Coverage Report

Created: 2025-07-01 06:58

/src/sleuthkit/tsk/base/sha1c.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * The Sleuth Kit
3
 *
4
 */
5
6
/* sha1c.c : Implementation of the Secure Hash Algorithm */
7
8
/* SHA: NIST's Secure Hash Algorithm */
9
10
/*  This version written November 2000 by David Ireland of
11
  DI Management Services Pty Limited <code@di-mgt.com.au>
12
13
  Adapted from code in the Python Cryptography Toolkit,
14
  version 1.0.0 by A.M. Kuchling 1995.
15
*/
16
17
/* AM Kuchling's posting:-
18
   Based on SHA code originally posted to sci.crypt by Peter Gutmann
19
   in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
20
   Modified to test for endianness on creation of SHA objects by AMK.
21
   Also, the original specification of SHA was found to have a weakness
22
   by NSA/NIST.  This code implements the fixed version of SHA.
23
*/
24
25
/* Here's the first paragraph of Peter Gutmann's posting:
26
27
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
28
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
29
what's changed in the new version.  The fix is a simple change which involves
30
adding a single rotate in the initial expansion function.  It is unknown
31
whether this is an optimal solution to the problem which was discovered in the
32
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
33
effort (for example the reengineering of a great many Capstone chips).
34
*/
35
36
/** \file sha1c.c
37
 * Local copy of the  public domain SHA-1 library code by David Ireland.
38
 */
39
40
#include "tsk_base_i.h"
41
42
43
/* The SHS block size and message digest sizes, in bytes */
44
45
0
#define SHS_DATASIZE    64
46
0
#define SHS_DIGESTSIZE  20
47
48
49
/* The SHS f()-functions.  The f1 and f3 functions can be optimized to
50
   save one boolean operation each - thanks to Rich Schroeppel,
51
   rcs@cs.arizona.edu for discovering this */
52
53
/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) )          // Rounds  0-19 */
54
0
#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )   /* Rounds  0-19 */
55
0
#define f2(x,y,z)   ( x ^ y ^ z )       /* Rounds 20-39 */
56
/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) )   // Rounds 40-59 */
57
0
#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
58
0
#define f4(x,y,z)   ( x ^ y ^ z )       /* Rounds 60-79 */
59
60
/* The SHS Mysterious Constants */
61
62
#define K1  0x5A827999UL        /* Rounds  0-19 */
63
#define K2  0x6ED9EBA1UL        /* Rounds 20-39 */
64
#define K3  0x8F1BBCDCUL        /* Rounds 40-59 */
65
#define K4  0xCA62C1D6UL        /* Rounds 60-79 */
66
67
/* SHS initial values */
68
69
0
#define h0init  0x67452301UL
70
0
#define h1init  0xEFCDAB89UL
71
0
#define h2init  0x98BADCFEUL
72
0
#define h3init  0x10325476UL
73
0
#define h4init  0xC3D2E1F0UL
74
75
/* Note that it may be necessary to add parentheses to these macros if they
76
   are to be called with expressions as arguments */
77
/* 32-bit rotate left - kludged with shifts */
78
79
0
#define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
80
81
/* The initial expanding function.  The hash function is defined over an
82
   80-UINT2 expanded input array W, where the first 16 are copies of the input
83
   data, and the remaining 64 are defined by
84
85
        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
86
87
   This implementation generates these values on the fly in a circular
88
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
89
   optimization.
90
91
   The updated SHS changes the expanding function by adding a rotate of 1
92
   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
93
   for this information */
94
95
#define expand(W,i) ( W[ i & 15 ] = ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
96
                                                 W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
97
98
99
/* The prototype SHS sub-round.  The fundamental sub-round is:
100
101
        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
102
        b' = a;
103
        c' = ROTL( 30, b );
104
        d' = c;
105
        e' = d;
106
107
   but this is implemented by unrolling the loop 5 times and renaming the
108
   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
109
   This code is then replicated 20 times for each of the 4 functions, using
110
   the next 20 values from the W[] array each time */
111
112
#define subRound(a, b, c, d, e, f, k, data) \
113
0
    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
114
115
116
117
/* endian.c */
118
static void
119
endianTest(int *endian_ness)
120
0
{
121
0
    if ((*(unsigned short *) ("#S") >> 8) == '#') {
122
        /* printf("Big endian = no change\n"); */
123
0
        *endian_ness = !(0);
124
0
    }
125
0
    else {
126
        /* printf("Little endian = swap\n"); */
127
0
        *endian_ness = 0;
128
0
    }
129
0
}
130
131
/**
132
 * \ingroup baselib
133
 * Initialize a SHA-1 context so that data can be added to it.
134
 * @param shsInfo Pointer to context structure to initialize
135
 */
136
void
137
TSK_SHA_Init(TSK_SHA_CTX * shsInfo)
138
0
{
139
0
    endianTest(&shsInfo->Endianness);
140
    /* Set the h-vars to their initial values */
141
0
    shsInfo->digest[0] = h0init;
142
0
    shsInfo->digest[1] = h1init;
143
0
    shsInfo->digest[2] = h2init;
144
0
    shsInfo->digest[3] = h3init;
145
0
    shsInfo->digest[4] = h4init;
146
147
    /* Initialise bit count */
148
0
    shsInfo->countLo = shsInfo->countHi = 0;
149
0
}
150
151
152
/* Perform the SHS transformation.  Note that this code, like MD5, seems to
153
   break some optimizing compilers due to the complexity of the expressions
154
   and the size of the basic block.  It may be necessary to split it into
155
   sections, e.g. based on the four subrounds
156
157
   Note that this corrupts the shsInfo->data area */
158
159
static void
160
SHSTransform(UINT4 *digest, UINT4 *data)
161
0
{
162
0
    UINT4 A, B, C, D, E;        /* Local vars */
163
0
    UINT4 eData[16];            /* Expanded data */
164
165
    /* Set up first buffer and local data buffer */
166
0
    A = digest[0];
167
0
    B = digest[1];
168
0
    C = digest[2];
169
0
    D = digest[3];
170
0
    E = digest[4];
171
0
    memcpy((POINTER) eData, (POINTER) data, SHS_DATASIZE);
172
173
    /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
174
0
    subRound(A, B, C, D, E, f1, K1, eData[0]);
175
0
    subRound(E, A, B, C, D, f1, K1, eData[1]);
176
0
    subRound(D, E, A, B, C, f1, K1, eData[2]);
177
0
    subRound(C, D, E, A, B, f1, K1, eData[3]);
178
0
    subRound(B, C, D, E, A, f1, K1, eData[4]);
179
0
    subRound(A, B, C, D, E, f1, K1, eData[5]);
180
0
    subRound(E, A, B, C, D, f1, K1, eData[6]);
181
0
    subRound(D, E, A, B, C, f1, K1, eData[7]);
182
0
    subRound(C, D, E, A, B, f1, K1, eData[8]);
183
0
    subRound(B, C, D, E, A, f1, K1, eData[9]);
184
0
    subRound(A, B, C, D, E, f1, K1, eData[10]);
185
0
    subRound(E, A, B, C, D, f1, K1, eData[11]);
186
0
    subRound(D, E, A, B, C, f1, K1, eData[12]);
187
0
    subRound(C, D, E, A, B, f1, K1, eData[13]);
188
0
    subRound(B, C, D, E, A, f1, K1, eData[14]);
189
0
    subRound(A, B, C, D, E, f1, K1, eData[15]);
190
0
    subRound(E, A, B, C, D, f1, K1, expand(eData, 16));
191
0
    subRound(D, E, A, B, C, f1, K1, expand(eData, 17));
192
0
    subRound(C, D, E, A, B, f1, K1, expand(eData, 18));
193
0
    subRound(B, C, D, E, A, f1, K1, expand(eData, 19));
194
195
0
    subRound(A, B, C, D, E, f2, K2, expand(eData, 20));
196
0
    subRound(E, A, B, C, D, f2, K2, expand(eData, 21));
197
0
    subRound(D, E, A, B, C, f2, K2, expand(eData, 22));
198
0
    subRound(C, D, E, A, B, f2, K2, expand(eData, 23));
199
0
    subRound(B, C, D, E, A, f2, K2, expand(eData, 24));
200
0
    subRound(A, B, C, D, E, f2, K2, expand(eData, 25));
201
0
    subRound(E, A, B, C, D, f2, K2, expand(eData, 26));
202
0
    subRound(D, E, A, B, C, f2, K2, expand(eData, 27));
203
0
    subRound(C, D, E, A, B, f2, K2, expand(eData, 28));
204
0
    subRound(B, C, D, E, A, f2, K2, expand(eData, 29));
205
0
    subRound(A, B, C, D, E, f2, K2, expand(eData, 30));
206
0
    subRound(E, A, B, C, D, f2, K2, expand(eData, 31));
207
0
    subRound(D, E, A, B, C, f2, K2, expand(eData, 32));
208
0
    subRound(C, D, E, A, B, f2, K2, expand(eData, 33));
209
0
    subRound(B, C, D, E, A, f2, K2, expand(eData, 34));
210
0
    subRound(A, B, C, D, E, f2, K2, expand(eData, 35));
211
0
    subRound(E, A, B, C, D, f2, K2, expand(eData, 36));
212
0
    subRound(D, E, A, B, C, f2, K2, expand(eData, 37));
213
0
    subRound(C, D, E, A, B, f2, K2, expand(eData, 38));
214
0
    subRound(B, C, D, E, A, f2, K2, expand(eData, 39));
215
216
0
    subRound(A, B, C, D, E, f3, K3, expand(eData, 40));
217
0
    subRound(E, A, B, C, D, f3, K3, expand(eData, 41));
218
0
    subRound(D, E, A, B, C, f3, K3, expand(eData, 42));
219
0
    subRound(C, D, E, A, B, f3, K3, expand(eData, 43));
220
0
    subRound(B, C, D, E, A, f3, K3, expand(eData, 44));
221
0
    subRound(A, B, C, D, E, f3, K3, expand(eData, 45));
222
0
    subRound(E, A, B, C, D, f3, K3, expand(eData, 46));
223
0
    subRound(D, E, A, B, C, f3, K3, expand(eData, 47));
224
0
    subRound(C, D, E, A, B, f3, K3, expand(eData, 48));
225
0
    subRound(B, C, D, E, A, f3, K3, expand(eData, 49));
226
0
    subRound(A, B, C, D, E, f3, K3, expand(eData, 50));
227
0
    subRound(E, A, B, C, D, f3, K3, expand(eData, 51));
228
0
    subRound(D, E, A, B, C, f3, K3, expand(eData, 52));
229
0
    subRound(C, D, E, A, B, f3, K3, expand(eData, 53));
230
0
    subRound(B, C, D, E, A, f3, K3, expand(eData, 54));
231
0
    subRound(A, B, C, D, E, f3, K3, expand(eData, 55));
232
0
    subRound(E, A, B, C, D, f3, K3, expand(eData, 56));
233
0
    subRound(D, E, A, B, C, f3, K3, expand(eData, 57));
234
0
    subRound(C, D, E, A, B, f3, K3, expand(eData, 58));
235
0
    subRound(B, C, D, E, A, f3, K3, expand(eData, 59));
236
237
0
    subRound(A, B, C, D, E, f4, K4, expand(eData, 60));
238
0
    subRound(E, A, B, C, D, f4, K4, expand(eData, 61));
239
0
    subRound(D, E, A, B, C, f4, K4, expand(eData, 62));
240
0
    subRound(C, D, E, A, B, f4, K4, expand(eData, 63));
241
0
    subRound(B, C, D, E, A, f4, K4, expand(eData, 64));
242
0
    subRound(A, B, C, D, E, f4, K4, expand(eData, 65));
243
0
    subRound(E, A, B, C, D, f4, K4, expand(eData, 66));
244
0
    subRound(D, E, A, B, C, f4, K4, expand(eData, 67));
245
0
    subRound(C, D, E, A, B, f4, K4, expand(eData, 68));
246
0
    subRound(B, C, D, E, A, f4, K4, expand(eData, 69));
247
0
    subRound(A, B, C, D, E, f4, K4, expand(eData, 70));
248
0
    subRound(E, A, B, C, D, f4, K4, expand(eData, 71));
249
0
    subRound(D, E, A, B, C, f4, K4, expand(eData, 72));
250
0
    subRound(C, D, E, A, B, f4, K4, expand(eData, 73));
251
0
    subRound(B, C, D, E, A, f4, K4, expand(eData, 74));
252
0
    subRound(A, B, C, D, E, f4, K4, expand(eData, 75));
253
0
    subRound(E, A, B, C, D, f4, K4, expand(eData, 76));
254
0
    subRound(D, E, A, B, C, f4, K4, expand(eData, 77));
255
0
    subRound(C, D, E, A, B, f4, K4, expand(eData, 78));
256
0
    subRound(B, C, D, E, A, f4, K4, expand(eData, 79));
257
258
    /* Build message digest */
259
0
    digest[0] += A;
260
0
    digest[1] += B;
261
0
    digest[2] += C;
262
0
    digest[3] += D;
263
0
    digest[4] += E;
264
0
}
265
266
/* When run on a little-endian CPU we need to perform byte reversal on an
267
   array of long words. */
268
269
static void
270
longReverse(UINT4 * buffer, int byteCount, int Endianness)
271
0
{
272
0
    UINT4 value;
273
274
0
    if (Endianness == TRUE)
275
0
        return;
276
0
    byteCount /= sizeof(UINT4);
277
0
    while (byteCount--) {
278
0
        value = *buffer;
279
0
        value = ((value & 0xFF00FF00UL) >> 8) |
280
0
            ((value & 0x00FF00FFUL) << 8);
281
0
        *buffer++ = (value << 16) | (value >> 16);
282
0
    }
283
0
}
284
285
/**
286
* \ingroup baselib
287
 * Add data to an initialized SHA-1 context.
288
 * @param shsInfo Context to add data to
289
 * @param buffer Data to process
290
 * @param count Number of bytes in buffer
291
 */
292
void
293
TSK_SHA_Update(TSK_SHA_CTX * shsInfo, const BYTE * buffer, unsigned int count)
294
0
{
295
0
    UINT4 tmp;
296
0
    unsigned int dataCount;
297
298
    /* Update bitcount */
299
0
    tmp = shsInfo->countLo;
300
0
    if ((shsInfo->countLo = tmp + ((UINT4) count << 3)) < tmp)
301
0
        shsInfo->countHi++;     /* Carry from low to high */
302
0
    shsInfo->countHi += count >> 29;
303
304
    /* Get count of bytes already in data */
305
0
    dataCount = (int) (tmp >> 3) & 0x3F;
306
307
    /* Handle any leading odd-sized chunks */
308
0
    if (dataCount) {
309
0
        BYTE *p = (BYTE *) shsInfo->data + dataCount;
310
311
0
        dataCount = SHS_DATASIZE - dataCount;
312
0
        if (count < dataCount) {
313
0
            memcpy(p, buffer, count);
314
0
            return;
315
0
        }
316
0
        memcpy(p, buffer, dataCount);
317
0
        longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
318
0
        SHSTransform(shsInfo->digest, shsInfo->data);
319
0
        buffer += dataCount;
320
0
        count -= dataCount;
321
0
    }
322
323
    /* Process data in SHS_DATASIZE chunks */
324
0
    while (count >= SHS_DATASIZE) {
325
0
        memcpy((POINTER) shsInfo->data, (POINTER) buffer, SHS_DATASIZE);
326
0
        longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
327
0
        SHSTransform(shsInfo->digest, shsInfo->data);
328
0
        buffer += SHS_DATASIZE;
329
0
        count -= SHS_DATASIZE;
330
0
    }
331
332
    /* Handle any remaining bytes of data. */
333
0
    memcpy((POINTER) shsInfo->data, (POINTER) buffer, count);
334
0
}
335
336
static void
337
SHAtoByte(BYTE output[SHS_DIGESTSIZE], UINT4 * input)
338
0
{                               /* Output SHA digest in byte array */
339
0
    unsigned int i, j;
340
341
0
    for (i = 0, j = 0; j < SHS_DIGESTSIZE; i++, j += 4) {
342
0
        output[j + 3] = (BYTE) (input[i] & 0xff);
343
0
        output[j + 2] = (BYTE) ((input[i] >> 8) & 0xff);
344
0
        output[j + 1] = (BYTE) ((input[i] >> 16) & 0xff);
345
0
        output[j] = (BYTE) ((input[i] >> 24) & 0xff);
346
0
    }
347
0
}
348
349
/**
350
 * \ingroup baselib
351
 * Calculate the hash of the data added to the context.
352
 * @param shsInfo Context that has data added to it.
353
 * @param output Buffer to store hash value
354
 */
355
void
356
TSK_SHA_Final(TSK_SHA_CTX * shsInfo, BYTE* output)
357
0
{
358
0
    int count;
359
0
    BYTE *dataPtr;
360
361
    /* Compute number of bytes mod 64 */
362
0
    count = (int) shsInfo->countLo;
363
0
    count = (count >> 3) & 0x3F;
364
365
    /* Set the first char of padding to 0x80.  This is safe since there is
366
       always at least one byte free */
367
0
    dataPtr = (BYTE *) shsInfo->data + count;
368
0
    *dataPtr++ = 0x80;
369
370
    /* Bytes of padding needed to make 64 bytes */
371
0
    count = SHS_DATASIZE - 1 - count;
372
373
    /* Pad out to 56 mod 64 */
374
0
    if (count < 8) {
375
        /* Two lots of padding:  Pad the first block to 64 bytes */
376
0
        memset(dataPtr, 0, count);
377
0
        longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
378
0
        SHSTransform(shsInfo->digest, shsInfo->data);
379
380
        /* Now fill the next block with 56 bytes */
381
0
        memset((POINTER) shsInfo->data, 0, SHS_DATASIZE - 8);
382
0
    }
383
0
    else
384
        /* Pad block to 56 bytes */
385
0
        memset(dataPtr, 0, count - 8);
386
387
    /* Append length in bits and transform */
388
0
    shsInfo->data[14] = shsInfo->countHi;
389
0
    shsInfo->data[15] = shsInfo->countLo;
390
391
0
    longReverse(shsInfo->data, SHS_DATASIZE - 8, shsInfo->Endianness);
392
0
    SHSTransform(shsInfo->digest, shsInfo->data);
393
394
    /* Output to an array of bytes */
395
0
    SHAtoByte(output, shsInfo->digest);
396
397
    /* Zeroise sensitive stuff */
398
0
    memset((POINTER) shsInfo, 0, sizeof(shsInfo));
399
0
}