Coverage Report

Created: 2021-08-22 09:07

/src/skia/third_party/externals/harfbuzz/src/hb-ot-var-gvar-table.hh
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright © 2019  Adobe Inc.
3
 * Copyright © 2019  Ebrahim Byagowi
4
 *
5
 *  This is part of HarfBuzz, a text shaping library.
6
 *
7
 * Permission is hereby granted, without written agreement and without
8
 * license or royalty fees, to use, copy, modify, and distribute this
9
 * software and its documentation for any purpose, provided that the
10
 * above copyright notice and the following two paragraphs appear in
11
 * all copies of this software.
12
 *
13
 * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
14
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
15
 * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
16
 * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
17
 * DAMAGE.
18
 *
19
 * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
20
 * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
21
 * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS
22
 * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
23
 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
24
 *
25
 * Adobe Author(s): Michiharu Ariza
26
 */
27
28
#ifndef HB_OT_VAR_GVAR_TABLE_HH
29
#define HB_OT_VAR_GVAR_TABLE_HH
30
31
#include "hb-open-type.hh"
32
33
/*
34
 * gvar -- Glyph Variation Table
35
 * https://docs.microsoft.com/en-us/typography/opentype/spec/gvar
36
 */
37
0
#define HB_OT_TAG_gvar HB_TAG('g','v','a','r')
38
39
namespace OT {
40
41
struct contour_point_t
42
{
43
  void init (float x_ = 0.f, float y_ = 0.f, bool is_end_point_ = false)
44
0
  { flag = 0; x = x_; y = y_; is_end_point = is_end_point_; }
45
46
0
  void translate (const contour_point_t &p) { x += p.x; y += p.y; }
47
48
  uint8_t flag;
49
  float x, y;
50
  bool is_end_point;
51
};
52
53
struct contour_point_vector_t : hb_vector_t<contour_point_t>
54
{
55
  void extend (const hb_array_t<contour_point_t> &a)
56
0
  {
57
0
    unsigned int old_len = length;
58
0
    resize (old_len + a.length);
59
0
    for (unsigned int i = 0; i < a.length; i++)
60
0
      (*this)[old_len + i] = a[i];
61
0
  }
62
63
  void transform (const float (&matrix)[4])
64
0
  {
65
0
    for (unsigned int i = 0; i < length; i++)
66
0
    {
67
0
      contour_point_t &p = (*this)[i];
68
0
      float x_ = p.x * matrix[0] + p.y * matrix[2];
69
0
     p.y = p.x * matrix[1] + p.y * matrix[3];
70
0
      p.x = x_;
71
0
    }
72
0
  }
73
74
  void translate (const contour_point_t& delta)
75
0
  {
76
0
    for (unsigned int i = 0; i < length; i++)
77
0
      (*this)[i].translate (delta);
78
0
  }
79
};
80
81
/* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */
82
struct TupleVariationHeader
83
{
84
  unsigned get_size (unsigned axis_count) const
85
0
  { return min_size + get_all_tuples (axis_count).get_size (); }
86
87
0
  unsigned get_data_size () const { return varDataSize; }
88
89
  const TupleVariationHeader &get_next (unsigned axis_count) const
90
0
  { return StructAtOffset<TupleVariationHeader> (this, get_size (axis_count)); }
91
92
  float calculate_scalar (const int *coords, unsigned int coord_count,
93
        const hb_array_t<const F2DOT14> shared_tuples) const
94
0
  {
95
0
    hb_array_t<const F2DOT14> peak_tuple;
96
97
0
    if (has_peak ())
98
0
      peak_tuple = get_peak_tuple (coord_count);
99
0
    else
100
0
    {
101
0
      unsigned int index = get_index ();
102
0
      if (unlikely (index * coord_count >= shared_tuples.length))
103
0
  return 0.f;
104
0
      peak_tuple = shared_tuples.sub_array (coord_count * index, coord_count);
105
0
    }
106
107
0
    hb_array_t<const F2DOT14> start_tuple;
108
0
    hb_array_t<const F2DOT14> end_tuple;
109
0
    if (has_intermediate ())
110
0
    {
111
0
      start_tuple = get_start_tuple (coord_count);
112
0
      end_tuple = get_end_tuple (coord_count);
113
0
    }
114
115
0
    float scalar = 1.f;
116
0
    for (unsigned int i = 0; i < coord_count; i++)
117
0
    {
118
0
      int v = coords[i];
119
0
      int peak = peak_tuple[i];
120
0
      if (!peak || v == peak) continue;
121
122
0
      if (has_intermediate ())
123
0
      {
124
0
  int start = start_tuple[i];
125
0
  int end = end_tuple[i];
126
0
  if (unlikely (start > peak || peak > end ||
127
0
          (start < 0 && end > 0 && peak))) continue;
128
0
  if (v < start || v > end) return 0.f;
129
0
  if (v < peak)
130
0
  { if (peak != start) scalar *= (float) (v - start) / (peak - start); }
131
0
  else
132
0
  { if (peak != end) scalar *= (float) (end - v) / (end - peak); }
133
0
      }
134
0
      else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.f;
135
0
      else
136
0
  scalar *= (float) v / peak;
137
0
    }
138
0
    return scalar;
139
0
  }
140
141
0
  bool           has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; }
142
0
  bool   has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; }
143
0
  bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; }
144
0
  unsigned      get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; }
145
146
  protected:
147
  struct TuppleIndex : HBUINT16
148
  {
149
    enum Flags {
150
      EmbeddedPeakTuple   = 0x8000u,
151
      IntermediateRegion  = 0x4000u,
152
      PrivatePointNumbers = 0x2000u,
153
      TupleIndexMask      = 0x0FFFu
154
    };
155
156
    DEFINE_SIZE_STATIC (2);
157
  };
158
159
  hb_array_t<const F2DOT14> get_all_tuples (unsigned axis_count) const
160
0
  { return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); }
161
  hb_array_t<const F2DOT14> get_peak_tuple (unsigned axis_count) const
162
0
  { return get_all_tuples (axis_count).sub_array (0, axis_count); }
163
  hb_array_t<const F2DOT14> get_start_tuple (unsigned axis_count) const
164
0
  { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count, axis_count); }
165
  hb_array_t<const F2DOT14> get_end_tuple (unsigned axis_count) const
166
0
  { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count + axis_count, axis_count); }
167
168
  HBUINT16  varDataSize;  /* The size in bytes of the serialized
169
         * data for this tuple variation table. */
170
  TuppleIndex tupleIndex; /* A packed field. The high 4 bits are flags (see below).
171
           The low 12 bits are an index into a shared tuple
172
           records array. */
173
  /* UnsizedArrayOf<F2DOT14> peakTuple - optional */
174
        /* Peak tuple record for this tuple variation table — optional,
175
         * determined by flags in the tupleIndex value.
176
         *
177
         * Note that this must always be included in the 'cvar' table. */
178
  /* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */
179
        /* Intermediate start tuple record for this tuple variation table — optional,
180
           determined by flags in the tupleIndex value. */
181
  /* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */
182
        /* Intermediate end tuple record for this tuple variation table — optional,
183
         * determined by flags in the tupleIndex value. */
184
  public:
185
  DEFINE_SIZE_MIN (4);
186
};
187
188
struct GlyphVariationData
189
{
190
  const TupleVariationHeader &get_tuple_var_header (void) const
191
0
  { return StructAfter<TupleVariationHeader> (data); }
192
193
  struct tuple_iterator_t
194
  {
195
    void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_)
196
0
    {
197
0
      var_data_bytes = var_data_bytes_;
198
0
      var_data = var_data_bytes_.as<GlyphVariationData> ();
199
0
      index = 0;
200
0
      axis_count = axis_count_;
201
0
      current_tuple = &var_data->get_tuple_var_header ();
202
0
      data_offset = 0;
203
0
    }
204
205
    bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */)
206
0
    {
207
0
      if (var_data->has_shared_point_numbers ())
208
0
      {
209
0
  const HBUINT8 *base = &(var_data+var_data->data);
210
0
  const HBUINT8 *p = base;
211
0
  if (!unpack_points (p, shared_indices, var_data_bytes)) return false;
212
0
  data_offset = p - base;
213
0
      }
214
0
      return true;
215
0
    }
216
217
    bool is_valid () const
218
0
    {
219
0
      return (index < var_data->tupleVarCount.get_count ()) &&
220
0
       var_data_bytes.check_range (current_tuple, TupleVariationHeader::min_size) &&
221
0
       var_data_bytes.check_range (current_tuple, hb_max (current_tuple->get_data_size (), current_tuple->get_size (axis_count))) &&
222
0
       current_tuple->get_size (axis_count);
223
0
    }
224
225
    bool move_to_next ()
226
0
    {
227
0
      data_offset += current_tuple->get_data_size ();
228
0
      current_tuple = &current_tuple->get_next (axis_count);
229
0
      index++;
230
0
      return is_valid ();
231
0
    }
232
233
    const HBUINT8 *get_serialized_data () const
234
0
    { return &(var_data+var_data->data) + data_offset; }
235
236
    private:
237
    const GlyphVariationData *var_data;
238
    unsigned int index;
239
    unsigned int axis_count;
240
    unsigned int data_offset;
241
242
    public:
243
    hb_bytes_t var_data_bytes;
244
    const TupleVariationHeader *current_tuple;
245
  };
246
247
  static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count,
248
          hb_vector_t<unsigned int> &shared_indices /* OUT */,
249
          tuple_iterator_t *iterator /* OUT */)
250
0
  {
251
0
    iterator->init (var_data_bytes, axis_count);
252
0
    if (!iterator->get_shared_indices (shared_indices))
253
0
      return false;
254
0
    return iterator->is_valid ();
255
0
  }
256
257
0
  bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); }
258
259
  static bool unpack_points (const HBUINT8 *&p /* IN/OUT */,
260
           hb_vector_t<unsigned int> &points /* OUT */,
261
           const hb_bytes_t &bytes)
262
0
  {
263
0
    enum packed_point_flag_t
264
0
    {
265
0
      POINTS_ARE_WORDS     = 0x80,
266
0
      POINT_RUN_COUNT_MASK = 0x7F
267
0
    };
268
269
0
    if (unlikely (!bytes.check_range (p))) return false;
270
271
0
    uint16_t count = *p++;
272
0
    if (count & POINTS_ARE_WORDS)
273
0
    {
274
0
      if (unlikely (!bytes.check_range (p))) return false;
275
0
      count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++;
276
0
    }
277
0
    points.resize (count);
278
279
0
    unsigned int n = 0;
280
0
    uint16_t i = 0;
281
0
    while (i < count)
282
0
    {
283
0
      if (unlikely (!bytes.check_range (p))) return false;
284
0
      uint16_t j;
285
0
      uint8_t control = *p++;
286
0
      uint16_t run_count = (control & POINT_RUN_COUNT_MASK) + 1;
287
0
      if (control & POINTS_ARE_WORDS)
288
0
      {
289
0
  for (j = 0; j < run_count && i < count; j++, i++)
290
0
  {
291
0
    if (unlikely (!bytes.check_range ((const HBUINT16 *) p)))
292
0
      return false;
293
0
    n += *(const HBUINT16 *)p;
294
0
    points[i] = n;
295
0
    p += HBUINT16::static_size;
296
0
  }
297
0
      }
298
0
      else
299
0
      {
300
0
  for (j = 0; j < run_count && i < count; j++, i++)
301
0
  {
302
0
    if (unlikely (!bytes.check_range (p))) return false;
303
0
    n += *p++;
304
0
    points[i] = n;
305
0
  }
306
0
      }
307
0
      if (j < run_count) return false;
308
0
    }
309
0
    return true;
310
0
  }
311
312
  static bool unpack_deltas (const HBUINT8 *&p /* IN/OUT */,
313
           hb_vector_t<int> &deltas /* IN/OUT */,
314
           const hb_bytes_t &bytes)
315
0
  {
316
0
    enum packed_delta_flag_t
317
0
    {
318
0
      DELTAS_ARE_ZERO      = 0x80,
319
0
      DELTAS_ARE_WORDS     = 0x40,
320
0
      DELTA_RUN_COUNT_MASK = 0x3F
321
0
    };
322
323
0
    unsigned int i = 0;
324
0
    unsigned int count = deltas.length;
325
0
    while (i < count)
326
0
    {
327
0
      if (unlikely (!bytes.check_range (p))) return false;
328
0
      uint8_t control = *p++;
329
0
      unsigned int run_count = (control & DELTA_RUN_COUNT_MASK) + 1;
330
0
      unsigned int j;
331
0
      if (control & DELTAS_ARE_ZERO)
332
0
  for (j = 0; j < run_count && i < count; j++, i++)
333
0
    deltas[i] = 0;
334
0
      else if (control & DELTAS_ARE_WORDS)
335
0
  for (j = 0; j < run_count && i < count; j++, i++)
336
0
  {
337
0
    if (unlikely (!bytes.check_range ((const HBUINT16 *) p)))
338
0
      return false;
339
0
    deltas[i] = *(const HBINT16 *) p;
340
0
    p += HBUINT16::static_size;
341
0
  }
342
0
      else
343
0
  for (j = 0; j < run_count && i < count; j++, i++)
344
0
  {
345
0
    if (unlikely (!bytes.check_range (p)))
346
0
      return false;
347
0
    deltas[i] = *(const HBINT8 *) p++;
348
0
  }
349
0
      if (j < run_count)
350
0
  return false;
351
0
    }
352
0
    return true;
353
0
  }
354
355
0
  bool has_data () const { return tupleVarCount; }
356
357
  protected:
358
  struct TupleVarCount : HBUINT16
359
  {
360
0
    bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); }
361
0
    unsigned int get_count () const { return (*this) & CountMask; }
362
363
    protected:
364
    enum Flags
365
    {
366
      SharedPointNumbers= 0x8000u,
367
      CountMask   = 0x0FFFu
368
    };
369
    public:
370
    DEFINE_SIZE_STATIC (2);
371
  };
372
373
  TupleVarCount tupleVarCount;  /* A packed field. The high 4 bits are flags, and the
374
         * low 12 bits are the number of tuple variation tables
375
         * for this glyph. The number of tuple variation tables
376
         * can be any number between 1 and 4095. */
377
  Offset16To<HBUINT8>
378
    data;   /* Offset from the start of the GlyphVariationData table
379
         * to the serialized data. */
380
  /* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */
381
  public:
382
  DEFINE_SIZE_MIN (4);
383
};
384
385
struct gvar
386
{
387
  static constexpr hb_tag_t tableTag = HB_OT_TAG_gvar;
388
389
  bool sanitize_shallow (hb_sanitize_context_t *c) const
390
0
  {
391
0
    TRACE_SANITIZE (this);
392
0
    return_trace (c->check_struct (this) && (version.major == 1) &&
393
0
      (glyphCount == c->get_num_glyphs ()) &&
394
0
      sharedTuples.sanitize (c, this, axisCount * sharedTupleCount) &&
395
0
      (is_long_offset () ?
396
0
         c->check_array (get_long_offset_array (), glyphCount+1) :
397
0
         c->check_array (get_short_offset_array (), glyphCount+1)) &&
398
0
      c->check_array (((const HBUINT8*)&(this+dataZ)) + get_offset (0),
399
0
          get_offset (glyphCount) - get_offset (0)));
400
0
  }
401
402
  /* GlyphVariationData not sanitized here; must be checked while accessing each glyph varation data */
403
  bool sanitize (hb_sanitize_context_t *c) const
404
0
  { return sanitize_shallow (c); }
405
406
  bool subset (hb_subset_context_t *c) const
407
0
  {
408
0
    TRACE_SUBSET (this);
409
410
0
    gvar *out = c->serializer->allocate_min<gvar> ();
411
0
    if (unlikely (!out)) return_trace (false);
412
413
0
    out->version.major = 1;
414
0
    out->version.minor = 0;
415
0
    out->axisCount = axisCount;
416
0
    out->sharedTupleCount = sharedTupleCount;
417
418
0
    unsigned int num_glyphs = c->plan->num_output_glyphs ();
419
0
    out->glyphCount = num_glyphs;
420
421
0
    unsigned int subset_data_size = 0;
422
0
    for (hb_codepoint_t gid = (c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE) ? 0 : 1;
423
0
         gid < num_glyphs;
424
0
         gid++)
425
0
    {
426
0
      hb_codepoint_t old_gid;
427
0
      if (!c->plan->old_gid_for_new_gid (gid, &old_gid)) continue;
428
0
      subset_data_size += get_glyph_var_data_bytes (c->source_blob, old_gid).length;
429
0
    }
430
431
0
    bool long_offset = subset_data_size & ~0xFFFFu;
432
0
    out->flags = long_offset ? 1 : 0;
433
434
0
    HBUINT8 *subset_offsets = c->serializer->allocate_size<HBUINT8> ((long_offset ? 4 : 2) * (num_glyphs + 1));
435
0
    if (!subset_offsets) return_trace (false);
436
437
    /* shared tuples */
438
0
    if (!sharedTupleCount || !sharedTuples)
439
0
      out->sharedTuples = 0;
440
0
    else
441
0
    {
442
0
      unsigned int shared_tuple_size = F2DOT14::static_size * axisCount * sharedTupleCount;
443
0
      F2DOT14 *tuples = c->serializer->allocate_size<F2DOT14> (shared_tuple_size);
444
0
      if (!tuples) return_trace (false);
445
0
      out->sharedTuples = (char *) tuples - (char *) out;
446
0
      memcpy (tuples, this+sharedTuples, shared_tuple_size);
447
0
    }
448
449
0
    char *subset_data = c->serializer->allocate_size<char> (subset_data_size);
450
0
    if (!subset_data) return_trace (false);
451
0
    out->dataZ = subset_data - (char *) out;
452
453
0
    unsigned int glyph_offset = 0;
454
0
    for (hb_codepoint_t gid = (c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE) ? 0 : 1;
455
0
         gid < num_glyphs;
456
0
         gid++)
457
0
    {
458
0
      hb_codepoint_t old_gid;
459
0
      hb_bytes_t var_data_bytes = c->plan->old_gid_for_new_gid (gid, &old_gid)
460
0
        ? get_glyph_var_data_bytes (c->source_blob, old_gid)
461
0
        : hb_bytes_t ();
462
463
0
      if (long_offset)
464
0
  ((HBUINT32 *) subset_offsets)[gid] = glyph_offset;
465
0
      else
466
0
  ((HBUINT16 *) subset_offsets)[gid] = glyph_offset / 2;
467
468
0
      if (var_data_bytes.length > 0)
469
0
  memcpy (subset_data, var_data_bytes.arrayZ, var_data_bytes.length);
470
0
      subset_data += var_data_bytes.length;
471
0
      glyph_offset += var_data_bytes.length;
472
0
    }
473
0
    if (long_offset)
474
0
      ((HBUINT32 *) subset_offsets)[num_glyphs] = glyph_offset;
475
0
    else
476
0
      ((HBUINT16 *) subset_offsets)[num_glyphs] = glyph_offset / 2;
477
478
0
    return_trace (true);
479
0
  }
Unexecuted instantiation: OT::gvar::subset(hb_subset_context_t*) const
Unexecuted instantiation: OT::gvar::subset(hb_subset_context_t*) const
480
481
  protected:
482
  const hb_bytes_t get_glyph_var_data_bytes (hb_blob_t *blob, hb_codepoint_t glyph) const
483
0
  {
484
0
    unsigned start_offset = get_offset (glyph);
485
0
    unsigned length = get_offset (glyph+1) - start_offset;
486
0
    hb_bytes_t var_data = blob->as_bytes ().sub_array (((unsigned) dataZ) + start_offset, length);
487
0
    return likely (var_data.length >= GlyphVariationData::min_size) ? var_data : hb_bytes_t ();
488
0
  }
489
490
0
  bool is_long_offset () const { return flags & 1; }
491
492
  unsigned get_offset (unsigned i) const
493
0
  { return is_long_offset () ? get_long_offset_array ()[i] : get_short_offset_array ()[i] * 2; }
494
495
0
  const HBUINT32 * get_long_offset_array () const { return (const HBUINT32 *) &offsetZ; }
496
0
  const HBUINT16 *get_short_offset_array () const { return (const HBUINT16 *) &offsetZ; }
497
498
  public:
499
  struct accelerator_t
500
  {
501
    void init (hb_face_t *face)
502
0
    { table = hb_sanitize_context_t ().reference_table<gvar> (face); }
503
0
    void fini () { table.destroy (); }
504
505
    private:
506
0
    struct x_getter { static float get (const contour_point_t &p) { return p.x; } };
507
0
    struct y_getter { static float get (const contour_point_t &p) { return p.y; } };
508
509
    template <typename T>
510
    static float infer_delta (const hb_array_t<contour_point_t> points,
511
            const hb_array_t<contour_point_t> deltas,
512
            unsigned int target, unsigned int prev, unsigned int next)
513
0
    {
514
0
      float target_val = T::get (points[target]);
515
0
      float prev_val = T::get (points[prev]);
516
0
      float next_val = T::get (points[next]);
517
0
      float prev_delta = T::get (deltas[prev]);
518
0
      float next_delta = T::get (deltas[next]);
519
520
0
      if (prev_val == next_val)
521
0
  return (prev_delta == next_delta) ? prev_delta : 0.f;
522
0
      else if (target_val <= hb_min (prev_val, next_val))
523
0
  return (prev_val < next_val) ? prev_delta : next_delta;
524
0
      else if (target_val >= hb_max (prev_val, next_val))
525
0
  return (prev_val > next_val) ? prev_delta : next_delta;
526
527
      /* linear interpolation */
528
0
      float r = (target_val - prev_val) / (next_val - prev_val);
529
0
      return (1.f - r) * prev_delta + r * next_delta;
530
0
    }
Unexecuted instantiation: float OT::gvar::accelerator_t::infer_delta<OT::gvar::accelerator_t::x_getter>(hb_array_t<OT::contour_point_t>, hb_array_t<OT::contour_point_t>, unsigned int, unsigned int, unsigned int)
Unexecuted instantiation: float OT::gvar::accelerator_t::infer_delta<OT::gvar::accelerator_t::y_getter>(hb_array_t<OT::contour_point_t>, hb_array_t<OT::contour_point_t>, unsigned int, unsigned int, unsigned int)
531
532
    static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end)
533
0
    { return (i >= end) ? start : (i + 1); }
534
535
    public:
536
    bool apply_deltas_to_points (hb_codepoint_t glyph, hb_font_t *font,
537
         const hb_array_t<contour_point_t> points) const
538
0
    {
539
      /* num_coords should exactly match gvar's axisCount due to how GlyphVariationData tuples are aligned */
540
0
      if (!font->num_coords || font->num_coords != table->axisCount) return true;
541
542
0
      if (unlikely (glyph >= table->glyphCount)) return true;
543
544
0
      hb_bytes_t var_data_bytes = table->get_glyph_var_data_bytes (table.get_blob (), glyph);
545
0
      if (!var_data_bytes.as<GlyphVariationData> ()->has_data ()) return true;
546
0
      hb_vector_t<unsigned int> shared_indices;
547
0
      GlyphVariationData::tuple_iterator_t iterator;
548
0
      if (!GlyphVariationData::get_tuple_iterator (var_data_bytes, table->axisCount,
549
0
               shared_indices, &iterator))
550
0
  return true; /* so isn't applied at all */
551
552
      /* Save original points for inferred delta calculation */
553
0
      contour_point_vector_t orig_points;
554
0
      orig_points.resize (points.length);
555
0
      for (unsigned int i = 0; i < orig_points.length; i++)
556
0
  orig_points[i] = points[i];
557
558
0
      contour_point_vector_t deltas; /* flag is used to indicate referenced point */
559
0
      deltas.resize (points.length);
560
561
0
      hb_vector_t<unsigned> end_points;
562
0
      for (unsigned i = 0; i < points.length; ++i)
563
0
  if (points[i].is_end_point)
564
0
    end_points.push (i);
565
566
0
      int *coords = font->coords;
567
0
      unsigned num_coords = font->num_coords;
568
0
      hb_array_t<const F2DOT14> shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * table->axisCount);
569
0
      do
570
0
      {
571
0
  float scalar = iterator.current_tuple->calculate_scalar (coords, num_coords, shared_tuples);
572
0
  if (scalar == 0.f) continue;
573
0
  const HBUINT8 *p = iterator.get_serialized_data ();
574
0
  unsigned int length = iterator.current_tuple->get_data_size ();
575
0
  if (unlikely (!iterator.var_data_bytes.check_range (p, length)))
576
0
    return false;
577
578
0
  hb_bytes_t bytes ((const char *) p, length);
579
0
  hb_vector_t<unsigned int> private_indices;
580
0
  if (iterator.current_tuple->has_private_points () &&
581
0
      !GlyphVariationData::unpack_points (p, private_indices, bytes))
582
0
    return false;
583
0
  const hb_array_t<unsigned int> &indices = private_indices.length ? private_indices : shared_indices;
584
585
0
  bool apply_to_all = (indices.length == 0);
586
0
  unsigned int num_deltas = apply_to_all ? points.length : indices.length;
587
0
  hb_vector_t<int> x_deltas;
588
0
  x_deltas.resize (num_deltas);
589
0
  if (!GlyphVariationData::unpack_deltas (p, x_deltas, bytes))
590
0
    return false;
591
0
  hb_vector_t<int> y_deltas;
592
0
  y_deltas.resize (num_deltas);
593
0
  if (!GlyphVariationData::unpack_deltas (p, y_deltas, bytes))
594
0
    return false;
595
596
0
  for (unsigned int i = 0; i < deltas.length; i++)
597
0
    deltas[i].init ();
598
0
  for (unsigned int i = 0; i < num_deltas; i++)
599
0
  {
600
0
    unsigned int pt_index = apply_to_all ? i : indices[i];
601
0
    deltas[pt_index].flag = 1;  /* this point is referenced, i.e., explicit deltas specified */
602
0
    deltas[pt_index].x += x_deltas[i] * scalar;
603
0
    deltas[pt_index].y += y_deltas[i] * scalar;
604
0
  }
605
606
  /* infer deltas for unreferenced points */
607
0
  unsigned start_point = 0;
608
0
  for (unsigned c = 0; c < end_points.length; c++)
609
0
  {
610
0
    unsigned end_point = end_points[c];
611
612
    /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */
613
0
    unsigned unref_count = 0;
614
0
    for (unsigned i = start_point; i <= end_point; i++)
615
0
      if (!deltas[i].flag) unref_count++;
616
617
0
    unsigned j = start_point;
618
0
    if (unref_count == 0 || unref_count > end_point - start_point)
619
0
      goto no_more_gaps;
620
621
0
    for (;;)
622
0
    {
623
      /* Locate the next gap of unreferenced points between two referenced points prev and next.
624
       * Note that a gap may wrap around at left (start_point) and/or at right (end_point).
625
       */
626
0
      unsigned int prev, next, i;
627
0
      for (;;)
628
0
      {
629
0
        i = j;
630
0
        j = next_index (i, start_point, end_point);
631
0
        if (deltas[i].flag && !deltas[j].flag) break;
632
0
      }
633
0
      prev = j = i;
634
0
      for (;;)
635
0
      {
636
0
        i = j;
637
0
        j = next_index (i, start_point, end_point);
638
0
        if (!deltas[i].flag && deltas[j].flag) break;
639
0
      }
640
0
      next = j;
641
      /* Infer deltas for all unref points in the gap between prev and next */
642
0
      i = prev;
643
0
      for (;;)
644
0
      {
645
0
        i = next_index (i, start_point, end_point);
646
0
        if (i == next) break;
647
0
        deltas[i].x = infer_delta<x_getter> (orig_points.as_array (), deltas.as_array (), i, prev, next);
648
0
        deltas[i].y = infer_delta<y_getter> (orig_points.as_array (), deltas.as_array (), i, prev, next);
649
0
        if (--unref_count == 0) goto no_more_gaps;
650
0
      }
651
0
    }
652
0
no_more_gaps:
653
0
    start_point = end_point + 1;
654
0
  }
655
656
  /* apply specified / inferred deltas to points */
657
0
  for (unsigned int i = 0; i < points.length; i++)
658
0
  {
659
0
    points[i].x += deltas[i].x;
660
0
    points[i].y += deltas[i].y;
661
0
  }
662
0
      } while (iterator.move_to_next ());
663
664
0
      return true;
665
0
    }
666
667
0
    unsigned int get_axis_count () const { return table->axisCount; }
668
669
    private:
670
    hb_blob_ptr_t<gvar> table;
671
  };
672
673
  protected:
674
  FixedVersion<>version;  /* Version number of the glyph variations table
675
         * Set to 0x00010000u. */
676
  HBUINT16  axisCount;  /* The number of variation axes for this font. This must be
677
         * the same number as axisCount in the 'fvar' table. */
678
  HBUINT16  sharedTupleCount;
679
        /* The number of shared tuple records. Shared tuple records
680
         * can be referenced within glyph variation data tables for
681
         * multiple glyphs, as opposed to other tuple records stored
682
         * directly within a glyph variation data table. */
683
  NNOffset32To<UnsizedArrayOf<F2DOT14>>
684
    sharedTuples; /* Offset from the start of this table to the shared tuple records.
685
         * Array of tuple records shared across all glyph variation data tables. */
686
  HBUINT16  glyphCount; /* The number of glyphs in this font. This must match the number of
687
         * glyphs stored elsewhere in the font. */
688
  HBUINT16  flags;    /* Bit-field that gives the format of the offset array that follows.
689
         * If bit 0 is clear, the offsets are uint16; if bit 0 is set, the
690
         * offsets are uint32. */
691
  Offset32To<GlyphVariationData>
692
    dataZ;    /* Offset from the start of this table to the array of
693
         * GlyphVariationData tables. */
694
  UnsizedArrayOf<HBUINT8>
695
    offsetZ;  /* Offsets from the start of the GlyphVariationData array
696
         * to each GlyphVariationData table. */
697
  public:
698
  DEFINE_SIZE_MIN (20);
699
};
700
701
struct gvar_accelerator_t : gvar::accelerator_t {};
702
703
} /* namespace OT */
704
705
#endif /* HB_OT_VAR_GVAR_TABLE_HH */