Coverage Report

Created: 2024-09-14 07:19

/src/skia/src/pathops/SkDCubicLineIntersection.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 2012 Google Inc.
3
 *
4
 * Use of this source code is governed by a BSD-style license that can be
5
 * found in the LICENSE file.
6
 */
7
#include "include/core/SkPath.h"
8
#include "include/core/SkPoint.h"
9
#include "include/core/SkTypes.h"
10
#include "include/private/base/SkDebug.h"
11
#include "src/pathops/SkIntersections.h"
12
#include "src/pathops/SkPathOpsCubic.h"
13
#include "src/pathops/SkPathOpsCurve.h"
14
#include "src/pathops/SkPathOpsDebug.h"
15
#include "src/pathops/SkPathOpsLine.h"
16
#include "src/pathops/SkPathOpsPoint.h"
17
#include "src/pathops/SkPathOpsTypes.h"
18
19
#include <cmath>
20
21
/*
22
Find the intersection of a line and cubic by solving for valid t values.
23
24
Analogous to line-quadratic intersection, solve line-cubic intersection by
25
representing the cubic as:
26
  x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
27
  y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
28
and the line as:
29
  y = i*x + j  (if the line is more horizontal)
30
or:
31
  x = i*y + j  (if the line is more vertical)
32
33
Then using Mathematica, solve for the values of t where the cubic intersects the
34
line:
35
36
  (in) Resultant[
37
        a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
38
        e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
39
  (out) -e     +   j     +
40
       3 e t   - 3 f t   -
41
       3 e t^2 + 6 f t^2 - 3 g t^2 +
42
         e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
43
     i ( a     -
44
       3 a t + 3 b t +
45
       3 a t^2 - 6 b t^2 + 3 c t^2 -
46
         a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
47
48
if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
49
50
  (in) Resultant[
51
        a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
52
        e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
53
  (out)  a     -   j     -
54
       3 a t   + 3 b t   +
55
       3 a t^2 - 6 b t^2 + 3 c t^2 -
56
         a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
57
     i ( e     -
58
       3 e t   + 3 f t   +
59
       3 e t^2 - 6 f t^2 + 3 g t^2 -
60
         e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
61
62
Solving this with Mathematica produces an expression with hundreds of terms;
63
instead, use Numeric Solutions recipe to solve the cubic.
64
65
The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
66
    A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
67
    B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
68
    C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
69
    D =   (-( e                ) + i*( a                ) + j )
70
71
The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
72
    A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
73
    B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
74
    C = 3*( (-a +   b          ) - i*(-e +   f          )     )
75
    D =   ( ( a                ) - i*( e                ) - j )
76
77
For horizontal lines:
78
(in) Resultant[
79
      a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
80
      e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
81
(out)  e     -   j     -
82
     3 e t   + 3 f t   +
83
     3 e t^2 - 6 f t^2 + 3 g t^2 -
84
       e t^3 + 3 f t^3 - 3 g t^3 + h t^3
85
 */
86
87
class LineCubicIntersections {
88
public:
89
    enum PinTPoint {
90
        kPointUninitialized,
91
        kPointInitialized
92
    };
93
94
    LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
95
        : fCubic(c)
96
        , fLine(l)
97
        , fIntersections(i)
98
68.6M
        , fAllowNear(true) {
99
68.6M
        i->setMax(4);
100
68.6M
    }
101
102
16.7M
    void allowNear(bool allow) {
103
16.7M
        fAllowNear = allow;
104
16.7M
    }
105
106
17.9M
    void checkCoincident() {
107
17.9M
        int last = fIntersections->used() - 1;
108
19.1M
        for (int index = 0; index < last; ) {
109
1.16M
            double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
110
1.16M
            SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
111
1.16M
            double t = fLine.nearPoint(cubicMidPt, nullptr);
112
1.16M
            if (t < 0) {
113
642k
                ++index;
114
642k
                continue;
115
642k
            }
116
520k
            if (fIntersections->isCoincident(index)) {
117
70.2k
                fIntersections->removeOne(index);
118
70.2k
                --last;
119
450k
            } else if (fIntersections->isCoincident(index + 1)) {
120
0
                fIntersections->removeOne(index + 1);
121
0
                --last;
122
450k
            } else {
123
450k
                fIntersections->setCoincident(index++);
124
450k
            }
125
520k
            fIntersections->setCoincident(index);
126
520k
        }
127
17.9M
    }
128
129
    // see parallel routine in line quadratic intersections
130
134M
    int intersectRay(double roots[3]) {
131
134M
        double adj = fLine[1].fX - fLine[0].fX;
132
134M
        double opp = fLine[1].fY - fLine[0].fY;
133
134M
        SkDCubic c;
134
134M
        SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState());
135
674M
        for (int n = 0; n < 4; ++n) {
136
539M
            c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
137
539M
        }
138
134M
        double A, B, C, D;
139
134M
        SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
140
134M
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
141
221M
        for (int index = 0; index < count; ++index) {
142
123M
            SkDPoint calcPt = c.ptAtT(roots[index]);
143
123M
            if (!approximately_zero(calcPt.fX)) {
144
179M
                for (int n = 0; n < 4; ++n) {
145
143M
                    c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
146
143M
                            + (fCubic[n].fX - fLine[0].fX) * adj;
147
143M
                }
148
35.9M
                double extremeTs[6];
149
35.9M
                int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
150
35.9M
                count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
151
35.9M
                break;
152
35.9M
            }
153
123M
        }
154
134M
        return count;
155
134M
    }
LineCubicIntersections::intersectRay(double*)
Line
Count
Source
130
67.4M
    int intersectRay(double roots[3]) {
131
67.4M
        double adj = fLine[1].fX - fLine[0].fX;
132
67.4M
        double opp = fLine[1].fY - fLine[0].fY;
133
67.4M
        SkDCubic c;
134
67.4M
        SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState());
135
337M
        for (int n = 0; n < 4; ++n) {
136
269M
            c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
137
269M
        }
138
67.4M
        double A, B, C, D;
139
67.4M
        SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
140
67.4M
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
141
110M
        for (int index = 0; index < count; ++index) {
142
61.5M
            SkDPoint calcPt = c.ptAtT(roots[index]);
143
61.5M
            if (!approximately_zero(calcPt.fX)) {
144
89.7M
                for (int n = 0; n < 4; ++n) {
145
71.8M
                    c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
146
71.8M
                            + (fCubic[n].fX - fLine[0].fX) * adj;
147
71.8M
                }
148
17.9M
                double extremeTs[6];
149
17.9M
                int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
150
17.9M
                count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
151
17.9M
                break;
152
17.9M
            }
153
61.5M
        }
154
67.4M
        return count;
155
67.4M
    }
LineCubicIntersections::intersectRay(double*)
Line
Count
Source
130
67.4M
    int intersectRay(double roots[3]) {
131
67.4M
        double adj = fLine[1].fX - fLine[0].fX;
132
67.4M
        double opp = fLine[1].fY - fLine[0].fY;
133
67.4M
        SkDCubic c;
134
67.4M
        SkDEBUGCODE(c.fDebugGlobalState = fIntersections->globalState());
135
337M
        for (int n = 0; n < 4; ++n) {
136
269M
            c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
137
269M
        }
138
67.4M
        double A, B, C, D;
139
67.4M
        SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
140
67.4M
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
141
110M
        for (int index = 0; index < count; ++index) {
142
61.5M
            SkDPoint calcPt = c.ptAtT(roots[index]);
143
61.5M
            if (!approximately_zero(calcPt.fX)) {
144
89.7M
                for (int n = 0; n < 4; ++n) {
145
71.8M
                    c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
146
71.8M
                            + (fCubic[n].fX - fLine[0].fX) * adj;
147
71.8M
                }
148
17.9M
                double extremeTs[6];
149
17.9M
                int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
150
17.9M
                count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
151
17.9M
                break;
152
17.9M
            }
153
61.5M
        }
154
67.4M
        return count;
155
67.4M
    }
156
157
16.7M
    int intersect() {
158
16.7M
        addExactEndPoints();
159
16.7M
        if (fAllowNear) {
160
16.7M
            addNearEndPoints();
161
16.7M
        }
162
16.7M
        double rootVals[3];
163
16.7M
        int roots = intersectRay(rootVals);
164
25.7M
        for (int index = 0; index < roots; ++index) {
165
8.99M
            double cubicT = rootVals[index];
166
8.99M
            double lineT = findLineT(cubicT);
167
8.99M
            SkDPoint pt;
168
8.99M
            if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) {
169
1.19M
                fIntersections->insert(cubicT, lineT, pt);
170
1.19M
            }
171
8.99M
        }
172
16.7M
        checkCoincident();
173
16.7M
        return fIntersections->used();
174
16.7M
    }
175
176
13.1M
    static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
177
13.1M
        double A, B, C, D;
178
13.1M
        SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D);
179
13.1M
        D -= axisIntercept;
180
13.1M
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
181
22.0M
        for (int index = 0; index < count; ++index) {
182
13.5M
            SkDPoint calcPt = c.ptAtT(roots[index]);
183
13.5M
            if (!approximately_equal(calcPt.fY, axisIntercept)) {
184
4.66M
                double extremeTs[6];
185
4.66M
                int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs);
186
4.66M
                count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots);
187
4.66M
                break;
188
4.66M
            }
189
13.5M
        }
190
13.1M
        return count;
191
13.1M
    }
192
193
552k
    int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
194
552k
        addExactHorizontalEndPoints(left, right, axisIntercept);
195
552k
        if (fAllowNear) {
196
552k
            addNearHorizontalEndPoints(left, right, axisIntercept);
197
552k
        }
198
552k
        double roots[3];
199
552k
        int count = HorizontalIntersect(fCubic, axisIntercept, roots);
200
1.13M
        for (int index = 0; index < count; ++index) {
201
582k
            double cubicT = roots[index];
202
582k
            SkDPoint pt = { fCubic.ptAtT(cubicT).fX,  axisIntercept };
203
582k
            double lineT = (pt.fX - left) / (right - left);
204
582k
            if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
205
35.7k
                fIntersections->insert(cubicT, lineT, pt);
206
35.7k
            }
207
582k
        }
208
552k
        if (flipped) {
209
326k
            fIntersections->flip();
210
326k
        }
211
552k
        checkCoincident();
212
552k
        return fIntersections->used();
213
552k
    }
214
215
6.93M
        bool uniqueAnswer(double cubicT, const SkDPoint& pt) {
216
7.84M
            for (int inner = 0; inner < fIntersections->used(); ++inner) {
217
6.52M
                if (fIntersections->pt(inner) != pt) {
218
895k
                    continue;
219
895k
                }
220
5.62M
                double existingCubicT = (*fIntersections)[0][inner];
221
5.62M
                if (cubicT == existingCubicT) {
222
5.57M
                    return false;
223
5.57M
                }
224
                // check if midway on cubic is also same point. If so, discard this
225
51.7k
                double cubicMidT = (existingCubicT + cubicT) / 2;
226
51.7k
                SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
227
51.7k
                if (cubicMidPt.approximatelyEqual(pt)) {
228
42.8k
                    return false;
229
42.8k
                }
230
51.7k
            }
231
#if ONE_OFF_DEBUG
232
            SkDPoint cPt = fCubic.ptAtT(cubicT);
233
            SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
234
                    cPt.fX, cPt.fY);
235
#endif
236
1.32M
            return true;
237
6.93M
        }
238
239
8.76M
    static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
240
8.76M
        double A, B, C, D;
241
8.76M
        SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
242
8.76M
        D -= axisIntercept;
243
8.76M
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
244
15.5M
        for (int index = 0; index < count; ++index) {
245
9.00M
            SkDPoint calcPt = c.ptAtT(roots[index]);
246
9.00M
            if (!approximately_equal(calcPt.fX, axisIntercept)) {
247
2.25M
                double extremeTs[6];
248
2.25M
                int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
249
2.25M
                count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots);
250
2.25M
                break;
251
2.25M
            }
252
9.00M
        }
253
8.76M
        return count;
254
8.76M
    }
255
256
631k
    int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
257
631k
        addExactVerticalEndPoints(top, bottom, axisIntercept);
258
631k
        if (fAllowNear) {
259
631k
            addNearVerticalEndPoints(top, bottom, axisIntercept);
260
631k
        }
261
631k
        double roots[3];
262
631k
        int count = VerticalIntersect(fCubic, axisIntercept, roots);
263
1.28M
        for (int index = 0; index < count; ++index) {
264
650k
            double cubicT = roots[index];
265
650k
            SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY };
266
650k
            double lineT = (pt.fY - top) / (bottom - top);
267
650k
            if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
268
89.5k
                fIntersections->insert(cubicT, lineT, pt);
269
89.5k
            }
270
650k
        }
271
631k
        if (flipped) {
272
253k
            fIntersections->flip();
273
253k
        }
274
631k
        checkCoincident();
275
631k
        return fIntersections->used();
276
631k
    }
277
278
    protected:
279
280
16.7M
    void addExactEndPoints() {
281
50.2M
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
282
33.5M
            double lineT = fLine.exactPoint(fCubic[cIndex]);
283
33.5M
            if (lineT < 0) {
284
28.5M
                continue;
285
28.5M
            }
286
4.96M
            double cubicT = (double) (cIndex >> 1);
287
4.96M
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
288
4.96M
        }
289
16.7M
    }
290
291
    /* Note that this does not look for endpoints of the line that are near the cubic.
292
       These points are found later when check ends looks for missing points */
293
16.7M
    void addNearEndPoints() {
294
50.2M
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
295
33.5M
            double cubicT = (double) (cIndex >> 1);
296
33.5M
            if (fIntersections->hasT(cubicT)) {
297
4.96M
                continue;
298
4.96M
            }
299
28.5M
            double lineT = fLine.nearPoint(fCubic[cIndex], nullptr);
300
28.5M
            if (lineT < 0) {
301
27.7M
                continue;
302
27.7M
            }
303
842k
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
304
842k
        }
305
16.7M
        this->addLineNearEndPoints();
306
16.7M
    }
307
308
17.9M
    void addLineNearEndPoints() {
309
53.8M
        for (int lIndex = 0; lIndex < 2; ++lIndex) {
310
35.8M
            double lineT = (double) lIndex;
311
35.8M
            if (fIntersections->hasOppT(lineT)) {
312
5.73M
                continue;
313
5.73M
            }
314
30.1M
            double cubicT = ((const SkDCurve*)&fCubic)
315
30.1M
                                    ->nearPoint(SkPath::kCubic_Verb, fLine[lIndex], fLine[!lIndex]);
316
30.1M
            if (cubicT < 0) {
317
28.9M
                continue;
318
28.9M
            }
319
1.19M
            fIntersections->insert(cubicT, lineT, fLine[lIndex]);
320
1.19M
        }
321
17.9M
    }
322
323
552k
    void addExactHorizontalEndPoints(double left, double right, double y) {
324
1.65M
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
325
1.10M
            double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
326
1.10M
            if (lineT < 0) {
327
791k
                continue;
328
791k
            }
329
314k
            double cubicT = (double) (cIndex >> 1);
330
314k
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
331
314k
        }
332
552k
    }
333
334
552k
    void addNearHorizontalEndPoints(double left, double right, double y) {
335
1.65M
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
336
1.10M
            double cubicT = (double) (cIndex >> 1);
337
1.10M
            if (fIntersections->hasT(cubicT)) {
338
314k
                continue;
339
314k
            }
340
791k
            double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
341
791k
            if (lineT < 0) {
342
773k
                continue;
343
773k
            }
344
17.5k
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
345
17.5k
        }
346
552k
        this->addLineNearEndPoints();
347
552k
    }
348
349
631k
    void addExactVerticalEndPoints(double top, double bottom, double x) {
350
1.89M
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
351
1.26M
            double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
352
1.26M
            if (lineT < 0) {
353
1.02M
                continue;
354
1.02M
            }
355
240k
            double cubicT = (double) (cIndex >> 1);
356
240k
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
357
240k
        }
358
631k
    }
359
360
631k
    void addNearVerticalEndPoints(double top, double bottom, double x) {
361
1.89M
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
362
1.26M
            double cubicT = (double) (cIndex >> 1);
363
1.26M
            if (fIntersections->hasT(cubicT)) {
364
240k
                continue;
365
240k
            }
366
1.02M
            double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
367
1.02M
            if (lineT < 0) {
368
980k
                continue;
369
980k
            }
370
42.3k
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
371
42.3k
        }
372
631k
        this->addLineNearEndPoints();
373
631k
    }
374
375
8.99M
    double findLineT(double t) {
376
8.99M
        SkDPoint xy = fCubic.ptAtT(t);
377
8.99M
        double dx = fLine[1].fX - fLine[0].fX;
378
8.99M
        double dy = fLine[1].fY - fLine[0].fY;
379
8.99M
        if (fabs(dx) > fabs(dy)) {
380
5.50M
            return (xy.fX - fLine[0].fX) / dx;
381
5.50M
        }
382
3.48M
        return (xy.fY - fLine[0].fY) / dy;
383
8.99M
    }
384
385
10.2M
    bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
386
10.2M
        if (!approximately_one_or_less(*lineT)) {
387
1.66M
            return false;
388
1.66M
        }
389
8.55M
        if (!approximately_zero_or_more(*lineT)) {
390
1.55M
            return false;
391
1.55M
        }
392
6.99M
        double cT = *cubicT = SkPinT(*cubicT);
393
6.99M
        double lT = *lineT = SkPinT(*lineT);
394
6.99M
        SkDPoint lPt = fLine.ptAtT(lT);
395
6.99M
        SkDPoint cPt = fCubic.ptAtT(cT);
396
6.99M
        if (!lPt.roughlyEqual(cPt)) {
397
59.0k
            return false;
398
59.0k
        }
399
        // FIXME: if points are roughly equal but not approximately equal, need to do
400
        // a binary search like quad/quad intersection to find more precise t values
401
6.93M
        if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
402
6.73M
            *pt = lPt;
403
6.73M
        } else if (ptSet == kPointUninitialized) {
404
26.5k
            *pt = cPt;
405
26.5k
        }
406
6.93M
        SkPoint gridPt = pt->asSkPoint();
407
6.93M
        if (gridPt == fLine[0].asSkPoint()) {
408
2.85M
            *lineT = 0;
409
4.08M
        } else if (gridPt == fLine[1].asSkPoint()) {
410
2.79M
            *lineT = 1;
411
2.79M
        }
412
6.93M
        if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
413
2.80M
            *cubicT = 0;
414
4.13M
        } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
415
2.78M
            *cubicT = 1;
416
2.78M
        }
417
6.93M
        return true;
418
6.99M
    }
419
420
private:
421
    const SkDCubic& fCubic;
422
    const SkDLine& fLine;
423
    SkIntersections* fIntersections;
424
    bool fAllowNear;
425
};
426
427
int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
428
552k
        bool flipped) {
429
552k
    SkDLine line = {{{ left, y }, { right, y }}};
430
552k
    LineCubicIntersections c(cubic, line, this);
431
552k
    return c.horizontalIntersect(y, left, right, flipped);
432
552k
}
433
434
int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
435
631k
        bool flipped) {
436
631k
    SkDLine line = {{{ x, top }, { x, bottom }}};
437
631k
    LineCubicIntersections c(cubic, line, this);
438
631k
    return c.verticalIntersect(x, top, bottom, flipped);
439
631k
}
440
441
16.7M
int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
442
16.7M
    LineCubicIntersections c(cubic, line, this);
443
16.7M
    c.allowNear(fAllowNear);
444
16.7M
    return c.intersect();
445
16.7M
}
446
447
50.6M
int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
448
50.6M
    LineCubicIntersections c(cubic, line, this);
449
50.6M
    fUsed = c.intersectRay(fT[0]);
450
95.3M
    for (int index = 0; index < fUsed; ++index) {
451
44.6M
        fPt[index] = cubic.ptAtT(fT[0][index]);
452
44.6M
    }
453
50.6M
    return fUsed;
454
50.6M
}
455
456
// SkDCubic accessors to Intersection utilities
457
458
12.6M
int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const {
459
12.6M
    return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots);
460
12.6M
}
461
462
8.13M
int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const {
463
8.13M
    return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots);
464
8.13M
}