Coverage Report

Created: 2021-08-22 09:07

/src/skia/third_party/externals/libjpeg-turbo/jcsample.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcsample.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
8
 * Copyright (C) 2014, MIPS Technologies, Inc., California.
9
 * Copyright (C) 2015, 2019, D. R. Commander.
10
 * For conditions of distribution and use, see the accompanying README.ijg
11
 * file.
12
 *
13
 * This file contains downsampling routines.
14
 *
15
 * Downsampling input data is counted in "row groups".  A row group
16
 * is defined to be max_v_samp_factor pixel rows of each component,
17
 * from which the downsampler produces v_samp_factor sample rows.
18
 * A single row group is processed in each call to the downsampler module.
19
 *
20
 * The downsampler is responsible for edge-expansion of its output data
21
 * to fill an integral number of DCT blocks horizontally.  The source buffer
22
 * may be modified if it is helpful for this purpose (the source buffer is
23
 * allocated wide enough to correspond to the desired output width).
24
 * The caller (the prep controller) is responsible for vertical padding.
25
 *
26
 * The downsampler may request "context rows" by setting need_context_rows
27
 * during startup.  In this case, the input arrays will contain at least
28
 * one row group's worth of pixels above and below the passed-in data;
29
 * the caller will create dummy rows at image top and bottom by replicating
30
 * the first or last real pixel row.
31
 *
32
 * An excellent reference for image resampling is
33
 *   Digital Image Warping, George Wolberg, 1990.
34
 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
35
 *
36
 * The downsampling algorithm used here is a simple average of the source
37
 * pixels covered by the output pixel.  The hi-falutin sampling literature
38
 * refers to this as a "box filter".  In general the characteristics of a box
39
 * filter are not very good, but for the specific cases we normally use (1:1
40
 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
41
 * nearly so bad.  If you intend to use other sampling ratios, you'd be well
42
 * advised to improve this code.
43
 *
44
 * A simple input-smoothing capability is provided.  This is mainly intended
45
 * for cleaning up color-dithered GIF input files (if you find it inadequate,
46
 * we suggest using an external filtering program such as pnmconvol).  When
47
 * enabled, each input pixel P is replaced by a weighted sum of itself and its
48
 * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
49
 * where SF = (smoothing_factor / 1024).
50
 * Currently, smoothing is only supported for 2h2v sampling factors.
51
 */
52
53
#define JPEG_INTERNALS
54
#include "jinclude.h"
55
#include "jpeglib.h"
56
#include "jsimd.h"
57
58
59
/* Pointer to routine to downsample a single component */
60
typedef void (*downsample1_ptr) (j_compress_ptr cinfo,
61
                                 jpeg_component_info *compptr,
62
                                 JSAMPARRAY input_data,
63
                                 JSAMPARRAY output_data);
64
65
/* Private subobject */
66
67
typedef struct {
68
  struct jpeg_downsampler pub;  /* public fields */
69
70
  /* Downsampling method pointers, one per component */
71
  downsample1_ptr methods[MAX_COMPONENTS];
72
} my_downsampler;
73
74
typedef my_downsampler *my_downsample_ptr;
75
76
77
/*
78
 * Initialize for a downsampling pass.
79
 */
80
81
METHODDEF(void)
82
start_pass_downsample(j_compress_ptr cinfo)
83
6.50k
{
84
  /* no work for now */
85
6.50k
}
86
87
88
/*
89
 * Expand a component horizontally from width input_cols to width output_cols,
90
 * by duplicating the rightmost samples.
91
 */
92
93
LOCAL(void)
94
expand_right_edge(JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols,
95
                  JDIMENSION output_cols)
96
1.51M
{
97
1.51M
  register JSAMPROW ptr;
98
1.51M
  register JSAMPLE pixval;
99
1.51M
  register int count;
100
1.51M
  int row;
101
1.51M
  int numcols = (int)(output_cols - input_cols);
102
103
1.51M
  if (numcols > 0) {
104
3.97M
    for (row = 0; row < num_rows; row++) {
105
2.65M
      ptr = image_data[row] + input_cols;
106
2.65M
      pixval = ptr[-1];
107
25.2M
      for (count = numcols; count > 0; count--)
108
22.5M
        *ptr++ = pixval;
109
2.65M
    }
110
1.32M
  }
111
1.51M
}
112
113
114
/*
115
 * Do downsampling for a whole row group (all components).
116
 *
117
 * In this version we simply downsample each component independently.
118
 */
119
120
METHODDEF(void)
121
sep_downsample(j_compress_ptr cinfo, JSAMPIMAGE input_buf,
122
               JDIMENSION in_row_index, JSAMPIMAGE output_buf,
123
               JDIMENSION out_row_group_index)
124
506k
{
125
506k
  my_downsample_ptr downsample = (my_downsample_ptr)cinfo->downsample;
126
506k
  int ci;
127
506k
  jpeg_component_info *compptr;
128
506k
  JSAMPARRAY in_ptr, out_ptr;
129
130
2.02M
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
131
1.51M
       ci++, compptr++) {
132
1.51M
    in_ptr = input_buf[ci] + in_row_index;
133
1.51M
    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
134
1.51M
    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
135
1.51M
  }
136
506k
}
137
138
139
/*
140
 * Downsample pixel values of a single component.
141
 * One row group is processed per call.
142
 * This version handles arbitrary integral sampling ratios, without smoothing.
143
 * Note that this version is not actually used for customary sampling ratios.
144
 */
145
146
METHODDEF(void)
147
int_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
148
               JSAMPARRAY input_data, JSAMPARRAY output_data)
149
0
{
150
0
  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
151
0
  JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
152
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
153
0
  JSAMPROW inptr, outptr;
154
0
  JLONG outvalue;
155
156
0
  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
157
0
  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
158
0
  numpix = h_expand * v_expand;
159
0
  numpix2 = numpix / 2;
160
161
  /* Expand input data enough to let all the output samples be generated
162
   * by the standard loop.  Special-casing padded output would be more
163
   * efficient.
164
   */
165
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
166
0
                    output_cols * h_expand);
167
168
0
  inrow = 0;
169
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
170
0
    outptr = output_data[outrow];
171
0
    for (outcol = 0, outcol_h = 0; outcol < output_cols;
172
0
         outcol++, outcol_h += h_expand) {
173
0
      outvalue = 0;
174
0
      for (v = 0; v < v_expand; v++) {
175
0
        inptr = input_data[inrow + v] + outcol_h;
176
0
        for (h = 0; h < h_expand; h++) {
177
0
          outvalue += (JLONG)(*inptr++);
178
0
        }
179
0
      }
180
0
      *outptr++ = (JSAMPLE)((outvalue + numpix2) / numpix);
181
0
    }
182
0
    inrow += v_expand;
183
0
  }
184
0
}
185
186
187
/*
188
 * Downsample pixel values of a single component.
189
 * This version handles the special case of a full-size component,
190
 * without smoothing.
191
 */
192
193
METHODDEF(void)
194
fullsize_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
195
                    JSAMPARRAY input_data, JSAMPARRAY output_data)
196
506k
{
197
  /* Copy the data */
198
506k
  jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor,
199
506k
                    cinfo->image_width);
200
  /* Edge-expand */
201
506k
  expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
202
506k
                    compptr->width_in_blocks * DCTSIZE);
203
506k
}
204
205
206
/*
207
 * Downsample pixel values of a single component.
208
 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
209
 * without smoothing.
210
 *
211
 * A note about the "bias" calculations: when rounding fractional values to
212
 * integer, we do not want to always round 0.5 up to the next integer.
213
 * If we did that, we'd introduce a noticeable bias towards larger values.
214
 * Instead, this code is arranged so that 0.5 will be rounded up or down at
215
 * alternate pixel locations (a simple ordered dither pattern).
216
 */
217
218
METHODDEF(void)
219
h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
220
                JSAMPARRAY input_data, JSAMPARRAY output_data)
221
0
{
222
0
  int outrow;
223
0
  JDIMENSION outcol;
224
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
225
0
  register JSAMPROW inptr, outptr;
226
0
  register int bias;
227
228
  /* Expand input data enough to let all the output samples be generated
229
   * by the standard loop.  Special-casing padded output would be more
230
   * efficient.
231
   */
232
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
233
0
                    output_cols * 2);
234
235
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
236
0
    outptr = output_data[outrow];
237
0
    inptr = input_data[outrow];
238
0
    bias = 0;                   /* bias = 0,1,0,1,... for successive samples */
239
0
    for (outcol = 0; outcol < output_cols; outcol++) {
240
0
      *outptr++ = (JSAMPLE)((inptr[0] + inptr[1] + bias) >> 1);
241
0
      bias ^= 1;                /* 0=>1, 1=>0 */
242
0
      inptr += 2;
243
0
    }
244
0
  }
245
0
}
246
247
248
/*
249
 * Downsample pixel values of a single component.
250
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
251
 * without smoothing.
252
 */
253
254
METHODDEF(void)
255
h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
256
                JSAMPARRAY input_data, JSAMPARRAY output_data)
257
1.01M
{
258
1.01M
  int inrow, outrow;
259
1.01M
  JDIMENSION outcol;
260
1.01M
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
261
1.01M
  register JSAMPROW inptr0, inptr1, outptr;
262
1.01M
  register int bias;
263
264
  /* Expand input data enough to let all the output samples be generated
265
   * by the standard loop.  Special-casing padded output would be more
266
   * efficient.
267
   */
268
1.01M
  expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width,
269
1.01M
                    output_cols * 2);
270
271
1.01M
  inrow = 0;
272
2.02M
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
273
1.01M
    outptr = output_data[outrow];
274
1.01M
    inptr0 = input_data[inrow];
275
1.01M
    inptr1 = input_data[inrow + 1];
276
1.01M
    bias = 1;                   /* bias = 1,2,1,2,... for successive samples */
277
59.2M
    for (outcol = 0; outcol < output_cols; outcol++) {
278
58.2M
      *outptr++ =
279
58.2M
        (JSAMPLE)((inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1] + bias) >> 2);
280
58.2M
      bias ^= 3;                /* 1=>2, 2=>1 */
281
58.2M
      inptr0 += 2;  inptr1 += 2;
282
58.2M
    }
283
1.01M
    inrow += 2;
284
1.01M
  }
285
1.01M
}
286
287
288
#ifdef INPUT_SMOOTHING_SUPPORTED
289
290
/*
291
 * Downsample pixel values of a single component.
292
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
293
 * with smoothing.  One row of context is required.
294
 */
295
296
METHODDEF(void)
297
h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
298
                       JSAMPARRAY input_data, JSAMPARRAY output_data)
299
0
{
300
0
  int inrow, outrow;
301
0
  JDIMENSION colctr;
302
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
303
0
  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
304
0
  JLONG membersum, neighsum, memberscale, neighscale;
305
306
  /* Expand input data enough to let all the output samples be generated
307
   * by the standard loop.  Special-casing padded output would be more
308
   * efficient.
309
   */
310
0
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
311
0
                    cinfo->image_width, output_cols * 2);
312
313
  /* We don't bother to form the individual "smoothed" input pixel values;
314
   * we can directly compute the output which is the average of the four
315
   * smoothed values.  Each of the four member pixels contributes a fraction
316
   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
317
   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
318
   * output.  The four corner-adjacent neighbor pixels contribute a fraction
319
   * SF to just one smoothed pixel, or SF/4 to the final output; while the
320
   * eight edge-adjacent neighbors contribute SF to each of two smoothed
321
   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
322
   * factors are scaled by 2^16 = 65536.
323
   * Also recall that SF = smoothing_factor / 1024.
324
   */
325
326
0
  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
327
0
  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
328
329
0
  inrow = 0;
330
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
331
0
    outptr = output_data[outrow];
332
0
    inptr0 = input_data[inrow];
333
0
    inptr1 = input_data[inrow + 1];
334
0
    above_ptr = input_data[inrow - 1];
335
0
    below_ptr = input_data[inrow + 2];
336
337
    /* Special case for first column: pretend column -1 is same as column 0 */
338
0
    membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1];
339
0
    neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] +
340
0
               inptr0[0] + inptr0[2] + inptr1[0] + inptr1[2];
341
0
    neighsum += neighsum;
342
0
    neighsum += above_ptr[0] + above_ptr[2] + below_ptr[0] + below_ptr[2];
343
0
    membersum = membersum * memberscale + neighsum * neighscale;
344
0
    *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
345
0
    inptr0 += 2;  inptr1 += 2;  above_ptr += 2;  below_ptr += 2;
346
347
0
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
348
      /* sum of pixels directly mapped to this output element */
349
0
      membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1];
350
      /* sum of edge-neighbor pixels */
351
0
      neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] +
352
0
                 inptr0[-1] + inptr0[2] + inptr1[-1] + inptr1[2];
353
      /* The edge-neighbors count twice as much as corner-neighbors */
354
0
      neighsum += neighsum;
355
      /* Add in the corner-neighbors */
356
0
      neighsum += above_ptr[-1] + above_ptr[2] + below_ptr[-1] + below_ptr[2];
357
      /* form final output scaled up by 2^16 */
358
0
      membersum = membersum * memberscale + neighsum * neighscale;
359
      /* round, descale and output it */
360
0
      *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
361
0
      inptr0 += 2;  inptr1 += 2;  above_ptr += 2;  below_ptr += 2;
362
0
    }
363
364
    /* Special case for last column */
365
0
    membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1];
366
0
    neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] +
367
0
               inptr0[-1] + inptr0[1] + inptr1[-1] + inptr1[1];
368
0
    neighsum += neighsum;
369
0
    neighsum += above_ptr[-1] + above_ptr[1] + below_ptr[-1] + below_ptr[1];
370
0
    membersum = membersum * memberscale + neighsum * neighscale;
371
0
    *outptr = (JSAMPLE)((membersum + 32768) >> 16);
372
373
0
    inrow += 2;
374
0
  }
375
0
}
376
377
378
/*
379
 * Downsample pixel values of a single component.
380
 * This version handles the special case of a full-size component,
381
 * with smoothing.  One row of context is required.
382
 */
383
384
METHODDEF(void)
385
fullsize_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr,
386
                           JSAMPARRAY input_data, JSAMPARRAY output_data)
387
0
{
388
0
  int outrow;
389
0
  JDIMENSION colctr;
390
0
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
391
0
  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
392
0
  JLONG membersum, neighsum, memberscale, neighscale;
393
0
  int colsum, lastcolsum, nextcolsum;
394
395
  /* Expand input data enough to let all the output samples be generated
396
   * by the standard loop.  Special-casing padded output would be more
397
   * efficient.
398
   */
399
0
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
400
0
                    cinfo->image_width, output_cols);
401
402
  /* Each of the eight neighbor pixels contributes a fraction SF to the
403
   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
404
   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
405
   * Also recall that SF = smoothing_factor / 1024.
406
   */
407
408
0
  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
409
0
  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
410
411
0
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
412
0
    outptr = output_data[outrow];
413
0
    inptr = input_data[outrow];
414
0
    above_ptr = input_data[outrow - 1];
415
0
    below_ptr = input_data[outrow + 1];
416
417
    /* Special case for first column */
418
0
    colsum = (*above_ptr++) + (*below_ptr++) + inptr[0];
419
0
    membersum = *inptr++;
420
0
    nextcolsum = above_ptr[0] + below_ptr[0] + inptr[0];
421
0
    neighsum = colsum + (colsum - membersum) + nextcolsum;
422
0
    membersum = membersum * memberscale + neighsum * neighscale;
423
0
    *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
424
0
    lastcolsum = colsum;  colsum = nextcolsum;
425
426
0
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
427
0
      membersum = *inptr++;
428
0
      above_ptr++;  below_ptr++;
429
0
      nextcolsum = above_ptr[0] + below_ptr[0] + inptr[0];
430
0
      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
431
0
      membersum = membersum * memberscale + neighsum * neighscale;
432
0
      *outptr++ = (JSAMPLE)((membersum + 32768) >> 16);
433
0
      lastcolsum = colsum;  colsum = nextcolsum;
434
0
    }
435
436
    /* Special case for last column */
437
0
    membersum = *inptr;
438
0
    neighsum = lastcolsum + (colsum - membersum) + colsum;
439
0
    membersum = membersum * memberscale + neighsum * neighscale;
440
0
    *outptr = (JSAMPLE)((membersum + 32768) >> 16);
441
442
0
  }
443
0
}
444
445
#endif /* INPUT_SMOOTHING_SUPPORTED */
446
447
448
/*
449
 * Module initialization routine for downsampling.
450
 * Note that we must select a routine for each component.
451
 */
452
453
GLOBAL(void)
454
jinit_downsampler(j_compress_ptr cinfo)
455
6.50k
{
456
6.50k
  my_downsample_ptr downsample;
457
6.50k
  int ci;
458
6.50k
  jpeg_component_info *compptr;
459
6.50k
  boolean smoothok = TRUE;
460
461
6.50k
  downsample = (my_downsample_ptr)
462
6.50k
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
463
6.50k
                                sizeof(my_downsampler));
464
6.50k
  cinfo->downsample = (struct jpeg_downsampler *)downsample;
465
6.50k
  downsample->pub.start_pass = start_pass_downsample;
466
6.50k
  downsample->pub.downsample = sep_downsample;
467
6.50k
  downsample->pub.need_context_rows = FALSE;
468
469
6.50k
  if (cinfo->CCIR601_sampling)
470
0
    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
471
472
  /* Verify we can handle the sampling factors, and set up method pointers */
473
26.0k
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
474
19.5k
       ci++, compptr++) {
475
19.5k
    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
476
6.50k
        compptr->v_samp_factor == cinfo->max_v_samp_factor) {
477
6.50k
#ifdef INPUT_SMOOTHING_SUPPORTED
478
6.50k
      if (cinfo->smoothing_factor) {
479
0
        downsample->methods[ci] = fullsize_smooth_downsample;
480
0
        downsample->pub.need_context_rows = TRUE;
481
0
      } else
482
6.50k
#endif
483
6.50k
        downsample->methods[ci] = fullsize_downsample;
484
13.0k
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
485
13.0k
               compptr->v_samp_factor == cinfo->max_v_samp_factor) {
486
0
      smoothok = FALSE;
487
0
      if (jsimd_can_h2v1_downsample())
488
0
        downsample->methods[ci] = jsimd_h2v1_downsample;
489
0
      else
490
0
        downsample->methods[ci] = h2v1_downsample;
491
13.0k
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
492
13.0k
               compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
493
13.0k
#ifdef INPUT_SMOOTHING_SUPPORTED
494
13.0k
      if (cinfo->smoothing_factor) {
495
#if defined(__mips__)
496
        if (jsimd_can_h2v2_smooth_downsample())
497
          downsample->methods[ci] = jsimd_h2v2_smooth_downsample;
498
        else
499
#endif
500
0
          downsample->methods[ci] = h2v2_smooth_downsample;
501
0
        downsample->pub.need_context_rows = TRUE;
502
0
      } else
503
13.0k
#endif
504
13.0k
      {
505
13.0k
        if (jsimd_can_h2v2_downsample())
506
0
          downsample->methods[ci] = jsimd_h2v2_downsample;
507
13.0k
        else
508
13.0k
          downsample->methods[ci] = h2v2_downsample;
509
13.0k
      }
510
0
    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
511
0
               (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
512
0
      smoothok = FALSE;
513
0
      downsample->methods[ci] = int_downsample;
514
0
    } else
515
0
      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
516
19.5k
  }
517
518
6.50k
#ifdef INPUT_SMOOTHING_SUPPORTED
519
6.50k
  if (cinfo->smoothing_factor && !smoothok)
520
0
    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
521
6.50k
#endif
522
6.50k
}