/src/skia/third_party/externals/zlib/deflate.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* deflate.c -- compress data using the deflation algorithm |
2 | | * Copyright (C) 1995-2023 Jean-loup Gailly and Mark Adler |
3 | | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | | */ |
5 | | |
6 | | /* |
7 | | * ALGORITHM |
8 | | * |
9 | | * The "deflation" process depends on being able to identify portions |
10 | | * of the input text which are identical to earlier input (within a |
11 | | * sliding window trailing behind the input currently being processed). |
12 | | * |
13 | | * The most straightforward technique turns out to be the fastest for |
14 | | * most input files: try all possible matches and select the longest. |
15 | | * The key feature of this algorithm is that insertions into the string |
16 | | * dictionary are very simple and thus fast, and deletions are avoided |
17 | | * completely. Insertions are performed at each input character, whereas |
18 | | * string matches are performed only when the previous match ends. So it |
19 | | * is preferable to spend more time in matches to allow very fast string |
20 | | * insertions and avoid deletions. The matching algorithm for small |
21 | | * strings is inspired from that of Rabin & Karp. A brute force approach |
22 | | * is used to find longer strings when a small match has been found. |
23 | | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 | | * (by Leonid Broukhis). |
25 | | * A previous version of this file used a more sophisticated algorithm |
26 | | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 | | * time, but has a larger average cost, uses more memory and is patented. |
28 | | * However the F&G algorithm may be faster for some highly redundant |
29 | | * files if the parameter max_chain_length (described below) is too large. |
30 | | * |
31 | | * ACKNOWLEDGEMENTS |
32 | | * |
33 | | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 | | * I found it in 'freeze' written by Leonid Broukhis. |
35 | | * Thanks to many people for bug reports and testing. |
36 | | * |
37 | | * REFERENCES |
38 | | * |
39 | | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 | | * Available in http://tools.ietf.org/html/rfc1951 |
41 | | * |
42 | | * A description of the Rabin and Karp algorithm is given in the book |
43 | | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 | | * |
45 | | * Fiala,E.R., and Greene,D.H. |
46 | | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 | | * |
48 | | */ |
49 | | |
50 | | /* @(#) $Id$ */ |
51 | | #include <assert.h> |
52 | | #include "deflate.h" |
53 | | |
54 | | #include "cpu_features.h" |
55 | | |
56 | | #if defined(DEFLATE_SLIDE_HASH_SSE2) || defined(DEFLATE_SLIDE_HASH_NEON) |
57 | | #include "slide_hash_simd.h" |
58 | | #endif |
59 | | |
60 | | #include "contrib/optimizations/insert_string.h" |
61 | | |
62 | | #ifdef FASTEST |
63 | | /* See http://crbug.com/1113596 */ |
64 | | #error "FASTEST is not supported in Chromium's zlib." |
65 | | #endif |
66 | | |
67 | | const char deflate_copyright[] = |
68 | | " deflate 1.3.0.1 Copyright 1995-2023 Jean-loup Gailly and Mark Adler "; |
69 | | /* |
70 | | If you use the zlib library in a product, an acknowledgment is welcome |
71 | | in the documentation of your product. If for some reason you cannot |
72 | | include such an acknowledgment, I would appreciate that you keep this |
73 | | copyright string in the executable of your product. |
74 | | */ |
75 | | |
76 | | typedef enum { |
77 | | need_more, /* block not completed, need more input or more output */ |
78 | | block_done, /* block flush performed */ |
79 | | finish_started, /* finish started, need only more output at next deflate */ |
80 | | finish_done /* finish done, accept no more input or output */ |
81 | | } block_state; |
82 | | |
83 | | typedef block_state (*compress_func)(deflate_state *s, int flush); |
84 | | /* Compression function. Returns the block state after the call. */ |
85 | | |
86 | | local block_state deflate_stored(deflate_state *s, int flush); |
87 | | local block_state deflate_fast(deflate_state *s, int flush); |
88 | | #ifndef FASTEST |
89 | | local block_state deflate_slow(deflate_state *s, int flush); |
90 | | #endif |
91 | | local block_state deflate_rle(deflate_state *s, int flush); |
92 | | local block_state deflate_huff(deflate_state *s, int flush); |
93 | | |
94 | | /* From crc32.c */ |
95 | | extern void ZLIB_INTERNAL crc_reset(deflate_state *const s); |
96 | | extern void ZLIB_INTERNAL crc_finalize(deflate_state *const s); |
97 | | extern void ZLIB_INTERNAL copy_with_crc(z_streamp strm, Bytef *dst, long size); |
98 | | |
99 | | /* =========================================================================== |
100 | | * Local data |
101 | | */ |
102 | | |
103 | 65.4M | #define NIL 0 |
104 | | /* Tail of hash chains */ |
105 | | |
106 | | #ifndef TOO_FAR |
107 | 2.00k | # define TOO_FAR 4096 |
108 | | #endif |
109 | | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
110 | | |
111 | | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
112 | | * the desired pack level (0..9). The values given below have been tuned to |
113 | | * exclude worst case performance for pathological files. Better values may be |
114 | | * found for specific files. |
115 | | */ |
116 | | typedef struct config_s { |
117 | | ush good_length; /* reduce lazy search above this match length */ |
118 | | ush max_lazy; /* do not perform lazy search above this match length */ |
119 | | ush nice_length; /* quit search above this match length */ |
120 | | ush max_chain; |
121 | | compress_func func; |
122 | | } config; |
123 | | |
124 | | #ifdef FASTEST |
125 | | local const config configuration_table[2] = { |
126 | | /* good lazy nice chain */ |
127 | | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
128 | | /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ |
129 | | #else |
130 | | local const config configuration_table[10] = { |
131 | | /* good lazy nice chain */ |
132 | | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
133 | | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
134 | | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
135 | | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
136 | | |
137 | | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
138 | | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
139 | | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
140 | | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
141 | | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
142 | | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
143 | | #endif |
144 | | |
145 | | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
146 | | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
147 | | * meaning. |
148 | | */ |
149 | | |
150 | | /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ |
151 | 534k | #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) |
152 | | |
153 | | /* =========================================================================== |
154 | | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
155 | | * prev[] will be initialized on the fly. |
156 | | * TODO(cavalcantii): optimization opportunity, check comments on: |
157 | | * https://chromium-review.googlesource.com/c/chromium/src/+/3561506/ |
158 | | */ |
159 | | #define CLEAR_HASH(s) \ |
160 | 4.53k | do { \ |
161 | 4.53k | s->head[s->hash_size - 1] = NIL; \ |
162 | 4.53k | zmemzero((Bytef *)s->head, \ |
163 | 4.53k | (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \ |
164 | 4.53k | } while (0) |
165 | | |
166 | | /* =========================================================================== |
167 | | * Slide the hash table when sliding the window down (could be avoided with 32 |
168 | | * bit values at the expense of memory usage). We slide even when level == 0 to |
169 | | * keep the hash table consistent if we switch back to level > 0 later. |
170 | | */ |
171 | | #if defined(__has_feature) |
172 | | # if __has_feature(memory_sanitizer) |
173 | | __attribute__((no_sanitize("memory"))) |
174 | | # endif |
175 | | #endif |
176 | 8.14k | local void slide_hash(deflate_state *s) { |
177 | 8.14k | #if defined(DEFLATE_SLIDE_HASH_SSE2) || defined(DEFLATE_SLIDE_HASH_NEON) |
178 | 8.14k | slide_hash_simd(s->head, s->prev, s->w_size, s->hash_size); |
179 | 8.14k | return; |
180 | 0 | #endif |
181 | | |
182 | 0 | unsigned n, m; |
183 | 0 | Posf *p; |
184 | 0 | uInt wsize = s->w_size; |
185 | |
|
186 | 0 | n = s->hash_size; |
187 | 0 | p = &s->head[n]; |
188 | 0 | do { |
189 | 0 | m = *--p; |
190 | 0 | *p = (Pos)(m >= wsize ? m - wsize : NIL); |
191 | 0 | } while (--n); |
192 | 0 | n = wsize; |
193 | 0 | #ifndef FASTEST |
194 | 0 | p = &s->prev[n]; |
195 | 0 | do { |
196 | 0 | m = *--p; |
197 | 0 | *p = (Pos)(m >= wsize ? m - wsize : NIL); |
198 | | /* If n is not on any hash chain, prev[n] is garbage but |
199 | | * its value will never be used. |
200 | | */ |
201 | 0 | } while (--n); |
202 | 0 | #endif |
203 | 0 | } |
204 | | |
205 | | /* =========================================================================== |
206 | | * Read a new buffer from the current input stream, update the adler32 |
207 | | * and total number of bytes read. All deflate() input goes through |
208 | | * this function so some applications may wish to modify it to avoid |
209 | | * allocating a large strm->next_in buffer and copying from it. |
210 | | * (See also flush_pending()). |
211 | | */ |
212 | 530k | local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) { |
213 | 530k | unsigned len = strm->avail_in; |
214 | | |
215 | 530k | if (len > size) len = size; |
216 | 530k | if (len == 0) return 0; |
217 | | |
218 | 530k | strm->avail_in -= len; |
219 | | |
220 | | /* TODO(cavalcantii): verify if we can remove 'copy_with_crc', it is legacy |
221 | | * of the Intel optimizations dating back to 2015. |
222 | | */ |
223 | 530k | #ifdef GZIP |
224 | 530k | if (strm->state->wrap == 2) |
225 | 0 | copy_with_crc(strm, buf, len); |
226 | 530k | else |
227 | 530k | #endif |
228 | 530k | { |
229 | 530k | zmemcpy(buf, strm->next_in, len); |
230 | 530k | if (strm->state->wrap == 1) |
231 | 530k | strm->adler = adler32(strm->adler, buf, len); |
232 | 530k | } |
233 | 530k | strm->next_in += len; |
234 | 530k | strm->total_in += len; |
235 | | |
236 | 530k | return len; |
237 | 530k | } |
238 | | |
239 | | /* =========================================================================== |
240 | | * Fill the window when the lookahead becomes insufficient. |
241 | | * Updates strstart and lookahead. |
242 | | * |
243 | | * IN assertion: lookahead < MIN_LOOKAHEAD |
244 | | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
245 | | * At least one byte has been read, or avail_in == 0; reads are |
246 | | * performed for at least two bytes (required for the zip translate_eol |
247 | | * option -- not supported here). |
248 | | */ |
249 | 905k | local void fill_window(deflate_state *s) { |
250 | 905k | unsigned n; |
251 | 905k | unsigned more; /* Amount of free space at the end of the window. */ |
252 | 905k | uInt wsize = s->w_size; |
253 | | |
254 | 905k | Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); |
255 | | |
256 | 905k | do { |
257 | 905k | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
258 | | |
259 | | /* Deal with !@#$% 64K limit: */ |
260 | 905k | if (sizeof(int) <= 2) { |
261 | 0 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
262 | 0 | more = wsize; |
263 | |
|
264 | 0 | } else if (more == (unsigned)(-1)) { |
265 | | /* Very unlikely, but possible on 16 bit machine if |
266 | | * strstart == 0 && lookahead == 1 (input done a byte at time) |
267 | | */ |
268 | 0 | more--; |
269 | 0 | } |
270 | 0 | } |
271 | | |
272 | | /* If the window is almost full and there is insufficient lookahead, |
273 | | * move the upper half to the lower one to make room in the upper half. |
274 | | */ |
275 | 905k | if (s->strstart >= wsize + MAX_DIST(s)) { |
276 | | |
277 | 8.14k | zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more); |
278 | 8.14k | s->match_start -= wsize; |
279 | 8.14k | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
280 | 8.14k | s->block_start -= (long) wsize; |
281 | 8.14k | if (s->insert > s->strstart) |
282 | 0 | s->insert = s->strstart; |
283 | 8.14k | slide_hash(s); |
284 | 8.14k | more += wsize; |
285 | 8.14k | } |
286 | 905k | if (s->strm->avail_in == 0) break; |
287 | | |
288 | | /* If there was no sliding: |
289 | | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
290 | | * more == window_size - lookahead - strstart |
291 | | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
292 | | * => more >= window_size - 2*WSIZE + 2 |
293 | | * In the BIG_MEM or MMAP case (not yet supported), |
294 | | * window_size == input_size + MIN_LOOKAHEAD && |
295 | | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
296 | | * Otherwise, window_size == 2*WSIZE so more >= 2. |
297 | | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
298 | | */ |
299 | 430k | Assert(more >= 2, "more < 2"); |
300 | | |
301 | 430k | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
302 | 430k | s->lookahead += n; |
303 | | |
304 | | /* Initialize the hash value now that we have some input: */ |
305 | 430k | if (s->chromium_zlib_hash) { |
306 | | /* chromium hash reads 4 bytes */ |
307 | 430k | if (s->lookahead + s->insert > MIN_MATCH) { |
308 | 430k | uInt str = s->strstart - s->insert; |
309 | 430k | while (s->insert) { |
310 | 0 | insert_string(s, str); |
311 | 0 | str++; |
312 | 0 | s->insert--; |
313 | 0 | if (s->lookahead + s->insert <= MIN_MATCH) |
314 | 0 | break; |
315 | 0 | } |
316 | 430k | } |
317 | 430k | } else |
318 | | /* Initialize the hash value now that we have some input: */ |
319 | 0 | if (s->lookahead + s->insert >= MIN_MATCH) { |
320 | 0 | uInt str = s->strstart - s->insert; |
321 | 0 | s->ins_h = s->window[str]; |
322 | 0 | UPDATE_HASH(s, s->ins_h, s->window[str + 1]); |
323 | | #if MIN_MATCH != 3 |
324 | | Call UPDATE_HASH() MIN_MATCH-3 more times |
325 | | #endif |
326 | 0 | while (s->insert) { |
327 | 0 | UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); |
328 | 0 | #ifndef FASTEST |
329 | 0 | s->prev[str & s->w_mask] = s->head[s->ins_h]; |
330 | 0 | #endif |
331 | 0 | s->head[s->ins_h] = (Pos)str; |
332 | 0 | str++; |
333 | 0 | s->insert--; |
334 | 0 | if (s->lookahead + s->insert < MIN_MATCH) |
335 | 0 | break; |
336 | 0 | } |
337 | 0 | } |
338 | | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
339 | | * but this is not important since only literal bytes will be emitted. |
340 | | */ |
341 | | |
342 | 430k | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
343 | | |
344 | | /* If the WIN_INIT bytes after the end of the current data have never been |
345 | | * written, then zero those bytes in order to avoid memory check reports of |
346 | | * the use of uninitialized (or uninitialised as Julian writes) bytes by |
347 | | * the longest match routines. Update the high water mark for the next |
348 | | * time through here. WIN_INIT is set to MAX_MATCH since the longest match |
349 | | * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. |
350 | | */ |
351 | 905k | if (s->high_water < s->window_size) { |
352 | 701k | ulg curr = s->strstart + (ulg)(s->lookahead); |
353 | 701k | ulg init; |
354 | | |
355 | 701k | if (s->high_water < curr) { |
356 | | /* Previous high water mark below current data -- zero WIN_INIT |
357 | | * bytes or up to end of window, whichever is less. |
358 | | */ |
359 | 20.9k | init = s->window_size - curr; |
360 | 20.9k | if (init > WIN_INIT) |
361 | 20.7k | init = WIN_INIT; |
362 | 20.9k | zmemzero(s->window + curr, (unsigned)init); |
363 | 20.9k | s->high_water = curr + init; |
364 | 20.9k | } |
365 | 680k | else if (s->high_water < (ulg)curr + WIN_INIT) { |
366 | | /* High water mark at or above current data, but below current data |
367 | | * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up |
368 | | * to end of window, whichever is less. |
369 | | */ |
370 | 316k | init = (ulg)curr + WIN_INIT - s->high_water; |
371 | 316k | if (init > s->window_size - s->high_water) |
372 | 54 | init = s->window_size - s->high_water; |
373 | 316k | zmemzero(s->window + s->high_water, (unsigned)init); |
374 | 316k | s->high_water += init; |
375 | 316k | } |
376 | 701k | } |
377 | | |
378 | 905k | Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
379 | 905k | "not enough room for search"); |
380 | 905k | } |
381 | | |
382 | | /* ========================================================================= */ |
383 | | int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version, |
384 | 0 | int stream_size) { |
385 | 0 | return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
386 | 0 | Z_DEFAULT_STRATEGY, version, stream_size); |
387 | | /* To do: ignore strm->next_in if we use it as window */ |
388 | 0 | } |
389 | | |
390 | | /* ========================================================================= */ |
391 | | int ZEXPORT deflateInit2_(z_streamp strm, int level, int method, |
392 | | int windowBits, int memLevel, int strategy, |
393 | 4.53k | const char *version, int stream_size) { |
394 | 4.53k | unsigned window_padding = 8; |
395 | 4.53k | deflate_state *s; |
396 | 4.53k | int wrap = 1; |
397 | 4.53k | static const char my_version[] = ZLIB_VERSION; |
398 | | |
399 | | // Needed to activate optimized insert_string() that helps compression |
400 | | // for all wrapper formats (e.g. RAW, ZLIB, GZIP). |
401 | | // Feature detection is not triggered while using RAW mode (i.e. we never |
402 | | // call crc32() with a NULL buffer). |
403 | 4.53k | #if defined(CRC32_ARMV8_CRC32) || defined(CRC32_SIMD_SSE42_PCLMUL) |
404 | 4.53k | cpu_check_features(); |
405 | 4.53k | #endif |
406 | | |
407 | 4.53k | if (version == Z_NULL || version[0] != my_version[0] || |
408 | 4.53k | stream_size != sizeof(z_stream)) { |
409 | 0 | return Z_VERSION_ERROR; |
410 | 0 | } |
411 | 4.53k | if (strm == Z_NULL) return Z_STREAM_ERROR; |
412 | | |
413 | 4.53k | strm->msg = Z_NULL; |
414 | 4.53k | if (strm->zalloc == (alloc_func)0) { |
415 | | #ifdef Z_SOLO |
416 | | return Z_STREAM_ERROR; |
417 | | #else |
418 | 0 | strm->zalloc = zcalloc; |
419 | 0 | strm->opaque = (voidpf)0; |
420 | 0 | #endif |
421 | 0 | } |
422 | 4.53k | if (strm->zfree == (free_func)0) |
423 | | #ifdef Z_SOLO |
424 | | return Z_STREAM_ERROR; |
425 | | #else |
426 | 0 | strm->zfree = zcfree; |
427 | 4.53k | #endif |
428 | | |
429 | | #ifdef FASTEST |
430 | | if (level != 0) level = 1; |
431 | | #else |
432 | 4.53k | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
433 | 4.53k | #endif |
434 | | |
435 | 4.53k | if (windowBits < 0) { /* suppress zlib wrapper */ |
436 | 0 | wrap = 0; |
437 | 0 | if (windowBits < -15) |
438 | 0 | return Z_STREAM_ERROR; |
439 | 0 | windowBits = -windowBits; |
440 | 0 | } |
441 | 4.53k | #ifdef GZIP |
442 | 4.53k | else if (windowBits > 15) { |
443 | 0 | wrap = 2; /* write gzip wrapper instead */ |
444 | 0 | windowBits -= 16; |
445 | 0 | } |
446 | 4.53k | #endif |
447 | 4.53k | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
448 | 4.53k | windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || |
449 | 4.53k | strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { |
450 | 0 | return Z_STREAM_ERROR; |
451 | 0 | } |
452 | 4.53k | if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ |
453 | 4.53k | s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
454 | 4.53k | if (s == Z_NULL) return Z_MEM_ERROR; |
455 | 4.53k | strm->state = (struct internal_state FAR *)s; |
456 | 4.53k | s->strm = strm; |
457 | 4.53k | s->status = INIT_STATE; /* to pass state test in deflateReset() */ |
458 | | |
459 | 4.53k | s->wrap = wrap; |
460 | 4.53k | s->gzhead = Z_NULL; |
461 | 4.53k | s->w_bits = (uInt)windowBits; |
462 | 4.53k | s->w_size = 1 << s->w_bits; |
463 | 4.53k | s->w_mask = s->w_size - 1; |
464 | | |
465 | 4.53k | s->chromium_zlib_hash = 1; |
466 | | #if defined(USE_ZLIB_RABIN_KARP_ROLLING_HASH) |
467 | | s->chromium_zlib_hash = 0; |
468 | | #endif |
469 | | |
470 | 4.53k | s->hash_bits = memLevel + 7; |
471 | 4.53k | if (s->chromium_zlib_hash && s->hash_bits < 15) { |
472 | 0 | s->hash_bits = 15; |
473 | 0 | } |
474 | | |
475 | 4.53k | s->hash_size = 1 << s->hash_bits; |
476 | 4.53k | s->hash_mask = s->hash_size - 1; |
477 | 4.53k | s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH); |
478 | | |
479 | 4.53k | s->window = (Bytef *) ZALLOC(strm, |
480 | 4.53k | s->w_size + window_padding, |
481 | 4.53k | 2*sizeof(Byte)); |
482 | | /* Avoid use of unitialized values in the window, see crbug.com/1137613 and |
483 | | * crbug.com/1144420 */ |
484 | 4.53k | zmemzero(s->window, (s->w_size + window_padding) * (2 * sizeof(Byte))); |
485 | 4.53k | s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
486 | | /* Avoid use of uninitialized value, see: |
487 | | * https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=11360 |
488 | | */ |
489 | 4.53k | zmemzero(s->prev, s->w_size * sizeof(Pos)); |
490 | 4.53k | s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
491 | | |
492 | 4.53k | s->high_water = 0; /* nothing written to s->window yet */ |
493 | | |
494 | 4.53k | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
495 | | |
496 | | /* We overlay pending_buf and sym_buf. This works since the average size |
497 | | * for length/distance pairs over any compressed block is assured to be 31 |
498 | | * bits or less. |
499 | | * |
500 | | * Analysis: The longest fixed codes are a length code of 8 bits plus 5 |
501 | | * extra bits, for lengths 131 to 257. The longest fixed distance codes are |
502 | | * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest |
503 | | * possible fixed-codes length/distance pair is then 31 bits total. |
504 | | * |
505 | | * sym_buf starts one-fourth of the way into pending_buf. So there are |
506 | | * three bytes in sym_buf for every four bytes in pending_buf. Each symbol |
507 | | * in sym_buf is three bytes -- two for the distance and one for the |
508 | | * literal/length. As each symbol is consumed, the pointer to the next |
509 | | * sym_buf value to read moves forward three bytes. From that symbol, up to |
510 | | * 31 bits are written to pending_buf. The closest the written pending_buf |
511 | | * bits gets to the next sym_buf symbol to read is just before the last |
512 | | * code is written. At that time, 31*(n - 2) bits have been written, just |
513 | | * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at |
514 | | * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1 |
515 | | * symbols are written.) The closest the writing gets to what is unread is |
516 | | * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and |
517 | | * can range from 128 to 32768. |
518 | | * |
519 | | * Therefore, at a minimum, there are 142 bits of space between what is |
520 | | * written and what is read in the overlain buffers, so the symbols cannot |
521 | | * be overwritten by the compressed data. That space is actually 139 bits, |
522 | | * due to the three-bit fixed-code block header. |
523 | | * |
524 | | * That covers the case where either Z_FIXED is specified, forcing fixed |
525 | | * codes, or when the use of fixed codes is chosen, because that choice |
526 | | * results in a smaller compressed block than dynamic codes. That latter |
527 | | * condition then assures that the above analysis also covers all dynamic |
528 | | * blocks. A dynamic-code block will only be chosen to be emitted if it has |
529 | | * fewer bits than a fixed-code block would for the same set of symbols. |
530 | | * Therefore its average symbol length is assured to be less than 31. So |
531 | | * the compressed data for a dynamic block also cannot overwrite the |
532 | | * symbols from which it is being constructed. |
533 | | */ |
534 | 4.53k | #ifdef LIT_MEM |
535 | 4.53k | s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 5); |
536 | | #else |
537 | | s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4); |
538 | | #endif |
539 | 4.53k | s->pending_buf_size = (ulg)s->lit_bufsize * 4; |
540 | | |
541 | 4.53k | if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
542 | 4.53k | s->pending_buf == Z_NULL) { |
543 | 0 | s->status = FINISH_STATE; |
544 | 0 | strm->msg = ERR_MSG(Z_MEM_ERROR); |
545 | 0 | deflateEnd (strm); |
546 | 0 | return Z_MEM_ERROR; |
547 | 0 | } |
548 | 4.53k | #ifdef LIT_MEM |
549 | 4.53k | s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1)); |
550 | 4.53k | s->l_buf = s->pending_buf + (s->lit_bufsize << 2); |
551 | 4.53k | s->sym_end = s->lit_bufsize - 1; |
552 | | #else |
553 | | s->sym_buf = s->pending_buf + s->lit_bufsize; |
554 | | s->sym_end = (s->lit_bufsize - 1) * 3; |
555 | | #endif |
556 | | /* We avoid equality with lit_bufsize*3 because of wraparound at 64K |
557 | | * on 16 bit machines and because stored blocks are restricted to |
558 | | * 64K-1 bytes. |
559 | | */ |
560 | | |
561 | 4.53k | s->level = level; |
562 | 4.53k | s->strategy = strategy; |
563 | 4.53k | s->method = (Byte)method; |
564 | | |
565 | 4.53k | return deflateReset(strm); |
566 | 4.53k | } |
567 | | |
568 | | /* ========================================================================= |
569 | | * Check for a valid deflate stream state. Return 0 if ok, 1 if not. |
570 | | */ |
571 | 538k | local int deflateStateCheck(z_streamp strm) { |
572 | 538k | deflate_state *s; |
573 | 538k | if (strm == Z_NULL || |
574 | 538k | strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) |
575 | 0 | return 1; |
576 | 538k | s = strm->state; |
577 | 538k | if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && |
578 | 538k | #ifdef GZIP |
579 | 538k | s->status != GZIP_STATE && |
580 | 538k | #endif |
581 | 538k | s->status != EXTRA_STATE && |
582 | 538k | s->status != NAME_STATE && |
583 | 538k | s->status != COMMENT_STATE && |
584 | 538k | s->status != HCRC_STATE && |
585 | 538k | s->status != BUSY_STATE && |
586 | 538k | s->status != FINISH_STATE)) |
587 | 0 | return 1; |
588 | 538k | return 0; |
589 | 538k | } |
590 | | |
591 | | /* ========================================================================= */ |
592 | | int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary, |
593 | 0 | uInt dictLength) { |
594 | 0 | deflate_state *s; |
595 | 0 | uInt str, n; |
596 | 0 | int wrap; |
597 | 0 | unsigned avail; |
598 | 0 | z_const unsigned char *next; |
599 | |
|
600 | 0 | if (deflateStateCheck(strm) || dictionary == Z_NULL) |
601 | 0 | return Z_STREAM_ERROR; |
602 | 0 | s = strm->state; |
603 | 0 | wrap = s->wrap; |
604 | 0 | if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) |
605 | 0 | return Z_STREAM_ERROR; |
606 | | |
607 | | /* when using zlib wrappers, compute Adler-32 for provided dictionary */ |
608 | 0 | if (wrap == 1) |
609 | 0 | strm->adler = adler32(strm->adler, dictionary, dictLength); |
610 | 0 | s->wrap = 0; /* avoid computing Adler-32 in read_buf */ |
611 | | |
612 | | /* if dictionary would fill window, just replace the history */ |
613 | 0 | if (dictLength >= s->w_size) { |
614 | 0 | if (wrap == 0) { /* already empty otherwise */ |
615 | 0 | CLEAR_HASH(s); |
616 | 0 | s->strstart = 0; |
617 | 0 | s->block_start = 0L; |
618 | 0 | s->insert = 0; |
619 | 0 | } |
620 | 0 | dictionary += dictLength - s->w_size; /* use the tail */ |
621 | 0 | dictLength = s->w_size; |
622 | 0 | } |
623 | | |
624 | | /* insert dictionary into window and hash */ |
625 | 0 | avail = strm->avail_in; |
626 | 0 | next = strm->next_in; |
627 | 0 | strm->avail_in = dictLength; |
628 | 0 | strm->next_in = (z_const Bytef *)dictionary; |
629 | 0 | fill_window(s); |
630 | 0 | while (s->lookahead >= MIN_MATCH) { |
631 | 0 | str = s->strstart; |
632 | 0 | n = s->lookahead - (MIN_MATCH-1); |
633 | 0 | do { |
634 | 0 | insert_string(s, str); |
635 | 0 | str++; |
636 | 0 | } while (--n); |
637 | 0 | s->strstart = str; |
638 | 0 | s->lookahead = MIN_MATCH-1; |
639 | 0 | fill_window(s); |
640 | 0 | } |
641 | 0 | s->strstart += s->lookahead; |
642 | 0 | s->block_start = (long)s->strstart; |
643 | 0 | s->insert = s->lookahead; |
644 | 0 | s->lookahead = 0; |
645 | 0 | s->match_length = s->prev_length = MIN_MATCH-1; |
646 | 0 | s->match_available = 0; |
647 | 0 | strm->next_in = next; |
648 | 0 | strm->avail_in = avail; |
649 | 0 | s->wrap = wrap; |
650 | 0 | return Z_OK; |
651 | 0 | } |
652 | | |
653 | | /* ========================================================================= */ |
654 | | int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary, |
655 | 0 | uInt *dictLength) { |
656 | 0 | deflate_state *s; |
657 | 0 | uInt len; |
658 | |
|
659 | 0 | if (deflateStateCheck(strm)) |
660 | 0 | return Z_STREAM_ERROR; |
661 | 0 | s = strm->state; |
662 | 0 | len = s->strstart + s->lookahead; |
663 | 0 | if (len > s->w_size) |
664 | 0 | len = s->w_size; |
665 | 0 | if (dictionary != Z_NULL && len) |
666 | 0 | zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); |
667 | 0 | if (dictLength != Z_NULL) |
668 | 0 | *dictLength = len; |
669 | 0 | return Z_OK; |
670 | 0 | } |
671 | | |
672 | | /* ========================================================================= */ |
673 | 4.53k | int ZEXPORT deflateResetKeep(z_streamp strm) { |
674 | 4.53k | deflate_state *s; |
675 | | |
676 | 4.53k | if (deflateStateCheck(strm)) { |
677 | 0 | return Z_STREAM_ERROR; |
678 | 0 | } |
679 | | |
680 | 4.53k | strm->total_in = strm->total_out = 0; |
681 | 4.53k | strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
682 | 4.53k | strm->data_type = Z_UNKNOWN; |
683 | | |
684 | 4.53k | s = (deflate_state *)strm->state; |
685 | 4.53k | s->pending = 0; |
686 | 4.53k | s->pending_out = s->pending_buf; |
687 | | |
688 | 4.53k | if (s->wrap < 0) { |
689 | 0 | s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
690 | 0 | } |
691 | 4.53k | s->status = |
692 | 4.53k | #ifdef GZIP |
693 | 4.53k | s->wrap == 2 ? GZIP_STATE : |
694 | 4.53k | #endif |
695 | 4.53k | INIT_STATE; |
696 | 4.53k | strm->adler = |
697 | 4.53k | #ifdef GZIP |
698 | 4.53k | s->wrap == 2 ? crc32(0L, Z_NULL, 0) : |
699 | 4.53k | #endif |
700 | 4.53k | adler32(0L, Z_NULL, 0); |
701 | 4.53k | s->last_flush = -2; |
702 | | |
703 | 4.53k | _tr_init(s); |
704 | | |
705 | 4.53k | return Z_OK; |
706 | 4.53k | } |
707 | | |
708 | | /* =========================================================================== |
709 | | * Initialize the "longest match" routines for a new zlib stream |
710 | | */ |
711 | 4.53k | local void lm_init(deflate_state *s) { |
712 | 4.53k | s->window_size = (ulg)2L*s->w_size; |
713 | | |
714 | 4.53k | CLEAR_HASH(s); |
715 | | |
716 | | /* Set the default configuration parameters: |
717 | | */ |
718 | 4.53k | s->max_lazy_match = configuration_table[s->level].max_lazy; |
719 | 4.53k | s->good_match = configuration_table[s->level].good_length; |
720 | 4.53k | s->nice_match = configuration_table[s->level].nice_length; |
721 | 4.53k | s->max_chain_length = configuration_table[s->level].max_chain; |
722 | | |
723 | 4.53k | s->strstart = 0; |
724 | 4.53k | s->block_start = 0L; |
725 | 4.53k | s->lookahead = 0; |
726 | 4.53k | s->insert = 0; |
727 | 4.53k | s->match_length = s->prev_length = MIN_MATCH-1; |
728 | 4.53k | s->match_available = 0; |
729 | 4.53k | s->ins_h = 0; |
730 | 4.53k | } |
731 | | |
732 | | /* ========================================================================= */ |
733 | 4.53k | int ZEXPORT deflateReset(z_streamp strm) { |
734 | 4.53k | int ret; |
735 | | |
736 | 4.53k | ret = deflateResetKeep(strm); |
737 | 4.53k | if (ret == Z_OK) |
738 | 4.53k | lm_init(strm->state); |
739 | 4.53k | return ret; |
740 | 4.53k | } |
741 | | |
742 | | /* ========================================================================= */ |
743 | 0 | int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) { |
744 | 0 | if (deflateStateCheck(strm) || strm->state->wrap != 2) |
745 | 0 | return Z_STREAM_ERROR; |
746 | 0 | strm->state->gzhead = head; |
747 | 0 | return Z_OK; |
748 | 0 | } |
749 | | |
750 | | /* ========================================================================= */ |
751 | 0 | int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) { |
752 | 0 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
753 | 0 | if (pending != Z_NULL) |
754 | 0 | *pending = strm->state->pending; |
755 | 0 | if (bits != Z_NULL) |
756 | 0 | *bits = strm->state->bi_valid; |
757 | 0 | return Z_OK; |
758 | 0 | } |
759 | | |
760 | | /* ========================================================================= */ |
761 | 0 | int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) { |
762 | 0 | deflate_state *s; |
763 | 0 | int put; |
764 | |
|
765 | 0 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
766 | 0 | s = strm->state; |
767 | 0 | #ifdef LIT_MEM |
768 | 0 | if (bits < 0 || bits > 16 || |
769 | 0 | (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3)) |
770 | 0 | return Z_BUF_ERROR; |
771 | | #else |
772 | | if (bits < 0 || bits > 16 || |
773 | | s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) |
774 | | return Z_BUF_ERROR; |
775 | | #endif |
776 | 0 | do { |
777 | 0 | put = Buf_size - s->bi_valid; |
778 | 0 | if (put > bits) |
779 | 0 | put = bits; |
780 | 0 | s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); |
781 | 0 | s->bi_valid += put; |
782 | 0 | _tr_flush_bits(s); |
783 | 0 | value >>= put; |
784 | 0 | bits -= put; |
785 | 0 | } while (bits); |
786 | 0 | return Z_OK; |
787 | 0 | } |
788 | | |
789 | | /* ========================================================================= */ |
790 | 0 | int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) { |
791 | 0 | deflate_state *s; |
792 | 0 | compress_func func; |
793 | |
|
794 | 0 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
795 | 0 | s = strm->state; |
796 | |
|
797 | | #ifdef FASTEST |
798 | | if (level != 0) level = 1; |
799 | | #else |
800 | 0 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
801 | 0 | #endif |
802 | 0 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { |
803 | 0 | return Z_STREAM_ERROR; |
804 | 0 | } |
805 | 0 | func = configuration_table[s->level].func; |
806 | |
|
807 | 0 | if ((strategy != s->strategy || func != configuration_table[level].func) && |
808 | 0 | s->last_flush != -2) { |
809 | | /* Flush the last buffer: */ |
810 | 0 | int err = deflate(strm, Z_BLOCK); |
811 | 0 | if (err == Z_STREAM_ERROR) |
812 | 0 | return err; |
813 | 0 | if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead) |
814 | 0 | return Z_BUF_ERROR; |
815 | 0 | } |
816 | 0 | if (s->level != level) { |
817 | 0 | if (s->level == 0 && s->matches != 0) { |
818 | 0 | if (s->matches == 1) |
819 | 0 | slide_hash(s); |
820 | 0 | else |
821 | 0 | CLEAR_HASH(s); |
822 | 0 | s->matches = 0; |
823 | 0 | } |
824 | 0 | s->level = level; |
825 | 0 | s->max_lazy_match = configuration_table[level].max_lazy; |
826 | 0 | s->good_match = configuration_table[level].good_length; |
827 | 0 | s->nice_match = configuration_table[level].nice_length; |
828 | 0 | s->max_chain_length = configuration_table[level].max_chain; |
829 | 0 | } |
830 | 0 | s->strategy = strategy; |
831 | 0 | return Z_OK; |
832 | 0 | } |
833 | | |
834 | | /* ========================================================================= */ |
835 | | int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy, |
836 | 0 | int nice_length, int max_chain) { |
837 | 0 | deflate_state *s; |
838 | |
|
839 | 0 | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
840 | 0 | s = strm->state; |
841 | 0 | s->good_match = (uInt)good_length; |
842 | 0 | s->max_lazy_match = (uInt)max_lazy; |
843 | 0 | s->nice_match = nice_length; |
844 | 0 | s->max_chain_length = (uInt)max_chain; |
845 | 0 | return Z_OK; |
846 | 0 | } |
847 | | |
848 | | /* ========================================================================= |
849 | | * For the default windowBits of 15 and memLevel of 8, this function returns a |
850 | | * close to exact, as well as small, upper bound on the compressed size. This |
851 | | * is an expansion of ~0.03%, plus a small constant. |
852 | | * |
853 | | * For any setting other than those defaults for windowBits and memLevel, one |
854 | | * of two worst case bounds is returned. This is at most an expansion of ~4% or |
855 | | * ~13%, plus a small constant. |
856 | | * |
857 | | * Both the 0.03% and 4% derive from the overhead of stored blocks. The first |
858 | | * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second |
859 | | * is for stored blocks of 127 bytes (the worst case memLevel == 1). The |
860 | | * expansion results from five bytes of header for each stored block. |
861 | | * |
862 | | * The larger expansion of 13% results from a window size less than or equal to |
863 | | * the symbols buffer size (windowBits <= memLevel + 7). In that case some of |
864 | | * the data being compressed may have slid out of the sliding window, impeding |
865 | | * a stored block from being emitted. Then the only choice is a fixed or |
866 | | * dynamic block, where a fixed block limits the maximum expansion to 9 bits |
867 | | * per 8-bit byte, plus 10 bits for every block. The smallest block size for |
868 | | * which this can occur is 255 (memLevel == 2). |
869 | | * |
870 | | * Shifts are used to approximate divisions, for speed. |
871 | | */ |
872 | 0 | uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) { |
873 | 0 | deflate_state *s; |
874 | 0 | uLong fixedlen, storelen, wraplen; |
875 | | |
876 | | /* upper bound for fixed blocks with 9-bit literals and length 255 |
877 | | (memLevel == 2, which is the lowest that may not use stored blocks) -- |
878 | | ~13% overhead plus a small constant */ |
879 | 0 | fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) + |
880 | 0 | (sourceLen >> 9) + 4; |
881 | | |
882 | | /* upper bound for stored blocks with length 127 (memLevel == 1) -- |
883 | | ~4% overhead plus a small constant */ |
884 | 0 | storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) + |
885 | 0 | (sourceLen >> 11) + 7; |
886 | | |
887 | | /* if can't get parameters, return larger bound plus a zlib wrapper */ |
888 | 0 | if (deflateStateCheck(strm)) |
889 | 0 | return (fixedlen > storelen ? fixedlen : storelen) + 6; |
890 | | |
891 | | /* compute wrapper length */ |
892 | 0 | s = strm->state; |
893 | 0 | switch (s->wrap) { |
894 | 0 | case 0: /* raw deflate */ |
895 | 0 | wraplen = 0; |
896 | 0 | break; |
897 | 0 | case 1: /* zlib wrapper */ |
898 | 0 | wraplen = 6 + (s->strstart ? 4 : 0); |
899 | 0 | break; |
900 | 0 | #ifdef GZIP |
901 | 0 | case 2: /* gzip wrapper */ |
902 | 0 | wraplen = 18; |
903 | 0 | if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ |
904 | 0 | Bytef *str; |
905 | 0 | if (s->gzhead->extra != Z_NULL) |
906 | 0 | wraplen += 2 + s->gzhead->extra_len; |
907 | 0 | str = s->gzhead->name; |
908 | 0 | if (str != Z_NULL) |
909 | 0 | do { |
910 | 0 | wraplen++; |
911 | 0 | } while (*str++); |
912 | 0 | str = s->gzhead->comment; |
913 | 0 | if (str != Z_NULL) |
914 | 0 | do { |
915 | 0 | wraplen++; |
916 | 0 | } while (*str++); |
917 | 0 | if (s->gzhead->hcrc) |
918 | 0 | wraplen += 2; |
919 | 0 | } |
920 | 0 | break; |
921 | 0 | #endif |
922 | 0 | default: /* for compiler happiness */ |
923 | 0 | wraplen = 6; |
924 | 0 | } |
925 | | |
926 | | /* if not default parameters, return one of the conservative bounds */ |
927 | 0 | if (s->w_bits != 15 || s->hash_bits != 8 + 7) |
928 | 0 | return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) + |
929 | 0 | wraplen; |
930 | | |
931 | | /* default settings: return tight bound for that case -- ~0.03% overhead |
932 | | plus a small constant */ |
933 | 0 | return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + |
934 | 0 | (sourceLen >> 25) + 13 - 6 + wraplen; |
935 | 0 | } |
936 | | |
937 | | /* ========================================================================= |
938 | | * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
939 | | * IN assertion: the stream state is correct and there is enough room in |
940 | | * pending_buf. |
941 | | */ |
942 | 13.5k | local void putShortMSB(deflate_state *s, uInt b) { |
943 | 13.5k | put_byte(s, (Byte)(b >> 8)); |
944 | 13.5k | put_byte(s, (Byte)(b & 0xff)); |
945 | 13.5k | } |
946 | | |
947 | | /* ========================================================================= |
948 | | * Flush as much pending output as possible. All deflate() output, except for |
949 | | * some deflate_stored() output, goes through this function so some |
950 | | * applications may wish to modify it to avoid allocating a large |
951 | | * strm->next_out buffer and copying into it. (See also read_buf()). |
952 | | */ |
953 | 18.6k | local void flush_pending(z_streamp strm) { |
954 | 18.6k | unsigned len; |
955 | 18.6k | deflate_state *s = strm->state; |
956 | | |
957 | 18.6k | _tr_flush_bits(s); |
958 | 18.6k | len = s->pending; |
959 | 18.6k | if (len > strm->avail_out) len = strm->avail_out; |
960 | 18.6k | if (len == 0) return; |
961 | | |
962 | 18.6k | zmemcpy(strm->next_out, s->pending_out, len); |
963 | 18.6k | strm->next_out += len; |
964 | 18.6k | s->pending_out += len; |
965 | 18.6k | strm->total_out += len; |
966 | 18.6k | strm->avail_out -= len; |
967 | 18.6k | s->pending -= len; |
968 | 18.6k | if (s->pending == 0) { |
969 | 14.9k | s->pending_out = s->pending_buf; |
970 | 14.9k | } |
971 | 18.6k | } |
972 | | |
973 | | /* =========================================================================== |
974 | | * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. |
975 | | */ |
976 | | #define HCRC_UPDATE(beg) \ |
977 | 0 | do { \ |
978 | 0 | if (s->gzhead->hcrc && s->pending > (beg)) \ |
979 | 0 | strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ |
980 | 0 | s->pending - (beg)); \ |
981 | 0 | } while (0) |
982 | | |
983 | | /* ========================================================================= */ |
984 | 529k | int ZEXPORT deflate(z_streamp strm, int flush) { |
985 | 529k | int old_flush; /* value of flush param for previous deflate call */ |
986 | 529k | deflate_state *s; |
987 | | |
988 | 529k | if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { |
989 | 0 | return Z_STREAM_ERROR; |
990 | 0 | } |
991 | 529k | s = strm->state; |
992 | | |
993 | 529k | if (strm->next_out == Z_NULL || |
994 | 529k | (strm->avail_in != 0 && strm->next_in == Z_NULL) || |
995 | 529k | (s->status == FINISH_STATE && flush != Z_FINISH)) { |
996 | 0 | ERR_RETURN(strm, Z_STREAM_ERROR); |
997 | 0 | } |
998 | 529k | if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
999 | | |
1000 | 529k | old_flush = s->last_flush; |
1001 | 529k | s->last_flush = flush; |
1002 | | |
1003 | | /* Flush as much pending output as possible */ |
1004 | 529k | if (s->pending != 0) { |
1005 | 3.65k | flush_pending(strm); |
1006 | 3.65k | if (strm->avail_out == 0) { |
1007 | | /* Since avail_out is 0, deflate will be called again with |
1008 | | * more output space, but possibly with both pending and |
1009 | | * avail_in equal to zero. There won't be anything to do, |
1010 | | * but this is not an error situation so make sure we |
1011 | | * return OK instead of BUF_ERROR at next call of deflate: |
1012 | | */ |
1013 | 1.96k | s->last_flush = -1; |
1014 | 1.96k | return Z_OK; |
1015 | 1.96k | } |
1016 | | |
1017 | | /* Make sure there is something to do and avoid duplicate consecutive |
1018 | | * flushes. For repeated and useless calls with Z_FINISH, we keep |
1019 | | * returning Z_STREAM_END instead of Z_BUF_ERROR. |
1020 | | */ |
1021 | 525k | } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && |
1022 | 525k | flush != Z_FINISH) { |
1023 | 0 | ERR_RETURN(strm, Z_BUF_ERROR); |
1024 | 0 | } |
1025 | | |
1026 | | /* User must not provide more input after the first FINISH: */ |
1027 | 527k | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
1028 | 0 | ERR_RETURN(strm, Z_BUF_ERROR); |
1029 | 0 | } |
1030 | | |
1031 | | /* Write the header */ |
1032 | 527k | if (s->status == INIT_STATE && s->wrap == 0) |
1033 | 0 | s->status = BUSY_STATE; |
1034 | 527k | if (s->status == INIT_STATE) { |
1035 | | /* zlib header */ |
1036 | 4.53k | uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8; |
1037 | 4.53k | uInt level_flags; |
1038 | | |
1039 | 4.53k | if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
1040 | 721 | level_flags = 0; |
1041 | 3.81k | else if (s->level < 6) |
1042 | 211 | level_flags = 1; |
1043 | 3.60k | else if (s->level == 6) |
1044 | 2.55k | level_flags = 2; |
1045 | 1.04k | else |
1046 | 1.04k | level_flags = 3; |
1047 | 4.53k | header |= (level_flags << 6); |
1048 | 4.53k | if (s->strstart != 0) header |= PRESET_DICT; |
1049 | 4.53k | header += 31 - (header % 31); |
1050 | | |
1051 | 4.53k | putShortMSB(s, header); |
1052 | | |
1053 | | /* Save the adler32 of the preset dictionary: */ |
1054 | 4.53k | if (s->strstart != 0) { |
1055 | 0 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
1056 | 0 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
1057 | 0 | } |
1058 | 4.53k | strm->adler = adler32(0L, Z_NULL, 0); |
1059 | 4.53k | s->status = BUSY_STATE; |
1060 | | |
1061 | | /* Compression must start with an empty pending buffer */ |
1062 | 4.53k | flush_pending(strm); |
1063 | 4.53k | if (s->pending != 0) { |
1064 | 0 | s->last_flush = -1; |
1065 | 0 | return Z_OK; |
1066 | 0 | } |
1067 | 4.53k | } |
1068 | 527k | #ifdef GZIP |
1069 | 527k | if (s->status == GZIP_STATE) { |
1070 | | /* gzip header */ |
1071 | 0 | crc_reset(s); |
1072 | 0 | put_byte(s, 31); |
1073 | 0 | put_byte(s, 139); |
1074 | 0 | put_byte(s, 8); |
1075 | 0 | if (s->gzhead == Z_NULL) { |
1076 | 0 | put_byte(s, 0); |
1077 | 0 | put_byte(s, 0); |
1078 | 0 | put_byte(s, 0); |
1079 | 0 | put_byte(s, 0); |
1080 | 0 | put_byte(s, 0); |
1081 | 0 | put_byte(s, s->level == 9 ? 2 : |
1082 | 0 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
1083 | 0 | 4 : 0)); |
1084 | 0 | put_byte(s, OS_CODE); |
1085 | 0 | s->status = BUSY_STATE; |
1086 | | |
1087 | | /* Compression must start with an empty pending buffer */ |
1088 | 0 | flush_pending(strm); |
1089 | 0 | if (s->pending != 0) { |
1090 | 0 | s->last_flush = -1; |
1091 | 0 | return Z_OK; |
1092 | 0 | } |
1093 | 0 | } |
1094 | 0 | else { |
1095 | 0 | put_byte(s, (s->gzhead->text ? 1 : 0) + |
1096 | 0 | (s->gzhead->hcrc ? 2 : 0) + |
1097 | 0 | (s->gzhead->extra == Z_NULL ? 0 : 4) + |
1098 | 0 | (s->gzhead->name == Z_NULL ? 0 : 8) + |
1099 | 0 | (s->gzhead->comment == Z_NULL ? 0 : 16) |
1100 | 0 | ); |
1101 | 0 | put_byte(s, (Byte)(s->gzhead->time & 0xff)); |
1102 | 0 | put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); |
1103 | 0 | put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); |
1104 | 0 | put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); |
1105 | 0 | put_byte(s, s->level == 9 ? 2 : |
1106 | 0 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
1107 | 0 | 4 : 0)); |
1108 | 0 | put_byte(s, s->gzhead->os & 0xff); |
1109 | 0 | if (s->gzhead->extra != Z_NULL) { |
1110 | 0 | put_byte(s, s->gzhead->extra_len & 0xff); |
1111 | 0 | put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); |
1112 | 0 | } |
1113 | 0 | if (s->gzhead->hcrc) |
1114 | 0 | strm->adler = crc32(strm->adler, s->pending_buf, |
1115 | 0 | s->pending); |
1116 | 0 | s->gzindex = 0; |
1117 | 0 | s->status = EXTRA_STATE; |
1118 | 0 | } |
1119 | 0 | } |
1120 | 527k | if (s->status == EXTRA_STATE) { |
1121 | 0 | if (s->gzhead->extra != Z_NULL) { |
1122 | 0 | ulg beg = s->pending; /* start of bytes to update crc */ |
1123 | 0 | uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; |
1124 | 0 | while (s->pending + left > s->pending_buf_size) { |
1125 | 0 | uInt copy = s->pending_buf_size - s->pending; |
1126 | 0 | zmemcpy(s->pending_buf + s->pending, |
1127 | 0 | s->gzhead->extra + s->gzindex, copy); |
1128 | 0 | s->pending = s->pending_buf_size; |
1129 | 0 | HCRC_UPDATE(beg); |
1130 | 0 | s->gzindex += copy; |
1131 | 0 | flush_pending(strm); |
1132 | 0 | if (s->pending != 0) { |
1133 | 0 | s->last_flush = -1; |
1134 | 0 | return Z_OK; |
1135 | 0 | } |
1136 | 0 | beg = 0; |
1137 | 0 | left -= copy; |
1138 | 0 | } |
1139 | 0 | zmemcpy(s->pending_buf + s->pending, |
1140 | 0 | s->gzhead->extra + s->gzindex, left); |
1141 | 0 | s->pending += left; |
1142 | 0 | HCRC_UPDATE(beg); |
1143 | 0 | s->gzindex = 0; |
1144 | 0 | } |
1145 | 0 | s->status = NAME_STATE; |
1146 | 0 | } |
1147 | 527k | if (s->status == NAME_STATE) { |
1148 | 0 | if (s->gzhead->name != Z_NULL) { |
1149 | 0 | ulg beg = s->pending; /* start of bytes to update crc */ |
1150 | 0 | int val; |
1151 | 0 | do { |
1152 | 0 | if (s->pending == s->pending_buf_size) { |
1153 | 0 | HCRC_UPDATE(beg); |
1154 | 0 | flush_pending(strm); |
1155 | 0 | if (s->pending != 0) { |
1156 | 0 | s->last_flush = -1; |
1157 | 0 | return Z_OK; |
1158 | 0 | } |
1159 | 0 | beg = 0; |
1160 | 0 | } |
1161 | 0 | val = s->gzhead->name[s->gzindex++]; |
1162 | 0 | put_byte(s, val); |
1163 | 0 | } while (val != 0); |
1164 | 0 | HCRC_UPDATE(beg); |
1165 | 0 | s->gzindex = 0; |
1166 | 0 | } |
1167 | 0 | s->status = COMMENT_STATE; |
1168 | 0 | } |
1169 | 527k | if (s->status == COMMENT_STATE) { |
1170 | 0 | if (s->gzhead->comment != Z_NULL) { |
1171 | 0 | ulg beg = s->pending; /* start of bytes to update crc */ |
1172 | 0 | int val; |
1173 | 0 | do { |
1174 | 0 | if (s->pending == s->pending_buf_size) { |
1175 | 0 | HCRC_UPDATE(beg); |
1176 | 0 | flush_pending(strm); |
1177 | 0 | if (s->pending != 0) { |
1178 | 0 | s->last_flush = -1; |
1179 | 0 | return Z_OK; |
1180 | 0 | } |
1181 | 0 | beg = 0; |
1182 | 0 | } |
1183 | 0 | val = s->gzhead->comment[s->gzindex++]; |
1184 | 0 | put_byte(s, val); |
1185 | 0 | } while (val != 0); |
1186 | 0 | HCRC_UPDATE(beg); |
1187 | 0 | } |
1188 | 0 | s->status = HCRC_STATE; |
1189 | 0 | } |
1190 | 527k | if (s->status == HCRC_STATE) { |
1191 | 0 | if (s->gzhead->hcrc) { |
1192 | 0 | if (s->pending + 2 > s->pending_buf_size) { |
1193 | 0 | flush_pending(strm); |
1194 | 0 | if (s->pending != 0) { |
1195 | 0 | s->last_flush = -1; |
1196 | 0 | return Z_OK; |
1197 | 0 | } |
1198 | 0 | } |
1199 | 0 | put_byte(s, (Byte)(strm->adler & 0xff)); |
1200 | 0 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
1201 | 0 | strm->adler = crc32(0L, Z_NULL, 0); |
1202 | 0 | } |
1203 | 0 | s->status = BUSY_STATE; |
1204 | | |
1205 | | /* Compression must start with an empty pending buffer */ |
1206 | 0 | flush_pending(strm); |
1207 | 0 | if (s->pending != 0) { |
1208 | 0 | s->last_flush = -1; |
1209 | 0 | return Z_OK; |
1210 | 0 | } |
1211 | 0 | } |
1212 | 527k | #endif |
1213 | | |
1214 | | /* Start a new block or continue the current one. |
1215 | | */ |
1216 | 527k | if (strm->avail_in != 0 || s->lookahead != 0 || |
1217 | 527k | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
1218 | 527k | block_state bstate; |
1219 | | |
1220 | 527k | bstate = s->level == 0 ? deflate_stored(s, flush) : |
1221 | 527k | s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : |
1222 | 426k | s->strategy == Z_RLE ? deflate_rle(s, flush) : |
1223 | 426k | (*(configuration_table[s->level].func))(s, flush); |
1224 | | |
1225 | 527k | if (bstate == finish_started || bstate == finish_done) { |
1226 | 4.53k | s->status = FINISH_STATE; |
1227 | 4.53k | } |
1228 | 527k | if (bstate == need_more || bstate == finish_started) { |
1229 | 523k | if (strm->avail_out == 0) { |
1230 | 1.69k | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
1231 | 1.69k | } |
1232 | 523k | return Z_OK; |
1233 | | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
1234 | | * of deflate should use the same flush parameter to make sure |
1235 | | * that the flush is complete. So we don't have to output an |
1236 | | * empty block here, this will be done at next call. This also |
1237 | | * ensures that for a very small output buffer, we emit at most |
1238 | | * one empty block. |
1239 | | */ |
1240 | 523k | } |
1241 | 4.17k | if (bstate == block_done) { |
1242 | 0 | if (flush == Z_PARTIAL_FLUSH) { |
1243 | 0 | _tr_align(s); |
1244 | 0 | } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ |
1245 | 0 | _tr_stored_block(s, (char*)0, 0L, 0); |
1246 | | /* For a full flush, this empty block will be recognized |
1247 | | * as a special marker by inflate_sync(). |
1248 | | */ |
1249 | 0 | if (flush == Z_FULL_FLUSH) { |
1250 | 0 | CLEAR_HASH(s); /* forget history */ |
1251 | 0 | if (s->lookahead == 0) { |
1252 | 0 | s->strstart = 0; |
1253 | 0 | s->block_start = 0L; |
1254 | 0 | s->insert = 0; |
1255 | 0 | } |
1256 | 0 | } |
1257 | 0 | } |
1258 | 0 | flush_pending(strm); |
1259 | 0 | if (strm->avail_out == 0) { |
1260 | 0 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
1261 | 0 | return Z_OK; |
1262 | 0 | } |
1263 | 0 | } |
1264 | 4.17k | } |
1265 | | |
1266 | 4.54k | if (flush != Z_FINISH) return Z_OK; |
1267 | 4.54k | if (s->wrap <= 0) return Z_STREAM_END; |
1268 | | |
1269 | | /* Write the trailer */ |
1270 | 4.53k | #ifdef GZIP |
1271 | 4.53k | if (s->wrap == 2) { |
1272 | 0 | crc_finalize(s); |
1273 | 0 | put_byte(s, (Byte)(strm->adler & 0xff)); |
1274 | 0 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
1275 | 0 | put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); |
1276 | 0 | put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); |
1277 | 0 | put_byte(s, (Byte)(strm->total_in & 0xff)); |
1278 | 0 | put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); |
1279 | 0 | put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); |
1280 | 0 | put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); |
1281 | 0 | } |
1282 | 4.53k | else |
1283 | 4.53k | #endif |
1284 | 4.53k | { |
1285 | 4.53k | putShortMSB(s, (uInt)(strm->adler >> 16)); |
1286 | 4.53k | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
1287 | 4.53k | } |
1288 | 4.53k | flush_pending(strm); |
1289 | | /* If avail_out is zero, the application will call deflate again |
1290 | | * to flush the rest. |
1291 | | */ |
1292 | 4.53k | if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ |
1293 | 4.53k | return s->pending != 0 ? Z_OK : Z_STREAM_END; |
1294 | 4.54k | } |
1295 | | |
1296 | | /* ========================================================================= */ |
1297 | 4.53k | int ZEXPORT deflateEnd(z_streamp strm) { |
1298 | 4.53k | int status; |
1299 | | |
1300 | 4.53k | if (deflateStateCheck(strm)) return Z_STREAM_ERROR; |
1301 | | |
1302 | 4.53k | status = strm->state->status; |
1303 | | |
1304 | | /* Deallocate in reverse order of allocations: */ |
1305 | 4.53k | TRY_FREE(strm, strm->state->pending_buf); |
1306 | 4.53k | TRY_FREE(strm, strm->state->head); |
1307 | 4.53k | TRY_FREE(strm, strm->state->prev); |
1308 | 4.53k | TRY_FREE(strm, strm->state->window); |
1309 | | |
1310 | 4.53k | ZFREE(strm, strm->state); |
1311 | 4.53k | strm->state = Z_NULL; |
1312 | | |
1313 | 4.53k | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
1314 | 4.53k | } |
1315 | | |
1316 | | /* ========================================================================= |
1317 | | * Copy the source state to the destination state. |
1318 | | * To simplify the source, this is not supported for 16-bit MSDOS (which |
1319 | | * doesn't have enough memory anyway to duplicate compression states). |
1320 | | */ |
1321 | 0 | int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) { |
1322 | | #ifdef MAXSEG_64K |
1323 | | (void)dest; |
1324 | | (void)source; |
1325 | | return Z_STREAM_ERROR; |
1326 | | #else |
1327 | 0 | deflate_state *ds; |
1328 | 0 | deflate_state *ss; |
1329 | | |
1330 | |
|
1331 | 0 | if (deflateStateCheck(source) || dest == Z_NULL) { |
1332 | 0 | return Z_STREAM_ERROR; |
1333 | 0 | } |
1334 | | |
1335 | 0 | ss = source->state; |
1336 | |
|
1337 | 0 | zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); |
1338 | |
|
1339 | 0 | ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
1340 | 0 | if (ds == Z_NULL) return Z_MEM_ERROR; |
1341 | 0 | dest->state = (struct internal_state FAR *) ds; |
1342 | 0 | zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); |
1343 | 0 | ds->strm = dest; |
1344 | |
|
1345 | 0 | ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
1346 | 0 | ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
1347 | 0 | ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
1348 | 0 | #ifdef LIT_MEM |
1349 | 0 | ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 5); |
1350 | | #else |
1351 | | ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4); |
1352 | | #endif |
1353 | |
|
1354 | 0 | if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
1355 | 0 | ds->pending_buf == Z_NULL) { |
1356 | 0 | deflateEnd (dest); |
1357 | 0 | return Z_MEM_ERROR; |
1358 | 0 | } |
1359 | | /* following zmemcpy do not work for 16-bit MSDOS */ |
1360 | 0 | zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
1361 | 0 | zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); |
1362 | 0 | zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); |
1363 | 0 | #ifdef LIT_MEM |
1364 | 0 | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->lit_bufsize * 5); |
1365 | | #else |
1366 | | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
1367 | | #endif |
1368 | |
|
1369 | 0 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
1370 | 0 | #ifdef LIT_MEM |
1371 | 0 | ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1)); |
1372 | 0 | ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2); |
1373 | | #else |
1374 | | ds->sym_buf = ds->pending_buf + ds->lit_bufsize; |
1375 | | #endif |
1376 | |
|
1377 | 0 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
1378 | 0 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
1379 | 0 | ds->bl_desc.dyn_tree = ds->bl_tree; |
1380 | |
|
1381 | 0 | return Z_OK; |
1382 | 0 | #endif /* MAXSEG_64K */ |
1383 | 0 | } |
1384 | | |
1385 | | #ifndef FASTEST |
1386 | | /* =========================================================================== |
1387 | | * Set match_start to the longest match starting at the given string and |
1388 | | * return its length. Matches shorter or equal to prev_length are discarded, |
1389 | | * in which case the result is equal to prev_length and match_start is |
1390 | | * garbage. |
1391 | | * IN assertions: cur_match is the head of the hash chain for the current |
1392 | | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
1393 | | * OUT assertion: the match length is not greater than s->lookahead. |
1394 | | */ |
1395 | 9.17M | local uInt longest_match(deflate_state *s, IPos cur_match) { |
1396 | 9.17M | unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
1397 | 9.17M | register Bytef *scan = s->window + s->strstart; /* current string */ |
1398 | 9.17M | register Bytef *match; /* matched string */ |
1399 | 9.17M | register int len; /* length of current match */ |
1400 | 9.17M | int best_len = (int)s->prev_length; /* best match length so far */ |
1401 | 9.17M | int nice_match = s->nice_match; /* stop if match long enough */ |
1402 | 9.17M | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
1403 | 5.73M | s->strstart - (IPos)MAX_DIST(s) : NIL; |
1404 | | /* Stop when cur_match becomes <= limit. To simplify the code, |
1405 | | * we prevent matches with the string of window index 0. |
1406 | | */ |
1407 | 9.17M | Posf *prev = s->prev; |
1408 | 9.17M | uInt wmask = s->w_mask; |
1409 | | |
1410 | | #ifdef UNALIGNED_OK |
1411 | | /* Compare two bytes at a time. Note: this is not always beneficial. |
1412 | | * Try with and without -DUNALIGNED_OK to check. |
1413 | | */ |
1414 | | register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
1415 | | register ush scan_start = *(ushf*)scan; |
1416 | | register ush scan_end = *(ushf*)(scan + best_len - 1); |
1417 | | #else |
1418 | 9.17M | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1419 | 9.17M | register Byte scan_end1 = scan[best_len - 1]; |
1420 | 9.17M | register Byte scan_end = scan[best_len]; |
1421 | 9.17M | #endif |
1422 | | |
1423 | | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1424 | | * It is easy to get rid of this optimization if necessary. |
1425 | | */ |
1426 | 9.17M | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
1427 | | |
1428 | | /* Do not waste too much time if we already have a good match: */ |
1429 | 9.17M | if (s->prev_length >= s->good_match) { |
1430 | 121k | chain_length >>= 2; |
1431 | 121k | } |
1432 | | /* Do not look for matches beyond the end of the input. This is necessary |
1433 | | * to make deflate deterministic. |
1434 | | */ |
1435 | 9.17M | if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; |
1436 | | |
1437 | 9.17M | Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
1438 | 9.17M | "need lookahead"); |
1439 | | |
1440 | 149M | do { |
1441 | 149M | Assert(cur_match < s->strstart, "no future"); |
1442 | 149M | match = s->window + cur_match; |
1443 | | |
1444 | | /* Skip to next match if the match length cannot increase |
1445 | | * or if the match length is less than 2. Note that the checks below |
1446 | | * for insufficient lookahead only occur occasionally for performance |
1447 | | * reasons. Therefore uninitialized memory will be accessed, and |
1448 | | * conditional jumps will be made that depend on those values. |
1449 | | * However the length of the match is limited to the lookahead, so |
1450 | | * the output of deflate is not affected by the uninitialized values. |
1451 | | */ |
1452 | | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
1453 | | /* This code assumes sizeof(unsigned short) == 2. Do not use |
1454 | | * UNALIGNED_OK if your compiler uses a different size. |
1455 | | */ |
1456 | | if (*(ushf*)(match + best_len - 1) != scan_end || |
1457 | | *(ushf*)match != scan_start) continue; |
1458 | | |
1459 | | /* It is not necessary to compare scan[2] and match[2] since they are |
1460 | | * always equal when the other bytes match, given that the hash keys |
1461 | | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
1462 | | * strstart + 3, + 5, up to strstart + 257. We check for insufficient |
1463 | | * lookahead only every 4th comparison; the 128th check will be made |
1464 | | * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is |
1465 | | * necessary to put more guard bytes at the end of the window, or |
1466 | | * to check more often for insufficient lookahead. |
1467 | | */ |
1468 | | if (!s->chromium_zlib_hash) { |
1469 | | Assert(scan[2] == match[2], "scan[2]?"); |
1470 | | } else { |
1471 | | /* When using CRC hashing, scan[2] and match[2] may mismatch, but in |
1472 | | * that case at least one of the other hashed bytes will mismatch |
1473 | | * also. Bytes 0 and 1 were already checked above, and we know there |
1474 | | * are at least four bytes to check otherwise the mismatch would have |
1475 | | * been found by the scan_end comparison above, so: */ |
1476 | | Assert(scan[2] == match[2] || scan[3] != match[3], "scan[2]??"); |
1477 | | } |
1478 | | scan++, match++; |
1479 | | do { |
1480 | | } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) && |
1481 | | *(ushf*)(scan += 2) == *(ushf*)(match += 2) && |
1482 | | *(ushf*)(scan += 2) == *(ushf*)(match += 2) && |
1483 | | *(ushf*)(scan += 2) == *(ushf*)(match += 2) && |
1484 | | scan < strend); |
1485 | | /* The funny "do {}" generates better code on most compilers */ |
1486 | | |
1487 | | /* Here, scan <= window + strstart + 257 */ |
1488 | | Assert(scan <= s->window+(unsigned)(s->window_size - 1), |
1489 | | "wild scan"); |
1490 | | if (*scan == *match) scan++; |
1491 | | |
1492 | | len = (MAX_MATCH - 1) - (int)(strend - scan); |
1493 | | scan = strend - (MAX_MATCH-1); |
1494 | | |
1495 | | #else /* UNALIGNED_OK */ |
1496 | | |
1497 | 149M | if (match[best_len] != scan_end || |
1498 | 149M | match[best_len - 1] != scan_end1 || |
1499 | 149M | *match != *scan || |
1500 | 149M | *++match != scan[1]) continue; |
1501 | | |
1502 | | /* The check at best_len - 1 can be removed because it will be made |
1503 | | * again later. (This heuristic is not always a win.) |
1504 | | * It is not necessary to compare scan[2] and match[2] since they |
1505 | | * are always equal when the other bytes match, given that |
1506 | | * the hash keys are equal and that HASH_BITS >= 8. |
1507 | | */ |
1508 | 9.82M | scan += 2, match++; |
1509 | 9.82M | if (!s->chromium_zlib_hash) { |
1510 | 0 | Assert(*scan == *match, "match[2]?"); |
1511 | 9.82M | } else { |
1512 | | /* When using CRC hashing, scan[2] and match[2] may mismatch, but in |
1513 | | * that case at least one of the other hashed bytes will mismatch |
1514 | | * also. Bytes 0 and 1 were already checked above, and we know there |
1515 | | * are at least four bytes to check otherwise the mismatch would have |
1516 | | * been found by the scan_end comparison above, so: */ |
1517 | 9.82M | Assert(*scan == *match || scan[1] != match[1], "match[2]??"); |
1518 | 9.82M | } |
1519 | | |
1520 | | /* We check for insufficient lookahead only every 8th comparison; |
1521 | | * the 256th check will be made at strstart + 258. |
1522 | | */ |
1523 | 47.1M | do { |
1524 | 47.1M | } while (*++scan == *++match && *++scan == *++match && |
1525 | 47.1M | *++scan == *++match && *++scan == *++match && |
1526 | 47.1M | *++scan == *++match && *++scan == *++match && |
1527 | 47.1M | *++scan == *++match && *++scan == *++match && |
1528 | 47.1M | scan < strend); |
1529 | | |
1530 | 9.82M | Assert(scan <= s->window + (unsigned)(s->window_size - 1), |
1531 | 9.82M | "wild scan"); |
1532 | | |
1533 | 9.82M | len = MAX_MATCH - (int)(strend - scan); |
1534 | 9.82M | scan = strend - MAX_MATCH; |
1535 | | |
1536 | 9.82M | #endif /* UNALIGNED_OK */ |
1537 | | |
1538 | 9.82M | if (len > best_len) { |
1539 | 4.41M | s->match_start = cur_match; |
1540 | 4.41M | best_len = len; |
1541 | 4.41M | if (len >= nice_match) break; |
1542 | | #ifdef UNALIGNED_OK |
1543 | | scan_end = *(ushf*)(scan + best_len - 1); |
1544 | | #else |
1545 | 3.33M | scan_end1 = scan[best_len - 1]; |
1546 | 3.33M | scan_end = scan[best_len]; |
1547 | 3.33M | #endif |
1548 | 3.33M | } |
1549 | 148M | } while ((cur_match = prev[cur_match & wmask]) > limit |
1550 | 148M | && --chain_length != 0); |
1551 | | |
1552 | 9.17M | if ((uInt)best_len <= s->lookahead) return (uInt)best_len; |
1553 | 3.11k | return s->lookahead; |
1554 | 9.17M | } |
1555 | | |
1556 | | #else /* FASTEST */ |
1557 | | |
1558 | | /* --------------------------------------------------------------------------- |
1559 | | * Optimized version for FASTEST only |
1560 | | */ |
1561 | | local uInt longest_match(deflate_state *s, IPos cur_match) { |
1562 | | register Bytef *scan = s->window + s->strstart; /* current string */ |
1563 | | register Bytef *match; /* matched string */ |
1564 | | register int len; /* length of current match */ |
1565 | | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1566 | | |
1567 | | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1568 | | * It is easy to get rid of this optimization if necessary. |
1569 | | */ |
1570 | | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); |
1571 | | |
1572 | | Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, |
1573 | | "need lookahead"); |
1574 | | |
1575 | | Assert(cur_match < s->strstart, "no future"); |
1576 | | |
1577 | | match = s->window + cur_match; |
1578 | | |
1579 | | /* Return failure if the match length is less than 2: |
1580 | | */ |
1581 | | if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; |
1582 | | |
1583 | | /* The check at best_len - 1 can be removed because it will be made |
1584 | | * again later. (This heuristic is not always a win.) |
1585 | | * It is not necessary to compare scan[2] and match[2] since they |
1586 | | * are always equal when the other bytes match, given that |
1587 | | * the hash keys are equal and that HASH_BITS >= 8. |
1588 | | */ |
1589 | | scan += 2, match += 2; |
1590 | | Assert(*scan == *match, "match[2]?"); |
1591 | | |
1592 | | /* We check for insufficient lookahead only every 8th comparison; |
1593 | | * the 256th check will be made at strstart + 258. |
1594 | | */ |
1595 | | do { |
1596 | | } while (*++scan == *++match && *++scan == *++match && |
1597 | | *++scan == *++match && *++scan == *++match && |
1598 | | *++scan == *++match && *++scan == *++match && |
1599 | | *++scan == *++match && *++scan == *++match && |
1600 | | scan < strend); |
1601 | | |
1602 | | Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan"); |
1603 | | |
1604 | | len = MAX_MATCH - (int)(strend - scan); |
1605 | | |
1606 | | if (len < MIN_MATCH) return MIN_MATCH - 1; |
1607 | | |
1608 | | s->match_start = cur_match; |
1609 | | return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; |
1610 | | } |
1611 | | |
1612 | | #endif /* FASTEST */ |
1613 | | |
1614 | | #ifdef ZLIB_DEBUG |
1615 | | |
1616 | | #define EQUAL 0 |
1617 | | /* result of memcmp for equal strings */ |
1618 | | |
1619 | | /* =========================================================================== |
1620 | | * Check that the match at match_start is indeed a match. |
1621 | | */ |
1622 | | local void check_match(deflate_state *s, IPos start, IPos match, int length) { |
1623 | | /* check that the match is indeed a match */ |
1624 | | if (zmemcmp(s->window + match, |
1625 | | s->window + start, length) != EQUAL) { |
1626 | | fprintf(stderr, " start %u, match %u, length %d\n", |
1627 | | start, match, length); |
1628 | | do { |
1629 | | fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); |
1630 | | } while (--length != 0); |
1631 | | z_error("invalid match"); |
1632 | | } |
1633 | | if (z_verbose > 1) { |
1634 | | fprintf(stderr,"\\[%d,%d]", start - match, length); |
1635 | | do { putc(s->window[start++], stderr); } while (--length != 0); |
1636 | | } |
1637 | | } |
1638 | | #else |
1639 | | # define check_match(s, start, match, length) |
1640 | | #endif /* ZLIB_DEBUG */ |
1641 | | |
1642 | | /* =========================================================================== |
1643 | | * Flush the current block, with given end-of-file flag. |
1644 | | * IN assertion: strstart is set to the end of the current match. |
1645 | | */ |
1646 | 4.97k | #define FLUSH_BLOCK_ONLY(s, last) { \ |
1647 | 4.97k | _tr_flush_block(s, (s->block_start >= 0L ? \ |
1648 | 4.97k | (charf *)&s->window[(unsigned)s->block_start] : \ |
1649 | 4.97k | (charf *)Z_NULL), \ |
1650 | 4.97k | (ulg)((long)s->strstart - s->block_start), \ |
1651 | 4.97k | (last)); \ |
1652 | 4.97k | s->block_start = s->strstart; \ |
1653 | 4.97k | flush_pending(s->strm); \ |
1654 | 4.97k | Tracev((stderr,"[FLUSH]")); \ |
1655 | 4.97k | } |
1656 | | |
1657 | | /* Same but force premature exit if necessary. */ |
1658 | 4.34k | #define FLUSH_BLOCK(s, last) { \ |
1659 | 4.34k | FLUSH_BLOCK_ONLY(s, last); \ |
1660 | 4.34k | if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ |
1661 | 4.34k | } |
1662 | | |
1663 | | /* Maximum stored block length in deflate format (not including header). */ |
1664 | 100k | #define MAX_STORED 65535 |
1665 | | |
1666 | | /* Minimum of a and b. */ |
1667 | 401k | #define MIN(a, b) ((a) > (b) ? (b) : (a)) |
1668 | | |
1669 | | /* =========================================================================== |
1670 | | * Copy without compression as much as possible from the input stream, return |
1671 | | * the current block state. |
1672 | | * |
1673 | | * In case deflateParams() is used to later switch to a non-zero compression |
1674 | | * level, s->matches (otherwise unused when storing) keeps track of the number |
1675 | | * of hash table slides to perform. If s->matches is 1, then one hash table |
1676 | | * slide will be done when switching. If s->matches is 2, the maximum value |
1677 | | * allowed here, then the hash table will be cleared, since two or more slides |
1678 | | * is the same as a clear. |
1679 | | * |
1680 | | * deflate_stored() is written to minimize the number of times an input byte is |
1681 | | * copied. It is most efficient with large input and output buffers, which |
1682 | | * maximizes the opportunities to have a single copy from next_in to next_out. |
1683 | | */ |
1684 | 100k | local block_state deflate_stored(deflate_state *s, int flush) { |
1685 | | /* Smallest worthy block size when not flushing or finishing. By default |
1686 | | * this is 32K. This can be as small as 507 bytes for memLevel == 1. For |
1687 | | * large input and output buffers, the stored block size will be larger. |
1688 | | */ |
1689 | 100k | unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); |
1690 | | |
1691 | | /* Copy as many min_block or larger stored blocks directly to next_out as |
1692 | | * possible. If flushing, copy the remaining available input to next_out as |
1693 | | * stored blocks, if there is enough space. |
1694 | | */ |
1695 | 100k | unsigned len, left, have, last = 0; |
1696 | 100k | unsigned used = s->strm->avail_in; |
1697 | 100k | do { |
1698 | | /* Set len to the maximum size block that we can copy directly with the |
1699 | | * available input data and output space. Set left to how much of that |
1700 | | * would be copied from what's left in the window. |
1701 | | */ |
1702 | 100k | len = MAX_STORED; /* maximum deflate stored block length */ |
1703 | 100k | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1704 | 100k | if (s->strm->avail_out < have) /* need room for header */ |
1705 | 0 | break; |
1706 | | /* maximum stored block length that will fit in avail_out: */ |
1707 | 100k | have = s->strm->avail_out - have; |
1708 | 100k | left = s->strstart - s->block_start; /* bytes left in window */ |
1709 | 100k | if (len > (ulg)left + s->strm->avail_in) |
1710 | 100k | len = left + s->strm->avail_in; /* limit len to the input */ |
1711 | 100k | if (len > have) |
1712 | 32.7k | len = have; /* limit len to the output */ |
1713 | | |
1714 | | /* If the stored block would be less than min_block in length, or if |
1715 | | * unable to copy all of the available input when flushing, then try |
1716 | | * copying to the window and the pending buffer instead. Also don't |
1717 | | * write an empty block when flushing -- deflate() does that. |
1718 | | */ |
1719 | 100k | if (len < min_block && ((len == 0 && flush != Z_FINISH) || |
1720 | 100k | flush == Z_NO_FLUSH || |
1721 | 100k | len != left + s->strm->avail_in)) |
1722 | 100k | break; |
1723 | | |
1724 | | /* Make a dummy stored block in pending to get the header bytes, |
1725 | | * including any pending bits. This also updates the debugging counts. |
1726 | | */ |
1727 | 353 | last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; |
1728 | 353 | _tr_stored_block(s, (char *)0, 0L, last); |
1729 | | |
1730 | | /* Replace the lengths in the dummy stored block with len. */ |
1731 | 353 | s->pending_buf[s->pending - 4] = len; |
1732 | 353 | s->pending_buf[s->pending - 3] = len >> 8; |
1733 | 353 | s->pending_buf[s->pending - 2] = ~len; |
1734 | 353 | s->pending_buf[s->pending - 1] = ~len >> 8; |
1735 | | |
1736 | | /* Write the stored block header bytes. */ |
1737 | 353 | flush_pending(s->strm); |
1738 | | |
1739 | | #ifdef ZLIB_DEBUG |
1740 | | /* Update debugging counts for the data about to be copied. */ |
1741 | | s->compressed_len += len << 3; |
1742 | | s->bits_sent += len << 3; |
1743 | | #endif |
1744 | | |
1745 | | /* Copy uncompressed bytes from the window to next_out. */ |
1746 | 353 | if (left) { |
1747 | 326 | if (left > len) |
1748 | 0 | left = len; |
1749 | 326 | zmemcpy(s->strm->next_out, s->window + s->block_start, left); |
1750 | 326 | s->strm->next_out += left; |
1751 | 326 | s->strm->avail_out -= left; |
1752 | 326 | s->strm->total_out += left; |
1753 | 326 | s->block_start += left; |
1754 | 326 | len -= left; |
1755 | 326 | } |
1756 | | |
1757 | | /* Copy uncompressed bytes directly from next_in to next_out, updating |
1758 | | * the check value. |
1759 | | */ |
1760 | 353 | if (len) { |
1761 | 0 | read_buf(s->strm, s->strm->next_out, len); |
1762 | 0 | s->strm->next_out += len; |
1763 | 0 | s->strm->avail_out -= len; |
1764 | 0 | s->strm->total_out += len; |
1765 | 0 | } |
1766 | 353 | } while (last == 0); |
1767 | | |
1768 | | /* Update the sliding window with the last s->w_size bytes of the copied |
1769 | | * data, or append all of the copied data to the existing window if less |
1770 | | * than s->w_size bytes were copied. Also update the number of bytes to |
1771 | | * insert in the hash tables, in the event that deflateParams() switches to |
1772 | | * a non-zero compression level. |
1773 | | */ |
1774 | 0 | used -= s->strm->avail_in; /* number of input bytes directly copied */ |
1775 | 100k | if (used) { |
1776 | | /* If any input was used, then no unused input remains in the window, |
1777 | | * therefore s->block_start == s->strstart. |
1778 | | */ |
1779 | 0 | if (used >= s->w_size) { /* supplant the previous history */ |
1780 | 0 | s->matches = 2; /* clear hash */ |
1781 | 0 | zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); |
1782 | 0 | s->strstart = s->w_size; |
1783 | 0 | s->insert = s->strstart; |
1784 | 0 | } |
1785 | 0 | else { |
1786 | 0 | if (s->window_size - s->strstart <= used) { |
1787 | | /* Slide the window down. */ |
1788 | 0 | s->strstart -= s->w_size; |
1789 | 0 | zmemcpy(s->window, s->window + s->w_size, s->strstart); |
1790 | 0 | if (s->matches < 2) |
1791 | 0 | s->matches++; /* add a pending slide_hash() */ |
1792 | 0 | if (s->insert > s->strstart) |
1793 | 0 | s->insert = s->strstart; |
1794 | 0 | } |
1795 | 0 | zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); |
1796 | 0 | s->strstart += used; |
1797 | 0 | s->insert += MIN(used, s->w_size - s->insert); |
1798 | 0 | } |
1799 | 0 | s->block_start = s->strstart; |
1800 | 0 | } |
1801 | 100k | if (s->high_water < s->strstart) |
1802 | 0 | s->high_water = s->strstart; |
1803 | | |
1804 | | /* If the last block was written to next_out, then done. */ |
1805 | 100k | if (last) |
1806 | 353 | return finish_done; |
1807 | | |
1808 | | /* If flushing and all input has been consumed, then done. */ |
1809 | 100k | if (flush != Z_NO_FLUSH && flush != Z_FINISH && |
1810 | 100k | s->strm->avail_in == 0 && (long)s->strstart == s->block_start) |
1811 | 0 | return block_done; |
1812 | | |
1813 | | /* Fill the window with any remaining input. */ |
1814 | 100k | have = s->window_size - s->strstart; |
1815 | 100k | if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { |
1816 | | /* Slide the window down. */ |
1817 | 285 | s->block_start -= s->w_size; |
1818 | 285 | s->strstart -= s->w_size; |
1819 | 285 | zmemcpy(s->window, s->window + s->w_size, s->strstart); |
1820 | 285 | if (s->matches < 2) |
1821 | 190 | s->matches++; /* add a pending slide_hash() */ |
1822 | 285 | have += s->w_size; /* more space now */ |
1823 | 285 | if (s->insert > s->strstart) |
1824 | 285 | s->insert = s->strstart; |
1825 | 285 | } |
1826 | 100k | if (have > s->strm->avail_in) |
1827 | 100k | have = s->strm->avail_in; |
1828 | 100k | if (have) { |
1829 | 100k | read_buf(s->strm, s->window + s->strstart, have); |
1830 | 100k | s->strstart += have; |
1831 | 100k | s->insert += MIN(have, s->w_size - s->insert); |
1832 | 100k | } |
1833 | 100k | if (s->high_water < s->strstart) |
1834 | 88.7k | s->high_water = s->strstart; |
1835 | | |
1836 | | /* There was not enough avail_out to write a complete worthy or flushed |
1837 | | * stored block to next_out. Write a stored block to pending instead, if we |
1838 | | * have enough input for a worthy block, or if flushing and there is enough |
1839 | | * room for the remaining input as a stored block in the pending buffer. |
1840 | | */ |
1841 | 100k | have = (s->bi_valid + 42) >> 3; /* number of header bytes */ |
1842 | | /* maximum stored block length that will fit in pending: */ |
1843 | 100k | have = MIN(s->pending_buf_size - have, MAX_STORED); |
1844 | 100k | min_block = MIN(have, s->w_size); |
1845 | 100k | left = s->strstart - s->block_start; |
1846 | 100k | if (left >= min_block || |
1847 | 100k | ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && |
1848 | 99.7k | s->strm->avail_in == 0 && left <= have)) { |
1849 | 590 | len = MIN(left, have); |
1850 | 590 | last = flush == Z_FINISH && s->strm->avail_in == 0 && |
1851 | 590 | len == left ? 1 : 0; |
1852 | 590 | _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); |
1853 | 590 | s->block_start += len; |
1854 | 590 | flush_pending(s->strm); |
1855 | 590 | } |
1856 | | |
1857 | | /* We've done all we can with the available input and output. */ |
1858 | 100k | return last ? finish_started : need_more; |
1859 | 100k | } |
1860 | | |
1861 | | /* =========================================================================== |
1862 | | * Compress as much as possible from the input stream, return the current |
1863 | | * block state. |
1864 | | * This function does not perform lazy evaluation of matches and inserts |
1865 | | * new strings in the dictionary only for unmatched strings or for short |
1866 | | * matches. It is used only for the fast compression options. |
1867 | | */ |
1868 | 58.4k | local block_state deflate_fast(deflate_state *s, int flush) { |
1869 | 58.4k | IPos hash_head; /* head of the hash chain */ |
1870 | 58.4k | int bflush; /* set if current block must be flushed */ |
1871 | | |
1872 | 3.84M | for (;;) { |
1873 | | /* Make sure that we always have enough lookahead, except |
1874 | | * at the end of the input file. We need MAX_MATCH bytes |
1875 | | * for the next match, plus MIN_MATCH bytes to insert the |
1876 | | * string following the next match. |
1877 | | */ |
1878 | 3.84M | if (s->lookahead < MIN_LOOKAHEAD) { |
1879 | 148k | fill_window(s); |
1880 | 148k | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1881 | 57.8k | return need_more; |
1882 | 57.8k | } |
1883 | 90.4k | if (s->lookahead == 0) break; /* flush the current block */ |
1884 | 90.4k | } |
1885 | | |
1886 | | /* Insert the string window[strstart .. strstart + 2] in the |
1887 | | * dictionary, and set hash_head to the head of the hash chain: |
1888 | | */ |
1889 | 3.78M | hash_head = NIL; |
1890 | 3.78M | if (s->lookahead >= MIN_MATCH) { |
1891 | 3.78M | hash_head = insert_string(s, s->strstart); |
1892 | 3.78M | } |
1893 | | |
1894 | | /* Find the longest match, discarding those <= prev_length. |
1895 | | * At this point we have always match_length < MIN_MATCH |
1896 | | */ |
1897 | 3.78M | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
1898 | | /* To simplify the code, we prevent matches with the string |
1899 | | * of window index 0 (in particular we have to avoid a match |
1900 | | * of the string with itself at the start of the input file). |
1901 | | */ |
1902 | 1.38M | s->match_length = longest_match (s, hash_head); |
1903 | | /* longest_match() sets match_start */ |
1904 | 1.38M | } |
1905 | 3.78M | if (s->match_length >= MIN_MATCH) { |
1906 | 448k | check_match(s, s->strstart, s->match_start, s->match_length); |
1907 | | |
1908 | 448k | _tr_tally_dist(s, s->strstart - s->match_start, |
1909 | 448k | s->match_length - MIN_MATCH, bflush); |
1910 | | |
1911 | 448k | s->lookahead -= s->match_length; |
1912 | | |
1913 | | /* Insert new strings in the hash table only if the match length |
1914 | | * is not too large. This saves time but degrades compression. |
1915 | | */ |
1916 | 448k | #ifndef FASTEST |
1917 | 448k | if (s->match_length <= s->max_insert_length && |
1918 | 448k | s->lookahead >= MIN_MATCH) { |
1919 | 261k | s->match_length--; /* string at strstart already in table */ |
1920 | 796k | do { |
1921 | 796k | s->strstart++; |
1922 | 796k | hash_head = insert_string(s, s->strstart); |
1923 | | /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
1924 | | * always MIN_MATCH bytes ahead. |
1925 | | */ |
1926 | 796k | } while (--s->match_length != 0); |
1927 | 261k | s->strstart++; |
1928 | 261k | } else |
1929 | 187k | #endif |
1930 | 187k | { |
1931 | 187k | s->strstart += s->match_length; |
1932 | 187k | s->match_length = 0; |
1933 | | |
1934 | 187k | if (!s->chromium_zlib_hash) { |
1935 | 0 | s->ins_h = s->window[s->strstart]; |
1936 | 0 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]); |
1937 | | #if MIN_MATCH != 3 |
1938 | | Call UPDATE_HASH() MIN_MATCH-3 more times |
1939 | | #endif |
1940 | | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
1941 | | * matter since it will be recomputed at next deflate call. |
1942 | | */ |
1943 | 0 | } |
1944 | 187k | } |
1945 | 3.33M | } else { |
1946 | | /* No match, output a literal byte */ |
1947 | 3.33M | Tracevv((stderr,"%c", s->window[s->strstart])); |
1948 | 3.33M | _tr_tally_lit(s, s->window[s->strstart], bflush); |
1949 | 3.33M | s->lookahead--; |
1950 | 3.33M | s->strstart++; |
1951 | 3.33M | } |
1952 | 3.78M | if (bflush) FLUSH_BLOCK(s, 0); |
1953 | 3.78M | } |
1954 | 382 | s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
1955 | 382 | if (flush == Z_FINISH) { |
1956 | 382 | FLUSH_BLOCK(s, 1); |
1957 | 314 | return finish_done; |
1958 | 382 | } |
1959 | 0 | if (s->sym_next) |
1960 | 0 | FLUSH_BLOCK(s, 0); |
1961 | 0 | return block_done; |
1962 | 0 | } |
1963 | | |
1964 | | #ifndef FASTEST |
1965 | | /* =========================================================================== |
1966 | | * Same as above, but achieves better compression. We use a lazy |
1967 | | * evaluation for matches: a match is finally adopted only if there is |
1968 | | * no better match at the next window position. |
1969 | | */ |
1970 | 368k | local block_state deflate_slow(deflate_state *s, int flush) { |
1971 | 368k | IPos hash_head; /* head of hash chain */ |
1972 | 368k | int bflush; /* set if current block must be flushed */ |
1973 | | |
1974 | | /* Process the input block. */ |
1975 | 17.2M | for (;;) { |
1976 | | /* Make sure that we always have enough lookahead, except |
1977 | | * at the end of the input file. We need MAX_MATCH bytes |
1978 | | * for the next match, plus MIN_MATCH bytes to insert the |
1979 | | * string following the next match. |
1980 | | */ |
1981 | 17.2M | if (s->lookahead < MIN_LOOKAHEAD) { |
1982 | 756k | fill_window(s); |
1983 | 756k | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1984 | 363k | return need_more; |
1985 | 363k | } |
1986 | 392k | if (s->lookahead == 0) break; /* flush the current block */ |
1987 | 392k | } |
1988 | | |
1989 | | /* Insert the string window[strstart .. strstart + 2] in the |
1990 | | * dictionary, and set hash_head to the head of the hash chain: |
1991 | | */ |
1992 | 16.8M | hash_head = NIL; |
1993 | 16.8M | if (s->lookahead >= MIN_MATCH) { |
1994 | 16.8M | hash_head = insert_string(s, s->strstart); |
1995 | 16.8M | } |
1996 | | |
1997 | | /* Find the longest match, discarding those <= prev_length. |
1998 | | */ |
1999 | 16.8M | s->prev_length = s->match_length, s->prev_match = s->match_start; |
2000 | 16.8M | s->match_length = MIN_MATCH-1; |
2001 | | |
2002 | 16.8M | if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
2003 | 16.8M | s->strstart - hash_head <= MAX_DIST(s)) { |
2004 | | /* To simplify the code, we prevent matches with the string |
2005 | | * of window index 0 (in particular we have to avoid a match |
2006 | | * of the string with itself at the start of the input file). |
2007 | | */ |
2008 | 7.79M | s->match_length = longest_match (s, hash_head); |
2009 | | /* longest_match() sets match_start */ |
2010 | | |
2011 | 7.79M | if (s->match_length <= 5 && (s->strategy == Z_FILTERED |
2012 | 5.77M | #if TOO_FAR <= 32767 |
2013 | 5.77M | || (s->match_length == MIN_MATCH && |
2014 | 2.00k | s->strstart - s->match_start > TOO_FAR) |
2015 | 5.77M | #endif |
2016 | 5.77M | )) { |
2017 | | |
2018 | | /* If prev_match is also MIN_MATCH, match_start is garbage |
2019 | | * but we will ignore the current match anyway. |
2020 | | */ |
2021 | 5.76M | s->match_length = MIN_MATCH-1; |
2022 | 5.76M | } |
2023 | 7.79M | } |
2024 | | /* If there was a match at the previous step and the current |
2025 | | * match is not better, output the previous match: |
2026 | | */ |
2027 | 16.8M | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
2028 | 1.49M | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
2029 | | /* Do not insert strings in hash table beyond this. */ |
2030 | | |
2031 | 1.49M | if (s->prev_match == -1) { |
2032 | | /* The window has slid one byte past the previous match, |
2033 | | * so the first byte cannot be compared. */ |
2034 | 0 | check_match(s, s->strstart, s->prev_match + 1, s->prev_length - 1); |
2035 | 1.49M | } else { |
2036 | 1.49M | check_match(s, s->strstart - 1, s->prev_match, s->prev_length); |
2037 | 1.49M | } |
2038 | | |
2039 | 1.49M | _tr_tally_dist(s, s->strstart - 1 - s->prev_match, |
2040 | 1.49M | s->prev_length - MIN_MATCH, bflush); |
2041 | | |
2042 | | /* Insert in hash table all strings up to the end of the match. |
2043 | | * strstart - 1 and strstart are already inserted. If there is not |
2044 | | * enough lookahead, the last two strings are not inserted in |
2045 | | * the hash table. |
2046 | | */ |
2047 | 1.49M | s->lookahead -= s->prev_length - 1; |
2048 | 1.49M | s->prev_length -= 2; |
2049 | 263M | do { |
2050 | 263M | if (++s->strstart <= max_insert) { |
2051 | 263M | hash_head = insert_string(s, s->strstart); |
2052 | 263M | } |
2053 | 263M | } while (--s->prev_length != 0); |
2054 | 1.49M | s->match_available = 0; |
2055 | 1.49M | s->match_length = MIN_MATCH-1; |
2056 | 1.49M | s->strstart++; |
2057 | | |
2058 | 1.49M | if (bflush) FLUSH_BLOCK(s, 0); |
2059 | | |
2060 | 15.3M | } else if (s->match_available) { |
2061 | | /* If there was no match at the previous position, output a |
2062 | | * single literal. If there was a match but the current match |
2063 | | * is longer, truncate the previous match to a single literal. |
2064 | | */ |
2065 | 13.8M | Tracevv((stderr,"%c", s->window[s->strstart - 1])); |
2066 | 13.8M | _tr_tally_lit(s, s->window[s->strstart - 1], bflush); |
2067 | 13.8M | if (bflush) { |
2068 | 629 | FLUSH_BLOCK_ONLY(s, 0); |
2069 | 629 | } |
2070 | 13.8M | s->strstart++; |
2071 | 13.8M | s->lookahead--; |
2072 | 13.8M | if (s->strm->avail_out == 0) return need_more; |
2073 | 13.8M | } else { |
2074 | | /* There is no previous match to compare with, wait for |
2075 | | * the next step to decide. |
2076 | | */ |
2077 | 1.49M | s->match_available = 1; |
2078 | 1.49M | s->strstart++; |
2079 | 1.49M | s->lookahead--; |
2080 | 1.49M | } |
2081 | 16.8M | } |
2082 | 3.63k | Assert (flush != Z_NO_FLUSH, "no flush?"); |
2083 | 3.63k | if (s->match_available) { |
2084 | 1.07k | Tracevv((stderr,"%c", s->window[s->strstart - 1])); |
2085 | 1.07k | _tr_tally_lit(s, s->window[s->strstart - 1], bflush); |
2086 | 1.07k | s->match_available = 0; |
2087 | 1.07k | } |
2088 | 3.63k | s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; |
2089 | 3.63k | if (flush == Z_FINISH) { |
2090 | 3.63k | FLUSH_BLOCK(s, 1); |
2091 | 3.50k | return finish_done; |
2092 | 3.63k | } |
2093 | 0 | if (s->sym_next) |
2094 | 0 | FLUSH_BLOCK(s, 0); |
2095 | 0 | return block_done; |
2096 | 0 | } |
2097 | | #endif /* FASTEST */ |
2098 | | |
2099 | | /* =========================================================================== |
2100 | | * For Z_RLE, simply look for runs of bytes, generate matches only of distance |
2101 | | * one. Do not maintain a hash table. (It will be regenerated if this run of |
2102 | | * deflate switches away from Z_RLE.) |
2103 | | */ |
2104 | 0 | local block_state deflate_rle(deflate_state *s, int flush) { |
2105 | 0 | int bflush; /* set if current block must be flushed */ |
2106 | 0 | uInt prev; /* byte at distance one to match */ |
2107 | 0 | Bytef *scan, *strend; /* scan goes up to strend for length of run */ |
2108 | |
|
2109 | 0 | for (;;) { |
2110 | | /* Make sure that we always have enough lookahead, except |
2111 | | * at the end of the input file. We need MAX_MATCH bytes |
2112 | | * for the longest run, plus one for the unrolled loop. |
2113 | | */ |
2114 | 0 | if (s->lookahead <= MAX_MATCH) { |
2115 | 0 | fill_window(s); |
2116 | 0 | if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { |
2117 | 0 | return need_more; |
2118 | 0 | } |
2119 | 0 | if (s->lookahead == 0) break; /* flush the current block */ |
2120 | 0 | } |
2121 | | |
2122 | | /* See how many times the previous byte repeats */ |
2123 | 0 | s->match_length = 0; |
2124 | 0 | if (s->lookahead >= MIN_MATCH && s->strstart > 0) { |
2125 | 0 | scan = s->window + s->strstart - 1; |
2126 | 0 | prev = *scan; |
2127 | 0 | if (prev == *++scan && prev == *++scan && prev == *++scan) { |
2128 | 0 | strend = s->window + s->strstart + MAX_MATCH; |
2129 | 0 | do { |
2130 | 0 | } while (prev == *++scan && prev == *++scan && |
2131 | 0 | prev == *++scan && prev == *++scan && |
2132 | 0 | prev == *++scan && prev == *++scan && |
2133 | 0 | prev == *++scan && prev == *++scan && |
2134 | 0 | scan < strend); |
2135 | 0 | s->match_length = MAX_MATCH - (uInt)(strend - scan); |
2136 | 0 | if (s->match_length > s->lookahead) |
2137 | 0 | s->match_length = s->lookahead; |
2138 | 0 | } |
2139 | 0 | Assert(scan <= s->window + (uInt)(s->window_size - 1), |
2140 | 0 | "wild scan"); |
2141 | 0 | } |
2142 | | |
2143 | | /* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
2144 | 0 | if (s->match_length >= MIN_MATCH) { |
2145 | 0 | check_match(s, s->strstart, s->strstart - 1, s->match_length); |
2146 | |
|
2147 | 0 | _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); |
2148 | |
|
2149 | 0 | s->lookahead -= s->match_length; |
2150 | 0 | s->strstart += s->match_length; |
2151 | 0 | s->match_length = 0; |
2152 | 0 | } else { |
2153 | | /* No match, output a literal byte */ |
2154 | 0 | Tracevv((stderr,"%c", s->window[s->strstart])); |
2155 | 0 | _tr_tally_lit(s, s->window[s->strstart], bflush); |
2156 | 0 | s->lookahead--; |
2157 | 0 | s->strstart++; |
2158 | 0 | } |
2159 | 0 | if (bflush) FLUSH_BLOCK(s, 0); |
2160 | 0 | } |
2161 | 0 | s->insert = 0; |
2162 | 0 | if (flush == Z_FINISH) { |
2163 | 0 | FLUSH_BLOCK(s, 1); |
2164 | 0 | return finish_done; |
2165 | 0 | } |
2166 | 0 | if (s->sym_next) |
2167 | 0 | FLUSH_BLOCK(s, 0); |
2168 | 0 | return block_done; |
2169 | 0 | } |
2170 | | |
2171 | | /* =========================================================================== |
2172 | | * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. |
2173 | | * (It will be regenerated if this run of deflate switches away from Huffman.) |
2174 | | */ |
2175 | 0 | local block_state deflate_huff(deflate_state *s, int flush) { |
2176 | 0 | int bflush; /* set if current block must be flushed */ |
2177 | |
|
2178 | 0 | for (;;) { |
2179 | | /* Make sure that we have a literal to write. */ |
2180 | 0 | if (s->lookahead == 0) { |
2181 | 0 | fill_window(s); |
2182 | 0 | if (s->lookahead == 0) { |
2183 | 0 | if (flush == Z_NO_FLUSH) |
2184 | 0 | return need_more; |
2185 | 0 | break; /* flush the current block */ |
2186 | 0 | } |
2187 | 0 | } |
2188 | | |
2189 | | /* Output a literal byte */ |
2190 | 0 | s->match_length = 0; |
2191 | 0 | Tracevv((stderr,"%c", s->window[s->strstart])); |
2192 | 0 | _tr_tally_lit(s, s->window[s->strstart], bflush); |
2193 | 0 | s->lookahead--; |
2194 | 0 | s->strstart++; |
2195 | 0 | if (bflush) FLUSH_BLOCK(s, 0); |
2196 | 0 | } |
2197 | 0 | s->insert = 0; |
2198 | 0 | if (flush == Z_FINISH) { |
2199 | 0 | FLUSH_BLOCK(s, 1); |
2200 | 0 | return finish_done; |
2201 | 0 | } |
2202 | 0 | if (s->sym_next) |
2203 | 0 | FLUSH_BLOCK(s, 0); |
2204 | 0 | return block_done; |
2205 | 0 | } |