/src/skia/src/pathops/SkDLineIntersection.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2012 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | #include "include/core/SkTypes.h" |
8 | | #include "src/pathops/SkIntersections.h" |
9 | | #include "src/pathops/SkPathOpsLine.h" |
10 | | #include "src/pathops/SkPathOpsPoint.h" |
11 | | #include "src/pathops/SkPathOpsTypes.h" |
12 | | |
13 | | #include <cmath> |
14 | | #include <cstdint> |
15 | | #include <utility> |
16 | | |
17 | 78.5M | void SkIntersections::cleanUpParallelLines(bool parallel) { |
18 | 78.7M | while (fUsed > 2) { |
19 | 206k | removeOne(1); |
20 | 206k | } |
21 | 78.5M | if (fUsed == 2 && !parallel) { |
22 | 3.16M | bool startMatch = fT[0][0] == 0 || zero_or_one(fT[1][0]); |
23 | 3.16M | bool endMatch = fT[0][1] == 1 || zero_or_one(fT[1][1]); |
24 | 3.16M | if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) { |
25 | 1.35M | SkASSERT(startMatch || endMatch); |
26 | 1.35M | if (startMatch && endMatch && (fT[0][0] != 0 || !zero_or_one(fT[1][0])) |
27 | 1.35M | && fT[0][1] == 1 && zero_or_one(fT[1][1])) { |
28 | 311k | removeOne(0); |
29 | 1.04M | } else { |
30 | 1.04M | removeOne(endMatch); |
31 | 1.04M | } |
32 | 1.35M | } |
33 | 3.16M | } |
34 | 78.5M | if (fUsed == 2) { |
35 | 4.61M | fIsCoincident[0] = fIsCoincident[1] = 0x03; |
36 | 4.61M | } |
37 | 78.5M | } SkIntersections::cleanUpParallelLines(bool) Line | Count | Source | 17 | 78.5M | void SkIntersections::cleanUpParallelLines(bool parallel) { | 18 | 78.7M | while (fUsed > 2) { | 19 | 206k | removeOne(1); | 20 | 206k | } | 21 | 78.5M | if (fUsed == 2 && !parallel) { | 22 | 3.16M | bool startMatch = fT[0][0] == 0 || zero_or_one(fT[1][0]); | 23 | 3.16M | bool endMatch = fT[0][1] == 1 || zero_or_one(fT[1][1]); | 24 | 3.16M | if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) { | 25 | 1.35M | SkASSERT(startMatch || endMatch); | 26 | 1.35M | if (startMatch && endMatch && (fT[0][0] != 0 || !zero_or_one(fT[1][0])) | 27 | 1.35M | && fT[0][1] == 1 && zero_or_one(fT[1][1])) { | 28 | 311k | removeOne(0); | 29 | 1.04M | } else { | 30 | 1.04M | removeOne(endMatch); | 31 | 1.04M | } | 32 | 1.35M | } | 33 | 3.16M | } | 34 | 78.5M | if (fUsed == 2) { | 35 | 4.61M | fIsCoincident[0] = fIsCoincident[1] = 0x03; | 36 | 4.61M | } | 37 | 78.5M | } |
Unexecuted instantiation: SkIntersections::cleanUpParallelLines(bool) |
38 | | |
39 | 20.8M | void SkIntersections::computePoints(const SkDLine& line, int used) { |
40 | 20.8M | fPt[0] = line.ptAtT(fT[0][0]); |
41 | 20.8M | if ((fUsed = used) == 2) { |
42 | 1.07M | fPt[1] = line.ptAtT(fT[0][1]); |
43 | 1.07M | } |
44 | 20.8M | } |
45 | | |
46 | 16.2M | int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) { |
47 | 16.2M | fMax = 2; |
48 | 16.2M | SkDVector aLen = a[1] - a[0]; |
49 | 16.2M | SkDVector bLen = b[1] - b[0]; |
50 | | /* Slopes match when denom goes to zero: |
51 | | axLen / ayLen == bxLen / byLen |
52 | | (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen |
53 | | byLen * axLen == ayLen * bxLen |
54 | | byLen * axLen - ayLen * bxLen == 0 ( == denom ) |
55 | | */ |
56 | 16.2M | double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX; |
57 | 16.2M | int used; |
58 | 16.2M | if (!approximately_zero(denom)) { |
59 | 14.9M | SkDVector ab0 = a[0] - b[0]; |
60 | 14.9M | double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX; |
61 | 14.9M | double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX; |
62 | 14.9M | numerA /= denom; |
63 | 14.9M | numerB /= denom; |
64 | 14.9M | fT[0][0] = numerA; |
65 | 14.9M | fT[1][0] = numerB; |
66 | 14.9M | used = 1; |
67 | 14.9M | } else { |
68 | | /* See if the axis intercepts match: |
69 | | ay - ax * ayLen / axLen == by - bx * ayLen / axLen |
70 | | axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen) |
71 | | axLen * ay - ax * ayLen == axLen * by - bx * ayLen |
72 | | */ |
73 | 1.26M | if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX, |
74 | 1.26M | aLen.fX * b[0].fY - aLen.fY * b[0].fX)) { |
75 | 197k | return fUsed = 0; |
76 | 197k | } |
77 | | // there's no great answer for intersection points for coincident rays, but return something |
78 | 1.07M | fT[0][0] = fT[1][0] = 0; |
79 | 1.07M | fT[1][0] = fT[1][1] = 1; |
80 | 1.07M | used = 2; |
81 | 1.07M | } |
82 | 16.0M | computePoints(a, used); |
83 | 16.0M | return fUsed; |
84 | 16.2M | } |
85 | | |
86 | | // note that this only works if both lines are neither horizontal nor vertical |
87 | 57.6M | int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) { |
88 | 57.6M | fMax = 3; // note that we clean up so that there is no more than two in the end |
89 | | // see if end points intersect the opposite line |
90 | 57.6M | double t; |
91 | 173M | for (int iA = 0; iA < 2; ++iA) { |
92 | 115M | if ((t = b.exactPoint(a[iA])) >= 0) { |
93 | 20.4M | insert(iA, t, a[iA]); |
94 | 20.4M | } |
95 | 115M | } |
96 | 173M | for (int iB = 0; iB < 2; ++iB) { |
97 | 115M | if ((t = a.exactPoint(b[iB])) >= 0) { |
98 | 20.4M | insert(t, iB, b[iB]); |
99 | 20.4M | } |
100 | 115M | } |
101 | | /* Determine the intersection point of two line segments |
102 | | Return FALSE if the lines don't intersect |
103 | | from: http://paulbourke.net/geometry/lineline2d/ */ |
104 | 57.6M | double axLen = a[1].fX - a[0].fX; |
105 | 57.6M | double ayLen = a[1].fY - a[0].fY; |
106 | 57.6M | double bxLen = b[1].fX - b[0].fX; |
107 | 57.6M | double byLen = b[1].fY - b[0].fY; |
108 | | /* Slopes match when denom goes to zero: |
109 | | axLen / ayLen == bxLen / byLen |
110 | | (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen |
111 | | byLen * axLen == ayLen * bxLen |
112 | | byLen * axLen - ayLen * bxLen == 0 ( == denom ) |
113 | | */ |
114 | 57.6M | double axByLen = axLen * byLen; |
115 | 57.6M | double ayBxLen = ayLen * bxLen; |
116 | | // detect parallel lines the same way here and in SkOpAngle operator < |
117 | | // so that non-parallel means they are also sortable |
118 | 57.6M | bool unparallel = fAllowNear ? NotAlmostEqualUlps_Pin(axByLen, ayBxLen) |
119 | 57.6M | : NotAlmostDequalUlps(axByLen, ayBxLen); |
120 | 57.6M | if (unparallel && fUsed == 0) { |
121 | 20.1M | double ab0y = a[0].fY - b[0].fY; |
122 | 20.1M | double ab0x = a[0].fX - b[0].fX; |
123 | 20.1M | double numerA = ab0y * bxLen - byLen * ab0x; |
124 | 20.1M | double numerB = ab0y * axLen - ayLen * ab0x; |
125 | 20.1M | double denom = axByLen - ayBxLen; |
126 | 20.1M | if (between(0, numerA, denom) && between(0, numerB, denom)) { |
127 | 4.78M | fT[0][0] = numerA / denom; |
128 | 4.78M | fT[1][0] = numerB / denom; |
129 | 4.78M | computePoints(a, 1); |
130 | 4.78M | } |
131 | 20.1M | } |
132 | | /* Allow tracking that both sets of end points are near each other -- the lines are entirely |
133 | | coincident -- even when the end points are not exactly the same. |
134 | | Mark this as a 'wild card' for the end points, so that either point is considered totally |
135 | | coincident. Then, avoid folding the lines over each other, but allow either end to mate |
136 | | to the next set of lines. |
137 | | */ |
138 | 57.6M | if (fAllowNear || !unparallel) { |
139 | 57.6M | double aNearB[2]; |
140 | 57.6M | double bNearA[2]; |
141 | 57.6M | bool aNotB[2] = {false, false}; |
142 | 57.6M | bool bNotA[2] = {false, false}; |
143 | 57.6M | int nearCount = 0; |
144 | 173M | for (int index = 0; index < 2; ++index) { |
145 | 115M | aNearB[index] = t = b.nearPoint(a[index], &aNotB[index]); |
146 | 115M | nearCount += t >= 0; |
147 | 115M | bNearA[index] = t = a.nearPoint(b[index], &bNotA[index]); |
148 | 115M | nearCount += t >= 0; |
149 | 115M | } |
150 | 57.6M | if (nearCount > 0) { |
151 | | // Skip if each segment contributes to one end point. |
152 | 25.6M | if (nearCount != 2 || aNotB[0] == aNotB[1]) { |
153 | 76.0M | for (int iA = 0; iA < 2; ++iA) { |
154 | 50.7M | if (!aNotB[iA]) { |
155 | 50.0M | continue; |
156 | 50.0M | } |
157 | 641k | int nearer = aNearB[iA] > 0.5; |
158 | 641k | if (!bNotA[nearer]) { |
159 | 639k | continue; |
160 | 639k | } |
161 | 2.67k | SkASSERT(a[iA] != b[nearer]); |
162 | 2.67k | SkOPASSERT(iA == (bNearA[nearer] > 0.5)); |
163 | 2.67k | insertNear(iA, nearer, a[iA], b[nearer]); |
164 | 2.67k | aNearB[iA] = -1; |
165 | 2.67k | bNearA[nearer] = -1; |
166 | 2.67k | nearCount -= 2; |
167 | 2.67k | } |
168 | 25.3M | } |
169 | 25.6M | if (nearCount > 0) { |
170 | 76.8M | for (int iA = 0; iA < 2; ++iA) { |
171 | 51.2M | if (aNearB[iA] >= 0) { |
172 | 23.5M | insert(iA, aNearB[iA], a[iA]); |
173 | 23.5M | } |
174 | 51.2M | } |
175 | 76.8M | for (int iB = 0; iB < 2; ++iB) { |
176 | 51.2M | if (bNearA[iB] >= 0) { |
177 | 26.0M | insert(bNearA[iB], iB, b[iB]); |
178 | 26.0M | } |
179 | 51.2M | } |
180 | 25.6M | } |
181 | 25.6M | } |
182 | 57.6M | } |
183 | 57.6M | cleanUpParallelLines(!unparallel); |
184 | 57.6M | SkASSERT(fUsed <= 2); |
185 | 57.6M | return fUsed; |
186 | 57.6M | } |
187 | | |
188 | 9.96M | static int horizontal_coincident(const SkDLine& line, double y) { |
189 | 9.96M | double min = line[0].fY; |
190 | 9.96M | double max = line[1].fY; |
191 | 9.96M | if (min > max) { |
192 | 4.41M | using std::swap; |
193 | 4.41M | swap(min, max); |
194 | 4.41M | } |
195 | 9.96M | if (min > y || max < y) { |
196 | 190k | return 0; |
197 | 190k | } |
198 | 9.77M | if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) { |
199 | 1.05M | return 2; |
200 | 1.05M | } |
201 | 8.71M | return 1; |
202 | 9.77M | } |
203 | | |
204 | 22.7M | double SkIntersections::HorizontalIntercept(const SkDLine& line, double y) { |
205 | 22.7M | SkASSERT(line[1].fY != line[0].fY); |
206 | 22.7M | return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY)); |
207 | 22.7M | } |
208 | | |
209 | | int SkIntersections::horizontal(const SkDLine& line, double left, double right, |
210 | 9.96M | double y, bool flipped) { |
211 | 9.96M | fMax = 3; // clean up parallel at the end will limit the result to 2 at the most |
212 | | // see if end points intersect the opposite line |
213 | 9.96M | double t; |
214 | 9.96M | const SkDPoint leftPt = { left, y }; |
215 | 9.96M | if ((t = line.exactPoint(leftPt)) >= 0) { |
216 | 2.21M | insert(t, (double) flipped, leftPt); |
217 | 2.21M | } |
218 | 9.96M | if (left != right) { |
219 | 9.96M | const SkDPoint rightPt = { right, y }; |
220 | 9.96M | if ((t = line.exactPoint(rightPt)) >= 0) { |
221 | 2.21M | insert(t, (double) !flipped, rightPt); |
222 | 2.21M | } |
223 | 29.8M | for (int index = 0; index < 2; ++index) { |
224 | 19.9M | if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) { |
225 | 4.42M | insert((double) index, flipped ? 1 - t : t, line[index]); |
226 | 4.42M | } |
227 | 19.9M | } |
228 | 9.96M | } |
229 | 9.96M | int result = horizontal_coincident(line, y); |
230 | 9.96M | if (result == 1 && fUsed == 0) { |
231 | 5.26M | fT[0][0] = HorizontalIntercept(line, y); |
232 | 5.26M | double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX); |
233 | 5.26M | if (between(left, xIntercept, right)) { |
234 | 1.92M | fT[1][0] = (xIntercept - left) / (right - left); |
235 | 1.92M | if (flipped) { |
236 | | // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX |
237 | 1.99M | for (int index = 0; index < result; ++index) { |
238 | 995k | fT[1][index] = 1 - fT[1][index]; |
239 | 995k | } |
240 | 995k | } |
241 | 1.92M | fPt[0].fX = xIntercept; |
242 | 1.92M | fPt[0].fY = y; |
243 | 1.92M | fUsed = 1; |
244 | 1.92M | } |
245 | 5.26M | } |
246 | 9.96M | if (fAllowNear || result == 2) { |
247 | 9.96M | if ((t = line.nearPoint(leftPt, nullptr)) >= 0) { |
248 | 2.78M | insert(t, (double) flipped, leftPt); |
249 | 2.78M | } |
250 | 9.96M | if (left != right) { |
251 | 9.96M | const SkDPoint rightPt = { right, y }; |
252 | 9.96M | if ((t = line.nearPoint(rightPt, nullptr)) >= 0) { |
253 | 2.78M | insert(t, (double) !flipped, rightPt); |
254 | 2.78M | } |
255 | 29.8M | for (int index = 0; index < 2; ++index) { |
256 | 19.9M | if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) { |
257 | 5.21M | insert((double) index, flipped ? 1 - t : t, line[index]); |
258 | 5.21M | } |
259 | 19.9M | } |
260 | 9.96M | } |
261 | 9.96M | } |
262 | 9.96M | cleanUpParallelLines(result == 2); |
263 | 9.96M | return fUsed; |
264 | 9.96M | } |
265 | | |
266 | 10.9M | static int vertical_coincident(const SkDLine& line, double x) { |
267 | 10.9M | double min = line[0].fX; |
268 | 10.9M | double max = line[1].fX; |
269 | 10.9M | if (min > max) { |
270 | 4.76M | using std::swap; |
271 | 4.76M | swap(min, max); |
272 | 4.76M | } |
273 | 10.9M | if (!precisely_between(min, x, max)) { |
274 | 148k | return 0; |
275 | 148k | } |
276 | 10.8M | if (AlmostEqualUlps(min, max)) { |
277 | 1.48M | return 2; |
278 | 1.48M | } |
279 | 9.32M | return 1; |
280 | 10.8M | } |
281 | | |
282 | 21.0M | double SkIntersections::VerticalIntercept(const SkDLine& line, double x) { |
283 | 21.0M | SkASSERT(line[1].fX != line[0].fX); |
284 | 21.0M | return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX)); |
285 | 21.0M | } |
286 | | |
287 | | int SkIntersections::vertical(const SkDLine& line, double top, double bottom, |
288 | 10.9M | double x, bool flipped) { |
289 | 10.9M | fMax = 3; // cleanup parallel lines will bring this back line |
290 | | // see if end points intersect the opposite line |
291 | 10.9M | double t; |
292 | 10.9M | SkDPoint topPt = { x, top }; |
293 | 10.9M | if ((t = line.exactPoint(topPt)) >= 0) { |
294 | 2.65M | insert(t, (double) flipped, topPt); |
295 | 2.65M | } |
296 | 10.9M | if (top != bottom) { |
297 | 10.9M | SkDPoint bottomPt = { x, bottom }; |
298 | 10.9M | if ((t = line.exactPoint(bottomPt)) >= 0) { |
299 | 2.64M | insert(t, (double) !flipped, bottomPt); |
300 | 2.64M | } |
301 | 32.8M | for (int index = 0; index < 2; ++index) { |
302 | 21.9M | if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) { |
303 | 5.30M | insert((double) index, flipped ? 1 - t : t, line[index]); |
304 | 5.30M | } |
305 | 21.9M | } |
306 | 10.9M | } |
307 | 10.9M | int result = vertical_coincident(line, x); |
308 | 10.9M | if (result == 1 && fUsed == 0) { |
309 | 5.59M | fT[0][0] = VerticalIntercept(line, x); |
310 | 5.59M | double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY); |
311 | 5.59M | if (between(top, yIntercept, bottom)) { |
312 | 2.28M | fT[1][0] = (yIntercept - top) / (bottom - top); |
313 | 2.28M | if (flipped) { |
314 | | // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY |
315 | 2.21M | for (int index = 0; index < result; ++index) { |
316 | 1.10M | fT[1][index] = 1 - fT[1][index]; |
317 | 1.10M | } |
318 | 1.10M | } |
319 | 2.28M | fPt[0].fX = x; |
320 | 2.28M | fPt[0].fY = yIntercept; |
321 | 2.28M | fUsed = 1; |
322 | 2.28M | } |
323 | 5.59M | } |
324 | 10.9M | if (fAllowNear || result == 2) { |
325 | 10.9M | if ((t = line.nearPoint(topPt, nullptr)) >= 0) { |
326 | 3.39M | insert(t, (double) flipped, topPt); |
327 | 3.39M | } |
328 | 10.9M | if (top != bottom) { |
329 | 10.9M | SkDPoint bottomPt = { x, bottom }; |
330 | 10.9M | if ((t = line.nearPoint(bottomPt, nullptr)) >= 0) { |
331 | 3.37M | insert(t, (double) !flipped, bottomPt); |
332 | 3.37M | } |
333 | 32.8M | for (int index = 0; index < 2; ++index) { |
334 | 21.9M | if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) { |
335 | 6.53M | insert((double) index, flipped ? 1 - t : t, line[index]); |
336 | 6.53M | } |
337 | 21.9M | } |
338 | 10.9M | } |
339 | 10.9M | } |
340 | 10.9M | cleanUpParallelLines(result == 2); |
341 | 10.9M | SkASSERT(fUsed <= 2); |
342 | 10.9M | return fUsed; |
343 | 10.9M | } |
344 | | |