/src/skia/third_party/externals/zlib/crc32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* crc32.c -- compute the CRC-32 of a data stream |
2 | | * Copyright (C) 1995-2022 Mark Adler |
3 | | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | | * |
5 | | * This interleaved implementation of a CRC makes use of pipelined multiple |
6 | | * arithmetic-logic units, commonly found in modern CPU cores. It is due to |
7 | | * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. |
8 | | */ |
9 | | |
10 | | /* @(#) $Id$ */ |
11 | | |
12 | | /* |
13 | | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore |
14 | | protection on the static variables used to control the first-use generation |
15 | | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
16 | | first call get_crc_table() to initialize the tables before allowing more than |
17 | | one thread to use crc32(). |
18 | | |
19 | | MAKECRCH can be #defined to write out crc32.h. A main() routine is also |
20 | | produced, so that this one source file can be compiled to an executable. |
21 | | */ |
22 | | |
23 | | #ifdef MAKECRCH |
24 | | # include <stdio.h> |
25 | | # ifndef DYNAMIC_CRC_TABLE |
26 | | # define DYNAMIC_CRC_TABLE |
27 | | # endif /* !DYNAMIC_CRC_TABLE */ |
28 | | #endif /* MAKECRCH */ |
29 | | |
30 | | #include "deflate.h" |
31 | | #include "cpu_features.h" |
32 | | #include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */ |
33 | | |
34 | | #if defined(CRC32_SIMD_SSE42_PCLMUL) || defined(CRC32_ARMV8_CRC32) |
35 | | #include "crc32_simd.h" |
36 | | #endif |
37 | | |
38 | | /* |
39 | | A CRC of a message is computed on N braids of words in the message, where |
40 | | each word consists of W bytes (4 or 8). If N is 3, for example, then three |
41 | | running sparse CRCs are calculated respectively on each braid, at these |
42 | | indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... |
43 | | This is done starting at a word boundary, and continues until as many blocks |
44 | | of N * W bytes as are available have been processed. The results are combined |
45 | | into a single CRC at the end. For this code, N must be in the range 1..6 and |
46 | | W must be 4 or 8. The upper limit on N can be increased if desired by adding |
47 | | more #if blocks, extending the patterns apparent in the code. In addition, |
48 | | crc32.h would need to be regenerated, if the maximum N value is increased. |
49 | | |
50 | | N and W are chosen empirically by benchmarking the execution time on a given |
51 | | processor. The choices for N and W below were based on testing on Intel Kaby |
52 | | Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 |
53 | | Octeon II processors. The Intel, AMD, and ARM processors were all fastest |
54 | | with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. |
55 | | They were all tested with either gcc or clang, all using the -O3 optimization |
56 | | level. Your mileage may vary. |
57 | | */ |
58 | | |
59 | | /* Define N */ |
60 | | #ifdef Z_TESTN |
61 | | # define N Z_TESTN |
62 | | #else |
63 | 655k | # define N 5 |
64 | | #endif |
65 | | #if N < 1 || N > 6 |
66 | | # error N must be in 1..6 |
67 | | #endif |
68 | | |
69 | | /* |
70 | | z_crc_t must be at least 32 bits. z_word_t must be at least as long as |
71 | | z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and |
72 | | that bytes are eight bits. |
73 | | */ |
74 | | |
75 | | /* |
76 | | Define W and the associated z_word_t type. If W is not defined, then a |
77 | | braided calculation is not used, and the associated tables and code are not |
78 | | compiled. |
79 | | */ |
80 | | #ifdef Z_TESTW |
81 | | # if Z_TESTW-1 != -1 |
82 | | # define W Z_TESTW |
83 | | # endif |
84 | | #else |
85 | | # ifdef MAKECRCH |
86 | | # define W 8 /* required for MAKECRCH */ |
87 | | # else |
88 | | # if defined(__x86_64__) || defined(__aarch64__) |
89 | 1.40M | # define W 8 |
90 | | # else |
91 | | # define W 4 |
92 | | # endif |
93 | | # endif |
94 | | #endif |
95 | | #ifdef W |
96 | | # if W == 8 && defined(Z_U8) |
97 | | typedef Z_U8 z_word_t; |
98 | | # elif defined(Z_U4) |
99 | | # undef W |
100 | | # define W 4 |
101 | | typedef Z_U4 z_word_t; |
102 | | # else |
103 | | # undef W |
104 | | # endif |
105 | | #endif |
106 | | |
107 | | /* If available, use the ARM processor CRC32 instruction. */ |
108 | | #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8 \ |
109 | | && defined(USE_CANONICAL_ARMV8_CRC32) |
110 | | # define ARMCRC32_CANONICAL_ZLIB |
111 | | #endif |
112 | | |
113 | | #if defined(W) && (!defined(ARMCRC32_CANONICAL_ZLIB) || defined(DYNAMIC_CRC_TABLE)) |
114 | | /* |
115 | | Swap the bytes in a z_word_t to convert between little and big endian. Any |
116 | | self-respecting compiler will optimize this to a single machine byte-swap |
117 | | instruction, if one is available. This assumes that word_t is either 32 bits |
118 | | or 64 bits. |
119 | | */ |
120 | 0 | local z_word_t byte_swap(z_word_t word) { |
121 | 0 | # if W == 8 |
122 | 0 | return |
123 | 0 | (word & 0xff00000000000000) >> 56 | |
124 | 0 | (word & 0xff000000000000) >> 40 | |
125 | 0 | (word & 0xff0000000000) >> 24 | |
126 | 0 | (word & 0xff00000000) >> 8 | |
127 | 0 | (word & 0xff000000) << 8 | |
128 | 0 | (word & 0xff0000) << 24 | |
129 | 0 | (word & 0xff00) << 40 | |
130 | 0 | (word & 0xff) << 56; |
131 | | # else /* W == 4 */ |
132 | | return |
133 | | (word & 0xff000000) >> 24 | |
134 | | (word & 0xff0000) >> 8 | |
135 | | (word & 0xff00) << 8 | |
136 | | (word & 0xff) << 24; |
137 | | # endif |
138 | 0 | } |
139 | | #endif |
140 | | |
141 | | #ifdef DYNAMIC_CRC_TABLE |
142 | | /* ========================================================================= |
143 | | * Table of powers of x for combining CRC-32s, filled in by make_crc_table() |
144 | | * below. |
145 | | */ |
146 | | local z_crc_t FAR x2n_table[32]; |
147 | | #else |
148 | | /* ========================================================================= |
149 | | * Tables for byte-wise and braided CRC-32 calculations, and a table of powers |
150 | | * of x for combining CRC-32s, all made by make_crc_table(). |
151 | | */ |
152 | | # include "crc32.h" |
153 | | #endif |
154 | | |
155 | | /* CRC polynomial. */ |
156 | 0 | #define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */ |
157 | | |
158 | | /* |
159 | | Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, |
160 | | reflected. For speed, this requires that a not be zero. |
161 | | */ |
162 | 0 | local z_crc_t multmodp(z_crc_t a, z_crc_t b) { |
163 | 0 | z_crc_t m, p; |
164 | |
|
165 | 0 | m = (z_crc_t)1 << 31; |
166 | 0 | p = 0; |
167 | 0 | for (;;) { |
168 | 0 | if (a & m) { |
169 | 0 | p ^= b; |
170 | 0 | if ((a & (m - 1)) == 0) |
171 | 0 | break; |
172 | 0 | } |
173 | 0 | m >>= 1; |
174 | 0 | b = b & 1 ? (b >> 1) ^ POLY : b >> 1; |
175 | 0 | } |
176 | 0 | return p; |
177 | 0 | } |
178 | | |
179 | | /* |
180 | | Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been |
181 | | initialized. |
182 | | */ |
183 | 0 | local z_crc_t x2nmodp(z_off64_t n, unsigned k) { |
184 | 0 | z_crc_t p; |
185 | |
|
186 | 0 | p = (z_crc_t)1 << 31; /* x^0 == 1 */ |
187 | 0 | while (n) { |
188 | 0 | if (n & 1) |
189 | 0 | p = multmodp(x2n_table[k & 31], p); |
190 | 0 | n >>= 1; |
191 | 0 | k++; |
192 | 0 | } |
193 | 0 | return p; |
194 | 0 | } |
195 | | |
196 | | #ifdef DYNAMIC_CRC_TABLE |
197 | | /* ========================================================================= |
198 | | * Build the tables for byte-wise and braided CRC-32 calculations, and a table |
199 | | * of powers of x for combining CRC-32s. |
200 | | */ |
201 | | local z_crc_t FAR crc_table[256]; |
202 | | #ifdef W |
203 | | local z_word_t FAR crc_big_table[256]; |
204 | | local z_crc_t FAR crc_braid_table[W][256]; |
205 | | local z_word_t FAR crc_braid_big_table[W][256]; |
206 | | local void braid(z_crc_t [][256], z_word_t [][256], int, int); |
207 | | #endif |
208 | | #ifdef MAKECRCH |
209 | | local void write_table(FILE *, const z_crc_t FAR *, int); |
210 | | local void write_table32hi(FILE *, const z_word_t FAR *, int); |
211 | | local void write_table64(FILE *, const z_word_t FAR *, int); |
212 | | #endif /* MAKECRCH */ |
213 | | |
214 | | /* |
215 | | Define a once() function depending on the availability of atomics. If this is |
216 | | compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in |
217 | | multiple threads, and if atomics are not available, then get_crc_table() must |
218 | | be called to initialize the tables and must return before any threads are |
219 | | allowed to compute or combine CRCs. |
220 | | */ |
221 | | |
222 | | /* Definition of once functionality. */ |
223 | | typedef struct once_s once_t; |
224 | | |
225 | | /* Check for the availability of atomics. */ |
226 | | #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \ |
227 | | !defined(__STDC_NO_ATOMICS__) |
228 | | |
229 | | #include <stdatomic.h> |
230 | | |
231 | | /* Structure for once(), which must be initialized with ONCE_INIT. */ |
232 | | struct once_s { |
233 | | atomic_flag begun; |
234 | | atomic_int done; |
235 | | }; |
236 | | #define ONCE_INIT {ATOMIC_FLAG_INIT, 0} |
237 | | |
238 | | /* |
239 | | Run the provided init() function exactly once, even if multiple threads |
240 | | invoke once() at the same time. The state must be a once_t initialized with |
241 | | ONCE_INIT. |
242 | | */ |
243 | | local void once(once_t *state, void (*init)(void)) { |
244 | | if (!atomic_load(&state->done)) { |
245 | | if (atomic_flag_test_and_set(&state->begun)) |
246 | | while (!atomic_load(&state->done)) |
247 | | ; |
248 | | else { |
249 | | init(); |
250 | | atomic_store(&state->done, 1); |
251 | | } |
252 | | } |
253 | | } |
254 | | |
255 | | #else /* no atomics */ |
256 | | |
257 | | /* Structure for once(), which must be initialized with ONCE_INIT. */ |
258 | | struct once_s { |
259 | | volatile int begun; |
260 | | volatile int done; |
261 | | }; |
262 | | #define ONCE_INIT {0, 0} |
263 | | |
264 | | /* Test and set. Alas, not atomic, but tries to minimize the period of |
265 | | vulnerability. */ |
266 | | local int test_and_set(int volatile *flag) { |
267 | | int was; |
268 | | |
269 | | was = *flag; |
270 | | *flag = 1; |
271 | | return was; |
272 | | } |
273 | | |
274 | | /* Run the provided init() function once. This is not thread-safe. */ |
275 | | local void once(once_t *state, void (*init)(void)) { |
276 | | if (!state->done) { |
277 | | if (test_and_set(&state->begun)) |
278 | | while (!state->done) |
279 | | ; |
280 | | else { |
281 | | init(); |
282 | | state->done = 1; |
283 | | } |
284 | | } |
285 | | } |
286 | | |
287 | | #endif |
288 | | |
289 | | /* State for once(). */ |
290 | | local once_t made = ONCE_INIT; |
291 | | |
292 | | /* |
293 | | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: |
294 | | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. |
295 | | |
296 | | Polynomials over GF(2) are represented in binary, one bit per coefficient, |
297 | | with the lowest powers in the most significant bit. Then adding polynomials |
298 | | is just exclusive-or, and multiplying a polynomial by x is a right shift by |
299 | | one. If we call the above polynomial p, and represent a byte as the |
300 | | polynomial q, also with the lowest power in the most significant bit (so the |
301 | | byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, |
302 | | where a mod b means the remainder after dividing a by b. |
303 | | |
304 | | This calculation is done using the shift-register method of multiplying and |
305 | | taking the remainder. The register is initialized to zero, and for each |
306 | | incoming bit, x^32 is added mod p to the register if the bit is a one (where |
307 | | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x |
308 | | (which is shifting right by one and adding x^32 mod p if the bit shifted out |
309 | | is a one). We start with the highest power (least significant bit) of q and |
310 | | repeat for all eight bits of q. |
311 | | |
312 | | The table is simply the CRC of all possible eight bit values. This is all the |
313 | | information needed to generate CRCs on data a byte at a time for all |
314 | | combinations of CRC register values and incoming bytes. |
315 | | */ |
316 | | local void make_crc_table(void) |
317 | | { |
318 | | unsigned i, j, n; |
319 | | z_crc_t p; |
320 | | |
321 | | /* initialize the CRC of bytes tables */ |
322 | | for (i = 0; i < 256; i++) { |
323 | | p = i; |
324 | | for (j = 0; j < 8; j++) |
325 | | p = p & 1 ? (p >> 1) ^ POLY : p >> 1; |
326 | | crc_table[i] = p; |
327 | | #ifdef W |
328 | | crc_big_table[i] = byte_swap(p); |
329 | | #endif |
330 | | } |
331 | | |
332 | | /* initialize the x^2^n mod p(x) table */ |
333 | | p = (z_crc_t)1 << 30; /* x^1 */ |
334 | | x2n_table[0] = p; |
335 | | for (n = 1; n < 32; n++) |
336 | | x2n_table[n] = p = multmodp(p, p); |
337 | | |
338 | | #ifdef W |
339 | | /* initialize the braiding tables -- needs x2n_table[] */ |
340 | | braid(crc_braid_table, crc_braid_big_table, N, W); |
341 | | #endif |
342 | | |
343 | | #ifdef MAKECRCH |
344 | | { |
345 | | /* |
346 | | The crc32.h header file contains tables for both 32-bit and 64-bit |
347 | | z_word_t's, and so requires a 64-bit type be available. In that case, |
348 | | z_word_t must be defined to be 64-bits. This code then also generates |
349 | | and writes out the tables for the case that z_word_t is 32 bits. |
350 | | */ |
351 | | #if !defined(W) || W != 8 |
352 | | # error Need a 64-bit integer type in order to generate crc32.h. |
353 | | #endif |
354 | | FILE *out; |
355 | | int k, n; |
356 | | z_crc_t ltl[8][256]; |
357 | | z_word_t big[8][256]; |
358 | | |
359 | | out = fopen("crc32.h", "w"); |
360 | | if (out == NULL) return; |
361 | | |
362 | | /* write out little-endian CRC table to crc32.h */ |
363 | | fprintf(out, |
364 | | "/* crc32.h -- tables for rapid CRC calculation\n" |
365 | | " * Generated automatically by crc32.c\n */\n" |
366 | | "\n" |
367 | | "local const z_crc_t FAR crc_table[] = {\n" |
368 | | " "); |
369 | | write_table(out, crc_table, 256); |
370 | | fprintf(out, |
371 | | "};\n"); |
372 | | |
373 | | /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ |
374 | | fprintf(out, |
375 | | "\n" |
376 | | "#ifdef W\n" |
377 | | "\n" |
378 | | "#if W == 8\n" |
379 | | "\n" |
380 | | "local const z_word_t FAR crc_big_table[] = {\n" |
381 | | " "); |
382 | | write_table64(out, crc_big_table, 256); |
383 | | fprintf(out, |
384 | | "};\n"); |
385 | | |
386 | | /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ |
387 | | fprintf(out, |
388 | | "\n" |
389 | | "#else /* W == 4 */\n" |
390 | | "\n" |
391 | | "local const z_word_t FAR crc_big_table[] = {\n" |
392 | | " "); |
393 | | write_table32hi(out, crc_big_table, 256); |
394 | | fprintf(out, |
395 | | "};\n" |
396 | | "\n" |
397 | | "#endif\n"); |
398 | | |
399 | | /* write out braid tables for each value of N */ |
400 | | for (n = 1; n <= 6; n++) { |
401 | | fprintf(out, |
402 | | "\n" |
403 | | "#if N == %d\n", n); |
404 | | |
405 | | /* compute braid tables for this N and 64-bit word_t */ |
406 | | braid(ltl, big, n, 8); |
407 | | |
408 | | /* write out braid tables for 64-bit z_word_t to crc32.h */ |
409 | | fprintf(out, |
410 | | "\n" |
411 | | "#if W == 8\n" |
412 | | "\n" |
413 | | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); |
414 | | for (k = 0; k < 8; k++) { |
415 | | fprintf(out, " {"); |
416 | | write_table(out, ltl[k], 256); |
417 | | fprintf(out, "}%s", k < 7 ? ",\n" : ""); |
418 | | } |
419 | | fprintf(out, |
420 | | "};\n" |
421 | | "\n" |
422 | | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); |
423 | | for (k = 0; k < 8; k++) { |
424 | | fprintf(out, " {"); |
425 | | write_table64(out, big[k], 256); |
426 | | fprintf(out, "}%s", k < 7 ? ",\n" : ""); |
427 | | } |
428 | | fprintf(out, |
429 | | "};\n"); |
430 | | |
431 | | /* compute braid tables for this N and 32-bit word_t */ |
432 | | braid(ltl, big, n, 4); |
433 | | |
434 | | /* write out braid tables for 32-bit z_word_t to crc32.h */ |
435 | | fprintf(out, |
436 | | "\n" |
437 | | "#else /* W == 4 */\n" |
438 | | "\n" |
439 | | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); |
440 | | for (k = 0; k < 4; k++) { |
441 | | fprintf(out, " {"); |
442 | | write_table(out, ltl[k], 256); |
443 | | fprintf(out, "}%s", k < 3 ? ",\n" : ""); |
444 | | } |
445 | | fprintf(out, |
446 | | "};\n" |
447 | | "\n" |
448 | | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); |
449 | | for (k = 0; k < 4; k++) { |
450 | | fprintf(out, " {"); |
451 | | write_table32hi(out, big[k], 256); |
452 | | fprintf(out, "}%s", k < 3 ? ",\n" : ""); |
453 | | } |
454 | | fprintf(out, |
455 | | "};\n" |
456 | | "\n" |
457 | | "#endif\n" |
458 | | "\n" |
459 | | "#endif\n"); |
460 | | } |
461 | | fprintf(out, |
462 | | "\n" |
463 | | "#endif\n"); |
464 | | |
465 | | /* write out zeros operator table to crc32.h */ |
466 | | fprintf(out, |
467 | | "\n" |
468 | | "local const z_crc_t FAR x2n_table[] = {\n" |
469 | | " "); |
470 | | write_table(out, x2n_table, 32); |
471 | | fprintf(out, |
472 | | "};\n"); |
473 | | fclose(out); |
474 | | } |
475 | | #endif /* MAKECRCH */ |
476 | | } |
477 | | |
478 | | #ifdef MAKECRCH |
479 | | |
480 | | /* |
481 | | Write the 32-bit values in table[0..k-1] to out, five per line in |
482 | | hexadecimal separated by commas. |
483 | | */ |
484 | | local void write_table(FILE *out, const z_crc_t FAR *table, int k) { |
485 | | int n; |
486 | | |
487 | | for (n = 0; n < k; n++) |
488 | | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", |
489 | | (unsigned long)(table[n]), |
490 | | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
491 | | } |
492 | | |
493 | | /* |
494 | | Write the high 32-bits of each value in table[0..k-1] to out, five per line |
495 | | in hexadecimal separated by commas. |
496 | | */ |
497 | | local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) { |
498 | | int n; |
499 | | |
500 | | for (n = 0; n < k; n++) |
501 | | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", |
502 | | (unsigned long)(table[n] >> 32), |
503 | | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
504 | | } |
505 | | |
506 | | /* |
507 | | Write the 64-bit values in table[0..k-1] to out, three per line in |
508 | | hexadecimal separated by commas. This assumes that if there is a 64-bit |
509 | | type, then there is also a long long integer type, and it is at least 64 |
510 | | bits. If not, then the type cast and format string can be adjusted |
511 | | accordingly. |
512 | | */ |
513 | | local void write_table64(FILE *out, const z_word_t FAR *table, int k) { |
514 | | int n; |
515 | | |
516 | | for (n = 0; n < k; n++) |
517 | | fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ", |
518 | | (unsigned long long)(table[n]), |
519 | | n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", ")); |
520 | | } |
521 | | |
522 | | /* Actually do the deed. */ |
523 | | int main(void) { |
524 | | make_crc_table(); |
525 | | return 0; |
526 | | } |
527 | | |
528 | | #endif /* MAKECRCH */ |
529 | | |
530 | | #ifdef W |
531 | | /* |
532 | | Generate the little and big-endian braid tables for the given n and z_word_t |
533 | | size w. Each array must have room for w blocks of 256 elements. |
534 | | */ |
535 | | local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) { |
536 | | int k; |
537 | | z_crc_t i, p, q; |
538 | | for (k = 0; k < w; k++) { |
539 | | p = x2nmodp((n * w + 3 - k) << 3, 0); |
540 | | ltl[k][0] = 0; |
541 | | big[w - 1 - k][0] = 0; |
542 | | for (i = 1; i < 256; i++) { |
543 | | ltl[k][i] = q = multmodp(i << 24, p); |
544 | | big[w - 1 - k][i] = byte_swap(q); |
545 | | } |
546 | | } |
547 | | } |
548 | | #endif |
549 | | |
550 | | #endif /* DYNAMIC_CRC_TABLE */ |
551 | | |
552 | | /* ========================================================================= |
553 | | * This function can be used by asm versions of crc32(), and to force the |
554 | | * generation of the CRC tables in a threaded application. |
555 | | */ |
556 | 0 | const z_crc_t FAR * ZEXPORT get_crc_table(void) { |
557 | | #ifdef DYNAMIC_CRC_TABLE |
558 | | once(&made, make_crc_table); |
559 | | #endif /* DYNAMIC_CRC_TABLE */ |
560 | 0 | return (const z_crc_t FAR *)crc_table; |
561 | 0 | } |
562 | | |
563 | | /* ========================================================================= |
564 | | * Use ARM machine instructions if available. This will compute the CRC about |
565 | | * ten times faster than the braided calculation. This code does not check for |
566 | | * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will |
567 | | * only be defined if the compilation specifies an ARM processor architecture |
568 | | * that has the instructions. For example, compiling with -march=armv8.1-a or |
569 | | * -march=armv8-a+crc, or -march=native if the compile machine has the crc32 |
570 | | * instructions. |
571 | | */ |
572 | | #if ARMCRC32_CANONICAL_ZLIB |
573 | | |
574 | | /* |
575 | | Constants empirically determined to maximize speed. These values are from |
576 | | measurements on a Cortex-A57. Your mileage may vary. |
577 | | */ |
578 | | #define Z_BATCH 3990 /* number of words in a batch */ |
579 | | #define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */ |
580 | | #define Z_BATCH_MIN 800 /* fewest words in a final batch */ |
581 | | |
582 | | unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, |
583 | | z_size_t len) { |
584 | | z_crc_t val; |
585 | | z_word_t crc1, crc2; |
586 | | const z_word_t *word; |
587 | | z_word_t val0, val1, val2; |
588 | | z_size_t last, last2, i; |
589 | | z_size_t num; |
590 | | |
591 | | /* Return initial CRC, if requested. */ |
592 | | if (buf == Z_NULL) return 0; |
593 | | |
594 | | #ifdef DYNAMIC_CRC_TABLE |
595 | | once(&made, make_crc_table); |
596 | | #endif /* DYNAMIC_CRC_TABLE */ |
597 | | |
598 | | /* Pre-condition the CRC */ |
599 | | crc = (~crc) & 0xffffffff; |
600 | | |
601 | | /* Compute the CRC up to a word boundary. */ |
602 | | while (len && ((z_size_t)buf & 7) != 0) { |
603 | | len--; |
604 | | val = *buf++; |
605 | | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); |
606 | | } |
607 | | |
608 | | /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ |
609 | | word = (z_word_t const *)buf; |
610 | | num = len >> 3; |
611 | | len &= 7; |
612 | | |
613 | | /* Do three interleaved CRCs to realize the throughput of one crc32x |
614 | | instruction per cycle. Each CRC is calculated on Z_BATCH words. The |
615 | | three CRCs are combined into a single CRC after each set of batches. */ |
616 | | while (num >= 3 * Z_BATCH) { |
617 | | crc1 = 0; |
618 | | crc2 = 0; |
619 | | for (i = 0; i < Z_BATCH; i++) { |
620 | | val0 = word[i]; |
621 | | val1 = word[i + Z_BATCH]; |
622 | | val2 = word[i + 2 * Z_BATCH]; |
623 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
624 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); |
625 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); |
626 | | } |
627 | | word += 3 * Z_BATCH; |
628 | | num -= 3 * Z_BATCH; |
629 | | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; |
630 | | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; |
631 | | } |
632 | | |
633 | | /* Do one last smaller batch with the remaining words, if there are enough |
634 | | to pay for the combination of CRCs. */ |
635 | | last = num / 3; |
636 | | if (last >= Z_BATCH_MIN) { |
637 | | last2 = last << 1; |
638 | | crc1 = 0; |
639 | | crc2 = 0; |
640 | | for (i = 0; i < last; i++) { |
641 | | val0 = word[i]; |
642 | | val1 = word[i + last]; |
643 | | val2 = word[i + last2]; |
644 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
645 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); |
646 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); |
647 | | } |
648 | | word += 3 * last; |
649 | | num -= 3 * last; |
650 | | val = x2nmodp(last, 6); |
651 | | crc = multmodp(val, crc) ^ crc1; |
652 | | crc = multmodp(val, crc) ^ crc2; |
653 | | } |
654 | | |
655 | | /* Compute the CRC on any remaining words. */ |
656 | | for (i = 0; i < num; i++) { |
657 | | val0 = word[i]; |
658 | | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); |
659 | | } |
660 | | word += num; |
661 | | |
662 | | /* Complete the CRC on any remaining bytes. */ |
663 | | buf = (const unsigned char FAR *)word; |
664 | | while (len) { |
665 | | len--; |
666 | | val = *buf++; |
667 | | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); |
668 | | } |
669 | | |
670 | | /* Return the CRC, post-conditioned. */ |
671 | | return crc ^ 0xffffffff; |
672 | | } |
673 | | |
674 | | #else |
675 | | |
676 | | #ifdef W |
677 | | |
678 | | /* |
679 | | Return the CRC of the W bytes in the word_t data, taking the |
680 | | least-significant byte of the word as the first byte of data, without any pre |
681 | | or post conditioning. This is used to combine the CRCs of each braid. |
682 | | */ |
683 | 11.1k | local z_crc_t crc_word(z_word_t data) { |
684 | 11.1k | int k; |
685 | 100k | for (k = 0; k < W; k++) |
686 | 89.2k | data = (data >> 8) ^ crc_table[data & 0xff]; |
687 | 11.1k | return (z_crc_t)data; |
688 | 11.1k | } |
689 | | |
690 | 0 | local z_word_t crc_word_big(z_word_t data) { |
691 | 0 | int k; |
692 | 0 | for (k = 0; k < W; k++) |
693 | 0 | data = (data << 8) ^ |
694 | 0 | crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; |
695 | 0 | return data; |
696 | 0 | } |
697 | | |
698 | | #endif |
699 | | |
700 | | /* ========================================================================= */ |
701 | | unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, |
702 | 672k | z_size_t len) { |
703 | | /* |
704 | | * zlib convention is to call crc32(0, NULL, 0); before making |
705 | | * calls to crc32(). So this is a good, early (and infrequent) |
706 | | * place to cache CPU features if needed for those later, more |
707 | | * interesting crc32() calls. |
708 | | */ |
709 | 672k | #if defined(CRC32_SIMD_SSE42_PCLMUL) || defined(CRC32_ARMV8_CRC32) |
710 | | /* |
711 | | * Since this routine can be freely used, check CPU features here. |
712 | | */ |
713 | 672k | if (buf == Z_NULL) { |
714 | 0 | if (!len) /* Assume user is calling crc32(0, NULL, 0); */ |
715 | 0 | cpu_check_features(); |
716 | 0 | return 0UL; |
717 | 0 | } |
718 | | |
719 | 672k | #endif |
720 | | #if defined(CRC32_SIMD_AVX512_PCLMUL) |
721 | | if (x86_cpu_enable_avx512 && len >= Z_CRC32_AVX512_MINIMUM_LENGTH) { |
722 | | /* crc32 64-byte chunks */ |
723 | | z_size_t chunk_size = len & ~Z_CRC32_AVX512_CHUNKSIZE_MASK; |
724 | | crc = ~crc32_avx512_simd_(buf, chunk_size, ~(uint32_t)crc); |
725 | | /* check remaining data */ |
726 | | len -= chunk_size; |
727 | | if (!len) |
728 | | return crc; |
729 | | /* Fall into the default crc32 for the remaining data. */ |
730 | | buf += chunk_size; |
731 | | } |
732 | | #elif defined(CRC32_SIMD_SSE42_PCLMUL) |
733 | 672k | if (x86_cpu_enable_simd && len >= Z_CRC32_SSE42_MINIMUM_LENGTH) { |
734 | | /* crc32 16-byte chunks */ |
735 | 90.3k | z_size_t chunk_size = len & ~Z_CRC32_SSE42_CHUNKSIZE_MASK; |
736 | 90.3k | crc = ~crc32_sse42_simd_(buf, chunk_size, ~(uint32_t)crc); |
737 | | /* check remaining data */ |
738 | 90.3k | len -= chunk_size; |
739 | 90.3k | if (!len) |
740 | 24.4k | return crc; |
741 | | /* Fall into the default crc32 for the remaining data. */ |
742 | 65.9k | buf += chunk_size; |
743 | 65.9k | } |
744 | | #elif defined(CRC32_ARMV8_CRC32) |
745 | | if (arm_cpu_enable_crc32) { |
746 | | #if defined(__aarch64__) |
747 | | /* PMULL is 64bit only, plus code needs at least a 64 bytes buffer. */ |
748 | | if (arm_cpu_enable_pmull && (len > Z_CRC32_PMULL_MINIMUM_LENGTH)) { |
749 | | const size_t chunk_size = len & ~Z_CRC32_PMULL_CHUNKSIZE_MASK; |
750 | | crc = ~armv8_crc32_pmull_little(buf, chunk_size, ~(uint32_t)crc); |
751 | | /* Check remaining data. */ |
752 | | len -= chunk_size; |
753 | | if (!len) |
754 | | return crc; |
755 | | |
756 | | /* Fall through for the remaining data. */ |
757 | | buf += chunk_size; |
758 | | } |
759 | | #endif |
760 | | return armv8_crc32_little(buf, len, crc); /* Armv8@32bit or tail. */ |
761 | | } |
762 | | #else |
763 | | if (buf == Z_NULL) { |
764 | | return 0UL; |
765 | | } |
766 | | #endif /* CRC32_SIMD */ |
767 | | |
768 | | #ifdef DYNAMIC_CRC_TABLE |
769 | | once(&made, make_crc_table); |
770 | | #endif /* DYNAMIC_CRC_TABLE */ |
771 | | /* Pre-condition the CRC */ |
772 | 648k | crc = (~crc) & 0xffffffff; |
773 | | |
774 | 648k | #ifdef W |
775 | | |
776 | | /* If provided enough bytes, do a braided CRC calculation. */ |
777 | 648k | if (len >= N * W + W - 1) { |
778 | 2.23k | z_size_t blks; |
779 | 2.23k | z_word_t const *words; |
780 | 2.23k | unsigned endian; |
781 | 2.23k | int k; |
782 | | |
783 | | /* Compute the CRC up to a z_word_t boundary. */ |
784 | 2.23k | while (len && ((z_size_t)buf & (W - 1)) != 0) { |
785 | 0 | len--; |
786 | 0 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
787 | 0 | } |
788 | | |
789 | | /* Compute the CRC on as many N z_word_t blocks as are available. */ |
790 | 2.23k | blks = len / (N * W); |
791 | 2.23k | len -= blks * N * W; |
792 | 2.23k | words = (z_word_t const *)buf; |
793 | | |
794 | | /* Do endian check at execution time instead of compile time, since ARM |
795 | | processors can change the endianness at execution time. If the |
796 | | compiler knows what the endianness will be, it can optimize out the |
797 | | check and the unused branch. */ |
798 | 2.23k | endian = 1; |
799 | 2.23k | if (*(unsigned char *)&endian) { |
800 | | /* Little endian. */ |
801 | | |
802 | 2.23k | z_crc_t crc0; |
803 | 2.23k | z_word_t word0; |
804 | 2.23k | #if N > 1 |
805 | 2.23k | z_crc_t crc1; |
806 | 2.23k | z_word_t word1; |
807 | 2.23k | #if N > 2 |
808 | 2.23k | z_crc_t crc2; |
809 | 2.23k | z_word_t word2; |
810 | 2.23k | #if N > 3 |
811 | 2.23k | z_crc_t crc3; |
812 | 2.23k | z_word_t word3; |
813 | 2.23k | #if N > 4 |
814 | 2.23k | z_crc_t crc4; |
815 | 2.23k | z_word_t word4; |
816 | | #if N > 5 |
817 | | z_crc_t crc5; |
818 | | z_word_t word5; |
819 | | #endif |
820 | 2.23k | #endif |
821 | 2.23k | #endif |
822 | 2.23k | #endif |
823 | 2.23k | #endif |
824 | | |
825 | | /* Initialize the CRC for each braid. */ |
826 | 2.23k | crc0 = crc; |
827 | 2.23k | #if N > 1 |
828 | 2.23k | crc1 = 0; |
829 | 2.23k | #if N > 2 |
830 | 2.23k | crc2 = 0; |
831 | 2.23k | #if N > 3 |
832 | 2.23k | crc3 = 0; |
833 | 2.23k | #if N > 4 |
834 | 2.23k | crc4 = 0; |
835 | | #if N > 5 |
836 | | crc5 = 0; |
837 | | #endif |
838 | 2.23k | #endif |
839 | 2.23k | #endif |
840 | 2.23k | #endif |
841 | 2.23k | #endif |
842 | | |
843 | | /* |
844 | | Process the first blks-1 blocks, computing the CRCs on each braid |
845 | | independently. |
846 | | */ |
847 | 2.23k | while (--blks) { |
848 | | /* Load the word for each braid into registers. */ |
849 | 0 | word0 = crc0 ^ words[0]; |
850 | 0 | #if N > 1 |
851 | 0 | word1 = crc1 ^ words[1]; |
852 | 0 | #if N > 2 |
853 | 0 | word2 = crc2 ^ words[2]; |
854 | 0 | #if N > 3 |
855 | 0 | word3 = crc3 ^ words[3]; |
856 | 0 | #if N > 4 |
857 | 0 | word4 = crc4 ^ words[4]; |
858 | | #if N > 5 |
859 | | word5 = crc5 ^ words[5]; |
860 | | #endif |
861 | 0 | #endif |
862 | 0 | #endif |
863 | 0 | #endif |
864 | 0 | #endif |
865 | 0 | words += N; |
866 | | |
867 | | /* Compute and update the CRC for each word. The loop should |
868 | | get unrolled. */ |
869 | 0 | crc0 = crc_braid_table[0][word0 & 0xff]; |
870 | 0 | #if N > 1 |
871 | 0 | crc1 = crc_braid_table[0][word1 & 0xff]; |
872 | 0 | #if N > 2 |
873 | 0 | crc2 = crc_braid_table[0][word2 & 0xff]; |
874 | 0 | #if N > 3 |
875 | 0 | crc3 = crc_braid_table[0][word3 & 0xff]; |
876 | 0 | #if N > 4 |
877 | 0 | crc4 = crc_braid_table[0][word4 & 0xff]; |
878 | | #if N > 5 |
879 | | crc5 = crc_braid_table[0][word5 & 0xff]; |
880 | | #endif |
881 | 0 | #endif |
882 | 0 | #endif |
883 | 0 | #endif |
884 | 0 | #endif |
885 | 0 | for (k = 1; k < W; k++) { |
886 | 0 | crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; |
887 | 0 | #if N > 1 |
888 | 0 | crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; |
889 | 0 | #if N > 2 |
890 | 0 | crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; |
891 | 0 | #if N > 3 |
892 | 0 | crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; |
893 | 0 | #if N > 4 |
894 | 0 | crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; |
895 | | #if N > 5 |
896 | | crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; |
897 | | #endif |
898 | 0 | #endif |
899 | 0 | #endif |
900 | 0 | #endif |
901 | 0 | #endif |
902 | 0 | } |
903 | 0 | } |
904 | | |
905 | | /* |
906 | | Process the last block, combining the CRCs of the N braids at the |
907 | | same time. |
908 | | */ |
909 | 2.23k | crc = crc_word(crc0 ^ words[0]); |
910 | 2.23k | #if N > 1 |
911 | 2.23k | crc = crc_word(crc1 ^ words[1] ^ crc); |
912 | 2.23k | #if N > 2 |
913 | 2.23k | crc = crc_word(crc2 ^ words[2] ^ crc); |
914 | 2.23k | #if N > 3 |
915 | 2.23k | crc = crc_word(crc3 ^ words[3] ^ crc); |
916 | 2.23k | #if N > 4 |
917 | 2.23k | crc = crc_word(crc4 ^ words[4] ^ crc); |
918 | | #if N > 5 |
919 | | crc = crc_word(crc5 ^ words[5] ^ crc); |
920 | | #endif |
921 | 2.23k | #endif |
922 | 2.23k | #endif |
923 | 2.23k | #endif |
924 | 2.23k | #endif |
925 | 2.23k | words += N; |
926 | 2.23k | } |
927 | 0 | else { |
928 | | /* Big endian. */ |
929 | |
|
930 | 0 | z_word_t crc0, word0, comb; |
931 | 0 | #if N > 1 |
932 | 0 | z_word_t crc1, word1; |
933 | 0 | #if N > 2 |
934 | 0 | z_word_t crc2, word2; |
935 | 0 | #if N > 3 |
936 | 0 | z_word_t crc3, word3; |
937 | 0 | #if N > 4 |
938 | 0 | z_word_t crc4, word4; |
939 | | #if N > 5 |
940 | | z_word_t crc5, word5; |
941 | | #endif |
942 | 0 | #endif |
943 | 0 | #endif |
944 | 0 | #endif |
945 | 0 | #endif |
946 | | |
947 | | /* Initialize the CRC for each braid. */ |
948 | 0 | crc0 = byte_swap(crc); |
949 | 0 | #if N > 1 |
950 | 0 | crc1 = 0; |
951 | 0 | #if N > 2 |
952 | 0 | crc2 = 0; |
953 | 0 | #if N > 3 |
954 | 0 | crc3 = 0; |
955 | 0 | #if N > 4 |
956 | 0 | crc4 = 0; |
957 | | #if N > 5 |
958 | | crc5 = 0; |
959 | | #endif |
960 | 0 | #endif |
961 | 0 | #endif |
962 | 0 | #endif |
963 | 0 | #endif |
964 | | |
965 | | /* |
966 | | Process the first blks-1 blocks, computing the CRCs on each braid |
967 | | independently. |
968 | | */ |
969 | 0 | while (--blks) { |
970 | | /* Load the word for each braid into registers. */ |
971 | 0 | word0 = crc0 ^ words[0]; |
972 | 0 | #if N > 1 |
973 | 0 | word1 = crc1 ^ words[1]; |
974 | 0 | #if N > 2 |
975 | 0 | word2 = crc2 ^ words[2]; |
976 | 0 | #if N > 3 |
977 | 0 | word3 = crc3 ^ words[3]; |
978 | 0 | #if N > 4 |
979 | 0 | word4 = crc4 ^ words[4]; |
980 | | #if N > 5 |
981 | | word5 = crc5 ^ words[5]; |
982 | | #endif |
983 | 0 | #endif |
984 | 0 | #endif |
985 | 0 | #endif |
986 | 0 | #endif |
987 | 0 | words += N; |
988 | | |
989 | | /* Compute and update the CRC for each word. The loop should |
990 | | get unrolled. */ |
991 | 0 | crc0 = crc_braid_big_table[0][word0 & 0xff]; |
992 | 0 | #if N > 1 |
993 | 0 | crc1 = crc_braid_big_table[0][word1 & 0xff]; |
994 | 0 | #if N > 2 |
995 | 0 | crc2 = crc_braid_big_table[0][word2 & 0xff]; |
996 | 0 | #if N > 3 |
997 | 0 | crc3 = crc_braid_big_table[0][word3 & 0xff]; |
998 | 0 | #if N > 4 |
999 | 0 | crc4 = crc_braid_big_table[0][word4 & 0xff]; |
1000 | | #if N > 5 |
1001 | | crc5 = crc_braid_big_table[0][word5 & 0xff]; |
1002 | | #endif |
1003 | 0 | #endif |
1004 | 0 | #endif |
1005 | 0 | #endif |
1006 | 0 | #endif |
1007 | 0 | for (k = 1; k < W; k++) { |
1008 | 0 | crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; |
1009 | 0 | #if N > 1 |
1010 | 0 | crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; |
1011 | 0 | #if N > 2 |
1012 | 0 | crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; |
1013 | 0 | #if N > 3 |
1014 | 0 | crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; |
1015 | 0 | #if N > 4 |
1016 | 0 | crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; |
1017 | | #if N > 5 |
1018 | | crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; |
1019 | | #endif |
1020 | 0 | #endif |
1021 | 0 | #endif |
1022 | 0 | #endif |
1023 | 0 | #endif |
1024 | 0 | } |
1025 | 0 | } |
1026 | | |
1027 | | /* |
1028 | | Process the last block, combining the CRCs of the N braids at the |
1029 | | same time. |
1030 | | */ |
1031 | 0 | comb = crc_word_big(crc0 ^ words[0]); |
1032 | 0 | #if N > 1 |
1033 | 0 | comb = crc_word_big(crc1 ^ words[1] ^ comb); |
1034 | 0 | #if N > 2 |
1035 | 0 | comb = crc_word_big(crc2 ^ words[2] ^ comb); |
1036 | 0 | #if N > 3 |
1037 | 0 | comb = crc_word_big(crc3 ^ words[3] ^ comb); |
1038 | 0 | #if N > 4 |
1039 | 0 | comb = crc_word_big(crc4 ^ words[4] ^ comb); |
1040 | | #if N > 5 |
1041 | | comb = crc_word_big(crc5 ^ words[5] ^ comb); |
1042 | | #endif |
1043 | 0 | #endif |
1044 | 0 | #endif |
1045 | 0 | #endif |
1046 | 0 | #endif |
1047 | 0 | words += N; |
1048 | 0 | crc = byte_swap(comb); |
1049 | 0 | } |
1050 | | |
1051 | | /* |
1052 | | Update the pointer to the remaining bytes to process. |
1053 | | */ |
1054 | 2.23k | buf = (unsigned char const *)words; |
1055 | 2.23k | } |
1056 | | |
1057 | 648k | #endif /* W */ |
1058 | | |
1059 | | /* Complete the computation of the CRC on any remaining bytes. */ |
1060 | 871k | while (len >= 8) { |
1061 | 223k | len -= 8; |
1062 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1063 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1064 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1065 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1066 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1067 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1068 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1069 | 223k | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1070 | 223k | } |
1071 | 2.98M | while (len) { |
1072 | 2.34M | len--; |
1073 | 2.34M | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; |
1074 | 2.34M | } |
1075 | | |
1076 | | /* Return the CRC, post-conditioned. */ |
1077 | 648k | return crc ^ 0xffffffff; |
1078 | 672k | } |
1079 | | |
1080 | | #endif |
1081 | | |
1082 | | /* ========================================================================= */ |
1083 | | unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf, |
1084 | 996k | uInt len) { |
1085 | | /* Some bots compile with optimizations disabled, others will emulate |
1086 | | * ARM on x86 and other weird combinations. |
1087 | | */ |
1088 | 996k | #if defined(CRC32_SIMD_SSE42_PCLMUL) || defined(CRC32_ARMV8_CRC32) |
1089 | | /* We got to verify CPU features, so exploit the common usage pattern |
1090 | | * of calling this function with Z_NULL for an initial valid crc value. |
1091 | | * This allows to cache the result of the feature check and avoid extraneous |
1092 | | * function calls. |
1093 | | */ |
1094 | 996k | if (buf == Z_NULL) { |
1095 | 323k | if (!len) /* Assume user is calling crc32(0, NULL, 0); */ |
1096 | 323k | cpu_check_features(); |
1097 | 323k | return 0UL; |
1098 | 323k | } |
1099 | 672k | #endif |
1100 | | |
1101 | | #if defined(CRC32_ARMV8_CRC32) |
1102 | | if (arm_cpu_enable_crc32) { |
1103 | | #if defined(__aarch64__) |
1104 | | /* PMULL is 64bit only, plus code needs at least a 64 bytes buffer. */ |
1105 | | if (arm_cpu_enable_pmull && (len > Z_CRC32_PMULL_MINIMUM_LENGTH)) { |
1106 | | const size_t chunk_size = len & ~Z_CRC32_PMULL_CHUNKSIZE_MASK; |
1107 | | crc = ~armv8_crc32_pmull_little(buf, chunk_size, ~(uint32_t)crc); |
1108 | | /* Check remaining data. */ |
1109 | | len -= chunk_size; |
1110 | | if (!len) |
1111 | | return crc; |
1112 | | |
1113 | | /* Fall through for the remaining data. */ |
1114 | | buf += chunk_size; |
1115 | | } |
1116 | | #endif |
1117 | | return armv8_crc32_little(buf, len, crc); /* Armv8@32bit or tail. */ |
1118 | | } |
1119 | | #endif |
1120 | 672k | return crc32_z(crc, buf, len); /* Armv7 or Armv8 w/o crypto extensions. */ |
1121 | 996k | } |
1122 | | |
1123 | | /* ========================================================================= */ |
1124 | 0 | uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) { |
1125 | | #ifdef DYNAMIC_CRC_TABLE |
1126 | | once(&made, make_crc_table); |
1127 | | #endif /* DYNAMIC_CRC_TABLE */ |
1128 | 0 | return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff); |
1129 | 0 | } |
1130 | | |
1131 | | /* ========================================================================= */ |
1132 | 0 | uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) { |
1133 | 0 | return crc32_combine64(crc1, crc2, (z_off64_t)len2); |
1134 | 0 | } |
1135 | | /* ========================================================================= */ |
1136 | 0 | uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) { |
1137 | | #ifdef DYNAMIC_CRC_TABLE |
1138 | | once(&made, make_crc_table); |
1139 | | #endif /* DYNAMIC_CRC_TABLE */ |
1140 | 0 | return x2nmodp(len2, 3); |
1141 | 0 | } |
1142 | | |
1143 | | /* ========================================================================= */ |
1144 | 0 | uLong ZEXPORT crc32_combine_gen(z_off_t len2) { |
1145 | 0 | return crc32_combine_gen64((z_off64_t)len2); |
1146 | 0 | } |
1147 | | |
1148 | | /* ========================================================================= */ |
1149 | 0 | uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) { |
1150 | 0 | return multmodp(op, crc1) ^ (crc2 & 0xffffffff); |
1151 | 0 | } |
1152 | | |
1153 | | ZLIB_INTERNAL void crc_reset(deflate_state *const s) |
1154 | 0 | { |
1155 | 0 | #ifdef CRC32_SIMD_SSE42_PCLMUL |
1156 | 0 | if (x86_cpu_enable_simd) { |
1157 | 0 | crc_fold_init(s); |
1158 | 0 | return; |
1159 | 0 | } |
1160 | 0 | #endif |
1161 | 0 | s->strm->adler = crc32(0L, Z_NULL, 0); |
1162 | 0 | } |
1163 | | |
1164 | | ZLIB_INTERNAL void crc_finalize(deflate_state *const s) |
1165 | 0 | { |
1166 | 0 | #ifdef CRC32_SIMD_SSE42_PCLMUL |
1167 | 0 | if (x86_cpu_enable_simd) |
1168 | 0 | s->strm->adler = crc_fold_512to32(s); |
1169 | 0 | #endif |
1170 | 0 | } |
1171 | | |
1172 | | ZLIB_INTERNAL void copy_with_crc(z_streamp strm, Bytef *dst, long size) |
1173 | 0 | { |
1174 | 0 | #ifdef CRC32_SIMD_SSE42_PCLMUL |
1175 | 0 | if (x86_cpu_enable_simd) { |
1176 | 0 | crc_fold_copy(strm->state, dst, strm->next_in, size); |
1177 | 0 | return; |
1178 | 0 | } |
1179 | 0 | #endif |
1180 | 0 | zmemcpy(dst, strm->next_in, size); |
1181 | 0 | strm->adler = crc32(strm->adler, dst, size); |
1182 | 0 | } |