Coverage Report

Created: 2024-09-14 07:19

/src/skia/third_party/externals/libjpeg-turbo/jdhuff.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jdhuff.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8
 * Copyright (C) 2018, Matthias Räncker.
9
 * For conditions of distribution and use, see the accompanying README.ijg
10
 * file.
11
 *
12
 * This file contains Huffman entropy decoding routines.
13
 *
14
 * Much of the complexity here has to do with supporting input suspension.
15
 * If the data source module demands suspension, we want to be able to back
16
 * up to the start of the current MCU.  To do this, we copy state variables
17
 * into local working storage, and update them back to the permanent
18
 * storage only upon successful completion of an MCU.
19
 *
20
 * NOTE: All referenced figures are from
21
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22
 */
23
24
#define JPEG_INTERNALS
25
#include "jinclude.h"
26
#include "jpeglib.h"
27
#include "jdhuff.h"             /* Declarations shared with jdphuff.c */
28
#include "jpegcomp.h"
29
#include "jstdhuff.c"
30
31
32
/*
33
 * Expanded entropy decoder object for Huffman decoding.
34
 *
35
 * The savable_state subrecord contains fields that change within an MCU,
36
 * but must not be updated permanently until we complete the MCU.
37
 */
38
39
typedef struct {
40
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
41
} savable_state;
42
43
typedef struct {
44
  struct jpeg_entropy_decoder pub; /* public fields */
45
46
  /* These fields are loaded into local variables at start of each MCU.
47
   * In case of suspension, we exit WITHOUT updating them.
48
   */
49
  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
50
  savable_state saved;          /* Other state at start of MCU */
51
52
  /* These fields are NOT loaded into local working state. */
53
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
54
55
  /* Pointers to derived tables (these workspaces have image lifespan) */
56
  d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
57
  d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
58
59
  /* Precalculated info set up by start_pass for use in decode_mcu: */
60
61
  /* Pointers to derived tables to be used for each block within an MCU */
62
  d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
63
  d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
64
  /* Whether we care about the DC and AC coefficient values for each block */
65
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
66
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
67
} huff_entropy_decoder;
68
69
typedef huff_entropy_decoder *huff_entropy_ptr;
70
71
72
/*
73
 * Initialize for a Huffman-compressed scan.
74
 */
75
76
METHODDEF(void)
77
start_pass_huff_decoder(j_decompress_ptr cinfo)
78
8.95k
{
79
8.95k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
80
8.95k
  int ci, blkn, dctbl, actbl;
81
8.95k
  d_derived_tbl **pdtbl;
82
8.95k
  jpeg_component_info *compptr;
83
84
  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
85
   * This ought to be an error condition, but we make it a warning because
86
   * there are some baseline files out there with all zeroes in these bytes.
87
   */
88
8.95k
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
89
8.95k
      cinfo->Ah != 0 || cinfo->Al != 0)
90
8.61k
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
91
92
21.2k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
93
12.3k
    compptr = cinfo->cur_comp_info[ci];
94
12.3k
    dctbl = compptr->dc_tbl_no;
95
12.3k
    actbl = compptr->ac_tbl_no;
96
    /* Compute derived values for Huffman tables */
97
    /* We may do this more than once for a table, but it's not expensive */
98
12.3k
    pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
99
12.3k
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
100
12.3k
    pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
101
12.3k
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
102
    /* Initialize DC predictions to 0 */
103
12.3k
    entropy->saved.last_dc_val[ci] = 0;
104
12.3k
  }
105
106
  /* Precalculate decoding info for each block in an MCU of this scan */
107
32.9k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
108
24.0k
    ci = cinfo->MCU_membership[blkn];
109
24.0k
    compptr = cinfo->cur_comp_info[ci];
110
    /* Precalculate which table to use for each block */
111
24.0k
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
112
24.0k
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
113
    /* Decide whether we really care about the coefficient values */
114
24.0k
    if (compptr->component_needed) {
115
24.0k
      entropy->dc_needed[blkn] = TRUE;
116
      /* we don't need the ACs if producing a 1/8th-size image */
117
24.0k
      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
118
24.0k
    } else {
119
0
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
120
0
    }
121
24.0k
  }
122
123
  /* Initialize bitread state variables */
124
8.95k
  entropy->bitstate.bits_left = 0;
125
8.95k
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
126
8.95k
  entropy->pub.insufficient_data = FALSE;
127
128
  /* Initialize restart counter */
129
8.95k
  entropy->restarts_to_go = cinfo->restart_interval;
130
8.95k
}
131
132
133
/*
134
 * Compute the derived values for a Huffman table.
135
 * This routine also performs some validation checks on the table.
136
 *
137
 * Note this is also used by jdphuff.c.
138
 */
139
140
GLOBAL(void)
141
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
142
                        d_derived_tbl **pdtbl)
143
29.1k
{
144
29.1k
  JHUFF_TBL *htbl;
145
29.1k
  d_derived_tbl *dtbl;
146
29.1k
  int p, i, l, si, numsymbols;
147
29.1k
  int lookbits, ctr;
148
29.1k
  char huffsize[257];
149
29.1k
  unsigned int huffcode[257];
150
29.1k
  unsigned int code;
151
152
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
153
   * paralleling the order of the symbols themselves in htbl->huffval[].
154
   */
155
156
  /* Find the input Huffman table */
157
29.1k
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
158
44
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
159
29.1k
  htbl =
160
29.1k
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
161
29.1k
  if (htbl == NULL)
162
40
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
163
164
  /* Allocate a workspace if we haven't already done so. */
165
29.1k
  if (*pdtbl == NULL)
166
7.96k
    *pdtbl = (d_derived_tbl *)
167
7.96k
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
168
7.96k
                                  sizeof(d_derived_tbl));
169
29.1k
  dtbl = *pdtbl;
170
29.1k
  dtbl->pub = htbl;             /* fill in back link */
171
172
  /* Figure C.1: make table of Huffman code length for each symbol */
173
174
29.1k
  p = 0;
175
494k
  for (l = 1; l <= 16; l++) {
176
465k
    i = (int)htbl->bits[l];
177
465k
    if (i < 0 || p + i > 256)   /* protect against table overrun */
178
0
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
179
2.39M
    while (i--)
180
1.93M
      huffsize[p++] = (char)l;
181
465k
  }
182
29.1k
  huffsize[p] = 0;
183
29.1k
  numsymbols = p;
184
185
  /* Figure C.2: generate the codes themselves */
186
  /* We also validate that the counts represent a legal Huffman code tree. */
187
188
29.1k
  code = 0;
189
29.1k
  si = huffsize[0];
190
29.1k
  p = 0;
191
315k
  while (huffsize[p]) {
192
2.21M
    while (((int)huffsize[p]) == si) {
193
1.93M
      huffcode[p++] = code;
194
1.93M
      code++;
195
1.93M
    }
196
    /* code is now 1 more than the last code used for codelength si; but
197
     * it must still fit in si bits, since no code is allowed to be all ones.
198
     */
199
286k
    if (((JLONG)code) >= (((JLONG)1) << si))
200
2
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
201
286k
    code <<= 1;
202
286k
    si++;
203
286k
  }
204
205
  /* Figure F.15: generate decoding tables for bit-sequential decoding */
206
207
29.1k
  p = 0;
208
494k
  for (l = 1; l <= 16; l++) {
209
465k
    if (htbl->bits[l]) {
210
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
211
       * minus the minimum code of length l
212
       */
213
255k
      dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
214
255k
      p += htbl->bits[l];
215
255k
      dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
216
255k
    } else {
217
210k
      dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
218
210k
    }
219
465k
  }
220
29.1k
  dtbl->valoffset[17] = 0;
221
29.1k
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
222
223
  /* Compute lookahead tables to speed up decoding.
224
   * First we set all the table entries to 0, indicating "too long";
225
   * then we iterate through the Huffman codes that are short enough and
226
   * fill in all the entries that correspond to bit sequences starting
227
   * with that code.
228
   */
229
230
7.47M
  for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
231
7.45M
    dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
232
233
29.1k
  p = 0;
234
262k
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
235
596k
    for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
236
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
237
      /* Generate left-justified code followed by all possible bit sequences */
238
363k
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
239
6.96M
      for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
240
6.59M
        dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
241
6.59M
        lookbits++;
242
6.59M
      }
243
363k
    }
244
232k
  }
245
246
  /* Validate symbols as being reasonable.
247
   * For AC tables, we make no check, but accept all byte values 0..255.
248
   * For DC tables, we require the symbols to be in range 0..15.
249
   * (Tighter bounds could be applied depending on the data depth and mode,
250
   * but this is sufficient to ensure safe decoding.)
251
   */
252
29.1k
  if (isDC) {
253
156k
    for (i = 0; i < numsymbols; i++) {
254
143k
      int sym = htbl->huffval[i];
255
143k
      if (sym < 0 || sym > 15)
256
7
        ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257
143k
    }
258
13.5k
  }
259
29.1k
}
260
261
262
/*
263
 * Out-of-line code for bit fetching (shared with jdphuff.c).
264
 * See jdhuff.h for info about usage.
265
 * Note: current values of get_buffer and bits_left are passed as parameters,
266
 * but are returned in the corresponding fields of the state struct.
267
 *
268
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
269
 * of get_buffer to be used.  (On machines with wider words, an even larger
270
 * buffer could be used.)  However, on some machines 32-bit shifts are
271
 * quite slow and take time proportional to the number of places shifted.
272
 * (This is true with most PC compilers, for instance.)  In this case it may
273
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
274
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
275
 */
276
277
#ifdef SLOW_SHIFT_32
278
#define MIN_GET_BITS  15        /* minimum allowable value */
279
#else
280
980k
#define MIN_GET_BITS  (BIT_BUF_SIZE - 7)
281
#endif
282
283
284
GLOBAL(boolean)
285
jpeg_fill_bit_buffer(bitread_working_state *state,
286
                     register bit_buf_type get_buffer, register int bits_left,
287
                     int nbits)
288
/* Load up the bit buffer to a depth of at least nbits */
289
475k
{
290
  /* Copy heavily used state fields into locals (hopefully registers) */
291
475k
  register const JOCTET *next_input_byte = state->next_input_byte;
292
475k
  register size_t bytes_in_buffer = state->bytes_in_buffer;
293
475k
  j_decompress_ptr cinfo = state->cinfo;
294
295
  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
296
  /* (It is assumed that no request will be for more than that many bits.) */
297
  /* We fail to do so only if we hit a marker or are forced to suspend. */
298
299
475k
  if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
300
550k
    while (bits_left < MIN_GET_BITS) {
301
492k
      register int c;
302
303
      /* Attempt to read a byte */
304
492k
      if (bytes_in_buffer == 0) {
305
587
        if (!(*cinfo->src->fill_input_buffer) (cinfo))
306
587
          return FALSE;
307
0
        next_input_byte = cinfo->src->next_input_byte;
308
0
        bytes_in_buffer = cinfo->src->bytes_in_buffer;
309
0
      }
310
491k
      bytes_in_buffer--;
311
491k
      c = *next_input_byte++;
312
313
      /* If it's 0xFF, check and discard stuffed zero byte */
314
491k
      if (c == 0xFF) {
315
        /* Loop here to discard any padding FF's on terminating marker,
316
         * so that we can save a valid unread_marker value.  NOTE: we will
317
         * accept multiple FF's followed by a 0 as meaning a single FF data
318
         * byte.  This data pattern is not valid according to the standard.
319
         */
320
68.4k
        do {
321
68.4k
          if (bytes_in_buffer == 0) {
322
67
            if (!(*cinfo->src->fill_input_buffer) (cinfo))
323
67
              return FALSE;
324
0
            next_input_byte = cinfo->src->next_input_byte;
325
0
            bytes_in_buffer = cinfo->src->bytes_in_buffer;
326
0
          }
327
68.4k
          bytes_in_buffer--;
328
68.4k
          c = *next_input_byte++;
329
68.4k
        } while (c == 0xFF);
330
331
40.0k
        if (c == 0) {
332
          /* Found FF/00, which represents an FF data byte */
333
17.8k
          c = 0xFF;
334
22.1k
        } else {
335
          /* Oops, it's actually a marker indicating end of compressed data.
336
           * Save the marker code for later use.
337
           * Fine point: it might appear that we should save the marker into
338
           * bitread working state, not straight into permanent state.  But
339
           * once we have hit a marker, we cannot need to suspend within the
340
           * current MCU, because we will read no more bytes from the data
341
           * source.  So it is OK to update permanent state right away.
342
           */
343
22.1k
          cinfo->unread_marker = c;
344
          /* See if we need to insert some fake zero bits. */
345
22.1k
          goto no_more_bytes;
346
22.1k
        }
347
40.0k
      }
348
349
      /* OK, load c into get_buffer */
350
469k
      get_buffer = (get_buffer << 8) | c;
351
469k
      bits_left += 8;
352
469k
    } /* end while */
353
394k
  } else {
354
416k
no_more_bytes:
355
    /* We get here if we've read the marker that terminates the compressed
356
     * data segment.  There should be enough bits in the buffer register
357
     * to satisfy the request; if so, no problem.
358
     */
359
416k
    if (nbits > bits_left) {
360
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
361
       * the data stream, so that we can produce some kind of image.
362
       * We use a nonvolatile flag to ensure that only one warning message
363
       * appears per data segment.
364
       */
365
214k
      if (!cinfo->entropy->insufficient_data) {
366
21.2k
        WARNMS(cinfo, JWRN_HIT_MARKER);
367
21.2k
        cinfo->entropy->insufficient_data = TRUE;
368
21.2k
      }
369
      /* Fill the buffer with zero bits */
370
214k
      get_buffer <<= MIN_GET_BITS - bits_left;
371
214k
      bits_left = MIN_GET_BITS;
372
214k
    }
373
416k
  }
374
375
  /* Unload the local registers */
376
474k
  state->next_input_byte = next_input_byte;
377
474k
  state->bytes_in_buffer = bytes_in_buffer;
378
474k
  state->get_buffer = get_buffer;
379
474k
  state->bits_left = bits_left;
380
381
474k
  return TRUE;
382
475k
}
383
384
385
/* Macro version of the above, which performs much better but does not
386
   handle markers.  We have to hand off any blocks with markers to the
387
   slower routines. */
388
389
396k
#define GET_BYTE { \
390
396k
  register int c0, c1; \
391
396k
  c0 = *buffer++; \
392
396k
  c1 = *buffer; \
393
396k
  /* Pre-execute most common case */ \
394
396k
  get_buffer = (get_buffer << 8) | c0; \
395
396k
  bits_left += 8; \
396
396k
  if (c0 == 0xFF) { \
397
135k
    /* Pre-execute case of FF/00, which represents an FF data byte */ \
398
135k
    buffer++; \
399
135k
    if (c1 != 0) { \
400
85.4k
      /* Oops, it's actually a marker indicating end of compressed data. */ \
401
85.4k
      cinfo->unread_marker = c1; \
402
85.4k
      /* Back out pre-execution and fill the buffer with zero bits */ \
403
85.4k
      buffer -= 2; \
404
85.4k
      get_buffer &= ~0xFF; \
405
85.4k
    } \
406
135k
  } \
407
396k
}
408
409
#if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
410
411
/* Pre-fetch 48 bytes, because the holding register is 64-bit */
412
#define FILL_BIT_BUFFER_FAST \
413
1.02M
  if (bits_left <= 16) { \
414
66.0k
    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
415
66.0k
  }
416
417
#else
418
419
/* Pre-fetch 16 bytes, because the holding register is 32-bit */
420
#define FILL_BIT_BUFFER_FAST \
421
  if (bits_left <= 16) { \
422
    GET_BYTE GET_BYTE \
423
  }
424
425
#endif
426
427
428
/*
429
 * Out-of-line code for Huffman code decoding.
430
 * See jdhuff.h for info about usage.
431
 */
432
433
GLOBAL(int)
434
jpeg_huff_decode(bitread_working_state *state,
435
                 register bit_buf_type get_buffer, register int bits_left,
436
                 d_derived_tbl *htbl, int min_bits)
437
252k
{
438
252k
  register int l = min_bits;
439
252k
  register JLONG code;
440
441
  /* HUFF_DECODE has determined that the code is at least min_bits */
442
  /* bits long, so fetch that many bits in one swoop. */
443
444
252k
  CHECK_BIT_BUFFER(*state, l, return -1);
445
252k
  code = GET_BITS(l);
446
447
  /* Collect the rest of the Huffman code one bit at a time. */
448
  /* This is per Figure F.16. */
449
450
890k
  while (code > htbl->maxcode[l]) {
451
638k
    code <<= 1;
452
638k
    CHECK_BIT_BUFFER(*state, 1, return -1);
453
637k
    code |= GET_BITS(1);
454
637k
    l++;
455
637k
  }
456
457
  /* Unload the local registers */
458
252k
  state->get_buffer = get_buffer;
459
252k
  state->bits_left = bits_left;
460
461
  /* With garbage input we may reach the sentinel value l = 17. */
462
463
252k
  if (l > 16) {
464
36.9k
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
465
36.9k
    return 0;                   /* fake a zero as the safest result */
466
36.9k
  }
467
468
215k
  return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
469
252k
}
470
471
472
/*
473
 * Figure F.12: extend sign bit.
474
 * On some machines, a shift and add will be faster than a table lookup.
475
 */
476
477
#define AVOID_TABLES
478
#ifdef AVOID_TABLES
479
480
1.58M
#define NEG_1  ((unsigned int)-1)
481
#define HUFF_EXTEND(x, s) \
482
1.58M
  ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
483
484
#else
485
486
#define HUFF_EXTEND(x, s) \
487
  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
488
489
static const int extend_test[16] = {   /* entry n is 2**(n-1) */
490
  0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
491
  0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
492
};
493
494
static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
495
  0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
496
  ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
497
  ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
498
  ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
499
};
500
501
#endif /* AVOID_TABLES */
502
503
504
/*
505
 * Check for a restart marker & resynchronize decoder.
506
 * Returns FALSE if must suspend.
507
 */
508
509
LOCAL(boolean)
510
process_restart(j_decompress_ptr cinfo)
511
109k
{
512
109k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
513
109k
  int ci;
514
515
  /* Throw away any unused bits remaining in bit buffer; */
516
  /* include any full bytes in next_marker's count of discarded bytes */
517
109k
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
518
109k
  entropy->bitstate.bits_left = 0;
519
520
  /* Advance past the RSTn marker */
521
109k
  if (!(*cinfo->marker->read_restart_marker) (cinfo))
522
18
    return FALSE;
523
524
  /* Re-initialize DC predictions to 0 */
525
298k
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
526
189k
    entropy->saved.last_dc_val[ci] = 0;
527
528
  /* Reset restart counter */
529
109k
  entropy->restarts_to_go = cinfo->restart_interval;
530
531
  /* Reset out-of-data flag, unless read_restart_marker left us smack up
532
   * against a marker.  In that case we will end up treating the next data
533
   * segment as empty, and we can avoid producing bogus output pixels by
534
   * leaving the flag set.
535
   */
536
109k
  if (cinfo->unread_marker == 0)
537
2.72k
    entropy->pub.insufficient_data = FALSE;
538
539
109k
  return TRUE;
540
109k
}
541
542
543
#if defined(__has_feature)
544
#if __has_feature(undefined_behavior_sanitizer)
545
__attribute__((no_sanitize("signed-integer-overflow"),
546
               no_sanitize("unsigned-integer-overflow")))
547
#endif
548
#endif
549
LOCAL(boolean)
550
decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
551
70.7k
{
552
70.7k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
553
70.7k
  BITREAD_STATE_VARS;
554
70.7k
  int blkn;
555
70.7k
  savable_state state;
556
  /* Outer loop handles each block in the MCU */
557
558
  /* Load up working state */
559
70.7k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
560
70.7k
  state = entropy->saved;
561
562
158k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
563
88.1k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
564
88.1k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
565
88.1k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
566
88.1k
    register int s, k, r;
567
568
    /* Decode a single block's worth of coefficients */
569
570
    /* Section F.2.2.1: decode the DC coefficient difference */
571
88.1k
    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
572
88.0k
    if (s) {
573
28.4k
      CHECK_BIT_BUFFER(br_state, s, return FALSE);
574
28.4k
      r = GET_BITS(s);
575
28.4k
      s = HUFF_EXTEND(r, s);
576
28.4k
    }
577
578
88.0k
    if (entropy->dc_needed[blkn]) {
579
      /* Convert DC difference to actual value, update last_dc_val */
580
88.0k
      int ci = cinfo->MCU_membership[blkn];
581
      /* Certain malformed JPEG images produce repeated DC coefficient
582
       * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
583
       * grow until it overflows or underflows a 32-bit signed integer.  This
584
       * behavior is, to the best of our understanding, innocuous, and it is
585
       * unclear how to work around it without potentially affecting
586
       * performance.  Thus, we (hopefully temporarily) suppress UBSan integer
587
       * overflow errors for this function and decode_mcu_fast().
588
       */
589
88.0k
      s += state.last_dc_val[ci];
590
88.0k
      state.last_dc_val[ci] = s;
591
88.0k
      if (block) {
592
        /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
593
88.0k
        (*block)[0] = (JCOEF)s;
594
88.0k
      }
595
88.0k
    }
596
597
88.0k
    if (entropy->ac_needed[blkn] && block) {
598
599
      /* Section F.2.2.2: decode the AC coefficients */
600
      /* Since zeroes are skipped, output area must be cleared beforehand */
601
1.28M
      for (k = 1; k < DCTSIZE2; k++) {
602
1.26M
        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
603
604
1.26M
        r = s >> 4;
605
1.26M
        s &= 15;
606
607
1.26M
        if (s) {
608
1.21M
          k += r;
609
1.21M
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
610
1.21M
          r = GET_BITS(s);
611
1.21M
          s = HUFF_EXTEND(r, s);
612
          /* Output coefficient in natural (dezigzagged) order.
613
           * Note: the extra entries in jpeg_natural_order[] will save us
614
           * if k >= DCTSIZE2, which could happen if the data is corrupted.
615
           */
616
1.21M
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
617
1.21M
        } else {
618
48.6k
          if (r != 15)
619
46.4k
            break;
620
2.15k
          k += 15;
621
2.15k
        }
622
1.26M
      }
623
624
67.7k
    } else {
625
626
      /* Section F.2.2.2: decode the AC coefficients */
627
      /* In this path we just discard the values */
628
226k
      for (k = 1; k < DCTSIZE2; k++) {
629
223k
        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
630
631
223k
        r = s >> 4;
632
223k
        s &= 15;
633
634
223k
        if (s) {
635
204k
          k += r;
636
204k
          CHECK_BIT_BUFFER(br_state, s, return FALSE);
637
204k
          DROP_BITS(s);
638
204k
        } else {
639
18.6k
          if (r != 15)
640
16.5k
            break;
641
2.13k
          k += 15;
642
2.13k
        }
643
223k
      }
644
20.2k
    }
645
88.0k
  }
646
647
  /* Completed MCU, so update state */
648
70.4k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
649
70.4k
  entropy->saved = state;
650
70.4k
  return TRUE;
651
70.7k
}
652
653
654
#if defined(__has_feature)
655
#if __has_feature(undefined_behavior_sanitizer)
656
__attribute__((no_sanitize("signed-integer-overflow"),
657
               no_sanitize("unsigned-integer-overflow")))
658
#endif
659
#endif
660
LOCAL(boolean)
661
decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
662
138k
{
663
138k
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
664
138k
  BITREAD_STATE_VARS;
665
138k
  JOCTET *buffer;
666
138k
  int blkn;
667
138k
  savable_state state;
668
  /* Outer loop handles each block in the MCU */
669
670
  /* Load up working state */
671
138k
  BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
672
138k
  buffer = (JOCTET *)br_state.next_input_byte;
673
138k
  state = entropy->saved;
674
675
278k
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
676
140k
    JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
677
140k
    d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
678
140k
    d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
679
140k
    register int s, k, r, l;
680
681
140k
    HUFF_DECODE_FAST(s, l, dctbl);
682
140k
    if (s) {
683
44.5k
      FILL_BIT_BUFFER_FAST
684
44.5k
      r = GET_BITS(s);
685
44.5k
      s = HUFF_EXTEND(r, s);
686
44.5k
    }
687
688
140k
    if (entropy->dc_needed[blkn]) {
689
140k
      int ci = cinfo->MCU_membership[blkn];
690
      /* Refer to the comment in decode_mcu_slow() regarding the supression of
691
       * a UBSan integer overflow error in this line of code.
692
       */
693
140k
      s += state.last_dc_val[ci];
694
140k
      state.last_dc_val[ci] = s;
695
140k
      if (block)
696
140k
        (*block)[0] = (JCOEF)s;
697
140k
    }
698
699
140k
    if (entropy->ac_needed[blkn] && block) {
700
701
396k
      for (k = 1; k < DCTSIZE2; k++) {
702
391k
        HUFF_DECODE_FAST(s, l, actbl);
703
391k
        r = s >> 4;
704
391k
        s &= 15;
705
706
391k
        if (s) {
707
295k
          k += r;
708
295k
          FILL_BIT_BUFFER_FAST
709
295k
          r = GET_BITS(s);
710
295k
          s = HUFF_EXTEND(r, s);
711
295k
          (*block)[jpeg_natural_order[k]] = (JCOEF)s;
712
295k
        } else {
713
95.6k
          if (r != 15) break;
714
3.20k
          k += 15;
715
3.20k
        }
716
391k
      }
717
718
97.5k
    } else {
719
720
100k
      for (k = 1; k < DCTSIZE2; k++) {
721
99.2k
        HUFF_DECODE_FAST(s, l, actbl);
722
99.2k
        r = s >> 4;
723
99.2k
        s &= 15;
724
725
99.2k
        if (s) {
726
56.2k
          k += r;
727
56.2k
          FILL_BIT_BUFFER_FAST
728
56.2k
          DROP_BITS(s);
729
56.2k
        } else {
730
42.9k
          if (r != 15) break;
731
1.21k
          k += 15;
732
1.21k
        }
733
99.2k
      }
734
42.8k
    }
735
140k
  }
736
737
138k
  if (cinfo->unread_marker != 0) {
738
7.57k
    cinfo->unread_marker = 0;
739
7.57k
    return FALSE;
740
7.57k
  }
741
742
130k
  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
743
130k
  br_state.next_input_byte = buffer;
744
130k
  BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
745
130k
  entropy->saved = state;
746
130k
  return TRUE;
747
138k
}
748
749
750
/*
751
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
752
 * The coefficients are reordered from zigzag order into natural array order,
753
 * but are not dequantized.
754
 *
755
 * The i'th block of the MCU is stored into the block pointed to by
756
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
757
 * (Wholesale zeroing is usually a little faster than retail...)
758
 *
759
 * Returns FALSE if data source requested suspension.  In that case no
760
 * changes have been made to permanent state.  (Exception: some output
761
 * coefficients may already have been assigned.  This is harmless for
762
 * this module, since we'll just re-assign them on the next call.)
763
 */
764
765
281M
#define BUFSIZE  (DCTSIZE2 * 8)
766
767
METHODDEF(boolean)
768
decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
769
281M
{
770
281M
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
771
281M
  int usefast = 1;
772
773
  /* Process restart marker if needed; may have to suspend */
774
281M
  if (cinfo->restart_interval) {
775
26.8M
    if (entropy->restarts_to_go == 0)
776
109k
      if (!process_restart(cinfo))
777
18
        return FALSE;
778
26.8M
    usefast = 0;
779
26.8M
  }
780
781
281M
  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
782
281M
      cinfo->unread_marker != 0)
783
281M
    usefast = 0;
784
785
  /* If we've run out of data, just leave the MCU set to zeroes.
786
   * This way, we return uniform gray for the remainder of the segment.
787
   */
788
281M
  if (!entropy->pub.insufficient_data) {
789
790
201k
    if (usefast) {
791
138k
      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
792
138k
    } else {
793
70.7k
use_slow:
794
70.7k
      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
795
70.7k
    }
796
797
201k
  }
798
799
  /* Account for restart interval (no-op if not using restarts) */
800
281M
  if (cinfo->restart_interval)
801
26.8M
    entropy->restarts_to_go--;
802
803
281M
  return TRUE;
804
281M
}
805
806
807
/*
808
 * Module initialization routine for Huffman entropy decoding.
809
 */
810
811
GLOBAL(void)
812
jinit_huff_decoder(j_decompress_ptr cinfo)
813
3.55k
{
814
3.55k
  huff_entropy_ptr entropy;
815
3.55k
  int i;
816
817
  /* Motion JPEG frames typically do not include the Huffman tables if they
818
     are the default tables.  Thus, if the tables are not set by the time
819
     the Huffman decoder is initialized (usually within the body of
820
     jpeg_start_decompress()), we set them to default values. */
821
3.55k
  std_huff_tables((j_common_ptr)cinfo);
822
823
3.55k
  entropy = (huff_entropy_ptr)
824
3.55k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
825
3.55k
                                sizeof(huff_entropy_decoder));
826
3.55k
  cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
827
3.55k
  entropy->pub.start_pass = start_pass_huff_decoder;
828
3.55k
  entropy->pub.decode_mcu = decode_mcu;
829
830
  /* Mark tables unallocated */
831
17.7k
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
832
14.2k
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
833
14.2k
  }
834
3.55k
}