/src/skia/src/core/SkM44.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2020 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | #include "include/core/SkM44.h" |
9 | | #include "include/core/SkMatrix.h" |
10 | | #include "include/core/SkRect.h" |
11 | | #include "include/private/base/SkDebug.h" |
12 | | #include "include/private/base/SkFloatingPoint.h" |
13 | | #include "src/base/SkVx.h" |
14 | | #include "src/core/SkMatrixInvert.h" |
15 | | #include "src/core/SkMatrixPriv.h" |
16 | | #include "src/core/SkPathPriv.h" |
17 | | |
18 | 26.7k | bool SkM44::operator==(const SkM44& other) const { |
19 | 26.7k | if (this == &other) { |
20 | 0 | return true; |
21 | 0 | } |
22 | | |
23 | 26.7k | auto a0 = skvx::float4::Load(fMat + 0); |
24 | 26.7k | auto a1 = skvx::float4::Load(fMat + 4); |
25 | 26.7k | auto a2 = skvx::float4::Load(fMat + 8); |
26 | 26.7k | auto a3 = skvx::float4::Load(fMat + 12); |
27 | | |
28 | 26.7k | auto b0 = skvx::float4::Load(other.fMat + 0); |
29 | 26.7k | auto b1 = skvx::float4::Load(other.fMat + 4); |
30 | 26.7k | auto b2 = skvx::float4::Load(other.fMat + 8); |
31 | 26.7k | auto b3 = skvx::float4::Load(other.fMat + 12); |
32 | | |
33 | 26.7k | auto eq = (a0 == b0) & (a1 == b1) & (a2 == b2) & (a3 == b3); |
34 | 26.7k | return (eq[0] & eq[1] & eq[2] & eq[3]) == ~0; |
35 | 26.7k | } |
36 | | |
37 | 0 | static void transpose_arrays(SkScalar dst[], const SkScalar src[]) { |
38 | 0 | dst[0] = src[0]; dst[1] = src[4]; dst[2] = src[8]; dst[3] = src[12]; |
39 | 0 | dst[4] = src[1]; dst[5] = src[5]; dst[6] = src[9]; dst[7] = src[13]; |
40 | 0 | dst[8] = src[2]; dst[9] = src[6]; dst[10] = src[10]; dst[11] = src[14]; |
41 | 0 | dst[12] = src[3]; dst[13] = src[7]; dst[14] = src[11]; dst[15] = src[15]; |
42 | 0 | } |
43 | | |
44 | 0 | void SkM44::getRowMajor(SkScalar v[]) const { |
45 | 0 | transpose_arrays(v, fMat); |
46 | 0 | } |
47 | | |
48 | 1.01M | SkM44& SkM44::setConcat(const SkM44& a, const SkM44& b) { |
49 | 1.01M | auto c0 = skvx::float4::Load(a.fMat + 0); |
50 | 1.01M | auto c1 = skvx::float4::Load(a.fMat + 4); |
51 | 1.01M | auto c2 = skvx::float4::Load(a.fMat + 8); |
52 | 1.01M | auto c3 = skvx::float4::Load(a.fMat + 12); |
53 | | |
54 | 4.05M | auto compute = [&](skvx::float4 r) { |
55 | 4.05M | return c0*r[0] + (c1*r[1] + (c2*r[2] + c3*r[3])); |
56 | 4.05M | }; |
57 | | |
58 | 1.01M | auto m0 = compute(skvx::float4::Load(b.fMat + 0)); |
59 | 1.01M | auto m1 = compute(skvx::float4::Load(b.fMat + 4)); |
60 | 1.01M | auto m2 = compute(skvx::float4::Load(b.fMat + 8)); |
61 | 1.01M | auto m3 = compute(skvx::float4::Load(b.fMat + 12)); |
62 | | |
63 | 1.01M | m0.store(fMat + 0); |
64 | 1.01M | m1.store(fMat + 4); |
65 | 1.01M | m2.store(fMat + 8); |
66 | 1.01M | m3.store(fMat + 12); |
67 | 1.01M | return *this; |
68 | 1.01M | } |
69 | | |
70 | 0 | SkM44& SkM44::preConcat(const SkMatrix& b) { |
71 | 0 | auto c0 = skvx::float4::Load(fMat + 0); |
72 | 0 | auto c1 = skvx::float4::Load(fMat + 4); |
73 | 0 | auto c3 = skvx::float4::Load(fMat + 12); |
74 | |
|
75 | 0 | auto compute = [&](float r0, float r1, float r3) { |
76 | 0 | return (c0*r0 + (c1*r1 + c3*r3)); |
77 | 0 | }; |
78 | |
|
79 | 0 | auto m0 = compute(b[0], b[3], b[6]); |
80 | 0 | auto m1 = compute(b[1], b[4], b[7]); |
81 | 0 | auto m3 = compute(b[2], b[5], b[8]); |
82 | |
|
83 | 0 | m0.store(fMat + 0); |
84 | 0 | m1.store(fMat + 4); |
85 | 0 | m3.store(fMat + 12); |
86 | 0 | return *this; |
87 | 0 | } |
88 | | |
89 | 177k | SkM44& SkM44::preTranslate(SkScalar x, SkScalar y, SkScalar z) { |
90 | 177k | auto c0 = skvx::float4::Load(fMat + 0); |
91 | 177k | auto c1 = skvx::float4::Load(fMat + 4); |
92 | 177k | auto c2 = skvx::float4::Load(fMat + 8); |
93 | 177k | auto c3 = skvx::float4::Load(fMat + 12); |
94 | | |
95 | | // only need to update the last column |
96 | 177k | (c0*x + (c1*y + (c2*z + c3))).store(fMat + 12); |
97 | 177k | return *this; |
98 | 177k | } |
99 | | |
100 | 118k | SkM44& SkM44::postTranslate(SkScalar x, SkScalar y, SkScalar z) { |
101 | 118k | skvx::float4 t = { x, y, z, 0 }; |
102 | 118k | (t * fMat[ 3] + skvx::float4::Load(fMat + 0)).store(fMat + 0); |
103 | 118k | (t * fMat[ 7] + skvx::float4::Load(fMat + 4)).store(fMat + 4); |
104 | 118k | (t * fMat[11] + skvx::float4::Load(fMat + 8)).store(fMat + 8); |
105 | 118k | (t * fMat[15] + skvx::float4::Load(fMat + 12)).store(fMat + 12); |
106 | 118k | return *this; |
107 | 118k | } |
108 | | |
109 | 7.11k | SkM44& SkM44::preScale(SkScalar x, SkScalar y) { |
110 | 7.11k | auto c0 = skvx::float4::Load(fMat + 0); |
111 | 7.11k | auto c1 = skvx::float4::Load(fMat + 4); |
112 | | |
113 | 7.11k | (c0 * x).store(fMat + 0); |
114 | 7.11k | (c1 * y).store(fMat + 4); |
115 | 7.11k | return *this; |
116 | 7.11k | } |
117 | | |
118 | 0 | SkM44& SkM44::preScale(SkScalar x, SkScalar y, SkScalar z) { |
119 | 0 | auto c0 = skvx::float4::Load(fMat + 0); |
120 | 0 | auto c1 = skvx::float4::Load(fMat + 4); |
121 | 0 | auto c2 = skvx::float4::Load(fMat + 8); |
122 | |
|
123 | 0 | (c0 * x).store(fMat + 0); |
124 | 0 | (c1 * y).store(fMat + 4); |
125 | 0 | (c2 * z).store(fMat + 8); |
126 | 0 | return *this; |
127 | 0 | } |
128 | | |
129 | 0 | SkV4 SkM44::map(float x, float y, float z, float w) const { |
130 | 0 | auto c0 = skvx::float4::Load(fMat + 0); |
131 | 0 | auto c1 = skvx::float4::Load(fMat + 4); |
132 | 0 | auto c2 = skvx::float4::Load(fMat + 8); |
133 | 0 | auto c3 = skvx::float4::Load(fMat + 12); |
134 | |
|
135 | 0 | SkV4 v; |
136 | 0 | (c0*x + (c1*y + (c2*z + c3*w))).store(&v.x); |
137 | 0 | return v; |
138 | 0 | } |
139 | | |
140 | 1.21M | static SkRect map_rect_affine(const SkRect& src, const float mat[16]) { |
141 | | // When multiplied against vectors of the form <x,y,x,y>, 'flip' allows a single min() |
142 | | // to compute both the min and "negated" max between the xy coordinates. Once finished, another |
143 | | // multiplication produces the original max. |
144 | 1.21M | const skvx::float4 flip{1.f, 1.f, -1.f, -1.f}; |
145 | | |
146 | | // Since z = 0 and it's assumed ther's no perspective, only load the upper 2x2 and (tx,ty) in c3 |
147 | 1.21M | auto c0 = skvx::shuffle<0,1,0,1>(skvx::float2::Load(mat + 0)) * flip; |
148 | 1.21M | auto c1 = skvx::shuffle<0,1,0,1>(skvx::float2::Load(mat + 4)) * flip; |
149 | 1.21M | auto c3 = skvx::shuffle<0,1,0,1>(skvx::float2::Load(mat + 12)); |
150 | | |
151 | | // Compute the min and max of the four transformed corners pre-translation; then translate once |
152 | | // at the end. |
153 | 1.21M | auto minMax = c3 + flip * min(min(c0 * src.fLeft + c1 * src.fTop, |
154 | 1.21M | c0 * src.fRight + c1 * src.fTop), |
155 | 1.21M | min(c0 * src.fLeft + c1 * src.fBottom, |
156 | 1.21M | c0 * src.fRight + c1 * src.fBottom)); |
157 | | |
158 | | // minMax holds (min x, min y, max x, max y) so can be copied into an SkRect expecting l,t,r,b |
159 | 1.21M | SkRect r; |
160 | 1.21M | minMax.store(&r); |
161 | 1.21M | return r; |
162 | 1.21M | } |
163 | | |
164 | 54.2k | static SkRect map_rect_perspective(const SkRect& src, const float mat[16]) { |
165 | | // Like map_rect_affine, z = 0 so we can skip the 3rd column, but we do need to compute w's |
166 | | // for each corner of the src rect. |
167 | 54.2k | auto c0 = skvx::float4::Load(mat + 0); |
168 | 54.2k | auto c1 = skvx::float4::Load(mat + 4); |
169 | 54.2k | auto c3 = skvx::float4::Load(mat + 12); |
170 | | |
171 | | // Unlike map_rect_affine, we do not defer the 4th column since we may need to homogeneous |
172 | | // coordinates to clip against the w=0 plane |
173 | 54.2k | auto tl = c0 * src.fLeft + c1 * src.fTop + c3; |
174 | 54.2k | auto tr = c0 * src.fRight + c1 * src.fTop + c3; |
175 | 54.2k | auto bl = c0 * src.fLeft + c1 * src.fBottom + c3; |
176 | 54.2k | auto br = c0 * src.fRight + c1 * src.fBottom + c3; |
177 | | |
178 | | // After clipping to w>0 and projecting to 2d, 'project' employs the same negation trick to |
179 | | // compute min and max at the same time. |
180 | 54.2k | const skvx::float4 flip{1.f, 1.f, -1.f, -1.f}; |
181 | 217k | auto project = [&flip](const skvx::float4& p0, const skvx::float4& p1, const skvx::float4& p2) { |
182 | 217k | float w0 = p0[3]; |
183 | 217k | if (w0 >= SkPathPriv::kW0PlaneDistance) { |
184 | | // Unclipped, just divide by w |
185 | 125k | return flip * skvx::shuffle<0,1,0,1>(p0) / w0; |
186 | 125k | } else { |
187 | 182k | auto clip = [&](const skvx::float4& p) { |
188 | 182k | float w = p[3]; |
189 | 182k | if (w >= SkPathPriv::kW0PlaneDistance) { |
190 | 63.9k | float t = (SkPathPriv::kW0PlaneDistance - w0) / (w - w0); |
191 | 63.9k | auto c = (t * skvx::shuffle<0,1>(p) + (1.f - t) * skvx::shuffle<0,1>(p0)) / |
192 | 63.9k | SkPathPriv::kW0PlaneDistance; |
193 | | |
194 | 63.9k | return flip * skvx::shuffle<0,1,0,1>(c); |
195 | 118k | } else { |
196 | 118k | return skvx::float4(SK_ScalarInfinity); |
197 | 118k | } |
198 | 182k | }; |
199 | | // Clip both edges leaving p0, and return the min/max of the two clipped points |
200 | | // (since clip returns infinity when both p0 and 2nd vertex have w<0, it'll |
201 | | // automatically be ignored). |
202 | 91.1k | return min(clip(p1), clip(p2)); |
203 | 91.1k | } |
204 | 217k | }; |
205 | | |
206 | | // Project all 4 corners, and pass in their adjacent vertices for clipping if it has w < 0, |
207 | | // then accumulate the min and max xy's. |
208 | 54.2k | auto minMax = flip * min(min(project(tl, tr, bl), project(tr, br, tl)), |
209 | 54.2k | min(project(br, bl, tr), project(bl, tl, br))); |
210 | | |
211 | 54.2k | SkRect r; |
212 | 54.2k | minMax.store(&r); |
213 | 54.2k | return r; |
214 | 54.2k | } |
215 | | |
216 | 1.27M | SkRect SkMatrixPriv::MapRect(const SkM44& m, const SkRect& src) { |
217 | 1.27M | const bool hasPerspective = |
218 | 1.27M | m.fMat[3] != 0 || m.fMat[7] != 0 || m.fMat[11] != 0 || m.fMat[15] != 1; |
219 | 1.27M | if (hasPerspective) { |
220 | 54.2k | return map_rect_perspective(src, m.fMat); |
221 | 1.21M | } else { |
222 | 1.21M | return map_rect_affine(src, m.fMat); |
223 | 1.21M | } |
224 | 1.27M | } |
225 | | |
226 | 1.71M | void SkM44::normalizePerspective() { |
227 | | // If the bottom row of the matrix is [0, 0, 0, not_one], we will treat the matrix as if it |
228 | | // is in perspective, even though it stills behaves like its affine. If we divide everything |
229 | | // by the not_one value, then it will behave the same, but will be treated as affine, |
230 | | // and therefore faster (e.g. clients can forward-difference calculations). |
231 | 1.71M | if (fMat[15] != 1 && fMat[15] != 0 && fMat[3] == 0 && fMat[7] == 0 && fMat[11] == 0) { |
232 | 6.74k | double inv = 1.0 / fMat[15]; |
233 | 6.74k | (skvx::float4::Load(fMat + 0) * inv).store(fMat + 0); |
234 | 6.74k | (skvx::float4::Load(fMat + 4) * inv).store(fMat + 4); |
235 | 6.74k | (skvx::float4::Load(fMat + 8) * inv).store(fMat + 8); |
236 | 6.74k | (skvx::float4::Load(fMat + 12) * inv).store(fMat + 12); |
237 | 6.74k | fMat[15] = 1.0f; |
238 | 6.74k | } |
239 | 1.71M | } |
240 | | |
241 | | /////////////////////////////////////////////////////////////////////////////// |
242 | | |
243 | | /** We always perform the calculation in doubles, to avoid prematurely losing |
244 | | precision along the way. This relies on the compiler automatically |
245 | | promoting our SkScalar values to double (if needed). |
246 | | */ |
247 | 1.96k | bool SkM44::invert(SkM44* inverse) const { |
248 | 1.96k | SkScalar tmp[16]; |
249 | 1.96k | if (SkInvert4x4Matrix(fMat, tmp) == 0.0f) { |
250 | 11 | return false; |
251 | 11 | } |
252 | 1.95k | memcpy(inverse->fMat, tmp, sizeof(tmp)); |
253 | 1.95k | return true; |
254 | 1.96k | } |
255 | | |
256 | 0 | SkM44 SkM44::transpose() const { |
257 | 0 | SkM44 trans(SkM44::kUninitialized_Constructor); |
258 | 0 | transpose_arrays(trans.fMat, fMat); |
259 | 0 | return trans; |
260 | 0 | } |
261 | | |
262 | 86.0k | SkM44& SkM44::setRotateUnitSinCos(SkV3 axis, SkScalar sinAngle, SkScalar cosAngle) { |
263 | | // Taken from "Essential Mathematics for Games and Interactive Applications" |
264 | | // James M. Van Verth and Lars M. Bishop -- third edition |
265 | 86.0k | SkScalar x = axis.x; |
266 | 86.0k | SkScalar y = axis.y; |
267 | 86.0k | SkScalar z = axis.z; |
268 | 86.0k | SkScalar c = cosAngle; |
269 | 86.0k | SkScalar s = sinAngle; |
270 | 86.0k | SkScalar t = 1 - c; |
271 | | |
272 | 86.0k | *this = { t*x*x + c, t*x*y - s*z, t*x*z + s*y, 0, |
273 | 86.0k | t*x*y + s*z, t*y*y + c, t*y*z - s*x, 0, |
274 | 86.0k | t*x*z - s*y, t*y*z + s*x, t*z*z + c, 0, |
275 | 86.0k | 0, 0, 0, 1 }; |
276 | 86.0k | return *this; |
277 | 86.0k | } |
278 | | |
279 | 86.0k | SkM44& SkM44::setRotate(SkV3 axis, SkScalar radians) { |
280 | 86.0k | SkScalar len = axis.length(); |
281 | 86.0k | if (len > 0 && SkIsFinite(len)) { |
282 | 86.0k | this->setRotateUnit(axis * (SK_Scalar1 / len), radians); |
283 | 86.0k | } else { |
284 | 0 | this->setIdentity(); |
285 | 0 | } |
286 | 86.0k | return *this; |
287 | 86.0k | } |
288 | | |
289 | | /////////////////////////////////////////////////////////////////////////////// |
290 | | |
291 | 0 | void SkM44::dump() const { |
292 | 0 | SkDebugf("|%g %g %g %g|\n" |
293 | 0 | "|%g %g %g %g|\n" |
294 | 0 | "|%g %g %g %g|\n" |
295 | 0 | "|%g %g %g %g|\n", |
296 | 0 | fMat[0], fMat[4], fMat[8], fMat[12], |
297 | 0 | fMat[1], fMat[5], fMat[9], fMat[13], |
298 | 0 | fMat[2], fMat[6], fMat[10], fMat[14], |
299 | 0 | fMat[3], fMat[7], fMat[11], fMat[15]); |
300 | 0 | } |
301 | | |
302 | | /////////////////////////////////////////////////////////////////////////////// |
303 | | |
304 | 0 | SkM44 SkM44::RectToRect(const SkRect& src, const SkRect& dst) { |
305 | 0 | if (src.isEmpty()) { |
306 | 0 | return SkM44(); |
307 | 0 | } else if (dst.isEmpty()) { |
308 | 0 | return SkM44::Scale(0.f, 0.f, 0.f); |
309 | 0 | } |
310 | | |
311 | 0 | float sx = dst.width() / src.width(); |
312 | 0 | float sy = dst.height() / src.height(); |
313 | |
|
314 | 0 | float tx = dst.fLeft - sx * src.fLeft; |
315 | 0 | float ty = dst.fTop - sy * src.fTop; |
316 | |
|
317 | 0 | return SkM44{sx, 0.f, 0.f, tx, |
318 | 0 | 0.f, sy, 0.f, ty, |
319 | 0 | 0.f, 0.f, 1.f, 0.f, |
320 | 0 | 0.f, 0.f, 0.f, 1.f}; |
321 | 0 | } |
322 | | |
323 | 5.88k | static SkV3 normalize(SkV3 v) { |
324 | 5.88k | const auto vlen = v.length(); |
325 | | |
326 | 5.88k | return SkScalarNearlyZero(vlen) ? v : v * (1.0f / vlen); |
327 | 5.88k | } |
328 | | |
329 | 7.84k | static SkV4 v4(SkV3 v, SkScalar w) { return {v.x, v.y, v.z, w}; } |
330 | | |
331 | 1.96k | SkM44 SkM44::LookAt(const SkV3& eye, const SkV3& center, const SkV3& up) { |
332 | 1.96k | SkV3 f = normalize(center - eye); |
333 | 1.96k | SkV3 u = normalize(up); |
334 | 1.96k | SkV3 s = normalize(f.cross(u)); |
335 | | |
336 | 1.96k | SkM44 m(SkM44::kUninitialized_Constructor); |
337 | 1.96k | if (!SkM44::Cols(v4(s, 0), v4(s.cross(f), 0), v4(-f, 0), v4(eye, 1)).invert(&m)) { |
338 | 11 | m.setIdentity(); |
339 | 11 | } |
340 | 1.96k | return m; |
341 | 1.96k | } |
342 | | |
343 | 1.96k | SkM44 SkM44::Perspective(float near, float far, float angle) { |
344 | 1.96k | SkASSERT(far > near); |
345 | | |
346 | 1.96k | float denomInv = sk_ieee_float_divide(1, far - near); |
347 | 1.96k | float halfAngle = angle * 0.5f; |
348 | 1.96k | SkASSERT(halfAngle != 0); |
349 | 1.96k | float cot = sk_ieee_float_divide(1, std::tan(halfAngle)); |
350 | | |
351 | 1.96k | SkM44 m; |
352 | 1.96k | m.setRC(0, 0, cot); |
353 | 1.96k | m.setRC(1, 1, cot); |
354 | 1.96k | m.setRC(2, 2, (far + near) * denomInv); |
355 | 1.96k | m.setRC(2, 3, 2 * far * near * denomInv); |
356 | 1.96k | m.setRC(3, 2, -1); |
357 | 1.96k | return m; |
358 | 1.96k | } |