
      huffsize[p++] = (char)l;
181
570k
  }
182
35.7k
  huffsize[p] = 0;
183
35.7k
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
35.7k
  code = 0;
189
35.7k
  si = huffsize[0];
190
35.7k
  p = 0;
191
397k
  while (huffsize[p]) {
192
2.87M
    while (((int)huffsize[p]) == si) {
193
2.50M
      huffcode[p++] = code;
194
2.50M
      code++;
195
2.50M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
362k
    if (((JLONG)code) >= (((JLONG)1) << si))
200
3
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
362k
    code <<= 1;
202
362k
    si++;
203
362k
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
35.7k
  p = 0;
208
605k
  for (l = 1; l <= 16; l++) {
209
570k
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
326k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
326k
      p += htbl->bits[l];
215
326k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
326k
    } else {
217
243k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
243k
    }
219
570k
  }
220
35.7k
  dtbl->valoffset[17] = 0;
221
35.7k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
9.15M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
9.12M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
35.7k
  p = 0;
234
320k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
737k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
452k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
8.71M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
8.26M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
8.26M
        lookbits++;
242
8.26M
      }
243
452k
    }
244
285k
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
35.7k
  if (isDC) {
253
200k
    for (i = 0; i < numsymbols; i++) {
254
183k
      int sym = htbl->huffval[i];
255
183k
      if (sym < 0 || sym > 15)
256
9
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
183k
    }
258
16.8k
  }
259
35.7k
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
1.16M
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
605k
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
605k
  register const JOCTET *next_input_byte = state->next_input_byte;
292
605k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
605k
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
605k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
568k
    while (bits_left < MIN_GET_BITS) {
301
509k
      register int c;
302
303
      /* Attempt to read a byte */
304
509k
      if (bytes_in_buffer == 0) {
305
843
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
843
          return FALSE;
307
0
        next_input_byte = cinfo->src->next_input_byte;
308
0
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
0
      }
310
508k
      bytes_in_buffer--;
311
508k
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
508k
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
76.9k
        do {
321
76.9k
          if (bytes_in_buffer == 0) {
322
88
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
88
              return FALSE;
324
0
            next_input_byte = cinfo->src->next_input_byte;
325
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
0
          }
327
76.8k
          bytes_in_buffer--;
328
76.8k
          c = *next_input_byte++;
329
76.8k
        } while (c == 0xFF);
330
331
46.2k
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
20.2k
          c = 0xFF;
334
25.9k
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
25.9k
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
25.9k
          goto no_more_bytes;
346
25.9k
        }
347
46.2k
      }
348
349
      /* OK, load c into get_buffer */
350
482k
      get_buffer = (get_buffer << 8) | c;
351
482k
      bits_left += 8;
352
482k
    } /* end while */
353
519k
  } else {
354
545k
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
545k
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
296k
      if (!cinfo->entropy->insufficient_data) {
366
25.2k
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
25.2k
        cinfo->entropy->insufficient_data = TRUE;
368
25.2k
      }
369
      /* Fill the buffer with zero bits */
370
296k
      get_buffer <<= MIN_GET_BITS - bits_left;
371
296k
      bits_left = MIN_GET_BITS;
372
296k
    }
373
545k
  }
374
375
  /* Unload the local registers */
376
604k
  state->next_input_byte = next_input_byte;
377
604k
  state->bytes_in_buffer = bytes_in_buffer;
378
604k
  state->get_buffer = get_buffer;
379
604k
  state->bits_left = bits_left;
380
381
604k
  return TRUE;
382
605k
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
467k
#define GET_BYTE { \
390
467k
  register int c0, c1; \
391
467k
  c0 = *buffer++; \
392
467k
  c1 = *buffer; \
393
467k
  /* Pre-execute most common case */ \
394
467k
  get_buffer = (get_buffer << 8) | c0; \
395
467k
  bits_left += 8; \
396
467k
  if (c0 == 0xFF) { \
397
152k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
152k
    buffer++; \
399
152k
    if (c1 != 0) { \
400
98.2k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
98.2k
      cinfo->unread_marker = c1; \
402
98.2k
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
98.2k
      buffer -= 2; \
404
98.2k
      get_buffer &= ~0xFF; \
405
98.2k
    } \
406
152k
  } \
407
467k
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
1.26M
  if (bits_left <= 16) { \
414
77.8k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
77.8k
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
296k
{
438
296k
  register int l = min_bits;
439
296k
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
296k
  CHECK_BIT_BUFFER(*state, l, return -1);
445
296k
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
897k
  while (code > htbl->maxcode[l]) {
451
601k
    code <<= 1;
452
601k
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
601k
    code |= GET_BITS(1);
454
601k
    l++;
455
601k
  }
456
457
  /* Unload the local registers */
458
296k
  state->get_buffer = get_buffer;
459
296k
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
296k
  if (l > 16) {
464
32.7k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
32.7k
    return 0;                   /* fake a zero as the safest result */
466
32.7k
  }
467
468
263k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
296k
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
1.95M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
1.95M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
2.71M
{
512
2.71M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
2.71M
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
2.71M
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
2.71M
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
2.71M
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
30
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
5.44M
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
2.72M
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
2.71M
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
2.71M
  if (cinfo->unread_marker == 0)
537
7.01k
    entropy->pub.insufficient_data = FALSE;
538
539
2.71M
  return TRUE;
540
2.71M
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
106k
{
552
106k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
106k
  BITREAD_STATE_VARS;
554
106k
  int blkn;
555
106k
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
106k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
106k
  state = entropy->saved;
561
562
236k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
130k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
130k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
130k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
130k
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
130k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
130k
    if (s) {
573
38.9k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
38.9k
      r = GET_BITS(s);
575
38.9k
      s = HUFF_EXTEND(r, s);
576
38.9k
    }
577
578
130k
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
130k
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
130k
      s += state.last_dc_val[ci];
590
130k
      state.last_dc_val[ci] = s;
591
130k
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
130k
        (*block)[0] = (JCOEF)s;
594
130k
      }
595
130k
    }
596
597
130k
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
1.62M
      for (k = 1; k < DCTSIZE2; k++) {
602
1.59M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
1.59M
        r = s >> 4;
605
1.59M
        s &= 15;
606
607
1.59M
        if (s) {
608
1.51M
          k += r;
609
1.51M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
1.51M
          r = GET_BITS(s);
611
1.51M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
1.51M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
1.51M
        } else {
618
83.6k
          if (r != 15)
619
72.2k
            break;
620
11.4k
          k += 15;
621
11.4k
        }
622
1.59M
      }
623
624
100k
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
217k
      for (k = 1; k < DCTSIZE2; k++) {
629
212k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
212k
        r = s >> 4;
632
212k
        s &= 15;
633
634
212k
        if (s) {
635
176k
          k += r;
636
176k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
176k
          DROP_BITS(s);
638
176k
        } else {
639
35.7k
          if (r != 15)
640
24.9k
            break;
641
10.7k
          k += 15;
642
10.7k
        }
643
212k
      }
644
30.0k
    }
645
130k
  }
646
647
  /* Completed MCU, so update state */
648
106k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
106k
  entropy->saved = state;
650
106k
  return TRUE;
651
106k
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
158k
{
663
158k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
158k
  BITREAD_STATE_VARS;
665
158k
  JOCTET *buffer;
666
158k
  int blkn;
667
158k
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
158k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
158k
  buffer = (JOCTET *)br_state.next_input_byte;
673
158k
  state = entropy->saved;
674
675
320k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
162k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
162k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
162k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
162k
    register int s, k, r, l;
680
681
162k
    HUFF_DECODE_FAST(s, l, dctbl);
682
162k
    if (s) {
683
53.7k
      FILL_BIT_BUFFER_FAST
684
53.7k
      r = GET_BITS(s);
685
53.7k
      s = HUFF_EXTEND(r, s);
686
53.7k
    }
687
688
162k
    if (entropy->dc_needed[blkn]) {
689
162k
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
162k
      s += state.last_dc_val[ci];
694
162k
      state.last_dc_val[ci] = s;
695
162k
      if (block)
696
162k
        (*block)[0] = (JCOEF)s;
697
162k
    }
698
699
162k
    if (entropy->ac_needed[blkn] && block) {
700
701
466k
      for (k = 1; k < DCTSIZE2; k++) {
702
460k
        HUFF_DECODE_FAST(s, l, actbl);
703
460k
        r = s >> 4;
704
460k
        s &= 15;
705
706
460k
        if (s) {
707
349k
          k += r;
708
349k
          FILL_BIT_BUFFER_FAST
709
349k
          r = GET_BITS(s);
710
349k
          s = HUFF_EXTEND(r, s);
711
349k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
349k
        } else {
713
110k
          if (r != 15) break;
714
6.14k
          k += 15;
715
6.14k
        }
716
460k
      }
717
718
110k
    } else {
719
720
153k
      for (k = 1; k < DCTSIZE2; k++) {
721
148k
        HUFF_DECODE_FAST(s, l, actbl);
722
148k
        r = s >> 4;
723
148k
        s &= 15;
724
725
148k
        if (s) {
726
86.3k
          k += r;
727
86.3k
          FILL_BIT_BUFFER_FAST
728
86.3k
          DROP_BITS(s);
729
86.3k
        } else {
730
62.3k
          if (r != 15) break;
731
16.0k
          k += 15;
732
16.0k
        }
733
148k
      }
734
51.1k
    }
735
162k
  }
736
737
158k
  if (cinfo->unread_marker != 0) {
738
8.83k
    cinfo->unread_marker = 0;
739
8.83k
    return FALSE;
740
8.83k
  }
741
742
149k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
149k
  br_state.next_input_byte = buffer;
744
149k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
149k
  entropy->saved = state;
746
149k
  return TRUE;
747
158k
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
254M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
254M
{
770
254M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
254M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
254M
  if (cinfo->restart_interval) {
775
9.09M
    if (entropy->restarts_to_go == 0)
776
2.71M
      if (!process_restart(cinfo))
777
30
        return FALSE;
778
9.09M
    usefast = 0;
779
9.09M
  }
780
781
254M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
254M
      cinfo->unread_marker != 0)
783
254M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
254M
  if (!entropy->pub.insufficient_data) {
789
790
256k
    if (usefast) {
791
158k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
158k
    } else {
793
106k
use_slow:
794
106k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
106k
    }
796
797
256k
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
254M
  if (cinfo->restart_interval)
801
9.09M
    entropy->restarts_to_go--;
802
803
254M
  return TRUE;
804
254M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
5.06k
{
814
5.06k
  huff_entropy_ptr entropy;
815
5.06k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
5.06k
  std_huff_tables((j_common_ptr)cinfo);
822
823
5.06k
  entropy = (huff_entropy_ptr)
824
5.06k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
5.06k
                                sizeof(huff_entropy_decoder));
826
5.06k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
5.06k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
5.06k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
25.3k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
20.2k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
20.2k
  }
834
5.06k
}