/src/skia/src/pathops/SkReduceOrder.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2012 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | #include "src/pathops/SkReduceOrder.h" |
8 | | |
9 | | #include "include/core/SkPoint.h" |
10 | | #include "src/core/SkGeometry.h" |
11 | | #include "src/pathops/SkPathOpsPoint.h" |
12 | | #include "src/pathops/SkPathOpsTypes.h" |
13 | | |
14 | | #include <algorithm> |
15 | | #include <cmath> |
16 | | |
17 | 0 | int SkReduceOrder::reduce(const SkDLine& line) { |
18 | 0 | fLine[0] = line[0]; |
19 | 0 | int different = line[0] != line[1]; |
20 | 0 | fLine[1] = line[different]; |
21 | 0 | return 1 + different; |
22 | 0 | } |
23 | | |
24 | 275k | static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { |
25 | 275k | reduction[0] = reduction[1] = quad[0]; |
26 | 275k | return 1; |
27 | 275k | } |
28 | | |
29 | 1.06M | static int reductionLineCount(const SkDQuad& reduction) { |
30 | 1.06M | return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
31 | 1.06M | } |
32 | | |
33 | 98.3k | static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) { |
34 | 98.3k | reduction[0] = quad[0]; |
35 | 98.3k | reduction[1] = quad[2]; |
36 | 98.3k | return reductionLineCount(reduction); |
37 | 98.3k | } |
38 | | |
39 | 135k | static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) { |
40 | 135k | reduction[0] = quad[0]; |
41 | 135k | reduction[1] = quad[2]; |
42 | 135k | return reductionLineCount(reduction); |
43 | 135k | } |
44 | | |
45 | | static int check_linear(const SkDQuad& quad, |
46 | 8.82M | int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { |
47 | 8.82M | if (!quad.isLinear(0, 2)) { |
48 | 7.98M | return 0; |
49 | 7.98M | } |
50 | | // four are colinear: return line formed by outside |
51 | 833k | reduction[0] = quad[0]; |
52 | 833k | reduction[1] = quad[2]; |
53 | 833k | return reductionLineCount(reduction); |
54 | 8.82M | } |
55 | | |
56 | | // reduce to a quadratic or smaller |
57 | | // look for identical points |
58 | | // look for all four points in a line |
59 | | // note that three points in a line doesn't simplify a cubic |
60 | | // look for approximation with single quadratic |
61 | | // save approximation with multiple quadratics for later |
62 | 9.33M | int SkReduceOrder::reduce(const SkDQuad& quad) { |
63 | 9.33M | int index, minX, maxX, minY, maxY; |
64 | 9.33M | int minXSet, minYSet; |
65 | 9.33M | minX = maxX = minY = maxY = 0; |
66 | 9.33M | minXSet = minYSet = 0; |
67 | 27.9M | for (index = 1; index < 3; ++index) { |
68 | 18.6M | if (quad[minX].fX > quad[index].fX) { |
69 | 8.02M | minX = index; |
70 | 8.02M | } |
71 | 18.6M | if (quad[minY].fY > quad[index].fY) { |
72 | 8.11M | minY = index; |
73 | 8.11M | } |
74 | 18.6M | if (quad[maxX].fX < quad[index].fX) { |
75 | 7.97M | maxX = index; |
76 | 7.97M | } |
77 | 18.6M | if (quad[maxY].fY < quad[index].fY) { |
78 | 7.99M | maxY = index; |
79 | 7.99M | } |
80 | 18.6M | } |
81 | 37.3M | for (index = 0; index < 3; ++index) { |
82 | 27.9M | if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) { |
83 | 11.0M | minXSet |= 1 << index; |
84 | 11.0M | } |
85 | 27.9M | if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { |
86 | 10.9M | minYSet |= 1 << index; |
87 | 10.9M | } |
88 | 27.9M | } |
89 | 9.33M | if ((minXSet & 0x05) == 0x5 && (minYSet & 0x05) == 0x5) { // test for degenerate |
90 | | // this quad starts and ends at the same place, so never contributes |
91 | | // to the fill |
92 | 275k | return coincident_line(quad, fQuad); |
93 | 275k | } |
94 | 9.05M | if (minXSet == 0x7) { // test for vertical line |
95 | 98.3k | return vertical_line(quad, fQuad); |
96 | 98.3k | } |
97 | 8.95M | if (minYSet == 0x7) { // test for horizontal line |
98 | 135k | return horizontal_line(quad, fQuad); |
99 | 135k | } |
100 | 8.82M | int result = check_linear(quad, minX, maxX, minY, maxY, fQuad); |
101 | 8.82M | if (result) { |
102 | 833k | return result; |
103 | 833k | } |
104 | 7.98M | fQuad = quad; |
105 | 7.98M | return 3; |
106 | 8.82M | } |
107 | | |
108 | | //////////////////////////////////////////////////////////////////////////////////// |
109 | | |
110 | 3.50k | static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { |
111 | 3.50k | reduction[0] = reduction[1] = cubic[0]; |
112 | 3.50k | return 1; |
113 | 3.50k | } |
114 | | |
115 | 467k | static int reductionLineCount(const SkDCubic& reduction) { |
116 | 467k | return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
117 | 467k | } |
118 | | |
119 | 27.7k | static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) { |
120 | 27.7k | reduction[0] = cubic[0]; |
121 | 27.7k | reduction[1] = cubic[3]; |
122 | 27.7k | return reductionLineCount(reduction); |
123 | 27.7k | } |
124 | | |
125 | 57.7k | static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) { |
126 | 57.7k | reduction[0] = cubic[0]; |
127 | 57.7k | reduction[1] = cubic[3]; |
128 | 57.7k | return reductionLineCount(reduction); |
129 | 57.7k | } |
130 | | |
131 | | // check to see if it is a quadratic or a line |
132 | 4.52M | static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { |
133 | 4.52M | double dx10 = cubic[1].fX - cubic[0].fX; |
134 | 4.52M | double dx23 = cubic[2].fX - cubic[3].fX; |
135 | 4.52M | double midX = cubic[0].fX + dx10 * 3 / 2; |
136 | 4.52M | double sideAx = midX - cubic[3].fX; |
137 | 4.52M | double sideBx = dx23 * 3 / 2; |
138 | 4.52M | if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx) |
139 | 4.52M | : !AlmostEqualUlps_Pin(sideAx, sideBx)) { |
140 | 4.35M | return 0; |
141 | 4.35M | } |
142 | 167k | double dy10 = cubic[1].fY - cubic[0].fY; |
143 | 167k | double dy23 = cubic[2].fY - cubic[3].fY; |
144 | 167k | double midY = cubic[0].fY + dy10 * 3 / 2; |
145 | 167k | double sideAy = midY - cubic[3].fY; |
146 | 167k | double sideBy = dy23 * 3 / 2; |
147 | 167k | if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy) |
148 | 167k | : !AlmostEqualUlps_Pin(sideAy, sideBy)) { |
149 | 150k | return 0; |
150 | 150k | } |
151 | 17.3k | reduction[0] = cubic[0]; |
152 | 17.3k | reduction[1].fX = midX; |
153 | 17.3k | reduction[1].fY = midY; |
154 | 17.3k | reduction[2] = cubic[3]; |
155 | 17.3k | return 3; |
156 | 167k | } |
157 | | |
158 | | static int check_linear(const SkDCubic& cubic, |
159 | 4.90M | int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { |
160 | 4.90M | if (!cubic.isLinear(0, 3)) { |
161 | 4.52M | return 0; |
162 | 4.52M | } |
163 | | // four are colinear: return line formed by outside |
164 | 381k | reduction[0] = cubic[0]; |
165 | 381k | reduction[1] = cubic[3]; |
166 | 381k | return reductionLineCount(reduction); |
167 | 4.90M | } |
168 | | |
169 | | /* food for thought: |
170 | | http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html |
171 | | |
172 | | Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the |
173 | | corresponding quadratic Bezier are (given in convex combinations of |
174 | | points): |
175 | | |
176 | | q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 |
177 | | q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 |
178 | | q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 |
179 | | |
180 | | Of course, this curve does not interpolate the end-points, but it would |
181 | | be interesting to see the behaviour of such a curve in an applet. |
182 | | |
183 | | -- |
184 | | Kalle Rutanen |
185 | | http://kaba.hilvi.org |
186 | | |
187 | | */ |
188 | | |
189 | | // reduce to a quadratic or smaller |
190 | | // look for identical points |
191 | | // look for all four points in a line |
192 | | // note that three points in a line doesn't simplify a cubic |
193 | | // look for approximation with single quadratic |
194 | | // save approximation with multiple quadratics for later |
195 | 4.99M | int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) { |
196 | 4.99M | int index, minX, maxX, minY, maxY; |
197 | 4.99M | int minXSet, minYSet; |
198 | 4.99M | minX = maxX = minY = maxY = 0; |
199 | 4.99M | minXSet = minYSet = 0; |
200 | 19.9M | for (index = 1; index < 4; ++index) { |
201 | 14.9M | if (cubic[minX].fX > cubic[index].fX) { |
202 | 6.80M | minX = index; |
203 | 6.80M | } |
204 | 14.9M | if (cubic[minY].fY > cubic[index].fY) { |
205 | 6.81M | minY = index; |
206 | 6.81M | } |
207 | 14.9M | if (cubic[maxX].fX < cubic[index].fX) { |
208 | 6.94M | maxX = index; |
209 | 6.94M | } |
210 | 14.9M | if (cubic[maxY].fY < cubic[index].fY) { |
211 | 6.69M | maxY = index; |
212 | 6.69M | } |
213 | 14.9M | } |
214 | 24.9M | for (index = 0; index < 4; ++index) { |
215 | 19.9M | double cx = cubic[index].fX; |
216 | 19.9M | double cy = cubic[index].fY; |
217 | 19.9M | double denom = std::max(fabs(cx), std::max(fabs(cy), |
218 | 19.9M | std::max(fabs(cubic[minX].fX), fabs(cubic[minY].fY)))); |
219 | 19.9M | if (denom == 0) { |
220 | 39.7k | minXSet |= 1 << index; |
221 | 39.7k | minYSet |= 1 << index; |
222 | 39.7k | continue; |
223 | 39.7k | } |
224 | 19.9M | double inv = 1 / denom; |
225 | 19.9M | if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) { |
226 | 5.46M | minXSet |= 1 << index; |
227 | 5.46M | } |
228 | 19.9M | if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { |
229 | 5.54M | minYSet |= 1 << index; |
230 | 5.54M | } |
231 | 19.9M | } |
232 | 4.99M | if (minXSet == 0xF) { // test for vertical line |
233 | 31.2k | if (minYSet == 0xF) { // return 1 if all four are coincident |
234 | 3.50k | return coincident_line(cubic, fCubic); |
235 | 3.50k | } |
236 | 27.7k | return vertical_line(cubic, fCubic); |
237 | 31.2k | } |
238 | 4.96M | if (minYSet == 0xF) { // test for horizontal line |
239 | 57.7k | return horizontal_line(cubic, fCubic); |
240 | 57.7k | } |
241 | 4.90M | int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic); |
242 | 4.90M | if (result) { |
243 | 381k | return result; |
244 | 381k | } |
245 | 4.52M | if (allowQuadratics == SkReduceOrder::kAllow_Quadratics |
246 | 4.52M | && (result = check_quadratic(cubic, fCubic))) { |
247 | 17.3k | return result; |
248 | 17.3k | } |
249 | 4.50M | fCubic = cubic; |
250 | 4.50M | return 4; |
251 | 4.52M | } |
252 | | |
253 | 9.33M | SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) { |
254 | 9.33M | SkDQuad quad; |
255 | 9.33M | quad.set(a); |
256 | 9.33M | SkReduceOrder reducer; |
257 | 9.33M | int order = reducer.reduce(quad); |
258 | 9.33M | if (order == 2) { // quad became line |
259 | 3.09M | for (int index = 0; index < order; ++index) { |
260 | 2.06M | *reducePts++ = reducer.fLine[index].asSkPoint(); |
261 | 2.06M | } |
262 | 1.03M | } |
263 | 9.33M | return SkPathOpsPointsToVerb(order - 1); |
264 | 9.33M | } |
265 | | |
266 | 168k | SkPath::Verb SkReduceOrder::Conic(const SkConic& c, SkPoint* reducePts) { |
267 | 168k | SkPath::Verb verb = SkReduceOrder::Quad(c.fPts, reducePts); |
268 | 168k | if (verb > SkPath::kLine_Verb && c.fW == 1) { |
269 | 5.10k | return SkPath::kQuad_Verb; |
270 | 5.10k | } |
271 | 163k | return verb == SkPath::kQuad_Verb ? SkPath::kConic_Verb : verb; |
272 | 168k | } |
273 | | |
274 | 5.05M | SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) { |
275 | 5.05M | if (SkDPoint::ApproximatelyEqual(a[0], a[1]) && SkDPoint::ApproximatelyEqual(a[0], a[2]) |
276 | 5.05M | && SkDPoint::ApproximatelyEqual(a[0], a[3])) { |
277 | 55.6k | reducePts[0] = a[0]; |
278 | 55.6k | return SkPath::kMove_Verb; |
279 | 55.6k | } |
280 | 4.99M | SkDCubic cubic; |
281 | 4.99M | cubic.set(a); |
282 | 4.99M | SkReduceOrder reducer; |
283 | 4.99M | int order = reducer.reduce(cubic, kAllow_Quadratics); |
284 | 4.99M | if (order == 2 || order == 3) { // cubic became line or quad |
285 | 1.45M | for (int index = 0; index < order; ++index) { |
286 | 977k | *reducePts++ = reducer.fQuad[index].asSkPoint(); |
287 | 977k | } |
288 | 480k | } |
289 | 4.99M | return SkPathOpsPointsToVerb(order - 1); |
290 | 5.05M | } |