/src/skia/src/utils/SkShadowTessellator.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2017 Google Inc. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license that can be |
5 | | * found in the LICENSE file. |
6 | | */ |
7 | | |
8 | | |
9 | | #include "src/utils/SkShadowTessellator.h" |
10 | | |
11 | | #include "include/core/SkColor.h" |
12 | | #include "include/core/SkMatrix.h" |
13 | | #include "include/core/SkPath.h" |
14 | | #include "include/core/SkPoint.h" |
15 | | #include "include/core/SkPoint3.h" |
16 | | #include "include/core/SkRect.h" |
17 | | #include "include/core/SkTypes.h" |
18 | | #include "include/core/SkVertices.h" |
19 | | #include "include/private/SkColorData.h" |
20 | | #include "include/private/base/SkFloatingPoint.h" |
21 | | #include "include/private/base/SkTDArray.h" |
22 | | #include "include/private/base/SkTemplates.h" |
23 | | #include "src/core/SkDrawShadowInfo.h" |
24 | | #include "src/core/SkGeometry.h" |
25 | | #include "src/core/SkPointPriv.h" |
26 | | #include "src/core/SkRectPriv.h" |
27 | | #include "src/utils/SkPolyUtils.h" |
28 | | |
29 | | #include <algorithm> |
30 | | #include <cstdint> |
31 | | |
32 | | |
33 | | #if defined(SK_GANESH) |
34 | | #include "src/gpu/ganesh/geometry/GrPathUtils.h" |
35 | | #endif |
36 | | |
37 | | using namespace skia_private; |
38 | | |
39 | | #if !defined(SK_ENABLE_OPTIMIZE_SIZE) |
40 | | |
41 | | /** |
42 | | * Base class |
43 | | */ |
44 | | class SkBaseShadowTessellator { |
45 | | public: |
46 | | SkBaseShadowTessellator(const SkPoint3& zPlaneParams, const SkRect& bounds, bool transparent); |
47 | 0 | virtual ~SkBaseShadowTessellator() {} |
48 | | |
49 | 0 | sk_sp<SkVertices> releaseVertices() { |
50 | 0 | if (!fSucceeded) { |
51 | 0 | return nullptr; |
52 | 0 | } |
53 | 0 | return SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, this->vertexCount(), |
54 | 0 | fPositions.begin(), nullptr, fColors.begin(), |
55 | 0 | this->indexCount(), fIndices.begin()); |
56 | 0 | } |
57 | | |
58 | | protected: |
59 | | inline static constexpr auto kMinHeight = 0.1f; |
60 | | inline static constexpr auto kPenumbraColor = SK_ColorTRANSPARENT; |
61 | | inline static constexpr auto kUmbraColor = SK_ColorBLACK; |
62 | | |
63 | 0 | int vertexCount() const { return fPositions.size(); } |
64 | 0 | int indexCount() const { return fIndices.size(); } |
65 | | |
66 | | // initialization methods |
67 | | bool accumulateCentroid(const SkPoint& c, const SkPoint& n); |
68 | | bool checkConvexity(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2); |
69 | | void finishPathPolygon(); |
70 | | |
71 | | // convex shadow methods |
72 | | bool computeConvexShadow(SkScalar inset, SkScalar outset, bool doClip); |
73 | | void computeClipVectorsAndTestCentroid(); |
74 | | bool clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, SkPoint* clipPoint); |
75 | | void addEdge(const SkVector& nextPoint, const SkVector& nextNormal, SkColor umbraColor, |
76 | | const SkTDArray<SkPoint>& umbraPolygon, bool lastEdge, bool doClip); |
77 | | bool addInnerPoint(const SkPoint& pathPoint, SkColor umbraColor, |
78 | | const SkTDArray<SkPoint>& umbraPolygon, int* currUmbraIndex); |
79 | | int getClosestUmbraIndex(const SkPoint& point, const SkTDArray<SkPoint>& umbraPolygon); |
80 | | |
81 | | // concave shadow methods |
82 | | bool computeConcaveShadow(SkScalar inset, SkScalar outset); |
83 | | void stitchConcaveRings(const SkTDArray<SkPoint>& umbraPolygon, |
84 | | SkTDArray<int>* umbraIndices, |
85 | | const SkTDArray<SkPoint>& penumbraPolygon, |
86 | | SkTDArray<int>* penumbraIndices); |
87 | | |
88 | | void handleLine(const SkPoint& p); |
89 | | void handleLine(const SkMatrix& m, SkPoint* p); |
90 | | |
91 | | void handleQuad(const SkPoint pts[3]); |
92 | | void handleQuad(const SkMatrix& m, SkPoint pts[3]); |
93 | | |
94 | | void handleCubic(const SkMatrix& m, SkPoint pts[4]); |
95 | | |
96 | | void handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w); |
97 | | |
98 | | bool addArc(const SkVector& nextNormal, SkScalar offset, bool finishArc); |
99 | | |
100 | | void appendTriangle(uint16_t index0, uint16_t index1, uint16_t index2); |
101 | | void appendQuad(uint16_t index0, uint16_t index1, uint16_t index2, uint16_t index3); |
102 | | |
103 | 0 | SkScalar heightFunc(SkScalar x, SkScalar y) { |
104 | 0 | return fZPlaneParams.fX*x + fZPlaneParams.fY*y + fZPlaneParams.fZ; |
105 | 0 | } |
106 | | |
107 | | SkPoint3 fZPlaneParams; |
108 | | |
109 | | // temporary buffer |
110 | | SkTDArray<SkPoint> fPointBuffer; |
111 | | |
112 | | SkTDArray<SkPoint> fPositions; |
113 | | SkTDArray<SkColor> fColors; |
114 | | SkTDArray<uint16_t> fIndices; |
115 | | |
116 | | SkTDArray<SkPoint> fPathPolygon; |
117 | | SkTDArray<SkPoint> fClipPolygon; |
118 | | SkTDArray<SkVector> fClipVectors; |
119 | | |
120 | | SkRect fPathBounds; |
121 | | SkPoint fCentroid; |
122 | | SkScalar fArea; |
123 | | SkScalar fLastArea; |
124 | | SkScalar fLastCross; |
125 | | |
126 | | int fFirstVertexIndex; |
127 | | SkVector fFirstOutset; |
128 | | SkPoint fFirstPoint; |
129 | | |
130 | | bool fSucceeded; |
131 | | bool fTransparent; |
132 | | bool fIsConvex; |
133 | | bool fValidUmbra; |
134 | | |
135 | | SkScalar fDirection; |
136 | | int fPrevUmbraIndex; |
137 | | int fCurrUmbraIndex; |
138 | | int fCurrClipIndex; |
139 | | bool fPrevUmbraOutside; |
140 | | bool fFirstUmbraOutside; |
141 | | SkVector fPrevOutset; |
142 | | SkPoint fPrevPoint; |
143 | | }; |
144 | | |
145 | | static bool compute_normal(const SkPoint& p0, const SkPoint& p1, SkScalar dir, |
146 | 0 | SkVector* newNormal) { |
147 | 0 | SkVector normal; |
148 | | // compute perpendicular |
149 | 0 | normal.fX = p0.fY - p1.fY; |
150 | 0 | normal.fY = p1.fX - p0.fX; |
151 | 0 | normal *= dir; |
152 | 0 | if (!normal.normalize()) { |
153 | 0 | return false; |
154 | 0 | } |
155 | 0 | *newNormal = normal; |
156 | 0 | return true; |
157 | 0 | } |
158 | | |
159 | 0 | static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { |
160 | 0 | static constexpr SkScalar kClose = (SK_Scalar1 / 16); |
161 | 0 | static constexpr SkScalar kCloseSqd = kClose * kClose; |
162 | |
|
163 | 0 | SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1); |
164 | 0 | return distSq < kCloseSqd; |
165 | 0 | } |
166 | | |
167 | 0 | static SkScalar perp_dot(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
168 | 0 | SkVector v0 = p1 - p0; |
169 | 0 | SkVector v1 = p2 - p1; |
170 | 0 | return v0.cross(v1); |
171 | 0 | } |
172 | | |
173 | | SkBaseShadowTessellator::SkBaseShadowTessellator(const SkPoint3& zPlaneParams, const SkRect& bounds, |
174 | | bool transparent) |
175 | | : fZPlaneParams(zPlaneParams) |
176 | | , fPathBounds(bounds) |
177 | | , fCentroid({0, 0}) |
178 | | , fArea(0) |
179 | | , fLastArea(0) |
180 | | , fLastCross(0) |
181 | | , fFirstVertexIndex(-1) |
182 | | , fSucceeded(false) |
183 | | , fTransparent(transparent) |
184 | | , fIsConvex(true) |
185 | | , fValidUmbra(true) |
186 | | , fDirection(1) |
187 | | , fPrevUmbraIndex(-1) |
188 | | , fCurrUmbraIndex(0) |
189 | | , fCurrClipIndex(0) |
190 | | , fPrevUmbraOutside(false) |
191 | 0 | , fFirstUmbraOutside(false) { |
192 | | // child classes will set reserve for positions, colors and indices |
193 | 0 | } |
194 | | |
195 | 0 | bool SkBaseShadowTessellator::accumulateCentroid(const SkPoint& curr, const SkPoint& next) { |
196 | 0 | if (duplicate_pt(curr, next)) { |
197 | 0 | return false; |
198 | 0 | } |
199 | | |
200 | 0 | SkASSERT(!fPathPolygon.empty()); |
201 | 0 | SkVector v0 = curr - fPathPolygon[0]; |
202 | 0 | SkVector v1 = next - fPathPolygon[0]; |
203 | 0 | SkScalar quadArea = v0.cross(v1); |
204 | 0 | fCentroid.fX += (v0.fX + v1.fX) * quadArea; |
205 | 0 | fCentroid.fY += (v0.fY + v1.fY) * quadArea; |
206 | 0 | fArea += quadArea; |
207 | | // convexity check |
208 | 0 | if (quadArea*fLastArea < 0) { |
209 | 0 | fIsConvex = false; |
210 | 0 | } |
211 | 0 | if (0 != quadArea) { |
212 | 0 | fLastArea = quadArea; |
213 | 0 | } |
214 | |
|
215 | 0 | return true; |
216 | 0 | } Unexecuted instantiation: SkBaseShadowTessellator::accumulateCentroid(SkPoint const&, SkPoint const&) Unexecuted instantiation: SkBaseShadowTessellator::accumulateCentroid(SkPoint const&, SkPoint const&) |
217 | | |
218 | | bool SkBaseShadowTessellator::checkConvexity(const SkPoint& p0, |
219 | | const SkPoint& p1, |
220 | 0 | const SkPoint& p2) { |
221 | 0 | SkScalar cross = perp_dot(p0, p1, p2); |
222 | | // skip collinear point |
223 | 0 | if (SkScalarNearlyZero(cross)) { |
224 | 0 | return false; |
225 | 0 | } |
226 | | |
227 | | // check for convexity |
228 | 0 | if (fLastCross*cross < 0) { |
229 | 0 | fIsConvex = false; |
230 | 0 | } |
231 | 0 | if (0 != cross) { |
232 | 0 | fLastCross = cross; |
233 | 0 | } |
234 | |
|
235 | 0 | return true; |
236 | 0 | } |
237 | | |
238 | 0 | void SkBaseShadowTessellator::finishPathPolygon() { |
239 | 0 | if (fPathPolygon.size() > 1) { |
240 | 0 | if (!this->accumulateCentroid(fPathPolygon[fPathPolygon.size() - 1], fPathPolygon[0])) { |
241 | | // remove coincident point |
242 | 0 | fPathPolygon.pop_back(); |
243 | 0 | } |
244 | 0 | } |
245 | |
|
246 | 0 | if (fPathPolygon.size() > 2) { |
247 | | // do this before the final convexity check, so we use the correct fPathPolygon[0] |
248 | 0 | fCentroid *= sk_ieee_float_divide(1, 3 * fArea); |
249 | 0 | fCentroid += fPathPolygon[0]; |
250 | 0 | if (!checkConvexity(fPathPolygon[fPathPolygon.size() - 2], |
251 | 0 | fPathPolygon[fPathPolygon.size() - 1], |
252 | 0 | fPathPolygon[0])) { |
253 | | // remove collinear point |
254 | 0 | fPathPolygon[0] = fPathPolygon[fPathPolygon.size() - 1]; |
255 | 0 | fPathPolygon.pop_back(); |
256 | 0 | } |
257 | 0 | } |
258 | | |
259 | | // if area is positive, winding is ccw |
260 | 0 | fDirection = fArea > 0 ? -1 : 1; |
261 | 0 | } |
262 | | |
263 | 0 | bool SkBaseShadowTessellator::computeConvexShadow(SkScalar inset, SkScalar outset, bool doClip) { |
264 | 0 | if (doClip) { |
265 | 0 | this->computeClipVectorsAndTestCentroid(); |
266 | 0 | } |
267 | | |
268 | | // adjust inset distance and umbra color if necessary |
269 | 0 | auto umbraColor = kUmbraColor; |
270 | 0 | SkScalar minDistSq = SkPointPriv::DistanceToLineSegmentBetweenSqd(fCentroid, |
271 | 0 | fPathPolygon[0], |
272 | 0 | fPathPolygon[1]); |
273 | 0 | SkRect bounds; |
274 | 0 | bounds.setBounds(&fPathPolygon[0], fPathPolygon.size()); |
275 | 0 | for (int i = 1; i < fPathPolygon.size(); ++i) { |
276 | 0 | int j = i + 1; |
277 | 0 | if (i == fPathPolygon.size() - 1) { |
278 | 0 | j = 0; |
279 | 0 | } |
280 | 0 | SkPoint currPoint = fPathPolygon[i]; |
281 | 0 | SkPoint nextPoint = fPathPolygon[j]; |
282 | 0 | SkScalar distSq = SkPointPriv::DistanceToLineSegmentBetweenSqd(fCentroid, currPoint, |
283 | 0 | nextPoint); |
284 | 0 | if (distSq < minDistSq) { |
285 | 0 | minDistSq = distSq; |
286 | 0 | } |
287 | 0 | } |
288 | |
|
289 | 0 | SkTDArray<SkPoint> insetPolygon; |
290 | 0 | if (inset > SK_ScalarNearlyZero) { |
291 | 0 | static constexpr auto kTolerance = 1.0e-2f; |
292 | 0 | if (minDistSq < (inset + kTolerance)*(inset + kTolerance)) { |
293 | | // if the umbra would collapse, we back off a bit on inner blur and adjust the alpha |
294 | 0 | auto newInset = SkScalarSqrt(minDistSq) - kTolerance; |
295 | 0 | auto ratio = 128 * (newInset / inset + 1); |
296 | 0 | SkASSERT(SkIsFinite(ratio)); |
297 | | // they aren't PMColors, but the interpolation algorithm is the same |
298 | 0 | umbraColor = SkPMLerp(kUmbraColor, kPenumbraColor, (unsigned)ratio); |
299 | 0 | inset = newInset; |
300 | 0 | } |
301 | | |
302 | | // generate inner ring |
303 | 0 | if (!SkInsetConvexPolygon(&fPathPolygon[0], fPathPolygon.size(), inset, |
304 | 0 | &insetPolygon)) { |
305 | | // not ideal, but in this case we'll inset using the centroid |
306 | 0 | fValidUmbra = false; |
307 | 0 | } |
308 | 0 | } |
309 | 0 | const SkTDArray<SkPoint>& umbraPolygon = (inset > SK_ScalarNearlyZero) ? insetPolygon |
310 | 0 | : fPathPolygon; |
311 | | |
312 | | // walk around the path polygon, generate outer ring and connect to inner ring |
313 | 0 | if (fTransparent) { |
314 | 0 | fPositions.push_back(fCentroid); |
315 | 0 | fColors.push_back(umbraColor); |
316 | 0 | } |
317 | 0 | fCurrUmbraIndex = 0; |
318 | | |
319 | | // initial setup |
320 | | // add first quad |
321 | 0 | int polyCount = fPathPolygon.size(); |
322 | 0 | if (!compute_normal(fPathPolygon[polyCount - 1], fPathPolygon[0], fDirection, &fFirstOutset)) { |
323 | | // polygon should be sanitized by this point, so this is unrecoverable |
324 | 0 | return false; |
325 | 0 | } |
326 | | |
327 | 0 | fFirstOutset *= outset; |
328 | 0 | fFirstPoint = fPathPolygon[polyCount - 1]; |
329 | 0 | fFirstVertexIndex = fPositions.size(); |
330 | 0 | fPrevOutset = fFirstOutset; |
331 | 0 | fPrevPoint = fFirstPoint; |
332 | 0 | fPrevUmbraIndex = -1; |
333 | |
|
334 | 0 | this->addInnerPoint(fFirstPoint, umbraColor, umbraPolygon, &fPrevUmbraIndex); |
335 | |
|
336 | 0 | if (!fTransparent && doClip) { |
337 | 0 | SkPoint clipPoint; |
338 | 0 | bool isOutside = this->clipUmbraPoint(fPositions[fFirstVertexIndex], |
339 | 0 | fCentroid, &clipPoint); |
340 | 0 | if (isOutside) { |
341 | 0 | fPositions.push_back(clipPoint); |
342 | 0 | fColors.push_back(umbraColor); |
343 | 0 | } |
344 | 0 | fPrevUmbraOutside = isOutside; |
345 | 0 | fFirstUmbraOutside = isOutside; |
346 | 0 | } |
347 | |
|
348 | 0 | SkPoint newPoint = fFirstPoint + fFirstOutset; |
349 | 0 | fPositions.push_back(newPoint); |
350 | 0 | fColors.push_back(kPenumbraColor); |
351 | 0 | this->addEdge(fPathPolygon[0], fFirstOutset, umbraColor, umbraPolygon, false, doClip); |
352 | |
|
353 | 0 | for (int i = 1; i < polyCount; ++i) { |
354 | 0 | SkVector normal; |
355 | 0 | if (!compute_normal(fPrevPoint, fPathPolygon[i], fDirection, &normal)) { |
356 | 0 | return false; |
357 | 0 | } |
358 | 0 | normal *= outset; |
359 | 0 | this->addArc(normal, outset, true); |
360 | 0 | this->addEdge(fPathPolygon[i], normal, umbraColor, umbraPolygon, |
361 | 0 | i == polyCount - 1, doClip); |
362 | 0 | } |
363 | 0 | SkASSERT(this->indexCount()); |
364 | | |
365 | | // final fan |
366 | 0 | SkASSERT(fPositions.size() >= 3); |
367 | 0 | if (this->addArc(fFirstOutset, outset, false)) { |
368 | 0 | if (fFirstUmbraOutside) { |
369 | 0 | this->appendTriangle(fFirstVertexIndex, fPositions.size() - 1, |
370 | 0 | fFirstVertexIndex + 2); |
371 | 0 | } else { |
372 | 0 | this->appendTriangle(fFirstVertexIndex, fPositions.size() - 1, |
373 | 0 | fFirstVertexIndex + 1); |
374 | 0 | } |
375 | 0 | } else { |
376 | | // no arc added, fix up by setting first penumbra point position to last one |
377 | 0 | if (fFirstUmbraOutside) { |
378 | 0 | fPositions[fFirstVertexIndex + 2] = fPositions[fPositions.size() - 1]; |
379 | 0 | } else { |
380 | 0 | fPositions[fFirstVertexIndex + 1] = fPositions[fPositions.size() - 1]; |
381 | 0 | } |
382 | 0 | } |
383 | |
|
384 | 0 | return true; |
385 | 0 | } Unexecuted instantiation: SkBaseShadowTessellator::computeConvexShadow(float, float, bool) Unexecuted instantiation: SkBaseShadowTessellator::computeConvexShadow(float, float, bool) |
386 | | |
387 | 0 | void SkBaseShadowTessellator::computeClipVectorsAndTestCentroid() { |
388 | 0 | SkASSERT(fClipPolygon.size() >= 3); |
389 | 0 | fCurrClipIndex = fClipPolygon.size() - 1; |
390 | | |
391 | | // init clip vectors |
392 | 0 | SkVector v0 = fClipPolygon[1] - fClipPolygon[0]; |
393 | 0 | SkVector v1 = fClipPolygon[2] - fClipPolygon[0]; |
394 | 0 | fClipVectors.push_back(v0); |
395 | | |
396 | | // init centroid check |
397 | 0 | bool hiddenCentroid = true; |
398 | 0 | v1 = fCentroid - fClipPolygon[0]; |
399 | 0 | SkScalar initCross = v0.cross(v1); |
400 | |
|
401 | 0 | for (int p = 1; p < fClipPolygon.size(); ++p) { |
402 | | // add to clip vectors |
403 | 0 | v0 = fClipPolygon[(p + 1) % fClipPolygon.size()] - fClipPolygon[p]; |
404 | 0 | fClipVectors.push_back(v0); |
405 | | // Determine if transformed centroid is inside clipPolygon. |
406 | 0 | v1 = fCentroid - fClipPolygon[p]; |
407 | 0 | if (initCross*v0.cross(v1) <= 0) { |
408 | 0 | hiddenCentroid = false; |
409 | 0 | } |
410 | 0 | } |
411 | 0 | SkASSERT(fClipVectors.size() == fClipPolygon.size()); |
412 | |
|
413 | 0 | fTransparent = fTransparent || !hiddenCentroid; |
414 | 0 | } Unexecuted instantiation: SkBaseShadowTessellator::computeClipVectorsAndTestCentroid() Unexecuted instantiation: SkBaseShadowTessellator::computeClipVectorsAndTestCentroid() |
415 | | |
416 | | void SkBaseShadowTessellator::addEdge(const SkPoint& nextPoint, const SkVector& nextNormal, |
417 | | SkColor umbraColor, const SkTDArray<SkPoint>& umbraPolygon, |
418 | 0 | bool lastEdge, bool doClip) { |
419 | | // add next umbra point |
420 | 0 | int currUmbraIndex; |
421 | 0 | bool duplicate; |
422 | 0 | if (lastEdge) { |
423 | 0 | duplicate = false; |
424 | 0 | currUmbraIndex = fFirstVertexIndex; |
425 | 0 | fPrevPoint = nextPoint; |
426 | 0 | } else { |
427 | 0 | duplicate = this->addInnerPoint(nextPoint, umbraColor, umbraPolygon, &currUmbraIndex); |
428 | 0 | } |
429 | 0 | int prevPenumbraIndex = duplicate || (currUmbraIndex == fFirstVertexIndex) |
430 | 0 | ? fPositions.size() - 1 |
431 | 0 | : fPositions.size() - 2; |
432 | 0 | if (!duplicate) { |
433 | | // add to center fan if transparent or centroid showing |
434 | 0 | if (fTransparent) { |
435 | 0 | this->appendTriangle(0, fPrevUmbraIndex, currUmbraIndex); |
436 | | // otherwise add to clip ring |
437 | 0 | } else if (doClip) { |
438 | 0 | SkPoint clipPoint; |
439 | 0 | bool isOutside = lastEdge ? fFirstUmbraOutside |
440 | 0 | : this->clipUmbraPoint(fPositions[currUmbraIndex], fCentroid, |
441 | 0 | &clipPoint); |
442 | 0 | if (isOutside) { |
443 | 0 | if (!lastEdge) { |
444 | 0 | fPositions.push_back(clipPoint); |
445 | 0 | fColors.push_back(umbraColor); |
446 | 0 | } |
447 | 0 | this->appendTriangle(fPrevUmbraIndex, currUmbraIndex, currUmbraIndex + 1); |
448 | 0 | if (fPrevUmbraOutside) { |
449 | | // fill out quad |
450 | 0 | this->appendTriangle(fPrevUmbraIndex, currUmbraIndex + 1, |
451 | 0 | fPrevUmbraIndex + 1); |
452 | 0 | } |
453 | 0 | } else if (fPrevUmbraOutside) { |
454 | | // add tri |
455 | 0 | this->appendTriangle(fPrevUmbraIndex, currUmbraIndex, fPrevUmbraIndex + 1); |
456 | 0 | } |
457 | |
|
458 | 0 | fPrevUmbraOutside = isOutside; |
459 | 0 | } |
460 | 0 | } |
461 | | |
462 | | // add next penumbra point and quad |
463 | 0 | SkPoint newPoint = nextPoint + nextNormal; |
464 | 0 | fPositions.push_back(newPoint); |
465 | 0 | fColors.push_back(kPenumbraColor); |
466 | |
|
467 | 0 | if (!duplicate) { |
468 | 0 | this->appendTriangle(fPrevUmbraIndex, prevPenumbraIndex, currUmbraIndex); |
469 | 0 | } |
470 | 0 | this->appendTriangle(prevPenumbraIndex, fPositions.size() - 1, currUmbraIndex); |
471 | |
|
472 | 0 | fPrevUmbraIndex = currUmbraIndex; |
473 | 0 | fPrevOutset = nextNormal; |
474 | 0 | } |
475 | | |
476 | | bool SkBaseShadowTessellator::clipUmbraPoint(const SkPoint& umbraPoint, const SkPoint& centroid, |
477 | 0 | SkPoint* clipPoint) { |
478 | 0 | SkVector segmentVector = centroid - umbraPoint; |
479 | |
|
480 | 0 | int startClipPoint = fCurrClipIndex; |
481 | 0 | do { |
482 | 0 | SkVector dp = umbraPoint - fClipPolygon[fCurrClipIndex]; |
483 | 0 | SkScalar denom = fClipVectors[fCurrClipIndex].cross(segmentVector); |
484 | 0 | SkScalar t_num = dp.cross(segmentVector); |
485 | | // if line segments are nearly parallel |
486 | 0 | if (SkScalarNearlyZero(denom)) { |
487 | | // and collinear |
488 | 0 | if (SkScalarNearlyZero(t_num)) { |
489 | 0 | return false; |
490 | 0 | } |
491 | | // otherwise are separate, will try the next poly segment |
492 | | // else if crossing lies within poly segment |
493 | 0 | } else if (t_num >= 0 && t_num <= denom) { |
494 | 0 | SkScalar s_num = dp.cross(fClipVectors[fCurrClipIndex]); |
495 | | // if umbra point is inside the clip polygon |
496 | 0 | if (s_num >= 0 && s_num <= denom) { |
497 | 0 | segmentVector *= s_num / denom; |
498 | 0 | *clipPoint = umbraPoint + segmentVector; |
499 | 0 | return true; |
500 | 0 | } |
501 | 0 | } |
502 | 0 | fCurrClipIndex = (fCurrClipIndex + 1) % fClipPolygon.size(); |
503 | 0 | } while (fCurrClipIndex != startClipPoint); |
504 | | |
505 | 0 | return false; |
506 | 0 | } |
507 | | |
508 | | bool SkBaseShadowTessellator::addInnerPoint(const SkPoint& pathPoint, SkColor umbraColor, |
509 | | const SkTDArray<SkPoint>& umbraPolygon, |
510 | 0 | int* currUmbraIndex) { |
511 | 0 | SkPoint umbraPoint; |
512 | 0 | if (!fValidUmbra) { |
513 | 0 | SkVector v = fCentroid - pathPoint; |
514 | 0 | v *= 0.95f; |
515 | 0 | umbraPoint = pathPoint + v; |
516 | 0 | } else { |
517 | 0 | umbraPoint = umbraPolygon[this->getClosestUmbraIndex(pathPoint, umbraPolygon)]; |
518 | 0 | } |
519 | |
|
520 | 0 | fPrevPoint = pathPoint; |
521 | | |
522 | | // merge "close" points |
523 | 0 | if (fPrevUmbraIndex == -1 || |
524 | 0 | !duplicate_pt(umbraPoint, fPositions[fPrevUmbraIndex])) { |
525 | | // if we've wrapped around, don't add a new point |
526 | 0 | if (fPrevUmbraIndex >= 0 && duplicate_pt(umbraPoint, fPositions[fFirstVertexIndex])) { |
527 | 0 | *currUmbraIndex = fFirstVertexIndex; |
528 | 0 | } else { |
529 | 0 | *currUmbraIndex = fPositions.size(); |
530 | 0 | fPositions.push_back(umbraPoint); |
531 | 0 | fColors.push_back(umbraColor); |
532 | 0 | } |
533 | 0 | return false; |
534 | 0 | } else { |
535 | 0 | *currUmbraIndex = fPrevUmbraIndex; |
536 | 0 | return true; |
537 | 0 | } |
538 | 0 | } |
539 | | |
540 | | int SkBaseShadowTessellator::getClosestUmbraIndex(const SkPoint& p, |
541 | 0 | const SkTDArray<SkPoint>& umbraPolygon) { |
542 | 0 | SkScalar minDistance = SkPointPriv::DistanceToSqd(p, umbraPolygon[fCurrUmbraIndex]); |
543 | 0 | int index = fCurrUmbraIndex; |
544 | 0 | int dir = 1; |
545 | 0 | int next = (index + dir) % umbraPolygon.size(); |
546 | | |
547 | | // init travel direction |
548 | 0 | SkScalar distance = SkPointPriv::DistanceToSqd(p, umbraPolygon[next]); |
549 | 0 | if (distance < minDistance) { |
550 | 0 | index = next; |
551 | 0 | minDistance = distance; |
552 | 0 | } else { |
553 | 0 | dir = umbraPolygon.size() - 1; |
554 | 0 | } |
555 | | |
556 | | // iterate until we find a point that increases the distance |
557 | 0 | next = (index + dir) % umbraPolygon.size(); |
558 | 0 | distance = SkPointPriv::DistanceToSqd(p, umbraPolygon[next]); |
559 | 0 | while (distance < minDistance) { |
560 | 0 | index = next; |
561 | 0 | minDistance = distance; |
562 | 0 | next = (index + dir) % umbraPolygon.size(); |
563 | 0 | distance = SkPointPriv::DistanceToSqd(p, umbraPolygon[next]); |
564 | 0 | } |
565 | |
|
566 | 0 | fCurrUmbraIndex = index; |
567 | 0 | return index; |
568 | 0 | } |
569 | | |
570 | 0 | bool SkBaseShadowTessellator::computeConcaveShadow(SkScalar inset, SkScalar outset) { |
571 | 0 | if (!SkIsSimplePolygon(&fPathPolygon[0], fPathPolygon.size())) { |
572 | 0 | return false; |
573 | 0 | } |
574 | | |
575 | | // shouldn't inset more than the half bounds of the polygon |
576 | 0 | inset = std::min(inset, std::min(SkTAbs(SkRectPriv::HalfWidth(fPathBounds)), |
577 | 0 | SkTAbs(SkRectPriv::HalfHeight(fPathBounds)))); |
578 | | // generate inner ring |
579 | 0 | SkTDArray<SkPoint> umbraPolygon; |
580 | 0 | SkTDArray<int> umbraIndices; |
581 | 0 | umbraIndices.reserve(fPathPolygon.size()); |
582 | 0 | if (!SkOffsetSimplePolygon(&fPathPolygon[0], fPathPolygon.size(), fPathBounds, inset, |
583 | 0 | &umbraPolygon, &umbraIndices)) { |
584 | | // TODO: figure out how to handle this case |
585 | 0 | return false; |
586 | 0 | } |
587 | | |
588 | | // generate outer ring |
589 | 0 | SkTDArray<SkPoint> penumbraPolygon; |
590 | 0 | SkTDArray<int> penumbraIndices; |
591 | 0 | penumbraPolygon.reserve(umbraPolygon.size()); |
592 | 0 | penumbraIndices.reserve(umbraPolygon.size()); |
593 | 0 | if (!SkOffsetSimplePolygon(&fPathPolygon[0], fPathPolygon.size(), fPathBounds, -outset, |
594 | 0 | &penumbraPolygon, &penumbraIndices)) { |
595 | | // TODO: figure out how to handle this case |
596 | 0 | return false; |
597 | 0 | } |
598 | | |
599 | 0 | if (umbraPolygon.empty() || penumbraPolygon.empty()) { |
600 | 0 | return false; |
601 | 0 | } |
602 | | |
603 | | // attach the rings together |
604 | 0 | this->stitchConcaveRings(umbraPolygon, &umbraIndices, penumbraPolygon, &penumbraIndices); |
605 | |
|
606 | 0 | return true; |
607 | 0 | } |
608 | | |
609 | | void SkBaseShadowTessellator::stitchConcaveRings(const SkTDArray<SkPoint>& umbraPolygon, |
610 | | SkTDArray<int>* umbraIndices, |
611 | | const SkTDArray<SkPoint>& penumbraPolygon, |
612 | 0 | SkTDArray<int>* penumbraIndices) { |
613 | | // TODO: only create and fill indexMap when fTransparent is true? |
614 | 0 | AutoSTMalloc<64, uint16_t> indexMap(umbraPolygon.size()); |
615 | | |
616 | | // find minimum indices |
617 | 0 | int minIndex = 0; |
618 | 0 | int min = (*penumbraIndices)[0]; |
619 | 0 | for (int i = 1; i < (*penumbraIndices).size(); ++i) { |
620 | 0 | if ((*penumbraIndices)[i] < min) { |
621 | 0 | min = (*penumbraIndices)[i]; |
622 | 0 | minIndex = i; |
623 | 0 | } |
624 | 0 | } |
625 | 0 | int currPenumbra = minIndex; |
626 | |
|
627 | 0 | minIndex = 0; |
628 | 0 | min = (*umbraIndices)[0]; |
629 | 0 | for (int i = 1; i < (*umbraIndices).size(); ++i) { |
630 | 0 | if ((*umbraIndices)[i] < min) { |
631 | 0 | min = (*umbraIndices)[i]; |
632 | 0 | minIndex = i; |
633 | 0 | } |
634 | 0 | } |
635 | 0 | int currUmbra = minIndex; |
636 | | |
637 | | // now find a case where the indices are equal (there should be at least one) |
638 | 0 | int maxPenumbraIndex = fPathPolygon.size() - 1; |
639 | 0 | int maxUmbraIndex = fPathPolygon.size() - 1; |
640 | 0 | while ((*penumbraIndices)[currPenumbra] != (*umbraIndices)[currUmbra]) { |
641 | 0 | if ((*penumbraIndices)[currPenumbra] < (*umbraIndices)[currUmbra]) { |
642 | 0 | (*penumbraIndices)[currPenumbra] += fPathPolygon.size(); |
643 | 0 | maxPenumbraIndex = (*penumbraIndices)[currPenumbra]; |
644 | 0 | currPenumbra = (currPenumbra + 1) % penumbraPolygon.size(); |
645 | 0 | } else { |
646 | 0 | (*umbraIndices)[currUmbra] += fPathPolygon.size(); |
647 | 0 | maxUmbraIndex = (*umbraIndices)[currUmbra]; |
648 | 0 | currUmbra = (currUmbra + 1) % umbraPolygon.size(); |
649 | 0 | } |
650 | 0 | } |
651 | |
|
652 | 0 | fPositions.push_back(penumbraPolygon[currPenumbra]); |
653 | 0 | fColors.push_back(kPenumbraColor); |
654 | 0 | int prevPenumbraIndex = 0; |
655 | 0 | fPositions.push_back(umbraPolygon[currUmbra]); |
656 | 0 | fColors.push_back(kUmbraColor); |
657 | 0 | fPrevUmbraIndex = 1; |
658 | 0 | indexMap[currUmbra] = 1; |
659 | |
|
660 | 0 | int nextPenumbra = (currPenumbra + 1) % penumbraPolygon.size(); |
661 | 0 | int nextUmbra = (currUmbra + 1) % umbraPolygon.size(); |
662 | 0 | while ((*penumbraIndices)[nextPenumbra] <= maxPenumbraIndex || |
663 | 0 | (*umbraIndices)[nextUmbra] <= maxUmbraIndex) { |
664 | |
|
665 | 0 | if ((*umbraIndices)[nextUmbra] == (*penumbraIndices)[nextPenumbra]) { |
666 | | // advance both one step |
667 | 0 | fPositions.push_back(penumbraPolygon[nextPenumbra]); |
668 | 0 | fColors.push_back(kPenumbraColor); |
669 | 0 | int currPenumbraIndex = fPositions.size() - 1; |
670 | |
|
671 | 0 | fPositions.push_back(umbraPolygon[nextUmbra]); |
672 | 0 | fColors.push_back(kUmbraColor); |
673 | 0 | int currUmbraIndex = fPositions.size() - 1; |
674 | 0 | indexMap[nextUmbra] = currUmbraIndex; |
675 | |
|
676 | 0 | this->appendQuad(prevPenumbraIndex, currPenumbraIndex, |
677 | 0 | fPrevUmbraIndex, currUmbraIndex); |
678 | |
|
679 | 0 | prevPenumbraIndex = currPenumbraIndex; |
680 | 0 | (*penumbraIndices)[currPenumbra] += fPathPolygon.size(); |
681 | 0 | currPenumbra = nextPenumbra; |
682 | 0 | nextPenumbra = (currPenumbra + 1) % penumbraPolygon.size(); |
683 | |
|
684 | 0 | fPrevUmbraIndex = currUmbraIndex; |
685 | 0 | (*umbraIndices)[currUmbra] += fPathPolygon.size(); |
686 | 0 | currUmbra = nextUmbra; |
687 | 0 | nextUmbra = (currUmbra + 1) % umbraPolygon.size(); |
688 | 0 | } |
689 | |
|
690 | 0 | while ((*penumbraIndices)[nextPenumbra] < (*umbraIndices)[nextUmbra] && |
691 | 0 | (*penumbraIndices)[nextPenumbra] <= maxPenumbraIndex) { |
692 | | // fill out penumbra arc |
693 | 0 | fPositions.push_back(penumbraPolygon[nextPenumbra]); |
694 | 0 | fColors.push_back(kPenumbraColor); |
695 | 0 | int currPenumbraIndex = fPositions.size() - 1; |
696 | |
|
697 | 0 | this->appendTriangle(prevPenumbraIndex, currPenumbraIndex, fPrevUmbraIndex); |
698 | |
|
699 | 0 | prevPenumbraIndex = currPenumbraIndex; |
700 | | // this ensures the ordering when we wrap around |
701 | 0 | (*penumbraIndices)[currPenumbra] += fPathPolygon.size(); |
702 | 0 | currPenumbra = nextPenumbra; |
703 | 0 | nextPenumbra = (currPenumbra + 1) % penumbraPolygon.size(); |
704 | 0 | } |
705 | |
|
706 | 0 | while ((*umbraIndices)[nextUmbra] < (*penumbraIndices)[nextPenumbra] && |
707 | 0 | (*umbraIndices)[nextUmbra] <= maxUmbraIndex) { |
708 | | // fill out umbra arc |
709 | 0 | fPositions.push_back(umbraPolygon[nextUmbra]); |
710 | 0 | fColors.push_back(kUmbraColor); |
711 | 0 | int currUmbraIndex = fPositions.size() - 1; |
712 | 0 | indexMap[nextUmbra] = currUmbraIndex; |
713 | |
|
714 | 0 | this->appendTriangle(fPrevUmbraIndex, prevPenumbraIndex, currUmbraIndex); |
715 | |
|
716 | 0 | fPrevUmbraIndex = currUmbraIndex; |
717 | | // this ensures the ordering when we wrap around |
718 | 0 | (*umbraIndices)[currUmbra] += fPathPolygon.size(); |
719 | 0 | currUmbra = nextUmbra; |
720 | 0 | nextUmbra = (currUmbra + 1) % umbraPolygon.size(); |
721 | 0 | } |
722 | 0 | } |
723 | | // finish up by advancing both one step |
724 | 0 | fPositions.push_back(penumbraPolygon[nextPenumbra]); |
725 | 0 | fColors.push_back(kPenumbraColor); |
726 | 0 | int currPenumbraIndex = fPositions.size() - 1; |
727 | |
|
728 | 0 | fPositions.push_back(umbraPolygon[nextUmbra]); |
729 | 0 | fColors.push_back(kUmbraColor); |
730 | 0 | int currUmbraIndex = fPositions.size() - 1; |
731 | 0 | indexMap[nextUmbra] = currUmbraIndex; |
732 | |
|
733 | 0 | this->appendQuad(prevPenumbraIndex, currPenumbraIndex, |
734 | 0 | fPrevUmbraIndex, currUmbraIndex); |
735 | |
|
736 | 0 | if (fTransparent) { |
737 | 0 | SkTriangulateSimplePolygon(umbraPolygon.begin(), indexMap, umbraPolygon.size(), |
738 | 0 | &fIndices); |
739 | 0 | } |
740 | 0 | } |
741 | | |
742 | | |
743 | | // tesselation tolerance values, in device space pixels |
744 | | #if defined(SK_GANESH) |
745 | | static constexpr SkScalar kQuadTolerance = 0.2f; |
746 | | static constexpr SkScalar kCubicTolerance = 0.2f; |
747 | | static constexpr SkScalar kQuadToleranceSqd = kQuadTolerance * kQuadTolerance; |
748 | | static constexpr SkScalar kCubicToleranceSqd = kCubicTolerance * kCubicTolerance; |
749 | | #endif |
750 | | static constexpr SkScalar kConicTolerance = 0.25f; |
751 | | |
752 | | // clamps the point to the nearest 16th of a pixel |
753 | 0 | static void sanitize_point(const SkPoint& in, SkPoint* out) { |
754 | 0 | out->fX = SkScalarRoundToScalar(16.f*in.fX)*0.0625f; |
755 | 0 | out->fY = SkScalarRoundToScalar(16.f*in.fY)*0.0625f; |
756 | 0 | } |
757 | | |
758 | 0 | void SkBaseShadowTessellator::handleLine(const SkPoint& p) { |
759 | 0 | SkPoint pSanitized; |
760 | 0 | sanitize_point(p, &pSanitized); |
761 | |
|
762 | 0 | if (!fPathPolygon.empty()) { |
763 | 0 | if (!this->accumulateCentroid(fPathPolygon[fPathPolygon.size() - 1], pSanitized)) { |
764 | | // skip coincident point |
765 | 0 | return; |
766 | 0 | } |
767 | 0 | } |
768 | | |
769 | 0 | if (fPathPolygon.size() > 1) { |
770 | 0 | if (!checkConvexity(fPathPolygon[fPathPolygon.size() - 2], |
771 | 0 | fPathPolygon[fPathPolygon.size() - 1], |
772 | 0 | pSanitized)) { |
773 | | // remove collinear point |
774 | 0 | fPathPolygon.pop_back(); |
775 | | // it's possible that the previous point is coincident with the new one now |
776 | 0 | if (duplicate_pt(fPathPolygon[fPathPolygon.size() - 1], pSanitized)) { |
777 | 0 | fPathPolygon.pop_back(); |
778 | 0 | } |
779 | 0 | } |
780 | 0 | } |
781 | |
|
782 | 0 | fPathPolygon.push_back(pSanitized); |
783 | 0 | } |
784 | | |
785 | 0 | void SkBaseShadowTessellator::handleLine(const SkMatrix& m, SkPoint* p) { |
786 | 0 | m.mapPoints(p, 1); |
787 | |
|
788 | 0 | this->handleLine(*p); |
789 | 0 | } |
790 | | |
791 | 0 | void SkBaseShadowTessellator::handleQuad(const SkPoint pts[3]) { |
792 | 0 | #if defined(SK_GANESH) |
793 | | // check for degeneracy |
794 | 0 | SkVector v0 = pts[1] - pts[0]; |
795 | 0 | SkVector v1 = pts[2] - pts[0]; |
796 | 0 | if (SkScalarNearlyZero(v0.cross(v1))) { |
797 | 0 | return; |
798 | 0 | } |
799 | | // TODO: Pull PathUtils out of Ganesh? |
800 | 0 | int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); |
801 | 0 | fPointBuffer.resize(maxCount); |
802 | 0 | SkPoint* target = fPointBuffer.begin(); |
803 | 0 | int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], |
804 | 0 | kQuadToleranceSqd, &target, maxCount); |
805 | 0 | fPointBuffer.resize(count); |
806 | 0 | for (int i = 0; i < count; i++) { |
807 | 0 | this->handleLine(fPointBuffer[i]); |
808 | 0 | } |
809 | | #else |
810 | | // for now, just to draw something |
811 | | this->handleLine(pts[1]); |
812 | | this->handleLine(pts[2]); |
813 | | #endif |
814 | 0 | } |
815 | | |
816 | 0 | void SkBaseShadowTessellator::handleQuad(const SkMatrix& m, SkPoint pts[3]) { |
817 | 0 | m.mapPoints(pts, 3); |
818 | 0 | this->handleQuad(pts); |
819 | 0 | } |
820 | | |
821 | 0 | void SkBaseShadowTessellator::handleCubic(const SkMatrix& m, SkPoint pts[4]) { |
822 | 0 | m.mapPoints(pts, 4); |
823 | 0 | #if defined(SK_GANESH) |
824 | | // TODO: Pull PathUtils out of Ganesh? |
825 | 0 | int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); |
826 | 0 | fPointBuffer.resize(maxCount); |
827 | 0 | SkPoint* target = fPointBuffer.begin(); |
828 | 0 | int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], |
829 | 0 | kCubicToleranceSqd, &target, maxCount); |
830 | 0 | fPointBuffer.resize(count); |
831 | 0 | for (int i = 0; i < count; i++) { |
832 | 0 | this->handleLine(fPointBuffer[i]); |
833 | 0 | } |
834 | | #else |
835 | | // for now, just to draw something |
836 | | this->handleLine(pts[1]); |
837 | | this->handleLine(pts[2]); |
838 | | this->handleLine(pts[3]); |
839 | | #endif |
840 | 0 | } |
841 | | |
842 | 0 | void SkBaseShadowTessellator::handleConic(const SkMatrix& m, SkPoint pts[3], SkScalar w) { |
843 | 0 | if (m.hasPerspective()) { |
844 | 0 | w = SkConic::TransformW(pts, w, m); |
845 | 0 | } |
846 | 0 | m.mapPoints(pts, 3); |
847 | 0 | SkAutoConicToQuads quadder; |
848 | 0 | const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); |
849 | 0 | SkPoint lastPoint = *(quads++); |
850 | 0 | int count = quadder.countQuads(); |
851 | 0 | for (int i = 0; i < count; ++i) { |
852 | 0 | SkPoint quadPts[3]; |
853 | 0 | quadPts[0] = lastPoint; |
854 | 0 | quadPts[1] = quads[0]; |
855 | 0 | quadPts[2] = i == count - 1 ? pts[2] : quads[1]; |
856 | 0 | this->handleQuad(quadPts); |
857 | 0 | lastPoint = quadPts[2]; |
858 | 0 | quads += 2; |
859 | 0 | } |
860 | 0 | } |
861 | | |
862 | 0 | bool SkBaseShadowTessellator::addArc(const SkVector& nextNormal, SkScalar offset, bool finishArc) { |
863 | | // fill in fan from previous quad |
864 | 0 | SkScalar rotSin, rotCos; |
865 | 0 | int numSteps; |
866 | 0 | if (!SkComputeRadialSteps(fPrevOutset, nextNormal, offset, &rotSin, &rotCos, &numSteps)) { |
867 | | // recover as best we can |
868 | 0 | numSteps = 0; |
869 | 0 | } |
870 | 0 | SkVector prevNormal = fPrevOutset; |
871 | 0 | for (int i = 0; i < numSteps-1; ++i) { |
872 | 0 | SkVector currNormal; |
873 | 0 | currNormal.fX = prevNormal.fX*rotCos - prevNormal.fY*rotSin; |
874 | 0 | currNormal.fY = prevNormal.fY*rotCos + prevNormal.fX*rotSin; |
875 | 0 | fPositions.push_back(fPrevPoint + currNormal); |
876 | 0 | fColors.push_back(kPenumbraColor); |
877 | 0 | this->appendTriangle(fPrevUmbraIndex, fPositions.size() - 1, fPositions.size() - 2); |
878 | |
|
879 | 0 | prevNormal = currNormal; |
880 | 0 | } |
881 | 0 | if (finishArc && numSteps) { |
882 | 0 | fPositions.push_back(fPrevPoint + nextNormal); |
883 | 0 | fColors.push_back(kPenumbraColor); |
884 | 0 | this->appendTriangle(fPrevUmbraIndex, fPositions.size() - 1, fPositions.size() - 2); |
885 | 0 | } |
886 | 0 | fPrevOutset = nextNormal; |
887 | |
|
888 | 0 | return (numSteps > 0); |
889 | 0 | } |
890 | | |
891 | 0 | void SkBaseShadowTessellator::appendTriangle(uint16_t index0, uint16_t index1, uint16_t index2) { |
892 | 0 | auto indices = fIndices.append(3); |
893 | |
|
894 | 0 | indices[0] = index0; |
895 | 0 | indices[1] = index1; |
896 | 0 | indices[2] = index2; |
897 | 0 | } |
898 | | |
899 | | void SkBaseShadowTessellator::appendQuad(uint16_t index0, uint16_t index1, |
900 | 0 | uint16_t index2, uint16_t index3) { |
901 | 0 | auto indices = fIndices.append(6); |
902 | |
|
903 | 0 | indices[0] = index0; |
904 | 0 | indices[1] = index1; |
905 | 0 | indices[2] = index2; |
906 | |
|
907 | 0 | indices[3] = index2; |
908 | 0 | indices[4] = index1; |
909 | 0 | indices[5] = index3; |
910 | 0 | } |
911 | | |
912 | | ////////////////////////////////////////////////////////////////////////////////////////////////// |
913 | | |
914 | | class SkAmbientShadowTessellator : public SkBaseShadowTessellator { |
915 | | public: |
916 | | SkAmbientShadowTessellator(const SkPath& path, const SkMatrix& ctm, |
917 | | const SkPoint3& zPlaneParams, bool transparent); |
918 | | |
919 | | private: |
920 | | bool computePathPolygon(const SkPath& path, const SkMatrix& ctm); |
921 | | |
922 | | using INHERITED = SkBaseShadowTessellator; |
923 | | }; |
924 | | |
925 | | SkAmbientShadowTessellator::SkAmbientShadowTessellator(const SkPath& path, |
926 | | const SkMatrix& ctm, |
927 | | const SkPoint3& zPlaneParams, |
928 | | bool transparent) |
929 | 0 | : INHERITED(zPlaneParams, path.getBounds(), transparent) { |
930 | | // Set base colors |
931 | 0 | auto baseZ = heightFunc(fPathBounds.centerX(), fPathBounds.centerY()); |
932 | | // umbraColor is the interior value, penumbraColor the exterior value. |
933 | 0 | auto outset = SkDrawShadowMetrics::AmbientBlurRadius(baseZ); |
934 | 0 | auto inset = outset * SkDrawShadowMetrics::AmbientRecipAlpha(baseZ) - outset; |
935 | |
|
936 | 0 | if (!this->computePathPolygon(path, ctm)) { |
937 | 0 | return; |
938 | 0 | } |
939 | 0 | if (fPathPolygon.size() < 3 || !SkIsFinite(fArea)) { |
940 | 0 | fSucceeded = true; // We don't want to try to blur these cases, so we will |
941 | | // return an empty SkVertices instead. |
942 | 0 | return; |
943 | 0 | } |
944 | | |
945 | | // Outer ring: 3*numPts |
946 | | // Middle ring: numPts |
947 | 0 | fPositions.reserve(4 * path.countPoints()); |
948 | 0 | fColors.reserve(4 * path.countPoints()); |
949 | | // Outer ring: 12*numPts |
950 | | // Middle ring: 0 |
951 | 0 | fIndices.reserve(12 * path.countPoints()); |
952 | |
|
953 | 0 | if (fIsConvex) { |
954 | 0 | fSucceeded = this->computeConvexShadow(inset, outset, false); |
955 | 0 | } else { |
956 | 0 | fSucceeded = this->computeConcaveShadow(inset, outset); |
957 | 0 | } |
958 | 0 | } |
959 | | |
960 | 0 | bool SkAmbientShadowTessellator::computePathPolygon(const SkPath& path, const SkMatrix& ctm) { |
961 | 0 | fPathPolygon.reserve(path.countPoints()); |
962 | | |
963 | | // walk around the path, tessellate and generate outer ring |
964 | | // if original path is transparent, will accumulate sum of points for centroid |
965 | 0 | SkPath::Iter iter(path, true); |
966 | 0 | SkPoint pts[4]; |
967 | 0 | SkPath::Verb verb; |
968 | 0 | bool verbSeen = false; |
969 | 0 | bool closeSeen = false; |
970 | 0 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
971 | 0 | if (closeSeen) { |
972 | 0 | return false; |
973 | 0 | } |
974 | 0 | switch (verb) { |
975 | 0 | case SkPath::kLine_Verb: |
976 | 0 | this->handleLine(ctm, &pts[1]); |
977 | 0 | break; |
978 | 0 | case SkPath::kQuad_Verb: |
979 | 0 | this->handleQuad(ctm, pts); |
980 | 0 | break; |
981 | 0 | case SkPath::kCubic_Verb: |
982 | 0 | this->handleCubic(ctm, pts); |
983 | 0 | break; |
984 | 0 | case SkPath::kConic_Verb: |
985 | 0 | this->handleConic(ctm, pts, iter.conicWeight()); |
986 | 0 | break; |
987 | 0 | case SkPath::kMove_Verb: |
988 | 0 | if (verbSeen) { |
989 | 0 | return false; |
990 | 0 | } |
991 | 0 | break; |
992 | 0 | case SkPath::kClose_Verb: |
993 | 0 | case SkPath::kDone_Verb: |
994 | 0 | closeSeen = true; |
995 | 0 | break; |
996 | 0 | } |
997 | 0 | verbSeen = true; |
998 | 0 | } |
999 | | |
1000 | 0 | this->finishPathPolygon(); |
1001 | 0 | return true; |
1002 | 0 | } |
1003 | | |
1004 | | /////////////////////////////////////////////////////////////////////////////////////////////////// |
1005 | | |
1006 | | class SkSpotShadowTessellator : public SkBaseShadowTessellator { |
1007 | | public: |
1008 | | SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm, |
1009 | | const SkPoint3& zPlaneParams, const SkPoint3& lightPos, |
1010 | | SkScalar lightRadius, bool transparent, bool directional); |
1011 | | |
1012 | | private: |
1013 | | bool computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm, |
1014 | | const SkMatrix& shadowTransform); |
1015 | | void addToClip(const SkVector& nextPoint); |
1016 | | |
1017 | | using INHERITED = SkBaseShadowTessellator; |
1018 | | }; |
1019 | | |
1020 | | SkSpotShadowTessellator::SkSpotShadowTessellator(const SkPath& path, const SkMatrix& ctm, |
1021 | | const SkPoint3& zPlaneParams, |
1022 | | const SkPoint3& lightPos, SkScalar lightRadius, |
1023 | | bool transparent, bool directional) |
1024 | 0 | : INHERITED(zPlaneParams, path.getBounds(), transparent) { |
1025 | | |
1026 | | // Compute the blur radius, scale and translation for the spot shadow. |
1027 | 0 | SkMatrix shadowTransform; |
1028 | 0 | SkScalar outset; |
1029 | 0 | if (!SkDrawShadowMetrics::GetSpotShadowTransform(lightPos, lightRadius, ctm, zPlaneParams, |
1030 | 0 | path.getBounds(), directional, |
1031 | 0 | &shadowTransform, &outset)) { |
1032 | 0 | return; |
1033 | 0 | } |
1034 | 0 | SkScalar inset = outset; |
1035 | | |
1036 | | // compute rough clip bounds for umbra, plus offset polygon, plus centroid |
1037 | 0 | if (!this->computeClipAndPathPolygons(path, ctm, shadowTransform)) { |
1038 | 0 | return; |
1039 | 0 | } |
1040 | 0 | if (fClipPolygon.size() < 3 || fPathPolygon.size() < 3 || !SkIsFinite(fArea)) { |
1041 | 0 | fSucceeded = true; // We don't want to try to blur these cases, so we will |
1042 | | // return an empty SkVertices instead. |
1043 | 0 | return; |
1044 | 0 | } |
1045 | | |
1046 | | // TODO: calculate these reserves better |
1047 | | // Penumbra ring: 3*numPts |
1048 | | // Umbra ring: numPts |
1049 | | // Inner ring: numPts |
1050 | 0 | fPositions.reserve(5 * path.countPoints()); |
1051 | 0 | fColors.reserve(5 * path.countPoints()); |
1052 | | // Penumbra ring: 12*numPts |
1053 | | // Umbra ring: 3*numPts |
1054 | 0 | fIndices.reserve(15 * path.countPoints()); |
1055 | |
|
1056 | 0 | if (fIsConvex) { |
1057 | 0 | fSucceeded = this->computeConvexShadow(inset, outset, true); |
1058 | 0 | } else { |
1059 | 0 | fSucceeded = this->computeConcaveShadow(inset, outset); |
1060 | 0 | } |
1061 | |
|
1062 | 0 | if (!fSucceeded) { |
1063 | 0 | return; |
1064 | 0 | } |
1065 | | |
1066 | 0 | fSucceeded = true; |
1067 | 0 | } |
1068 | | |
1069 | | bool SkSpotShadowTessellator::computeClipAndPathPolygons(const SkPath& path, const SkMatrix& ctm, |
1070 | 0 | const SkMatrix& shadowTransform) { |
1071 | |
|
1072 | 0 | fPathPolygon.reserve(path.countPoints()); |
1073 | 0 | fClipPolygon.reserve(path.countPoints()); |
1074 | | |
1075 | | // Walk around the path and compute clip polygon and path polygon. |
1076 | | // Will also accumulate sum of areas for centroid. |
1077 | | // For Bezier curves, we compute additional interior points on curve. |
1078 | 0 | SkPath::Iter iter(path, true); |
1079 | 0 | SkPoint pts[4]; |
1080 | 0 | SkPoint clipPts[4]; |
1081 | 0 | SkPath::Verb verb; |
1082 | | |
1083 | | // coefficients to compute cubic Bezier at t = 5/16 |
1084 | 0 | static constexpr SkScalar kA = 0.32495117187f; |
1085 | 0 | static constexpr SkScalar kB = 0.44311523437f; |
1086 | 0 | static constexpr SkScalar kC = 0.20141601562f; |
1087 | 0 | static constexpr SkScalar kD = 0.03051757812f; |
1088 | |
|
1089 | 0 | SkPoint curvePoint; |
1090 | 0 | SkScalar w; |
1091 | 0 | bool closeSeen = false; |
1092 | 0 | bool verbSeen = false; |
1093 | 0 | while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
1094 | 0 | if (closeSeen) { |
1095 | 0 | return false; |
1096 | 0 | } |
1097 | 0 | switch (verb) { |
1098 | 0 | case SkPath::kLine_Verb: |
1099 | 0 | ctm.mapPoints(clipPts, &pts[1], 1); |
1100 | 0 | this->addToClip(clipPts[0]); |
1101 | 0 | this->handleLine(shadowTransform, &pts[1]); |
1102 | 0 | break; |
1103 | 0 | case SkPath::kQuad_Verb: |
1104 | 0 | ctm.mapPoints(clipPts, pts, 3); |
1105 | | // point at t = 1/2 |
1106 | 0 | curvePoint.fX = 0.25f*clipPts[0].fX + 0.5f*clipPts[1].fX + 0.25f*clipPts[2].fX; |
1107 | 0 | curvePoint.fY = 0.25f*clipPts[0].fY + 0.5f*clipPts[1].fY + 0.25f*clipPts[2].fY; |
1108 | 0 | this->addToClip(curvePoint); |
1109 | 0 | this->addToClip(clipPts[2]); |
1110 | 0 | this->handleQuad(shadowTransform, pts); |
1111 | 0 | break; |
1112 | 0 | case SkPath::kConic_Verb: |
1113 | 0 | ctm.mapPoints(clipPts, pts, 3); |
1114 | 0 | w = iter.conicWeight(); |
1115 | | // point at t = 1/2 |
1116 | 0 | curvePoint.fX = 0.25f*clipPts[0].fX + w*0.5f*clipPts[1].fX + 0.25f*clipPts[2].fX; |
1117 | 0 | curvePoint.fY = 0.25f*clipPts[0].fY + w*0.5f*clipPts[1].fY + 0.25f*clipPts[2].fY; |
1118 | 0 | curvePoint *= SkScalarInvert(0.5f + 0.5f*w); |
1119 | 0 | this->addToClip(curvePoint); |
1120 | 0 | this->addToClip(clipPts[2]); |
1121 | 0 | this->handleConic(shadowTransform, pts, w); |
1122 | 0 | break; |
1123 | 0 | case SkPath::kCubic_Verb: |
1124 | 0 | ctm.mapPoints(clipPts, pts, 4); |
1125 | | // point at t = 5/16 |
1126 | 0 | curvePoint.fX = kA*clipPts[0].fX + kB*clipPts[1].fX |
1127 | 0 | + kC*clipPts[2].fX + kD*clipPts[3].fX; |
1128 | 0 | curvePoint.fY = kA*clipPts[0].fY + kB*clipPts[1].fY |
1129 | 0 | + kC*clipPts[2].fY + kD*clipPts[3].fY; |
1130 | 0 | this->addToClip(curvePoint); |
1131 | | // point at t = 11/16 |
1132 | 0 | curvePoint.fX = kD*clipPts[0].fX + kC*clipPts[1].fX |
1133 | 0 | + kB*clipPts[2].fX + kA*clipPts[3].fX; |
1134 | 0 | curvePoint.fY = kD*clipPts[0].fY + kC*clipPts[1].fY |
1135 | 0 | + kB*clipPts[2].fY + kA*clipPts[3].fY; |
1136 | 0 | this->addToClip(curvePoint); |
1137 | 0 | this->addToClip(clipPts[3]); |
1138 | 0 | this->handleCubic(shadowTransform, pts); |
1139 | 0 | break; |
1140 | 0 | case SkPath::kMove_Verb: |
1141 | 0 | if (verbSeen) { |
1142 | 0 | return false; |
1143 | 0 | } |
1144 | 0 | break; |
1145 | 0 | case SkPath::kClose_Verb: |
1146 | 0 | case SkPath::kDone_Verb: |
1147 | 0 | closeSeen = true; |
1148 | 0 | break; |
1149 | 0 | default: |
1150 | 0 | SkDEBUGFAIL("unknown verb"); |
1151 | 0 | } |
1152 | 0 | verbSeen = true; |
1153 | 0 | } |
1154 | | |
1155 | 0 | this->finishPathPolygon(); |
1156 | 0 | return true; |
1157 | 0 | } Unexecuted instantiation: SkSpotShadowTessellator::computeClipAndPathPolygons(SkPath const&, SkMatrix const&, SkMatrix const&) Unexecuted instantiation: SkSpotShadowTessellator::computeClipAndPathPolygons(SkPath const&, SkMatrix const&, SkMatrix const&) |
1158 | | |
1159 | 0 | void SkSpotShadowTessellator::addToClip(const SkPoint& point) { |
1160 | 0 | if (fClipPolygon.empty() || !duplicate_pt(point, fClipPolygon[fClipPolygon.size() - 1])) { |
1161 | 0 | fClipPolygon.push_back(point); |
1162 | 0 | } |
1163 | 0 | } |
1164 | | |
1165 | | /////////////////////////////////////////////////////////////////////////////////////////////////// |
1166 | | |
1167 | | sk_sp<SkVertices> SkShadowTessellator::MakeAmbient(const SkPath& path, const SkMatrix& ctm, |
1168 | 0 | const SkPoint3& zPlane, bool transparent) { |
1169 | 0 | if (!ctm.mapRect(path.getBounds()).isFinite() || !zPlane.isFinite()) { |
1170 | 0 | return nullptr; |
1171 | 0 | } |
1172 | 0 | SkAmbientShadowTessellator ambientTess(path, ctm, zPlane, transparent); |
1173 | 0 | return ambientTess.releaseVertices(); |
1174 | 0 | } |
1175 | | |
1176 | | sk_sp<SkVertices> SkShadowTessellator::MakeSpot(const SkPath& path, const SkMatrix& ctm, |
1177 | | const SkPoint3& zPlane, const SkPoint3& lightPos, |
1178 | | SkScalar lightRadius, bool transparent, |
1179 | 0 | bool directional) { |
1180 | 0 | if (!ctm.mapRect(path.getBounds()).isFinite() || !zPlane.isFinite() || |
1181 | 0 | !lightPos.isFinite() || !(lightPos.fZ >= SK_ScalarNearlyZero) || |
1182 | 0 | !SkIsFinite(lightRadius) || !(lightRadius >= SK_ScalarNearlyZero)) { |
1183 | 0 | return nullptr; |
1184 | 0 | } |
1185 | 0 | SkSpotShadowTessellator spotTess(path, ctm, zPlane, lightPos, lightRadius, transparent, |
1186 | 0 | directional); |
1187 | 0 | return spotTess.releaseVertices(); |
1188 | 0 | } |
1189 | | |
1190 | | #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE) |
1191 | | |