Coverage Report

Created: 2024-05-20 07:14

/src/skia/third_party/externals/zlib/adler32.c
Line
Count
Source (jump to first uncovered line)
1
/* adler32.c -- compute the Adler-32 checksum of a data stream
2
 * Copyright (C) 1995-2011, 2016 Mark Adler
3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 */
5
6
/* @(#) $Id$ */
7
8
#include "zutil.h"
9
10
6.44M
#define BASE 65521U     /* largest prime smaller than 65536 */
11
178k
#define NMAX 5552
12
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13
14
4.22M
#define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
15
2.11M
#define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
16
1.05M
#define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
17
528k
#define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
18
264k
#define DO16(buf)   DO8(buf,0); DO8(buf,8);
19
20
/* use NO_DIVIDE if your processor does not do division in hardware --
21
   try it both ways to see which is faster */
22
#ifdef NO_DIVIDE
23
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
24
   (thank you to John Reiser for pointing this out) */
25
#  define CHOP(a) \
26
    do { \
27
        unsigned long tmp = a >> 16; \
28
        a &= 0xffffUL; \
29
        a += (tmp << 4) - tmp; \
30
    } while (0)
31
#  define MOD28(a) \
32
    do { \
33
        CHOP(a); \
34
        if (a >= BASE) a -= BASE; \
35
    } while (0)
36
#  define MOD(a) \
37
    do { \
38
        CHOP(a); \
39
        MOD28(a); \
40
    } while (0)
41
#  define MOD63(a) \
42
    do { /* this assumes a is not negative */ \
43
        z_off64_t tmp = a >> 32; \
44
        a &= 0xffffffffL; \
45
        a += (tmp << 8) - (tmp << 5) + tmp; \
46
        tmp = a >> 16; \
47
        a &= 0xffffL; \
48
        a += (tmp << 4) - tmp; \
49
        tmp = a >> 16; \
50
        a &= 0xffffL; \
51
        a += (tmp << 4) - tmp; \
52
        if (a >= BASE) a -= BASE; \
53
    } while (0)
54
#else
55
357k
#  define MOD(a) a %= BASE
56
3.03M
#  define MOD28(a) a %= BASE
57
0
#  define MOD63(a) a %= BASE
58
#endif
59
60
#include "cpu_features.h"
61
#if defined(ADLER32_SIMD_SSSE3) || defined(ADLER32_SIMD_NEON)
62
#include "adler32_simd.h"
63
#endif
64
65
/* ========================================================================= */
66
3.75M
uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
67
3.75M
    unsigned long sum2;
68
3.75M
    unsigned n;
69
70
3.75M
#if defined(ADLER32_SIMD_SSSE3)
71
3.75M
    if (buf != Z_NULL && len >= 64 && x86_cpu_enable_ssse3)
72
466k
        return adler32_simd_(adler, buf, len);
73
#elif defined(ADLER32_SIMD_NEON)
74
    if (buf != Z_NULL && len >= 64)
75
        return adler32_simd_(adler, buf, len);
76
#endif
77
78
    /* split Adler-32 into component sums */
79
3.28M
    sum2 = (adler >> 16) & 0xffff;
80
3.28M
    adler &= 0xffff;
81
82
    /* in case user likes doing a byte at a time, keep it fast */
83
3.28M
    if (len == 1) {
84
5.16k
        adler += buf[0];
85
5.16k
        if (adler >= BASE)
86
232
            adler -= BASE;
87
5.16k
        sum2 += adler;
88
5.16k
        if (sum2 >= BASE)
89
540
            sum2 -= BASE;
90
5.16k
        return adler | (sum2 << 16);
91
5.16k
    }
92
93
3.27M
#if defined(ADLER32_SIMD_SSSE3) || defined(ADLER32_SIMD_NEON)
94
    /*
95
     * Use SIMD to compute the adler32. Since this function can be
96
     * freely used, check CPU features here. zlib convention is to
97
     * call adler32(0, NULL, 0), before making calls to adler32().
98
     * So this is a good early (and infrequent) place to cache CPU
99
     * features for those later, more interesting adler32() calls.
100
     */
101
3.27M
    if (buf == Z_NULL) {
102
62.5k
        if (!len) /* Assume user is calling adler32(0, NULL, 0); */
103
62.5k
            cpu_check_features();
104
62.5k
        return 1L;
105
62.5k
    }
106
#else
107
    /* initial Adler-32 value (deferred check for len == 1 speed) */
108
    if (buf == Z_NULL)
109
        return 1L;
110
#endif
111
112
    /* in case short lengths are provided, keep it somewhat fast */
113
3.21M
    if (len < 16) {
114
12.3M
        while (len--) {
115
9.33M
            adler += *buf++;
116
9.33M
            sum2 += adler;
117
9.33M
        }
118
3.03M
        if (adler >= BASE)
119
608
            adler -= BASE;
120
3.03M
        MOD28(sum2);            /* only added so many BASE's */
121
3.03M
        return adler | (sum2 << 16);
122
3.03M
    }
123
124
    /* do length NMAX blocks -- requires just one modulo operation */
125
178k
    while (len >= NMAX) {
126
0
        len -= NMAX;
127
0
        n = NMAX / 16;          /* NMAX is divisible by 16 */
128
0
        do {
129
0
            DO16(buf);          /* 16 sums unrolled */
130
0
            buf += 16;
131
0
        } while (--n);
132
0
        MOD(adler);
133
0
        MOD(sum2);
134
0
    }
135
136
    /* do remaining bytes (less than NMAX, still just one modulo) */
137
178k
    if (len) {                  /* avoid modulos if none remaining */
138
442k
        while (len >= 16) {
139
264k
            len -= 16;
140
264k
            DO16(buf);
141
264k
            buf += 16;
142
264k
        }
143
1.34M
        while (len--) {
144
1.16M
            adler += *buf++;
145
1.16M
            sum2 += adler;
146
1.16M
        }
147
178k
        MOD(adler);
148
178k
        MOD(sum2);
149
178k
    }
150
151
    /* return recombined sums */
152
178k
    return adler | (sum2 << 16);
153
3.21M
}
154
155
/* ========================================================================= */
156
3.75M
uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
157
3.75M
    return adler32_z(adler, buf, len);
158
3.75M
}
159
160
/* ========================================================================= */
161
0
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
162
0
    unsigned long sum1;
163
0
    unsigned long sum2;
164
0
    unsigned rem;
165
166
    /* for negative len, return invalid adler32 as a clue for debugging */
167
0
    if (len2 < 0)
168
0
        return 0xffffffffUL;
169
170
    /* the derivation of this formula is left as an exercise for the reader */
171
0
    MOD63(len2);                /* assumes len2 >= 0 */
172
0
    rem = (unsigned)len2;
173
0
    sum1 = adler1 & 0xffff;
174
0
    sum2 = rem * sum1;
175
0
    MOD(sum2);
176
0
    sum1 += (adler2 & 0xffff) + BASE - 1;
177
0
    sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
178
0
    if (sum1 >= BASE) sum1 -= BASE;
179
0
    if (sum1 >= BASE) sum1 -= BASE;
180
0
    if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
181
0
    if (sum2 >= BASE) sum2 -= BASE;
182
0
    return sum1 | (sum2 << 16);
183
0
}
184
185
/* ========================================================================= */
186
0
uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
187
0
    return adler32_combine_(adler1, adler2, len2);
188
0
}
189
190
0
uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
191
0
    return adler32_combine_(adler1, adler2, len2);
192
0
}