Coverage Report

Created: 2021-08-22 09:07

/src/skia/third_party/externals/libjpeg-turbo/jmemmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jmemmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2016, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains the JPEG system-independent memory management
12
 * routines.  This code is usable across a wide variety of machines; most
13
 * of the system dependencies have been isolated in a separate file.
14
 * The major functions provided here are:
15
 *   * pool-based allocation and freeing of memory;
16
 *   * policy decisions about how to divide available memory among the
17
 *     virtual arrays;
18
 *   * control logic for swapping virtual arrays between main memory and
19
 *     backing storage.
20
 * The separate system-dependent file provides the actual backing-storage
21
 * access code, and it contains the policy decision about how much total
22
 * main memory to use.
23
 * This file is system-dependent in the sense that some of its functions
24
 * are unnecessary in some systems.  For example, if there is enough virtual
25
 * memory so that backing storage will never be used, much of the virtual
26
 * array control logic could be removed.  (Of course, if you have that much
27
 * memory then you shouldn't care about a little bit of unused code...)
28
 */
29
30
#define JPEG_INTERNALS
31
#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
32
#include "jinclude.h"
33
#include "jpeglib.h"
34
#include "jmemsys.h"            /* import the system-dependent declarations */
35
#if !defined(_MSC_VER) || _MSC_VER > 1600
36
#include <stdint.h>
37
#endif
38
#include <limits.h>
39
40
#ifndef NO_GETENV
41
#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
42
extern char *getenv(const char *name);
43
#endif
44
#endif
45
46
47
LOCAL(size_t)
48
round_up_pow2(size_t a, size_t b)
49
/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
50
/* Assumes a >= 0, b > 0, and b is a power of 2 */
51
553k
{
52
553k
  return ((a + b - 1) & (~(b - 1)));
53
553k
}
54
55
56
/*
57
 * Some important notes:
58
 *   The allocation routines provided here must never return NULL.
59
 *   They should exit to error_exit if unsuccessful.
60
 *
61
 *   It's not a good idea to try to merge the sarray and barray routines,
62
 *   even though they are textually almost the same, because samples are
63
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
64
 *   in machines where byte pointers have a different representation from
65
 *   word pointers, the resulting machine code could not be the same.
66
 */
67
68
69
/*
70
 * Many machines require storage alignment: longs must start on 4-byte
71
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
72
 * always returns pointers that are multiples of the worst-case alignment
73
 * requirement, and we had better do so too.
74
 * There isn't any really portable way to determine the worst-case alignment
75
 * requirement.  This module assumes that the alignment requirement is
76
 * multiples of ALIGN_SIZE.
77
 * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
78
 * some workstations (where doubles really do need 8-byte alignment) and will
79
 * work fine on nearly everything.  If your machine has lesser alignment needs,
80
 * you can save a few bytes by making ALIGN_SIZE smaller.
81
 * The only place I know of where this will NOT work is certain Macintosh
82
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
83
 * Doing 10-byte alignment is counterproductive because longwords won't be
84
 * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
85
 * such a compiler.
86
 */
87
88
#ifndef ALIGN_SIZE              /* so can override from jconfig.h */
89
#ifndef WITH_SIMD
90
#define ALIGN_SIZE  sizeof(double)
91
#else
92
2.89M
#define ALIGN_SIZE  32 /* Most of the SIMD instructions we support require
93
                          16-byte (128-bit) alignment, but AVX2 requires
94
                          32-byte alignment. */
95
#endif
96
#endif
97
98
/*
99
 * We allocate objects from "pools", where each pool is gotten with a single
100
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
101
 * overhead within a pool, except for alignment padding.  Each pool has a
102
 * header with a link to the next pool of the same class.
103
 * Small and large pool headers are identical.
104
 */
105
106
typedef struct small_pool_struct *small_pool_ptr;
107
108
typedef struct small_pool_struct {
109
  small_pool_ptr next;          /* next in list of pools */
110
  size_t bytes_used;            /* how many bytes already used within pool */
111
  size_t bytes_left;            /* bytes still available in this pool */
112
} small_pool_hdr;
113
114
typedef struct large_pool_struct *large_pool_ptr;
115
116
typedef struct large_pool_struct {
117
  large_pool_ptr next;          /* next in list of pools */
118
  size_t bytes_used;            /* how many bytes already used within pool */
119
  size_t bytes_left;            /* bytes still available in this pool */
120
} large_pool_hdr;
121
122
/*
123
 * Here is the full definition of a memory manager object.
124
 */
125
126
typedef struct {
127
  struct jpeg_memory_mgr pub;   /* public fields */
128
129
  /* Each pool identifier (lifetime class) names a linked list of pools. */
130
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
131
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
132
133
  /* Since we only have one lifetime class of virtual arrays, only one
134
   * linked list is necessary (for each datatype).  Note that the virtual
135
   * array control blocks being linked together are actually stored somewhere
136
   * in the small-pool list.
137
   */
138
  jvirt_sarray_ptr virt_sarray_list;
139
  jvirt_barray_ptr virt_barray_list;
140
141
  /* This counts total space obtained from jpeg_get_small/large */
142
  size_t total_space_allocated;
143
144
  /* alloc_sarray and alloc_barray set this value for use by virtual
145
   * array routines.
146
   */
147
  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
148
} my_memory_mgr;
149
150
typedef my_memory_mgr *my_mem_ptr;
151
152
153
/*
154
 * The control blocks for virtual arrays.
155
 * Note that these blocks are allocated in the "small" pool area.
156
 * System-dependent info for the associated backing store (if any) is hidden
157
 * inside the backing_store_info struct.
158
 */
159
160
struct jvirt_sarray_control {
161
  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
162
  JDIMENSION rows_in_array;     /* total virtual array height */
163
  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
164
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
165
  JDIMENSION rows_in_mem;       /* height of memory buffer */
166
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
167
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
168
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
169
  boolean pre_zero;             /* pre-zero mode requested? */
170
  boolean dirty;                /* do current buffer contents need written? */
171
  boolean b_s_open;             /* is backing-store data valid? */
172
  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
173
  backing_store_info b_s_info;  /* System-dependent control info */
174
};
175
176
struct jvirt_barray_control {
177
  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
178
  JDIMENSION rows_in_array;     /* total virtual array height */
179
  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
180
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
181
  JDIMENSION rows_in_mem;       /* height of memory buffer */
182
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
183
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
184
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
185
  boolean pre_zero;             /* pre-zero mode requested? */
186
  boolean dirty;                /* do current buffer contents need written? */
187
  boolean b_s_open;             /* is backing-store data valid? */
188
  jvirt_barray_ptr next;        /* link to next virtual barray control block */
189
  backing_store_info b_s_info;  /* System-dependent control info */
190
};
191
192
193
#ifdef MEM_STATS                /* optional extra stuff for statistics */
194
195
LOCAL(void)
196
print_mem_stats(j_common_ptr cinfo, int pool_id)
197
{
198
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
199
  small_pool_ptr shdr_ptr;
200
  large_pool_ptr lhdr_ptr;
201
202
  /* Since this is only a debugging stub, we can cheat a little by using
203
   * fprintf directly rather than going through the trace message code.
204
   * This is helpful because message parm array can't handle longs.
205
   */
206
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
207
          pool_id, mem->total_space_allocated);
208
209
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
210
       lhdr_ptr = lhdr_ptr->next) {
211
    fprintf(stderr, "  Large chunk used %ld\n", (long)lhdr_ptr->bytes_used);
212
  }
213
214
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
215
       shdr_ptr = shdr_ptr->next) {
216
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
217
            (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left);
218
  }
219
}
220
221
#endif /* MEM_STATS */
222
223
224
LOCAL(void)
225
out_of_memory(j_common_ptr cinfo, int which)
226
/* Report an out-of-memory error and stop execution */
227
/* If we compiled MEM_STATS support, report alloc requests before dying */
228
0
{
229
#ifdef MEM_STATS
230
  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
231
#endif
232
0
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
233
0
}
234
235
236
/*
237
 * Allocation of "small" objects.
238
 *
239
 * For these, we use pooled storage.  When a new pool must be created,
240
 * we try to get enough space for the current request plus a "slop" factor,
241
 * where the slop will be the amount of leftover space in the new pool.
242
 * The speed vs. space tradeoff is largely determined by the slop values.
243
 * A different slop value is provided for each pool class (lifetime),
244
 * and we also distinguish the first pool of a class from later ones.
245
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
246
 * machines, but may be too small if longs are 64 bits or more.
247
 *
248
 * Since we do not know what alignment malloc() gives us, we have to
249
 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
250
 * adjustment.
251
 */
252
253
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
254
  1600,                         /* first PERMANENT pool */
255
  16000                         /* first IMAGE pool */
256
};
257
258
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
259
  0,                            /* additional PERMANENT pools */
260
  5000                          /* additional IMAGE pools */
261
};
262
263
0
#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
264
265
266
METHODDEF(void *)
267
alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
268
/* Allocate a "small" object */
269
402k
{
270
402k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
271
402k
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
272
402k
  char *data_ptr;
273
402k
  size_t min_request, slop;
274
275
  /*
276
   * Round up the requested size to a multiple of ALIGN_SIZE in order
277
   * to assure alignment for the next object allocated in the same pool
278
   * and so that algorithms can straddle outside the proper area up
279
   * to the next alignment.
280
   */
281
402k
  if (sizeofobject > MAX_ALLOC_CHUNK) {
282
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
283
       is close to SIZE_MAX. */
284
0
    out_of_memory(cinfo, 7);
285
0
  }
286
402k
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
287
288
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
289
402k
  if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
290
402k
      MAX_ALLOC_CHUNK)
291
0
    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
292
293
  /* See if space is available in any existing pool */
294
402k
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
295
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
296
402k
  prev_hdr_ptr = NULL;
297
402k
  hdr_ptr = mem->small_list[pool_id];
298
421k
  while (hdr_ptr != NULL) {
299
388k
    if (hdr_ptr->bytes_left >= sizeofobject)
300
370k
      break;                    /* found pool with enough space */
301
18.2k
    prev_hdr_ptr = hdr_ptr;
302
18.2k
    hdr_ptr = hdr_ptr->next;
303
18.2k
  }
304
305
  /* Time to make a new pool? */
306
402k
  if (hdr_ptr == NULL) {
307
    /* min_request is what we need now, slop is what will be leftover */
308
32.3k
    min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
309
32.3k
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
310
23.9k
      slop = first_pool_slop[pool_id];
311
8.41k
    else
312
8.41k
      slop = extra_pool_slop[pool_id];
313
    /* Don't ask for more than MAX_ALLOC_CHUNK */
314
32.3k
    if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request))
315
0
      slop = (size_t)(MAX_ALLOC_CHUNK - min_request);
316
    /* Try to get space, if fail reduce slop and try again */
317
32.3k
    for (;;) {
318
32.3k
      hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop);
319
32.3k
      if (hdr_ptr != NULL)
320
32.3k
        break;
321
0
      slop /= 2;
322
0
      if (slop < MIN_SLOP)      /* give up when it gets real small */
323
0
        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
324
0
    }
325
32.3k
    mem->total_space_allocated += min_request + slop;
326
    /* Success, initialize the new pool header and add to end of list */
327
32.3k
    hdr_ptr->next = NULL;
328
32.3k
    hdr_ptr->bytes_used = 0;
329
32.3k
    hdr_ptr->bytes_left = sizeofobject + slop;
330
32.3k
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
331
23.9k
      mem->small_list[pool_id] = hdr_ptr;
332
8.41k
    else
333
8.41k
      prev_hdr_ptr->next = hdr_ptr;
334
32.3k
  }
335
336
  /* OK, allocate the object from the current pool */
337
402k
  data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
338
402k
  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
339
402k
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
340
402k
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
341
402k
  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
342
402k
  hdr_ptr->bytes_used += sizeofobject;
343
402k
  hdr_ptr->bytes_left -= sizeofobject;
344
345
402k
  return (void *)data_ptr;
346
402k
}
347
348
349
/*
350
 * Allocation of "large" objects.
351
 *
352
 * The external semantics of these are the same as "small" objects.  However,
353
 * the pool management heuristics are quite different.  We assume that each
354
 * request is large enough that it may as well be passed directly to
355
 * jpeg_get_large; the pool management just links everything together
356
 * so that we can free it all on demand.
357
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
358
 * structures.  The routines that create these structures (see below)
359
 * deliberately bunch rows together to ensure a large request size.
360
 */
361
362
METHODDEF(void *)
363
alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
364
/* Allocate a "large" object */
365
97.2k
{
366
97.2k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
367
97.2k
  large_pool_ptr hdr_ptr;
368
97.2k
  char *data_ptr;
369
370
  /*
371
   * Round up the requested size to a multiple of ALIGN_SIZE so that
372
   * algorithms can straddle outside the proper area up to the next
373
   * alignment.
374
   */
375
97.2k
  if (sizeofobject > MAX_ALLOC_CHUNK) {
376
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
377
       is close to SIZE_MAX. */
378
0
    out_of_memory(cinfo, 8);
379
0
  }
380
97.2k
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
381
382
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
383
97.2k
  if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
384
97.2k
      MAX_ALLOC_CHUNK)
385
0
    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
386
387
  /* Always make a new pool */
388
97.2k
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
389
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
390
391
97.2k
  hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject +
392
97.2k
                                           sizeof(large_pool_hdr) +
393
97.2k
                                           ALIGN_SIZE - 1);
394
97.2k
  if (hdr_ptr == NULL)
395
0
    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
396
97.2k
  mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
397
97.2k
                                ALIGN_SIZE - 1;
398
399
  /* Success, initialize the new pool header and add to list */
400
97.2k
  hdr_ptr->next = mem->large_list[pool_id];
401
  /* We maintain space counts in each pool header for statistical purposes,
402
   * even though they are not needed for allocation.
403
   */
404
97.2k
  hdr_ptr->bytes_used = sizeofobject;
405
97.2k
  hdr_ptr->bytes_left = 0;
406
97.2k
  mem->large_list[pool_id] = hdr_ptr;
407
408
97.2k
  data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
409
97.2k
  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
410
97.2k
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
411
97.2k
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
412
413
97.2k
  return (void *)data_ptr;
414
97.2k
}
415
416
417
/*
418
 * Creation of 2-D sample arrays.
419
 *
420
 * To minimize allocation overhead and to allow I/O of large contiguous
421
 * blocks, we allocate the sample rows in groups of as many rows as possible
422
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
423
 * NB: the virtual array control routines, later in this file, know about
424
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
425
 * object so that it can be saved away if this sarray is the workspace for
426
 * a virtual array.
427
 *
428
 * Since we are often upsampling with a factor 2, we align the size (not
429
 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
430
 * to be as careful about size.
431
 */
432
433
METHODDEF(JSAMPARRAY)
434
alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow,
435
             JDIMENSION numrows)
436
/* Allocate a 2-D sample array */
437
53.6k
{
438
53.6k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
439
53.6k
  JSAMPARRAY result;
440
53.6k
  JSAMPROW workspace;
441
53.6k
  JDIMENSION rowsperchunk, currow, i;
442
53.6k
  long ltemp;
443
444
  /* Make sure each row is properly aligned */
445
53.6k
  if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
446
0
    out_of_memory(cinfo, 5);    /* safety check */
447
448
53.6k
  if (samplesperrow > MAX_ALLOC_CHUNK) {
449
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
450
       is close to SIZE_MAX. */
451
0
    out_of_memory(cinfo, 9);
452
0
  }
453
53.6k
  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
454
53.6k
                                                           sizeof(JSAMPLE));
455
456
  /* Calculate max # of rows allowed in one allocation chunk */
457
53.6k
  ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
458
53.6k
          ((long)samplesperrow * sizeof(JSAMPLE));
459
53.6k
  if (ltemp <= 0)
460
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
461
53.6k
  if (ltemp < (long)numrows)
462
0
    rowsperchunk = (JDIMENSION)ltemp;
463
53.6k
  else
464
53.6k
    rowsperchunk = numrows;
465
53.6k
  mem->last_rowsperchunk = rowsperchunk;
466
467
  /* Get space for row pointers (small object) */
468
53.6k
  result = (JSAMPARRAY)alloc_small(cinfo, pool_id,
469
53.6k
                                   (size_t)(numrows * sizeof(JSAMPROW)));
470
471
  /* Get the rows themselves (large objects) */
472
53.6k
  currow = 0;
473
107k
  while (currow < numrows) {
474
53.6k
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
475
53.6k
    workspace = (JSAMPROW)alloc_large(cinfo, pool_id,
476
53.6k
      (size_t)((size_t)rowsperchunk * (size_t)samplesperrow *
477
53.6k
               sizeof(JSAMPLE)));
478
443k
    for (i = rowsperchunk; i > 0; i--) {
479
390k
      result[currow++] = workspace;
480
390k
      workspace += samplesperrow;
481
390k
    }
482
53.6k
  }
483
484
53.6k
  return result;
485
53.6k
}
486
487
488
/*
489
 * Creation of 2-D coefficient-block arrays.
490
 * This is essentially the same as the code for sample arrays, above.
491
 */
492
493
METHODDEF(JBLOCKARRAY)
494
alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow,
495
             JDIMENSION numrows)
496
/* Allocate a 2-D coefficient-block array */
497
27.4k
{
498
27.4k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
499
27.4k
  JBLOCKARRAY result;
500
27.4k
  JBLOCKROW workspace;
501
27.4k
  JDIMENSION rowsperchunk, currow, i;
502
27.4k
  long ltemp;
503
504
  /* Make sure each row is properly aligned */
505
27.4k
  if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
506
0
    out_of_memory(cinfo, 6);    /* safety check */
507
508
  /* Calculate max # of rows allowed in one allocation chunk */
509
27.4k
  ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
510
27.4k
          ((long)blocksperrow * sizeof(JBLOCK));
511
27.4k
  if (ltemp <= 0)
512
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
513
27.4k
  if (ltemp < (long)numrows)
514
23
    rowsperchunk = (JDIMENSION)ltemp;
515
27.3k
  else
516
27.3k
    rowsperchunk = numrows;
517
27.4k
  mem->last_rowsperchunk = rowsperchunk;
518
519
  /* Get space for row pointers (small object) */
520
27.4k
  result = (JBLOCKARRAY)alloc_small(cinfo, pool_id,
521
27.4k
                                    (size_t)(numrows * sizeof(JBLOCKROW)));
522
523
  /* Get the rows themselves (large objects) */
524
27.4k
  currow = 0;
525
54.8k
  while (currow < numrows) {
526
27.4k
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
527
27.4k
    workspace = (JBLOCKROW)alloc_large(cinfo, pool_id,
528
27.4k
        (size_t)((size_t)rowsperchunk * (size_t)blocksperrow *
529
27.4k
                  sizeof(JBLOCK)));
530
3.93M
    for (i = rowsperchunk; i > 0; i--) {
531
3.90M
      result[currow++] = workspace;
532
3.90M
      workspace += blocksperrow;
533
3.90M
    }
534
27.4k
  }
535
536
27.4k
  return result;
537
27.4k
}
538
539
540
/*
541
 * About virtual array management:
542
 *
543
 * The above "normal" array routines are only used to allocate strip buffers
544
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
545
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
546
 * time, but the memory manager must save the whole array for repeated
547
 * accesses.  The intended implementation is that there is a strip buffer in
548
 * memory (as high as is possible given the desired memory limit), plus a
549
 * backing file that holds the rest of the array.
550
 *
551
 * The request_virt_array routines are told the total size of the image and
552
 * the maximum number of rows that will be accessed at once.  The in-memory
553
 * buffer must be at least as large as the maxaccess value.
554
 *
555
 * The request routines create control blocks but not the in-memory buffers.
556
 * That is postponed until realize_virt_arrays is called.  At that time the
557
 * total amount of space needed is known (approximately, anyway), so free
558
 * memory can be divided up fairly.
559
 *
560
 * The access_virt_array routines are responsible for making a specific strip
561
 * area accessible (after reading or writing the backing file, if necessary).
562
 * Note that the access routines are told whether the caller intends to modify
563
 * the accessed strip; during a read-only pass this saves having to rewrite
564
 * data to disk.  The access routines are also responsible for pre-zeroing
565
 * any newly accessed rows, if pre-zeroing was requested.
566
 *
567
 * In current usage, the access requests are usually for nonoverlapping
568
 * strips; that is, successive access start_row numbers differ by exactly
569
 * num_rows = maxaccess.  This means we can get good performance with simple
570
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
571
 * of the access height; then there will never be accesses across bufferload
572
 * boundaries.  The code will still work with overlapping access requests,
573
 * but it doesn't handle bufferload overlaps very efficiently.
574
 */
575
576
577
METHODDEF(jvirt_sarray_ptr)
578
request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
579
                    JDIMENSION samplesperrow, JDIMENSION numrows,
580
                    JDIMENSION maxaccess)
581
/* Request a virtual 2-D sample array */
582
0
{
583
0
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
584
0
  jvirt_sarray_ptr result;
585
586
  /* Only IMAGE-lifetime virtual arrays are currently supported */
587
0
  if (pool_id != JPOOL_IMAGE)
588
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
589
590
  /* get control block */
591
0
  result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id,
592
0
                                         sizeof(struct jvirt_sarray_control));
593
594
0
  result->mem_buffer = NULL;    /* marks array not yet realized */
595
0
  result->rows_in_array = numrows;
596
0
  result->samplesperrow = samplesperrow;
597
0
  result->maxaccess = maxaccess;
598
0
  result->pre_zero = pre_zero;
599
0
  result->b_s_open = FALSE;     /* no associated backing-store object */
600
0
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
601
0
  mem->virt_sarray_list = result;
602
603
0
  return result;
604
0
}
605
606
607
METHODDEF(jvirt_barray_ptr)
608
request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
609
                    JDIMENSION blocksperrow, JDIMENSION numrows,
610
                    JDIMENSION maxaccess)
611
/* Request a virtual 2-D coefficient-block array */
612
27.4k
{
613
27.4k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
614
27.4k
  jvirt_barray_ptr result;
615
616
  /* Only IMAGE-lifetime virtual arrays are currently supported */
617
27.4k
  if (pool_id != JPOOL_IMAGE)
618
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
619
620
  /* get control block */
621
27.4k
  result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id,
622
27.4k
                                         sizeof(struct jvirt_barray_control));
623
624
27.4k
  result->mem_buffer = NULL;    /* marks array not yet realized */
625
27.4k
  result->rows_in_array = numrows;
626
27.4k
  result->blocksperrow = blocksperrow;
627
27.4k
  result->maxaccess = maxaccess;
628
27.4k
  result->pre_zero = pre_zero;
629
27.4k
  result->b_s_open = FALSE;     /* no associated backing-store object */
630
27.4k
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
631
27.4k
  mem->virt_barray_list = result;
632
633
27.4k
  return result;
634
27.4k
}
635
636
637
METHODDEF(void)
638
realize_virt_arrays(j_common_ptr cinfo)
639
/* Allocate the in-memory buffers for any unrealized virtual arrays */
640
10.8k
{
641
10.8k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
642
10.8k
  size_t space_per_minheight, maximum_space, avail_mem;
643
10.8k
  size_t minheights, max_minheights;
644
10.8k
  jvirt_sarray_ptr sptr;
645
10.8k
  jvirt_barray_ptr bptr;
646
647
  /* Compute the minimum space needed (maxaccess rows in each buffer)
648
   * and the maximum space needed (full image height in each buffer).
649
   * These may be of use to the system-dependent jpeg_mem_available routine.
650
   */
651
10.8k
  space_per_minheight = 0;
652
10.8k
  maximum_space = 0;
653
10.8k
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
654
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
655
0
      size_t new_space = (long)sptr->rows_in_array *
656
0
                         (long)sptr->samplesperrow * sizeof(JSAMPLE);
657
658
0
      space_per_minheight += (long)sptr->maxaccess *
659
0
                             (long)sptr->samplesperrow * sizeof(JSAMPLE);
660
0
      if (SIZE_MAX - maximum_space < new_space)
661
0
        out_of_memory(cinfo, 10);
662
0
      maximum_space += new_space;
663
0
    }
664
0
  }
665
38.2k
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
666
27.4k
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
667
27.4k
      size_t new_space = (long)bptr->rows_in_array *
668
27.4k
                         (long)bptr->blocksperrow * sizeof(JBLOCK);
669
670
27.4k
      space_per_minheight += (long)bptr->maxaccess *
671
27.4k
                             (long)bptr->blocksperrow * sizeof(JBLOCK);
672
27.4k
      if (SIZE_MAX - maximum_space < new_space)
673
0
        out_of_memory(cinfo, 11);
674
27.4k
      maximum_space += new_space;
675
27.4k
    }
676
27.4k
  }
677
678
10.8k
  if (space_per_minheight <= 0)
679
1.07k
    return;                     /* no unrealized arrays, no work */
680
681
  /* Determine amount of memory to actually use; this is system-dependent. */
682
9.76k
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
683
9.76k
                                 mem->total_space_allocated);
684
685
  /* If the maximum space needed is available, make all the buffers full
686
   * height; otherwise parcel it out with the same number of minheights
687
   * in each buffer.
688
   */
689
9.76k
  if (avail_mem >= maximum_space)
690
9.76k
    max_minheights = 1000000000L;
691
0
  else {
692
0
    max_minheights = avail_mem / space_per_minheight;
693
    /* If there doesn't seem to be enough space, try to get the minimum
694
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
695
     */
696
0
    if (max_minheights <= 0)
697
0
      max_minheights = 1;
698
0
  }
699
700
  /* Allocate the in-memory buffers and initialize backing store as needed. */
701
702
9.76k
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
703
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
704
0
      minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
705
0
      if (minheights <= max_minheights) {
706
        /* This buffer fits in memory */
707
0
        sptr->rows_in_mem = sptr->rows_in_array;
708
0
      } else {
709
        /* It doesn't fit in memory, create backing store. */
710
0
        sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess);
711
0
        jpeg_open_backing_store(cinfo, &sptr->b_s_info,
712
0
                                (long)sptr->rows_in_array *
713
0
                                (long)sptr->samplesperrow *
714
0
                                (long)sizeof(JSAMPLE));
715
0
        sptr->b_s_open = TRUE;
716
0
      }
717
0
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
718
0
                                      sptr->samplesperrow, sptr->rows_in_mem);
719
0
      sptr->rowsperchunk = mem->last_rowsperchunk;
720
0
      sptr->cur_start_row = 0;
721
0
      sptr->first_undef_row = 0;
722
0
      sptr->dirty = FALSE;
723
0
    }
724
0
  }
725
726
37.1k
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
727
27.4k
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
728
27.4k
      minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
729
27.4k
      if (minheights <= max_minheights) {
730
        /* This buffer fits in memory */
731
27.4k
        bptr->rows_in_mem = bptr->rows_in_array;
732
0
      } else {
733
        /* It doesn't fit in memory, create backing store. */
734
0
        bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess);
735
0
        jpeg_open_backing_store(cinfo, &bptr->b_s_info,
736
0
                                (long)bptr->rows_in_array *
737
0
                                (long)bptr->blocksperrow *
738
0
                                (long)sizeof(JBLOCK));
739
0
        bptr->b_s_open = TRUE;
740
0
      }
741
27.4k
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
742
27.4k
                                      bptr->blocksperrow, bptr->rows_in_mem);
743
27.4k
      bptr->rowsperchunk = mem->last_rowsperchunk;
744
27.4k
      bptr->cur_start_row = 0;
745
27.4k
      bptr->first_undef_row = 0;
746
27.4k
      bptr->dirty = FALSE;
747
27.4k
    }
748
27.4k
  }
749
9.76k
}
750
751
752
LOCAL(void)
753
do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
754
/* Do backing store read or write of a virtual sample array */
755
0
{
756
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
757
758
0
  bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE);
759
0
  file_offset = ptr->cur_start_row * bytesperrow;
760
  /* Loop to read or write each allocation chunk in mem_buffer */
761
0
  for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
762
    /* One chunk, but check for short chunk at end of buffer */
763
0
    rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
764
    /* Transfer no more than is currently defined */
765
0
    thisrow = (long)ptr->cur_start_row + i;
766
0
    rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
767
    /* Transfer no more than fits in file */
768
0
    rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
769
0
    if (rows <= 0)              /* this chunk might be past end of file! */
770
0
      break;
771
0
    byte_count = rows * bytesperrow;
772
0
    if (writing)
773
0
      (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
774
0
                                            (void *)ptr->mem_buffer[i],
775
0
                                            file_offset, byte_count);
776
0
    else
777
0
      (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
778
0
                                           (void *)ptr->mem_buffer[i],
779
0
                                           file_offset, byte_count);
780
0
    file_offset += byte_count;
781
0
  }
782
0
}
783
784
785
LOCAL(void)
786
do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
787
/* Do backing store read or write of a virtual coefficient-block array */
788
0
{
789
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
790
791
0
  bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK);
792
0
  file_offset = ptr->cur_start_row * bytesperrow;
793
  /* Loop to read or write each allocation chunk in mem_buffer */
794
0
  for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
795
    /* One chunk, but check for short chunk at end of buffer */
796
0
    rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
797
    /* Transfer no more than is currently defined */
798
0
    thisrow = (long)ptr->cur_start_row + i;
799
0
    rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
800
    /* Transfer no more than fits in file */
801
0
    rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
802
0
    if (rows <= 0)              /* this chunk might be past end of file! */
803
0
      break;
804
0
    byte_count = rows * bytesperrow;
805
0
    if (writing)
806
0
      (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
807
0
                                            (void *)ptr->mem_buffer[i],
808
0
                                            file_offset, byte_count);
809
0
    else
810
0
      (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
811
0
                                           (void *)ptr->mem_buffer[i],
812
0
                                           file_offset, byte_count);
813
0
    file_offset += byte_count;
814
0
  }
815
0
}
816
817
818
METHODDEF(JSAMPARRAY)
819
access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr,
820
                   JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
821
/* Access the part of a virtual sample array starting at start_row */
822
/* and extending for num_rows rows.  writable is true if  */
823
/* caller intends to modify the accessed area. */
824
0
{
825
0
  JDIMENSION end_row = start_row + num_rows;
826
0
  JDIMENSION undef_row;
827
828
  /* debugging check */
829
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
830
0
      ptr->mem_buffer == NULL)
831
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
832
833
  /* Make the desired part of the virtual array accessible */
834
0
  if (start_row < ptr->cur_start_row ||
835
0
      end_row > ptr->cur_start_row + ptr->rows_in_mem) {
836
0
    if (!ptr->b_s_open)
837
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
838
    /* Flush old buffer contents if necessary */
839
0
    if (ptr->dirty) {
840
0
      do_sarray_io(cinfo, ptr, TRUE);
841
0
      ptr->dirty = FALSE;
842
0
    }
843
    /* Decide what part of virtual array to access.
844
     * Algorithm: if target address > current window, assume forward scan,
845
     * load starting at target address.  If target address < current window,
846
     * assume backward scan, load so that target area is top of window.
847
     * Note that when switching from forward write to forward read, will have
848
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
849
     */
850
0
    if (start_row > ptr->cur_start_row) {
851
0
      ptr->cur_start_row = start_row;
852
0
    } else {
853
      /* use long arithmetic here to avoid overflow & unsigned problems */
854
0
      long ltemp;
855
856
0
      ltemp = (long)end_row - (long)ptr->rows_in_mem;
857
0
      if (ltemp < 0)
858
0
        ltemp = 0;              /* don't fall off front end of file */
859
0
      ptr->cur_start_row = (JDIMENSION)ltemp;
860
0
    }
861
    /* Read in the selected part of the array.
862
     * During the initial write pass, we will do no actual read
863
     * because the selected part is all undefined.
864
     */
865
0
    do_sarray_io(cinfo, ptr, FALSE);
866
0
  }
867
  /* Ensure the accessed part of the array is defined; prezero if needed.
868
   * To improve locality of access, we only prezero the part of the array
869
   * that the caller is about to access, not the entire in-memory array.
870
   */
871
0
  if (ptr->first_undef_row < end_row) {
872
0
    if (ptr->first_undef_row < start_row) {
873
0
      if (writable)             /* writer skipped over a section of array */
874
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
875
0
      undef_row = start_row;    /* but reader is allowed to read ahead */
876
0
    } else {
877
0
      undef_row = ptr->first_undef_row;
878
0
    }
879
0
    if (writable)
880
0
      ptr->first_undef_row = end_row;
881
0
    if (ptr->pre_zero) {
882
0
      size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE);
883
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
884
0
      end_row -= ptr->cur_start_row;
885
0
      while (undef_row < end_row) {
886
0
        jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
887
0
        undef_row++;
888
0
      }
889
0
    } else {
890
0
      if (!writable)            /* reader looking at undefined data */
891
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
892
0
    }
893
0
  }
894
  /* Flag the buffer dirty if caller will write in it */
895
0
  if (writable)
896
0
    ptr->dirty = TRUE;
897
  /* Return address of proper part of the buffer */
898
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
899
0
}
900
901
902
METHODDEF(JBLOCKARRAY)
903
access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr,
904
                   JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
905
/* Access the part of a virtual block array starting at start_row */
906
/* and extending for num_rows rows.  writable is true if  */
907
/* caller intends to modify the accessed area. */
908
12.3M
{
909
12.3M
  JDIMENSION end_row = start_row + num_rows;
910
12.3M
  JDIMENSION undef_row;
911
912
  /* debugging check */
913
12.3M
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
914
12.3M
      ptr->mem_buffer == NULL)
915
8
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
916
917
  /* Make the desired part of the virtual array accessible */
918
12.3M
  if (start_row < ptr->cur_start_row ||
919
12.3M
      end_row > ptr->cur_start_row + ptr->rows_in_mem) {
920
0
    if (!ptr->b_s_open)
921
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
922
    /* Flush old buffer contents if necessary */
923
0
    if (ptr->dirty) {
924
0
      do_barray_io(cinfo, ptr, TRUE);
925
0
      ptr->dirty = FALSE;
926
0
    }
927
    /* Decide what part of virtual array to access.
928
     * Algorithm: if target address > current window, assume forward scan,
929
     * load starting at target address.  If target address < current window,
930
     * assume backward scan, load so that target area is top of window.
931
     * Note that when switching from forward write to forward read, will have
932
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
933
     */
934
0
    if (start_row > ptr->cur_start_row) {
935
0
      ptr->cur_start_row = start_row;
936
0
    } else {
937
      /* use long arithmetic here to avoid overflow & unsigned problems */
938
0
      long ltemp;
939
940
0
      ltemp = (long)end_row - (long)ptr->rows_in_mem;
941
0
      if (ltemp < 0)
942
0
        ltemp = 0;              /* don't fall off front end of file */
943
0
      ptr->cur_start_row = (JDIMENSION)ltemp;
944
0
    }
945
    /* Read in the selected part of the array.
946
     * During the initial write pass, we will do no actual read
947
     * because the selected part is all undefined.
948
     */
949
0
    do_barray_io(cinfo, ptr, FALSE);
950
0
  }
951
  /* Ensure the accessed part of the array is defined; prezero if needed.
952
   * To improve locality of access, we only prezero the part of the array
953
   * that the caller is about to access, not the entire in-memory array.
954
   */
955
12.3M
  if (ptr->first_undef_row < end_row) {
956
1.13M
    if (ptr->first_undef_row < start_row) {
957
53.0k
      if (writable)             /* writer skipped over a section of array */
958
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
959
53.0k
      undef_row = start_row;    /* but reader is allowed to read ahead */
960
1.08M
    } else {
961
1.08M
      undef_row = ptr->first_undef_row;
962
1.08M
    }
963
1.13M
    if (writable)
964
1.08M
      ptr->first_undef_row = end_row;
965
1.13M
    if (ptr->pre_zero) {
966
937k
      size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK);
967
937k
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
968
937k
      end_row -= ptr->cur_start_row;
969
2.65M
      while (undef_row < end_row) {
970
1.71M
        jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
971
1.71M
        undef_row++;
972
1.71M
      }
973
198k
    } else {
974
198k
      if (!writable)            /* reader looking at undefined data */
975
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
976
198k
    }
977
1.13M
  }
978
  /* Flag the buffer dirty if caller will write in it */
979
12.3M
  if (writable)
980
11.7M
    ptr->dirty = TRUE;
981
  /* Return address of proper part of the buffer */
982
12.3M
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
983
12.3M
}
984
985
986
/*
987
 * Release all objects belonging to a specified pool.
988
 */
989
990
METHODDEF(void)
991
free_pool(j_common_ptr cinfo, int pool_id)
992
31.9k
{
993
31.9k
  my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
994
31.9k
  small_pool_ptr shdr_ptr;
995
31.9k
  large_pool_ptr lhdr_ptr;
996
31.9k
  size_t space_freed;
997
998
31.9k
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
999
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
1000
1001
#ifdef MEM_STATS
1002
  if (cinfo->err->trace_level > 1)
1003
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1004
#endif
1005
1006
  /* If freeing IMAGE pool, close any virtual arrays first */
1007
31.9k
  if (pool_id == JPOOL_IMAGE) {
1008
19.2k
    jvirt_sarray_ptr sptr;
1009
19.2k
    jvirt_barray_ptr bptr;
1010
1011
19.2k
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1012
0
      if (sptr->b_s_open) {     /* there may be no backing store */
1013
0
        sptr->b_s_open = FALSE; /* prevent recursive close if error */
1014
0
        (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info);
1015
0
      }
1016
0
    }
1017
19.2k
    mem->virt_sarray_list = NULL;
1018
46.6k
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1019
27.4k
      if (bptr->b_s_open) {     /* there may be no backing store */
1020
0
        bptr->b_s_open = FALSE; /* prevent recursive close if error */
1021
0
        (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info);
1022
0
      }
1023
27.4k
    }
1024
19.2k
    mem->virt_barray_list = NULL;
1025
19.2k
  }
1026
1027
  /* Release large objects */
1028
31.9k
  lhdr_ptr = mem->large_list[pool_id];
1029
31.9k
  mem->large_list[pool_id] = NULL;
1030
1031
129k
  while (lhdr_ptr != NULL) {
1032
97.2k
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1033
97.2k
    space_freed = lhdr_ptr->bytes_used +
1034
97.2k
                  lhdr_ptr->bytes_left +
1035
97.2k
                  sizeof(large_pool_hdr);
1036
97.2k
    jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed);
1037
97.2k
    mem->total_space_allocated -= space_freed;
1038
97.2k
    lhdr_ptr = next_lhdr_ptr;
1039
97.2k
  }
1040
1041
  /* Release small objects */
1042
31.9k
  shdr_ptr = mem->small_list[pool_id];
1043
31.9k
  mem->small_list[pool_id] = NULL;
1044
1045
64.3k
  while (shdr_ptr != NULL) {
1046
32.3k
    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1047
32.3k
    space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left +
1048
32.3k
                  sizeof(small_pool_hdr);
1049
32.3k
    jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed);
1050
32.3k
    mem->total_space_allocated -= space_freed;
1051
32.3k
    shdr_ptr = next_shdr_ptr;
1052
32.3k
  }
1053
31.9k
}
1054
1055
1056
/*
1057
 * Close up shop entirely.
1058
 * Note that this cannot be called unless cinfo->mem is non-NULL.
1059
 */
1060
1061
METHODDEF(void)
1062
self_destruct(j_common_ptr cinfo)
1063
12.7k
{
1064
12.7k
  int pool;
1065
1066
  /* Close all backing store, release all memory.
1067
   * Releasing pools in reverse order might help avoid fragmentation
1068
   * with some (brain-damaged) malloc libraries.
1069
   */
1070
38.2k
  for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1071
25.4k
    free_pool(cinfo, pool);
1072
25.4k
  }
1073
1074
  /* Release the memory manager control block too. */
1075
12.7k
  jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr));
1076
12.7k
  cinfo->mem = NULL;            /* ensures I will be called only once */
1077
1078
12.7k
  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1079
12.7k
}
1080
1081
1082
/*
1083
 * Memory manager initialization.
1084
 * When this is called, only the error manager pointer is valid in cinfo!
1085
 */
1086
1087
GLOBAL(void)
1088
jinit_memory_mgr(j_common_ptr cinfo)
1089
12.7k
{
1090
12.7k
  my_mem_ptr mem;
1091
12.7k
  long max_to_use;
1092
12.7k
  int pool;
1093
12.7k
  size_t test_mac;
1094
1095
12.7k
  cinfo->mem = NULL;            /* for safety if init fails */
1096
1097
  /* Check for configuration errors.
1098
   * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1099
   * doesn't reflect any real hardware alignment requirement.
1100
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1101
   * in common if and only if X is a power of 2, ie has only one one-bit.
1102
   * Some compilers may give an "unreachable code" warning here; ignore it.
1103
   */
1104
12.7k
  if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0)
1105
0
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1106
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1107
   * a multiple of ALIGN_SIZE.
1108
   * Again, an "unreachable code" warning may be ignored here.
1109
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1110
   */
1111
12.7k
  test_mac = (size_t)MAX_ALLOC_CHUNK;
1112
12.7k
  if ((long)test_mac != MAX_ALLOC_CHUNK ||
1113
12.7k
      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1114
0
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1115
1116
12.7k
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1117
1118
  /* Attempt to allocate memory manager's control block */
1119
12.7k
  mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1120
1121
12.7k
  if (mem == NULL) {
1122
0
    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1123
0
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1124
0
  }
1125
1126
  /* OK, fill in the method pointers */
1127
12.7k
  mem->pub.alloc_small = alloc_small;
1128
12.7k
  mem->pub.alloc_large = alloc_large;
1129
12.7k
  mem->pub.alloc_sarray = alloc_sarray;
1130
12.7k
  mem->pub.alloc_barray = alloc_barray;
1131
12.7k
  mem->pub.request_virt_sarray = request_virt_sarray;
1132
12.7k
  mem->pub.request_virt_barray = request_virt_barray;
1133
12.7k
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1134
12.7k
  mem->pub.access_virt_sarray = access_virt_sarray;
1135
12.7k
  mem->pub.access_virt_barray = access_virt_barray;
1136
12.7k
  mem->pub.free_pool = free_pool;
1137
12.7k
  mem->pub.self_destruct = self_destruct;
1138
1139
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1140
12.7k
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1141
1142
  /* Initialize working state */
1143
12.7k
  mem->pub.max_memory_to_use = max_to_use;
1144
1145
38.2k
  for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1146
25.4k
    mem->small_list[pool] = NULL;
1147
25.4k
    mem->large_list[pool] = NULL;
1148
25.4k
  }
1149
12.7k
  mem->virt_sarray_list = NULL;
1150
12.7k
  mem->virt_barray_list = NULL;
1151
1152
12.7k
  mem->total_space_allocated = sizeof(my_memory_mgr);
1153
1154
  /* Declare ourselves open for business */
1155
12.7k
  cinfo->mem = &mem->pub;
1156
1157
  /* Check for an environment variable JPEGMEM; if found, override the
1158
   * default max_memory setting from jpeg_mem_init.  Note that the
1159
   * surrounding application may again override this value.
1160
   * If your system doesn't support getenv(), define NO_GETENV to disable
1161
   * this feature.
1162
   */
1163
12.7k
#ifndef NO_GETENV
1164
12.7k
  {
1165
12.7k
    char *memenv;
1166
1167
12.7k
    if ((memenv = getenv("JPEGMEM")) != NULL) {
1168
0
      char ch = 'x';
1169
1170
0
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1171
0
        if (ch == 'm' || ch == 'M')
1172
0
          max_to_use *= 1000L;
1173
0
        mem->pub.max_memory_to_use = max_to_use * 1000L;
1174
0
      }
1175
0
    }
1176
12.7k
  }
1177
12.7k
#endif
1178
1179
12.7k
}