Coverage Report

Created: 2024-09-14 07:19

/src/skia/src/gpu/tessellate/Tessellation.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2021 Google LLC.
3
 *
4
 * Use of this source code is governed by a BSD-style license that can be
5
 * found in the LICENSE file.
6
 */
7
#include "src/gpu/tessellate/Tessellation.h"
8
9
#include "include/core/SkPath.h"
10
#include "include/core/SkPathTypes.h"
11
#include "include/core/SkRect.h"
12
#include "include/private/base/SkFloatingPoint.h"
13
#include "include/private/base/SkTArray.h"
14
#include "src/base/SkUtils.h"
15
#include "src/base/SkVx.h"
16
#include "src/core/SkGeometry.h"
17
#include "src/core/SkPathPriv.h"
18
#include "src/gpu/tessellate/CullTest.h"
19
#include "src/gpu/tessellate/WangsFormula.h"
20
21
using namespace skia_private;
22
23
namespace skgpu::tess {
24
25
namespace {
26
27
using float2 = skvx::float2;
28
using float4 = skvx::float4;
29
30
// This value only protects us against getting stuck in infinite recursion due to fp32 precision
31
// issues. Mathematically, every curve should reduce to manageable visible sections in O(log N)
32
// chops, where N is the the magnitude of its control points.
33
//
34
// But, to define a protective upper bound, a cubic can enter or exit the viewport as many as 6
35
// times. So we may need to refine the curve (via binary search chopping at T=.5) up to 6 times.
36
//
37
// Furthermore, chopping a cubic at T=.5 may only reduce its length by 1/8 (.5^3), so we may require
38
// up to 6 chops in order to reduce the length by 1/2.
39
constexpr static int kMaxChopsPerCurve = 128/*magnitude of +fp32_max - -fp32_max*/ *
40
                                         6/*max number of chops to reduce the length by half*/ *
41
                                         6/*max number of viewport boundary crosses*/;
42
43
// Writes a new path, chopping as necessary so no verbs require more segments than
44
// kMaxTessellationSegmentsPerCurve. Curves completely outside the viewport are flattened into
45
// lines.
46
class PathChopper {
47
public:
48
    PathChopper(float tessellationPrecision, const SkMatrix& matrix, const SkRect& viewport)
49
            : fTessellationPrecision(tessellationPrecision)
50
            , fCullTest(viewport, matrix)
51
0
            , fVectorXform(matrix) {
52
0
        fPath.setIsVolatile(true);
53
0
    }
54
55
0
    SkPath path() const { return fPath; }
56
57
0
    void moveTo(SkPoint p) { fPath.moveTo(p); }
58
0
    void lineTo(const SkPoint p[2]) { fPath.lineTo(p[1]); }
59
0
    void close() { fPath.close(); }
60
61
0
    void quadTo(const SkPoint quad[3]) {
62
0
        SkASSERT(fPointStack.empty());
63
        // Use a heap stack to recursively chop the quad into manageable, on-screen segments.
64
0
        fPointStack.push_back_n(3, quad);
65
0
        int numChops = 0;
66
0
        while (!fPointStack.empty()) {
67
0
            const SkPoint* p = fPointStack.end() - 3;
68
0
            if (!fCullTest.areVisible3(p)) {
69
0
                fPath.lineTo(p[2]);
70
0
            } else {
71
0
                float n4 = wangs_formula::quadratic_p4(fTessellationPrecision, p, fVectorXform);
72
0
                if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) {
73
0
                    SkPoint chops[5];
74
0
                    SkChopQuadAtHalf(p, chops);
75
0
                    fPointStack.pop_back_n(3);
76
0
                    fPointStack.push_back_n(3, chops+2);
77
0
                    fPointStack.push_back_n(3, chops);
78
0
                    ++numChops;
79
0
                    continue;
80
0
                }
81
0
                fPath.quadTo(p[1], p[2]);
82
0
            }
83
0
            fPointStack.pop_back_n(3);
84
0
        }
85
0
    }
Unexecuted instantiation: Tessellation.cpp:skgpu::tess::(anonymous namespace)::PathChopper::quadTo(SkPoint const*)
Unexecuted instantiation: Tessellation.cpp:skgpu::tess::(anonymous namespace)::PathChopper::quadTo(SkPoint const*)
86
87
0
    void conicTo(const SkPoint conic[3], float weight) {
88
0
        SkASSERT(fPointStack.empty());
89
0
        SkASSERT(fWeightStack.empty());
90
        // Use a heap stack to recursively chop the conic into manageable, on-screen segments.
91
0
        fPointStack.push_back_n(3, conic);
92
0
        fWeightStack.push_back(weight);
93
0
        int numChops = 0;
94
0
        while (!fPointStack.empty()) {
95
0
            const SkPoint* p = fPointStack.end() - 3;
96
0
            float w = fWeightStack.back();
97
0
            if (!fCullTest.areVisible3(p)) {
98
0
                fPath.lineTo(p[2]);
99
0
            } else {
100
0
                float n2 = wangs_formula::conic_p2(fTessellationPrecision, p, w, fVectorXform);
101
0
                if (n2 > kMaxSegmentsPerCurve_p2 && numChops < kMaxChopsPerCurve) {
102
0
                    SkConic chops[2];
103
0
                    if (!SkConic(p,w).chopAt(.5, chops)) {
104
0
                        SkPoint line[2] = {p[0], p[2]};
105
0
                        this->lineTo(line);
106
0
                        continue;
107
0
                    }
108
0
                    fPointStack.pop_back_n(3);
109
0
                    fWeightStack.pop_back();
110
0
                    fPointStack.push_back_n(3, chops[1].fPts);
111
0
                    fWeightStack.push_back(chops[1].fW);
112
0
                    fPointStack.push_back_n(3, chops[0].fPts);
113
0
                    fWeightStack.push_back(chops[0].fW);
114
0
                    ++numChops;
115
0
                    continue;
116
0
                }
117
0
                fPath.conicTo(p[1], p[2], w);
118
0
            }
119
0
            fPointStack.pop_back_n(3);
120
0
            fWeightStack.pop_back();
121
0
        }
122
0
        SkASSERT(fWeightStack.empty());
123
0
    }
Unexecuted instantiation: Tessellation.cpp:skgpu::tess::(anonymous namespace)::PathChopper::conicTo(SkPoint const*, float)
Unexecuted instantiation: Tessellation.cpp:skgpu::tess::(anonymous namespace)::PathChopper::conicTo(SkPoint const*, float)
124
125
0
    void cubicTo(const SkPoint cubic[4]) {
126
0
        SkASSERT(fPointStack.empty());
127
        // Use a heap stack to recursively chop the cubic into manageable, on-screen segments.
128
0
        fPointStack.push_back_n(4, cubic);
129
0
        int numChops = 0;
130
0
        while (!fPointStack.empty()) {
131
0
            SkPoint* p = fPointStack.end() - 4;
132
0
            if (!fCullTest.areVisible4(p)) {
133
0
                fPath.lineTo(p[3]);
134
0
            } else {
135
0
                float n4 = wangs_formula::cubic_p4(fTessellationPrecision, p, fVectorXform);
136
0
                if (n4 > kMaxSegmentsPerCurve_p4 && numChops < kMaxChopsPerCurve) {
137
0
                    SkPoint chops[7];
138
0
                    SkChopCubicAtHalf(p, chops);
139
0
                    fPointStack.pop_back_n(4);
140
0
                    fPointStack.push_back_n(4, chops+3);
141
0
                    fPointStack.push_back_n(4, chops);
142
0
                    ++numChops;
143
0
                    continue;
144
0
                }
145
0
                fPath.cubicTo(p[1], p[2], p[3]);
146
0
            }
147
0
            fPointStack.pop_back_n(4);
148
0
        }
149
0
    }
Unexecuted instantiation: Tessellation.cpp:skgpu::tess::(anonymous namespace)::PathChopper::cubicTo(SkPoint const*)
Unexecuted instantiation: Tessellation.cpp:skgpu::tess::(anonymous namespace)::PathChopper::cubicTo(SkPoint const*)
150
151
private:
152
    const float fTessellationPrecision;
153
    const CullTest fCullTest;
154
    const wangs_formula::VectorXform fVectorXform;
155
    SkPath fPath;
156
157
    // Used for stack-based recursion (instead of using the runtime stack).
158
    STArray<8, SkPoint> fPointStack;
159
    STArray<2, float> fWeightStack;
160
};
161
162
}  // namespace
163
164
SkPath PreChopPathCurves(float tessellationPrecision,
165
                         const SkPath& path,
166
                         const SkMatrix& matrix,
167
0
                         const SkRect& viewport) {
168
    // If the viewport is exceptionally large, we could end up blowing out memory with an unbounded
169
    // number of of chops. Therefore, we require that the viewport is manageable enough that a fully
170
    // contained curve can be tessellated in kMaxTessellationSegmentsPerCurve or fewer. (Any larger
171
    // and that amount of pixels wouldn't fit in memory anyway.)
172
0
    SkASSERT(wangs_formula::worst_case_cubic(
173
0
                     tessellationPrecision,
174
0
                     viewport.width(),
175
0
                     viewport.height()) <= kMaxSegmentsPerCurve);
176
0
    PathChopper chopper(tessellationPrecision, matrix, viewport);
177
0
    for (auto [verb, p, w] : SkPathPriv::Iterate(path)) {
178
0
        switch (verb) {
179
0
            case SkPathVerb::kMove:
180
0
                chopper.moveTo(p[0]);
181
0
                break;
182
0
            case SkPathVerb::kLine:
183
0
                chopper.lineTo(p);
184
0
                break;
185
0
            case SkPathVerb::kQuad:
186
0
                chopper.quadTo(p);
187
0
                break;
188
0
            case SkPathVerb::kConic:
189
0
                chopper.conicTo(p, *w);
190
0
                break;
191
0
            case SkPathVerb::kCubic:
192
0
                chopper.cubicTo(p);
193
0
                break;
194
0
            case SkPathVerb::kClose:
195
0
                chopper.close();
196
0
                break;
197
0
        }
198
0
    }
199
    // Must preserve the input path's fill type (see crbug.com/1472747)
200
0
    SkPath chopped = chopper.path();
201
0
    chopped.setFillType(path.getFillType());
202
0
    return chopped;
203
0
}
Unexecuted instantiation: skgpu::tess::PreChopPathCurves(float, SkPath const&, SkMatrix const&, SkRect const&)
Unexecuted instantiation: skgpu::tess::PreChopPathCurves(float, SkPath const&, SkMatrix const&, SkRect const&)
204
205
0
int FindCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) {
206
0
    SkASSERT(pts);
207
0
    SkASSERT(T);
208
0
    SkASSERT(areCusps);
209
210
    // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become
211
    // unstable when we chop too close to the boundary. This works out because the tessellation
212
    // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and
213
    // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a
214
    // fraction of a tessellation segment, it just gets snapped.
215
0
    constexpr static float kEpsilon = 1.f / (1 << 11);
216
    // Floating-point representation of "1 - 2*kEpsilon".
217
0
    constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11));
218
    // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the
219
    // kIEEE_one_minus_2_epsilon bits are correct.
220
0
    SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon);
221
222
0
    float2 p0 = sk_bit_cast<float2>(pts[0]);
223
0
    float2 p1 = sk_bit_cast<float2>(pts[1]);
224
0
    float2 p2 = sk_bit_cast<float2>(pts[2]);
225
0
    float2 p3 = sk_bit_cast<float2>(pts[3]);
226
227
    // Find the cubic's power basis coefficients. These define the bezier curve as:
228
    //
229
    //                                    |T^3|
230
    //     Cubic(T) = x,y = |A  3B  3C| * |T^2| + P0
231
    //                      |.   .   .|   |T  |
232
    //
233
    // And the tangent direction (scaled by a uniform 1/3) will be:
234
    //
235
    //                                                 |T^2|
236
    //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
237
    //                                    |.   .  .|   |1  |
238
    //
239
0
    float2 C = p1 - p0;
240
0
    float2 D = p2 - p1;
241
0
    float2 E = p3 - p0;
242
0
    float2 B = D - C;
243
0
    float2 A = -3*D + E;
244
245
    // Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
246
    // We formulate this as a quadratic equation:  F' x F'' == aT^2 + bT + c == 0.
247
    // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
248
    // NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
249
0
    float a = cross(A,B);
250
0
    float b = cross(A,C);
251
0
    float c = cross(B,C);
252
0
    float b_over_minus_2 = -.5f * b;
253
0
    float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c;
254
255
    // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within
256
    // kEpsilon of one another (in parametric space). This is close enough for our purposes to
257
    // consider them a single cusp.
258
0
    float cuspThreshold = a * (kEpsilon/2);
259
0
    cuspThreshold *= cuspThreshold;
260
261
0
    if (discr_over_4 < -cuspThreshold) {
262
        // The curve does not inflect or cusp. This means it might rotate more than 180 degrees
263
        // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is
264
        // parallel to tan0.)
265
        //
266
        //      Tangent_Direction(T) x tan0 == 0
267
        //      (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
268
        //      (A x C)T^2 + (2B x C)T + (C x C) == 0  [[because tan0 == P1 - P0 == C]]
269
        //      bT^2 + 2cT + 0 == 0  [[because A x C == b, B x C == c]]
270
        //      T = [0, -2c/b]
271
        //
272
        // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely
273
        // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops.
274
0
        *areCusps = false;
275
0
        float root = sk_ieee_float_divide(c, b_over_minus_2);
276
        // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
277
0
        if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
278
0
            T[0] = root;
279
0
            return 1;
280
0
        }
281
0
        return 0;
282
0
    }
283
284
0
    *areCusps = (discr_over_4 <= cuspThreshold);
285
0
    if (*areCusps) {
286
        // The two roots are close enough that we can consider them a single cusp.
287
0
        if (a != 0 || b_over_minus_2 != 0 || c != 0) {
288
            // Pick the average of both roots.
289
0
            float root = sk_ieee_float_divide(b_over_minus_2, a);
290
            // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
291
0
            if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
292
0
                T[0] = root;
293
0
                return 1;
294
0
            }
295
0
            return 0;
296
0
        }
297
298
        // The curve is a flat line. The standard inflection function doesn't detect cusps from flat
299
        // lines. Find cusps by searching instead for points where the tangent is perpendicular to
300
        // tan0. This will find any cusp point.
301
        //
302
        //     dot(tan0, Tangent_Direction(T)) == 0
303
        //
304
        //                         |T^2|
305
        //     tan0 * |A  2B  C| * |T  | == 0
306
        //            |.   .  .|   |1  |
307
        //
308
0
        float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0);
309
0
        a = dot(tan0, A);
310
0
        b_over_minus_2 = -dot(tan0, B);
311
0
        c = dot(tan0, C);
312
0
        discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f);
313
0
    }
314
315
    // Solve our quadratic equation to find where to chop. See the quadratic formula from
316
    // Numerical Recipes in C.
317
0
    float q = sqrtf(discr_over_4);
318
0
    q = copysignf(q, b_over_minus_2);
319
0
    q = q + b_over_minus_2;
320
0
    float2 roots = float2{q,c} / float2{a,q};
321
322
0
    auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon));
323
0
    if (inside[0]) {
324
0
        if (inside[1] && roots[0] != roots[1]) {
325
0
            if (roots[0] > roots[1]) {
326
0
                roots = skvx::shuffle<1,0>(roots);  // Sort.
327
0
            }
328
0
            roots.store(T);
329
0
            return 2;
330
0
        }
331
0
        T[0] = roots[0];
332
0
        return 1;
333
0
    }
334
0
    if (inside[1]) {
335
0
        T[0] = roots[1];
336
0
        return 1;
337
0
    }
338
0
    return 0;
339
0
}
Unexecuted instantiation: skgpu::tess::FindCubicConvex180Chops(SkPoint const*, float*, bool*)
Unexecuted instantiation: skgpu::tess::FindCubicConvex180Chops(SkPoint const*, float*, bool*)
340
341
}  // namespace skgpu::tess