/src/sleuthkit/tsk/fs/apfs.cpp
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * The Sleuth Kit  | 
3  |  |  *  | 
4  |  |  * Brian Carrier [carrier <at> sleuthkit [dot] org]  | 
5  |  |  * Copyright (c) 2019-2020 Brian Carrier.  All Rights reserved  | 
6  |  |  * Copyright (c) 2018-2019 BlackBag Technologies.  All Rights reserved  | 
7  |  |  *  | 
8  |  |  * This software is distributed under the Common Public License 1.0  | 
9  |  |  */  | 
10  |  | #include "tsk/util/crypto.hpp"  | 
11  |  | #include "apfs_fs.hpp"  | 
12  |  | #include "tsk_apfs.hpp"  | 
13  |  |  | 
14  |  | #include <cstring>  | 
15  |  |  | 
16  |  | // MSVC doesn't define ffs/ffsll.  | 
17  |  | #ifdef _MSC_VER  | 
18  |  | #include <intrin.h>  | 
19  |  |  | 
20  |  | #ifdef _M_X64  // 64-bit  | 
21  |  | #pragma intrinsic(_BitScanForward64)  | 
22  |  | static __forceinline int lsbset(unsigned __int64 x) { | 
23  |  |   unsigned long i;  | 
24  |  |  | 
25  |  |   if (_BitScanForward64(&i, x)) { | 
26  |  |     return i + 1;  | 
27  |  |   }  | 
28  |  |  | 
29  |  |   return 0;  | 
30  |  | }  | 
31  |  | #else  // 32-bit  | 
32  |  | #pragma intrinsic(_BitScanForward)  | 
33  |  | static __forceinline int lsbset(long x) { | 
34  |  |   unsigned long i;  | 
35  |  |  | 
36  |  |   if (_BitScanForward(&i, x)) { | 
37  |  |     return i + 1;  | 
38  |  |   }  | 
39  |  |   return 0;  | 
40  |  | }  | 
41  |  | #endif  // _M_X64  | 
42  |  |  | 
43  |  | #else  // gcc or clang  | 
44  |  |  | 
45  |  | #ifdef __x86_64__  | 
46  | 0  | #define lsbset(x) __builtin_ffsll(x)  | 
47  |  | #else  // 32-bit  | 
48  |  | #define lsbset(x) __builtin_ffs(x)  | 
49  |  | #endif  // __x86_64__  | 
50  |  |  | 
51  |  | #endif  // _MSC_VER  | 
52  |  |  | 
53  |  | class wrapped_key_parser { | 
54  |  |   // TODO(JTS): This code assume a well-formed input. It needs some sanity  | 
55  |  |   // checking!  | 
56  |  |  | 
57  |  |   using tag = uint8_t;  | 
58  |  |   using view = span<const uint8_t>;  | 
59  |  |  | 
60  |  |   const uint8_t* _data;  | 
61  |  |  | 
62  | 0  |   size_t get_length(const uint8_t** pos) const noexcept { | 
63  | 0  |     auto data = *pos;  | 
64  |  | 
  | 
65  | 0  |     size_t len = *data++;  | 
66  |  | 
  | 
67  | 0  |     if (len & 0x80) { | 
68  | 0  |       len = 0;  | 
69  | 0  |       auto enc_len = len & 0x7F;  | 
70  | 0  |       while (enc_len--) { | 
71  | 0  |         len <<= 8;  | 
72  | 0  |         len |= *data++;  | 
73  | 0  |       }  | 
74  | 0  |     }  | 
75  |  | 
  | 
76  | 0  |     *pos = data;  | 
77  | 0  |     return len;  | 
78  | 0  |   }  | 
79  |  |  | 
80  | 0  |   const view get_tag(tag t) const noexcept { | 
81  | 0  |     auto data = _data;  | 
82  |  | 
  | 
83  | 0  |     while (true) { | 
84  | 0  |       const auto tag = *data++;  | 
85  | 0  |       const auto len = get_length(&data);  | 
86  |  | 
  | 
87  | 0  |       if (tag == t) { | 
88  | 0  |         return {data, len}; | 
89  | 0  |       }  | 
90  |  |  | 
91  | 0  |       data += len;  | 
92  | 0  |     }  | 
93  | 0  |   }  | 
94  |  |  | 
95  |  |   // Needed for the recursive variadic to compile, but should never be  | 
96  |  |   // called.  TODO(JTS): Use constexpr if when we enforce C++17  | 
97  | 0  |   const view get_data(void) const { | 
98  | 0  |     throw std::logic_error("this should be unreachable"); | 
99  | 0  |   }  | 
100  |  |  | 
101  |  |  public:  | 
102  | 0  |   wrapped_key_parser(const void* data) noexcept : _data{(const uint8_t*)data} {} | 
103  |  |  | 
104  |  |   template <typename... Args>  | 
105  | 0  |   const view get_data(tag t, Args... args) const noexcept { | 
106  | 0  |     const auto data = get_tag(t);  | 
107  |  | 
  | 
108  | 0  |     if (sizeof...(args) == 0 || !data.valid()) { | 
109  | 0  |       return data;  | 
110  | 0  |     }  | 
111  |  |  | 
112  | 0  |     return wrapped_key_parser{data.data()}.get_data(args...); | 
113  | 0  |   } Unexecuted instantiation: span<unsigned char const> const wrapped_key_parser::get_data<int, int>(unsigned char, int, int) const Unexecuted instantiation: span<unsigned char const> const wrapped_key_parser::get_data<int>(unsigned char, int) const Unexecuted instantiation: span<unsigned char const> const wrapped_key_parser::get_data<>(unsigned char) const  | 
114  |  |  | 
115  |  |   template <typename... Args>  | 
116  | 0  |   uint64_t get_number(tag t, Args... args) const noexcept { | 
117  | 0  |     const auto data = get_data(t, args...);  | 
118  |  | 
  | 
119  | 0  |     uint64_t n = 0;  | 
120  | 0  |     for (auto p = data.data(); p < data.data() + data.count(); p++) { | 
121  | 0  |       n <<= 8;  | 
122  | 0  |       n |= *p;  | 
123  | 0  |     }  | 
124  |  | 
  | 
125  | 0  |     return n;  | 
126  | 0  |   }  | 
127  |  | };  | 
128  |  |  | 
129  |  | APFSBlock::APFSBlock(const APFSPool& pool, const apfs_block_num block_num)  | 
130  | 4.64k  |     : _storage{}, _pool{pool}, _block_num{block_num} { | 
131  | 4.64k  |   const auto sz =  | 
132  | 4.64k  |       pool.read(block_num * APFS_BLOCK_SIZE, _storage.data(), APFS_BLOCK_SIZE);  | 
133  | 4.64k  |   if (sz != APFS_BLOCK_SIZE) { | 
134  | 19  |     throw std::runtime_error("could not read APFSBlock"); | 
135  | 19  |   }  | 
136  | 4.64k  | }  | 
137  |  |  | 
138  | 0  | void APFSBlock::decrypt(const uint8_t* key, const uint8_t* key2) noexcept { | 
139  |  | #ifdef HAVE_LIBCRYPTO  | 
140  |  |     // If the data is encrypted via the T2 chip, we can't decrypt it.  This means  | 
141  |  |     // that if the data wasn't decrypted at acquisition time, then processing will  | 
142  |  |     // likely fail.  Either way, there is no need to decrypt.  | 
143  |  |     if (_pool.hardware_crypto()) { | 
144  |  |         return;  | 
145  |  |     }  | 
146  |  |  | 
147  |  |     aes_xts_decryptor dec{ aes_xts_decryptor::AES_128, key, key2, | 
148  |  |                           APFS_CRYPTO_SW_BLKSIZE };  | 
149  |  |  | 
150  |  |     dec.decrypt_buffer(_storage.data(), _storage.size(),  | 
151  |  |         _block_num * APFS_BLOCK_SIZE);  | 
152  |  | #endif  | 
153  |  |     // TODO: what is the intended behavior here if there is no crypto support.  | 
154  | 0  | }  | 
155  |  |  | 
156  | 0  | void APFSBlock::dump() const noexcept { | 
157  |  |   // Dump contents of block to stdout for debugging  | 
158  | 0  |   for (const auto byte : _storage) { | 
159  | 0  |     putchar(byte);  | 
160  | 0  |   }  | 
161  | 0  | }  | 
162  |  |  | 
163  | 1.10k  | bool APFSObject::validate_checksum() const noexcept { | 
164  | 1.10k  |   if (obj()->cksum == std::numeric_limits<uint64_t>::max()) { | 
165  | 0  |     return false;  | 
166  | 0  |   }  | 
167  |  |  | 
168  |  |   // Calculate the checksum using the modified fletcher's algorithm  | 
169  | 1.10k  |   const auto checksum = [&]() -> uint64_t { | 
170  | 1.10k  |     const auto data =  | 
171  | 1.10k  |         reinterpret_cast<const uint32_t*>(_storage.data() + sizeof(uint64_t));  | 
172  | 1.10k  |     const auto len = (_storage.size() - sizeof(uint64_t)) / sizeof(uint32_t);  | 
173  |  |  | 
174  | 1.10k  |     constexpr uint64_t mod = std::numeric_limits<uint32_t>::max();  | 
175  |  |  | 
176  | 1.10k  |     uint64_t sum1{0}; | 
177  | 1.10k  |     uint64_t sum2{0}; | 
178  |  |  | 
179  | 1.12M  |     for (size_t i = 0; i < len; i++) { | 
180  | 1.12M  |       sum1 = (sum1 + data[i]) % mod;  | 
181  | 1.12M  |       sum2 = (sum2 + sum1) % mod;  | 
182  | 1.12M  |     }  | 
183  |  |  | 
184  | 1.10k  |     const auto ck_low = mod - ((sum1 + sum2) % mod);  | 
185  | 1.10k  |     const auto ck_high = mod - ((sum1 + ck_low) % mod);  | 
186  |  |  | 
187  | 1.10k  |     return (ck_high << 32) | ck_low;  | 
188  | 1.10k  |   }();  | 
189  |  |  | 
190  |  |   // Compare calculated checksum with the value in the object header  | 
191  | 1.10k  |   return (checksum == obj()->cksum);  | 
192  | 1.10k  | }  | 
193  |  |  | 
194  |  | APFSSuperblock::APFSSuperblock(const APFSPool& pool,  | 
195  |  |                                const apfs_block_num block_num)  | 
196  | 81  |     : APFSObject(pool, block_num), _spaceman{} { | 
197  | 81  |   if (obj_type() != APFS_OBJ_TYPE_SUPERBLOCK) { | 
198  | 3  |     throw std::runtime_error("APFSSuperblock: invalid object type"); | 
199  | 3  |   }  | 
200  |  |  | 
201  | 78  |   if (sb()->magic != APFS_NXSUPERBLOCK_MAGIC) { | 
202  | 0  |     throw std::runtime_error("APFSSuperblock: invalid magic"); | 
203  | 0  |   }  | 
204  |  |  | 
205  | 78  |   if (bit_is_set(sb()->incompatible_features, APFS_NXSB_INCOMPAT_VERSION1)) { | 
206  | 0  |     throw std::runtime_error(  | 
207  | 0  |         "APFSSuperblock: Pre-release versions of APFS are not supported");  | 
208  | 0  |   }  | 
209  |  |  | 
210  | 78  |   if (bit_is_set(sb()->incompatible_features, APFS_NXSB_INCOMPAT_FUSION)) { | 
211  | 3  |     if (tsk_verbose) { | 
212  | 0  |       tsk_fprintf(stderr,  | 
213  | 0  |                   "WARNING: APFS fusion drives may not be fully supported\n");  | 
214  | 0  |     }  | 
215  | 3  |   }  | 
216  |  |  | 
217  | 78  |   if (block_size() != APFS_BLOCK_SIZE) { | 
218  | 0  |     throw std::runtime_error(  | 
219  | 0  |         "APFSSuperblock: invalid or unsupported block size");  | 
220  | 0  |   }  | 
221  | 78  | }  | 
222  |  |  | 
223  | 16  | const std::vector<apfs_block_num> APFSSuperblock::volume_blocks() const { | 
224  | 16  |   std::vector<apfs_block_num> vec{}; | 
225  |  |  | 
226  | 16  |   const auto root = omap().root<APFSObjectBtreeNode>();  | 
227  |  |  | 
228  | 16  |   for (const auto& e : root.entries()) { | 
229  | 2  |     vec.emplace_back(e.value->paddr);  | 
230  | 2  |   }  | 
231  |  |  | 
232  | 16  |   return vec;  | 
233  | 16  | }  | 
234  |  |  | 
235  | 0  | const std::vector<apfs_block_num> APFSSuperblock::sm_bitmap_blocks() const { | 
236  | 0  |   const auto entries = spaceman().bm_entries();  | 
237  |  | 
  | 
238  | 0  |   std::vector<apfs_block_num> v{}; | 
239  | 0  |   v.reserve(entries.size());  | 
240  |  | 
  | 
241  | 0  |   for (const auto& entry : entries) { | 
242  | 0  |     if (entry.bm_block != 0) { | 
243  | 0  |       v.emplace_back(entry.bm_block);  | 
244  | 0  |     }  | 
245  | 0  |   }  | 
246  |  | 
  | 
247  | 0  |   return v;  | 
248  | 0  | }  | 
249  |  |  | 
250  | 0  | const std::vector<uint64_t> APFSSuperblock::volume_oids() const { | 
251  | 0  |   std::vector<uint64_t> v{}; | 
252  |  | 
  | 
253  | 0  |   for (auto i = 0U; i < sb()->max_fs_count; i++) { | 
254  | 0  |     const auto oid = sb()->fs_oids[i];  | 
255  |  | 
  | 
256  | 0  |     if (oid == 0) { | 
257  | 0  |       break;  | 
258  | 0  |     }  | 
259  |  |  | 
260  | 0  |     v.emplace_back(oid);  | 
261  | 0  |   }  | 
262  |  | 
  | 
263  | 0  |   return v;  | 
264  | 0  | }  | 
265  |  |  | 
266  | 0  | apfs_block_num APFSSuperblock::checkpoint_desc_block() const { | 
267  | 0  |   for (auto i = 0U; i < sb()->chkpt_desc_block_count; i++) { | 
268  | 0  |     const auto block_num = sb()->chkpt_desc_base_addr + i;  | 
269  | 0  |     const auto block = APFSObject(_pool, block_num);  | 
270  |  | 
  | 
271  | 0  |     if (!block.validate_checksum()) { | 
272  | 0  |       if (tsk_verbose) { | 
273  | 0  |         tsk_fprintf(stderr,  | 
274  | 0  |                     "APFSSuperblock::checkpoint_desc_block: Block %lld did not "  | 
275  | 0  |                     "validate.\n",  | 
276  | 0  |                     block_num);  | 
277  | 0  |       }  | 
278  | 0  |       continue;  | 
279  | 0  |     }  | 
280  |  |  | 
281  | 0  |     if (block.xid() == xid() &&  | 
282  | 0  |         block.obj_type() == APFS_OBJ_TYPE_CHECKPOINT_DESC) { | 
283  | 0  |       return block_num;  | 
284  | 0  |     }  | 
285  | 0  |   }  | 
286  |  |  | 
287  |  |   // We didn't find anything so return 0;  | 
288  | 0  |   return 0;  | 
289  | 0  | }  | 
290  |  |  | 
291  | 0  | const APFSSpaceman& APFSSuperblock::spaceman() const { | 
292  | 0  |   if (_spaceman != nullptr) { | 
293  | 0  |     return *_spaceman;  | 
294  | 0  |   }  | 
295  |  |  | 
296  | 0  | #ifdef TSK_MULTITHREAD_LIB  | 
297  |  |   // Since this function is const, and const methods generally are assumed to be  | 
298  |  |   // thread safe, we ideally want to it be thread safe so multiple threads  | 
299  |  |   // aren't trying to initialize at the same time.  | 
300  | 0  |   std::lock_guard<std::mutex> lock{_spaceman_init_lock}; | 
301  |  |  | 
302  |  |   // Check again to make sure someone else didn't already beat us to this.  | 
303  | 0  |   if (_spaceman != nullptr) { | 
304  | 0  |     return *_spaceman;  | 
305  | 0  |   }  | 
306  | 0  | #endif  | 
307  |  |  | 
308  | 0  |   const APFSCheckpointMap cd{_pool, checkpoint_desc_block()}; | 
309  |  | 
  | 
310  | 0  |   _spaceman = std::make_unique<APFSSpaceman>(  | 
311  | 0  |       _pool, cd.get_object_block(sb()->spaceman_oid, APFS_OBJ_TYPE_SPACEMAN));  | 
312  |  | 
  | 
313  | 0  |   return *_spaceman;  | 
314  | 0  | }  | 
315  |  |  | 
316  | 0  | APFSSuperblock::Keybag APFSSuperblock::keybag() const { | 
317  | 0  |   if (sb()->keylocker.start_paddr == 0) { | 
318  | 0  |     throw std::runtime_error("no keybag found"); | 
319  | 0  |   }  | 
320  |  |  | 
321  | 0  |   return {(*this)}; | 
322  | 0  | }  | 
323  |  |  | 
324  |  | APFSOmap::APFSOmap(const APFSPool& pool, const apfs_block_num block_num)  | 
325  | 17  |     : APFSObject(pool, block_num) { | 
326  | 17  |   if (obj_type() != APFS_OBJ_TYPE_OMAP) { | 
327  | 8  |     throw std::runtime_error("APFSOmap: invalid object type"); | 
328  | 8  |   }  | 
329  | 17  | }  | 
330  |  |  | 
331  |  | APFSFileSystem::APFSFileSystem(const APFSPool& pool,  | 
332  |  |                                const apfs_block_num block_num)  | 
333  | 6  |     : APFSObject(pool, block_num) { | 
334  | 6  |   if (obj_type() != APFS_OBJ_TYPE_FS) { | 
335  | 1  |     throw std::runtime_error("APFSFileSystem: invalid object type"); | 
336  | 1  |   }  | 
337  |  |  | 
338  | 5  |   if (fs()->magic != APFS_FS_MAGIC) { | 
339  | 0  |     throw std::runtime_error("APFSFileSystem: invalid magic"); | 
340  | 0  |   }  | 
341  |  |  | 
342  | 5  |   if (encrypted() && pool.hardware_crypto() == false) { | 
343  | 0  |     init_crypto_info();  | 
344  | 0  |   }  | 
345  | 5  | }  | 
346  |  |  | 
347  |  | APFSFileSystem::wrapped_kek::wrapped_kek(TSKGuid&& id,  | 
348  |  |                                          const std::unique_ptr<uint8_t[]>& kp)  | 
349  | 0  |     : uuid{std::forward<TSKGuid>(id)} { | 
350  |  |   // Parse KEK  | 
351  | 0  |   wrapped_key_parser wp{kp.get()}; | 
352  |  |  | 
353  |  |   // Get flags  | 
354  | 0  |   flags = wp.get_number(0x30, 0xA3, 0x82);  | 
355  |  |  | 
356  |  |   // Get wrapped KEK  | 
357  | 0  |   auto kek_data = wp.get_data(0x30, 0xA3, 0x83);  | 
358  | 0  |   if (kek_data.count() != sizeof(data)) { | 
359  | 0  |     throw std::runtime_error("invalid KEK size"); | 
360  | 0  |   }  | 
361  | 0  |   std::memcpy(data, kek_data.data(), sizeof(data));  | 
362  |  |  | 
363  |  |   // Get iterations  | 
364  | 0  |   iterations = wp.get_number(0x30, 0xA3, 0x84);  | 
365  |  |  | 
366  |  |   // Get salt  | 
367  | 0  |   kek_data = wp.get_data(0x30, 0xA3, 0x85);  | 
368  | 0  |   if (kek_data.count() != sizeof(salt)) { | 
369  | 0  |     throw std::runtime_error("invalid salt size"); | 
370  | 0  |   }  | 
371  | 0  |   std::memcpy(salt, kek_data.data(), sizeof(salt));  | 
372  | 0  | }  | 
373  |  |  | 
374  |  | APFSFileSystem::APFSFileSystem(const APFSPool& pool,  | 
375  |  |                                const apfs_block_num block_num,  | 
376  |  |                                const std::string& password)  | 
377  | 2  |     : APFSFileSystem(pool, block_num) { | 
378  | 2  |   if (encrypted()) { | 
379  | 0  |     unlock(password);  | 
380  | 0  |   }  | 
381  | 2  | }  | 
382  |  |  | 
383  |  | // These are the known special recovery UUIDs.  The ones that are commented out  | 
384  |  | // are currently supported.  | 
385  |  | static const auto unsupported_recovery_keys = { | 
386  |  |     TSKGuid{"c064ebc6-0000-11aa-aa11-00306543ecac"},  // Institutional Recovery | 
387  |  |     TSKGuid{"2fa31400-baff-4de7-ae2a-c3aa6e1fd340"},  // Institutional User | 
388  |  |     // TSKGuid{"ebc6C064-0000-11aa-aa11-00306543ecac"},  // Personal Recovery | 
389  |  |     TSKGuid{"64c0c6eb-0000-11aa-aa11-00306543ecac"},  // iCould Recovery | 
390  |  |     TSKGuid{"ec1c2ad9-b618-4ed6-bd8d-50f361c27507"},  // iCloud User | 
391  |  | };  | 
392  |  |  | 
393  | 0  | void APFSFileSystem::init_crypto_info() { | 
394  | 0  |     try { | 
395  |  |  | 
396  |  |         // Get container keybag  | 
397  | 0  |         const auto container_kb = _pool.nx()->keybag();  | 
398  |  | 
  | 
399  | 0  |         auto data = container_kb.get_key(uuid(), APFS_KB_TYPE_VOLUME_KEY);  | 
400  | 0  |         if (data == nullptr) { | 
401  | 0  |             throw std::runtime_error(  | 
402  | 0  |                 "APFSFileSystem: can not find volume encryption key");  | 
403  | 0  |         }  | 
404  |  |  | 
405  | 0  |         wrapped_key_parser wp{ data.get() }; | 
406  |  |  | 
407  |  |         // Get Wrapped VEK  | 
408  | 0  |         auto kek_data = wp.get_data(0x30, 0xA3, 0x83);  | 
409  | 0  |         if (kek_data.count() != sizeof(_crypto.wrapped_vek)) { | 
410  | 0  |             throw std::runtime_error("invalid VEK size"); | 
411  | 0  |         }  | 
412  | 0  |         std::memcpy(_crypto.wrapped_vek, kek_data.data(),  | 
413  | 0  |             sizeof(_crypto.wrapped_vek));  | 
414  |  |  | 
415  |  |         // Get VEK Flags  | 
416  | 0  |         _crypto.vek_flags = wp.get_number(0x30, 0xA3, 0x82);  | 
417  |  |  | 
418  |  |         // Get VEK UUID  | 
419  | 0  |         kek_data = wp.get_data(0x30, 0xA3, 0x81);  | 
420  | 0  |         if (kek_data.count() != sizeof(_crypto.vek_uuid)) { | 
421  | 0  |             throw std::runtime_error("invalid UUID size"); | 
422  | 0  |         }  | 
423  | 0  |         std::memcpy(_crypto.vek_uuid, kek_data.data(), sizeof(_crypto.vek_uuid));  | 
424  |  | 
  | 
425  | 0  |         data = container_kb.get_key(uuid(), APFS_KB_TYPE_UNLOCK_RECORDS);  | 
426  | 0  |         if (data == nullptr) { | 
427  | 0  |             throw std::runtime_error(  | 
428  | 0  |                 "APFSFileSystem: can not find volume recovery key");  | 
429  | 0  |         }  | 
430  |  |  | 
431  | 0  |         const auto rec =  | 
432  | 0  |             reinterpret_cast<const apfs_volrec_keybag_value*>(data.get());  | 
433  |  | 
  | 
434  | 0  |         if (rec->num_blocks != 1) { | 
435  | 0  |             throw std::runtime_error(  | 
436  | 0  |                 "only single block keybags are currently supported");  | 
437  | 0  |         }  | 
438  |  |  | 
439  | 0  |         _crypto.recs_block_num = rec->start_block;  | 
440  |  | 
  | 
441  | 0  |         Keybag recs{ (*this), _crypto.recs_block_num }; | 
442  |  | 
  | 
443  | 0  |         data = recs.get_key(uuid(), APFS_KB_TYPE_PASSPHRASE_HINT);  | 
444  |  | 
  | 
445  | 0  |         if (data != nullptr) { | 
446  | 0  |             _crypto.password_hint = std::string((const char*)data.get());  | 
447  | 0  |         }  | 
448  |  |  | 
449  |  |         // Get KEKs  | 
450  | 0  |         auto keks = recs.get_keys();  | 
451  | 0  |         if (keks.empty()) { | 
452  | 0  |             throw std::runtime_error("could not find any KEKs"); | 
453  | 0  |         }  | 
454  |  |  | 
455  | 0  |         for (auto& k : keks) { | 
456  | 0  |             if (k.type != APFS_KB_TYPE_UNLOCK_RECORDS) { | 
457  | 0  |                 continue;  | 
458  | 0  |             }  | 
459  |  |  | 
460  | 0  |             if (std::find(unsupported_recovery_keys.begin(),  | 
461  | 0  |                 unsupported_recovery_keys.end(),  | 
462  | 0  |                 k.uuid) != unsupported_recovery_keys.end()) { | 
463  |  |                 // Skip unparsable recovery KEKs  | 
464  | 0  |                 if (tsk_verbose) { | 
465  | 0  |                     tsk_fprintf(stderr, "apfs: skipping unsupported KEK type: %s\n",  | 
466  | 0  |                         k.uuid.str().c_str());  | 
467  | 0  |                 }  | 
468  | 0  |                 continue;  | 
469  | 0  |             }  | 
470  |  |  | 
471  | 0  |             _crypto.wrapped_keks.emplace_back(wrapped_kek{ std::move(k.uuid), k.data }); | 
472  | 0  |         }  | 
473  | 0  |     }  | 
474  | 0  |     catch (std::exception& e) { | 
475  | 0  |         if (tsk_verbose) { | 
476  | 0  |             tsk_fprintf(stderr, "APFSFileSystem::init_crypto_info: %s", e.what());  | 
477  | 0  |         }  | 
478  | 0  |     }  | 
479  | 0  | }  | 
480  |  |  | 
481  | 0  | bool APFSFileSystem::unlock(const std::string& password) noexcept { | 
482  |  | #ifdef HAVE_LIBCRYPTO  | 
483  |  |   if (_crypto.unlocked) { | 
484  |  |     // Already unlocked  | 
485  |  |     return true;  | 
486  |  |   }  | 
487  |  |  | 
488  |  |   // TODO(JTS): If bits 32:16 are set to 1, some other sort of KEK decryption is  | 
489  |  |   // used (see _fv_decrypt_vek in AppleKeyStore).  | 
490  |  |   if (_crypto.unk16()) { | 
491  |  |     if (tsk_verbose) { | 
492  |  |       tsk_fprintf(stderr,  | 
493  |  |                   "apfs: UNK16 is set in VEK.  Decryption will likely fail.\n");  | 
494  |  |     }  | 
495  |  |   }  | 
496  |  |  | 
497  |  |   // Check the password against all possible KEKs  | 
498  |  |   for (const auto& wk : _crypto.wrapped_keks) { | 
499  |  |     // If the 57th bit of the KEK flags is set, then the kek is a CoreStorage  | 
500  |  |     // KEK  | 
501  |  |     const auto kek_len = (wk.cs()) ? 0x10 : 0x20;  | 
502  |  |  | 
503  |  |     // TODO(JTS): If the 56th bit of the KEK flags is set, some sort of hardware  | 
504  |  |     // decryption is needed  | 
505  |  |     if (wk.hw_crypt()) { | 
506  |  |       if (tsk_verbose) { | 
507  |  |         tsk_fprintf(  | 
508  |  |             stderr,  | 
509  |  |             "apfs: hardware decryption is not yet supported. KEK decryption "  | 
510  |  |             "will likely fail\n");  | 
511  |  |       }  | 
512  |  |     }  | 
513  |  |  | 
514  |  |     const auto user_key = pbkdf2_hmac_sha256(password, wk.salt, sizeof(wk.salt),  | 
515  |  |                                              wk.iterations, kek_len);  | 
516  |  |     if (user_key == nullptr) { | 
517  |  |       if (tsk_verbose) { | 
518  |  |         tsk_fprintf(stderr, "apfs: can not generate user key\n");  | 
519  |  |       }  | 
520  |  |       continue;  | 
521  |  |     }  | 
522  |  |  | 
523  |  |     const auto kek =  | 
524  |  |         rfc3394_key_unwrap(user_key.get(), kek_len, wk.data, kek_len + 8);  | 
525  |  |     if (kek == nullptr) { | 
526  |  |       if (tsk_verbose) { | 
527  |  |         tsk_fprintf(stderr,  | 
528  |  |                     "apfs: KEK %s can not be unwrapped with given password\n",  | 
529  |  |                     wk.uuid.str().c_str());  | 
530  |  |       }  | 
531  |  |       continue;  | 
532  |  |     }  | 
533  |  |  | 
534  |  |     // If the 57th bit of the VEK flags is set, then the VEK is a  | 
535  |  |     // CoreStorage VEK  | 
536  |  |     const auto vek_len = (_crypto.cs()) ? 0x10 : 0x20;  | 
537  |  |  | 
538  |  |     // If a 128 bit VEK is wrapped with a 256 bit KEK then only the first 128  | 
539  |  |     // bits of the KEK are used.  | 
540  |  |     const auto vek = rfc3394_key_unwrap(kek.get(), std::min(kek_len, vek_len),  | 
541  |  |                                         _crypto.wrapped_vek, vek_len + 8);  | 
542  |  |     if (vek == nullptr) { | 
543  |  |       if (tsk_verbose) { | 
544  |  |         tsk_fprintf(stderr, "apfs: failed to unwrap VEK\n");  | 
545  |  |       }  | 
546  |  |       continue;  | 
547  |  |     }  | 
548  |  |  | 
549  |  |     _crypto.password = password;  | 
550  |  |     std::memcpy(_crypto.vek, vek.get(), vek_len);  | 
551  |  |  | 
552  |  |     if (_crypto.cs()) { | 
553  |  |       // For volumes that were converted from CoreStorage, the tweak is the  | 
554  |  |       // first 128-bits of SHA256(vek + vekuuid)  | 
555  |  |       std::memcpy(_crypto.vek + 0x10, _crypto.vek_uuid,  | 
556  |  |                   sizeof(_crypto.vek_uuid));  | 
557  |  |  | 
558  |  |       const auto hash = hash_buffer_sha256(_crypto.vek, sizeof(_crypto.vek));  | 
559  |  |  | 
560  |  |       std::memcpy(_crypto.vek + 0x10, hash.get(), 0x10);  | 
561  |  |     }  | 
562  |  |  | 
563  |  |     _crypto.unlocked = true;  | 
564  |  |  | 
565  |  |     return true;  | 
566  |  |   }  | 
567  |  |  | 
568  |  |   return false;  | 
569  |  | #else  | 
570  | 0  |     if (tsk_verbose) { | 
571  | 0  |         tsk_fprintf(stderr, "apfs: crypto library not loaded\n");  | 
572  | 0  |     }  | 
573  | 0  |     return false;  | 
574  | 0  | #endif  | 
575  | 0  | }  | 
576  |  |  | 
577  |  | const std::vector<APFSFileSystem::unmount_log_t> APFSFileSystem::unmount_log()  | 
578  | 0  |     const { | 
579  | 0  |   std::vector<unmount_log_t> v{}; | 
580  |  | 
  | 
581  | 0  |   for (auto i = 0; i < 8; i++) { | 
582  | 0  |     const auto& log = fs()->unmount_logs[i];  | 
583  |  | 
  | 
584  | 0  |     if (log.timestamp == 0) { | 
585  | 0  |       return v;  | 
586  | 0  |     }  | 
587  |  |  | 
588  | 0  |     v.emplace_back(  | 
589  | 0  |         unmount_log_t{log.timestamp, log.kext_ver_str, log.last_xid}); | 
590  | 0  |   }  | 
591  |  |  | 
592  | 0  |   return v;  | 
593  | 0  | }  | 
594  |  |  | 
595  |  | const std::vector<APFSFileSystem::snapshot_t> APFSFileSystem::snapshots()  | 
596  | 0  |     const { | 
597  | 0  |   std::vector<snapshot_t> v{}; | 
598  |  | 
  | 
599  | 0  |   const APFSSnapshotMetaBtreeNode snap_tree{_pool, fs()->snap_meta_tree_oid}; | 
600  |  | 
  | 
601  | 0  |   struct key_type { | 
602  | 0  |     uint64_t xid_and_type;  | 
603  |  | 
  | 
604  | 0  |     inline uint64_t snap_xid() const noexcept { | 
605  | 0  |       return bitfield_value(xid_and_type, 60, 0);  | 
606  | 0  |     }  | 
607  |  | 
  | 
608  | 0  |     inline uint64_t type() const noexcept { | 
609  | 0  |       return bitfield_value(xid_and_type, 4, 60);  | 
610  | 0  |     }  | 
611  | 0  |   };  | 
612  |  | 
  | 
613  | 0  |   using value_type = apfs_snap_metadata;  | 
614  |  | 
  | 
615  | 0  |   std::for_each(snap_tree.begin(), snap_tree.end(), [&](const auto& entry) { | 
616  | 0  |     const auto key = entry.key.template as<key_type>();  | 
617  | 0  |     const auto value = entry.value.template as<value_type>();  | 
618  |  | 
  | 
619  | 0  |     if (key->type() != APFS_JOBJTYPE_SNAP_METADATA) { | 
620  | 0  |       return;  | 
621  | 0  |     }  | 
622  |  |  | 
623  | 0  |     v.emplace_back(snapshot_t{ | 
624  | 0  |         {value->name, value->name_length - 1U},  // name | 
625  | 0  |         value->create_time,                      // timestamp  | 
626  | 0  |         key->snap_xid(),                         // snap_xid  | 
627  | 0  |         (value->extentref_tree_oid == 0),        // dataless  | 
628  | 0  |     });  | 
629  | 0  |   });  | 
630  |  | 
  | 
631  | 0  |   return v;  | 
632  | 0  | }  | 
633  |  |  | 
634  | 0  | APFSJObjTree APFSFileSystem::root_jobj_tree() const { | 
635  | 0  |   return {_pool, omap_root(), rdo(), crypto_info()}; | 
636  | 0  | }  | 
637  |  |  | 
638  | 0  | apfs_block_num APFSFileSystem::omap_root() const { | 
639  | 0  |   return APFSOmap{_pool, fs()->omap_oid}.root_block(); | 
640  | 0  | }  | 
641  |  |  | 
642  |  | APFSJObjBtreeNode::APFSJObjBtreeNode(const APFSObjectBtreeNode* obj_root,  | 
643  |  |                                      apfs_block_num block_num,  | 
644  |  |                                      const uint8_t* key)  | 
645  |  | #ifdef HAVE_LIBCRYPTO  | 
646  |  |     : APFSBtreeNode(obj_root->pool(), block_num, key), _obj_root{obj_root} { | 
647  |  | #else  | 
648  | 2  |     : APFSBtreeNode(obj_root->pool(), block_num, nullptr), _obj_root{ obj_root } { | 
649  | 2  | #endif  | 
650  | 2  |   if (subtype() != APFS_OBJ_TYPE_FSTREE) { | 
651  | 0  |     throw std::runtime_error("APFSJObjBtreeNode: invalid subtype"); | 
652  | 0  |   }  | 
653  | 2  | }  | 
654  |  |  | 
655  |  |  | 
656  | 1  | APFSObjectBtreeNode::iterator APFSObjectBtreeNode::find(uint64_t oid) const { | 
657  | 1  |   return APFSBtreeNode::find(  | 
658  | 1  |       oid, [xid = this->_xid](const auto& key,  | 
659  | 1  |                               const auto oid) noexcept->int64_t { | 
660  | 1  |         if ((key->oid == oid) && (key->xid > xid)) { | 
661  | 0  |           return key->xid - xid;  | 
662  | 0  |         }  | 
663  |  |  | 
664  | 1  |         return (key->oid - oid);  | 
665  | 1  |       });  | 
666  | 1  | }  | 
667  |  |  | 
668  |  | APFSObjectBtreeNode::APFSObjectBtreeNode(const APFSPool& pool,  | 
669  |  |                                          apfs_block_num block_num)  | 
670  | 9  |     : APFSBtreeNode(pool, block_num), _xid{xid()} { | 
671  | 9  |   if (subtype() != APFS_OBJ_TYPE_OMAP) { | 
672  | 0  |     throw std::runtime_error("APFSObjectBtreeNode: invalid subtype"); | 
673  | 0  |   }  | 
674  | 9  | }  | 
675  |  |  | 
676  |  | APFSObjectBtreeNode::APFSObjectBtreeNode(const APFSPool& pool,  | 
677  |  |                                          apfs_block_num block_num,  | 
678  |  |                                          uint64_t snap_xid)  | 
679  | 0  |     : APFSBtreeNode(pool, block_num), _xid{snap_xid} { | 
680  | 0  |   if (subtype() != APFS_OBJ_TYPE_OMAP) { | 
681  | 0  |     throw std::runtime_error("APFSObjectBtreeNode: invalid subtype"); | 
682  | 0  |   }  | 
683  | 0  | }  | 
684  |  |  | 
685  |  | APFSSnapshotMetaBtreeNode::APFSSnapshotMetaBtreeNode(const APFSPool& pool,  | 
686  |  |                                                      apfs_block_num block_num)  | 
687  | 0  |     : APFSBtreeNode(pool, block_num) { | 
688  | 0  |   if (subtype() != APFS_OBJ_TYPE_SNAPMETATREE) { | 
689  | 0  |     throw std::runtime_error("APFSSnapshotMetaBtreeNode: invalid subtype"); | 
690  | 0  |   }  | 
691  | 0  | }  | 
692  |  |  | 
693  |  | APFSExtentRefBtreeNode::APFSExtentRefBtreeNode(const APFSPool& pool,  | 
694  |  |                                                apfs_block_num block_num)  | 
695  | 0  |     : APFSBtreeNode(pool, block_num) { | 
696  | 0  |   if (subtype() != APFS_OBJ_TYPE_BLOCKREFTREE) { | 
697  | 0  |     throw std::runtime_error("APFSExtentRefBtreeNode: invalid subtype"); | 
698  | 0  |   }  | 
699  | 0  | }  | 
700  |  |  | 
701  |  | APFSCheckpointMap::APFSCheckpointMap(const APFSPool& pool,  | 
702  |  |                                      const apfs_block_num block_num)  | 
703  | 0  |     : APFSObject(pool, block_num) { | 
704  | 0  |   if (obj_type() != APFS_OBJ_TYPE_CHECKPOINT_DESC) { | 
705  | 0  |     throw std::runtime_error("APFSCheckpointMap: invalid object type"); | 
706  | 0  |   }  | 
707  | 0  | }  | 
708  |  |  | 
709  |  | apfs_block_num APFSCheckpointMap::get_object_block(  | 
710  | 0  |     uint64_t oid, APFS_OBJ_TYPE_ENUM type) const { | 
711  | 0  |   const auto entries = map()->entries;  | 
712  |  | 
  | 
713  | 0  |   for (auto i = 0U; i < map()->count; i++) { | 
714  | 0  |     const auto& entry = entries[i];  | 
715  |  | 
  | 
716  | 0  |     if (entry.oid == oid && entry.type == type) { | 
717  | 0  |       return entry.paddr;  | 
718  | 0  |     }  | 
719  | 0  |   }  | 
720  |  |  | 
721  |  |   // Not found  | 
722  | 0  |   throw std::runtime_error(  | 
723  | 0  |       "APFSCheckpointMap::get_object_block: object not found");  | 
724  | 0  | }  | 
725  |  |  | 
726  |  | APFSSpaceman::APFSSpaceman(const APFSPool& pool, const apfs_block_num block_num)  | 
727  | 0  |     : APFSObject(pool, block_num), _bm_entries{} { | 
728  | 0  |   if (obj_type() != APFS_OBJ_TYPE_SPACEMAN) { | 
729  | 0  |     throw std::runtime_error("APFSSpaceman: invalid object type"); | 
730  | 0  |   }  | 
731  | 0  | }  | 
732  |  |  | 
733  | 0  | const std::vector<APFSSpacemanCIB::bm_entry>& APFSSpaceman::bm_entries() const { | 
734  | 0  |   if (!_bm_entries.empty()) { | 
735  | 0  |     return _bm_entries;  | 
736  | 0  |   }  | 
737  |  |  | 
738  | 0  | #ifdef TSK_MULTITHREAD_LIB  | 
739  |  |   // Since this function is const, and const methods generally are assumed to be  | 
740  |  |   // thread safe, we ideally want to it be thread safe so multiple threads  | 
741  |  |   // aren't trying to initialize at the same time.  | 
742  | 0  |   std::lock_guard<std::mutex> lock{_bm_entries_init_lock}; | 
743  |  |  | 
744  |  |   // Check again to make sure someone else didn't already beat us to this.  | 
745  | 0  |   if (!_bm_entries.empty()) { | 
746  | 0  |     return _bm_entries;  | 
747  | 0  |   }  | 
748  |  |  | 
749  |  |   // Our above checks would not prevent someone from accessing the member while  | 
750  |  |   // the initialization is in progress, so let's initialize a temporary and them  | 
751  |  |   // move it into the member instead.  | 
752  | 0  |   decltype(_bm_entries) bm_entries{}; | 
753  |  | #else  | 
754  |  |   // There's no possibility for contention, so let's just initialize the member  | 
755  |  |   // directly so that we can save the move.  | 
756  |  |   auto& bm_entries = _bm_entries;  | 
757  |  | #endif  | 
758  |  | 
  | 
759  | 0  |   bm_entries.reserve(sm()->devs[APFS_SD_MAIN].cib_count);  | 
760  |  | 
  | 
761  | 0  |   const auto cib_blocks = [&] { | 
762  | 0  |     std::vector<apfs_block_num> v{}; | 
763  | 0  |     v.reserve(sm()->devs[APFS_SD_MAIN].cib_count);  | 
764  |  | 
  | 
765  | 0  |     const auto entries = this->entries();  | 
766  |  |  | 
767  |  |     // Is the next level cib?  | 
768  | 0  |     if (sm()->devs[APFS_SD_MAIN].cab_count == 0) { | 
769  |  |       // Our entires contain the cib blocks  | 
770  | 0  |       for (auto i = 0U; i < sm()->devs[APFS_SD_MAIN].cib_count; i++) { | 
771  | 0  |         v.emplace_back(entries[i]);  | 
772  | 0  |       }  | 
773  |  | 
  | 
774  | 0  |       return v;  | 
775  | 0  |     }  | 
776  |  |  | 
777  |  |     // The next level is cab, not cib so we need to recurse them  | 
778  | 0  |     for (auto i = 0U; i < sm()->devs[APFS_SD_MAIN].cab_count; i++) { | 
779  | 0  |       const APFSSpacemanCAB cab(_pool, entries[i]);  | 
780  | 0  |       const auto cab_entries = cab.cib_blocks();  | 
781  |  |  | 
782  |  |       // Append the blocks to the vector  | 
783  | 0  |       std::copy(cab_entries.begin(), cab_entries.end(), std::back_inserter(v));  | 
784  | 0  |     }  | 
785  |  | 
  | 
786  | 0  |     return v;  | 
787  | 0  |   }();  | 
788  |  | 
  | 
789  | 0  |   for (const auto block : cib_blocks) { | 
790  | 0  |     const APFSSpacemanCIB cib(_pool, block);  | 
791  |  | 
  | 
792  | 0  |     const auto entries = cib.bm_entries();  | 
793  |  |  | 
794  |  |     // Append the entries to the vector  | 
795  | 0  |     std::copy(entries.begin(), entries.end(), std::back_inserter(bm_entries));  | 
796  | 0  |   }  | 
797  |  |  | 
798  |  |   // Sort the entries by offset  | 
799  | 0  |   std::sort(bm_entries.begin(), bm_entries.end(),  | 
800  | 0  |             [](const auto& a, const auto& b) { return (a.offset < b.offset); }); | 
801  |  | 
  | 
802  | 0  | #ifdef TSK_MULTITHREAD_LIB  | 
803  |  |   // Now that we're fully initialized we can now move our initialized vector  | 
804  |  |   // into the member to signal that we're ready for access.  | 
805  | 0  |   _bm_entries = std::move(bm_entries);  | 
806  | 0  | #endif  | 
807  |  | 
  | 
808  | 0  |   return _bm_entries;  | 
809  | 0  | }  | 
810  |  |  | 
811  |  | const std::vector<APFSSpaceman::range> APFSSpaceman::unallocated_ranges()  | 
812  | 0  |     const { | 
813  | 0  |   std::vector<range> v{}; | 
814  |  | 
  | 
815  | 0  |   for (const auto& entry : bm_entries()) { | 
816  | 0  |     if (entry.free_blocks == 0) { | 
817  |  |       // No free ranges to add  | 
818  | 0  |       continue;  | 
819  | 0  |     }  | 
820  |  |  | 
821  | 0  |     if (entry.total_blocks == entry.free_blocks) { | 
822  |  |       // The entire bitmap block is free  | 
823  | 0  |       if (!v.empty() &&  | 
824  | 0  |           v.back().start_block + v.back().num_blocks == entry.offset) { | 
825  |  |         // We're within the same range as the last one, so just update the  | 
826  |  |         // count  | 
827  | 0  |         v.back().num_blocks += entry.free_blocks;  | 
828  | 0  |       } else { | 
829  |  |         // We're not contiguous with the last range, so add a new one  | 
830  | 0  |         v.emplace_back(range{entry.offset, entry.free_blocks}); | 
831  | 0  |       }  | 
832  | 0  |       continue;  | 
833  | 0  |     }  | 
834  |  |  | 
835  |  |     // We've got to enumerate the bitmap block for it's ranges  | 
836  | 0  |     const auto ranges = APFSBitmapBlock{_pool, entry}.unallocated_ranges(); | 
837  |  |  | 
838  |  |     // TODO(JTS): We could possibly de-duplicate the first range if it's  | 
839  |  |     // contiguous with the last range, but the overhead might outweigh the  | 
840  |  |     // convenience  | 
841  | 0  |     std::copy(ranges.begin(), ranges.end(), std::back_inserter(v));  | 
842  | 0  |   }  | 
843  |  | 
  | 
844  | 0  |   return v;  | 
845  | 0  | }  | 
846  |  |  | 
847  |  | APFSSpacemanCIB::APFSSpacemanCIB(const APFSPool& pool,  | 
848  |  |                                  const apfs_block_num block_num)  | 
849  | 0  |     : APFSObject(pool, block_num) { | 
850  | 0  |   if (obj_type() != APFS_OBJ_TYPE_SPACEMAN_CIB) { | 
851  | 0  |     throw std::runtime_error("APFSSpacemanCIB: invalid object type"); | 
852  | 0  |   }  | 
853  | 0  | }  | 
854  |  |  | 
855  |  | const std::vector<APFSSpacemanCIB::bm_entry> APFSSpacemanCIB::bm_entries()  | 
856  | 0  |     const { | 
857  | 0  |   std::vector<bm_entry> v{}; | 
858  | 0  |   v.reserve(cib()->entry_count);  | 
859  |  | 
  | 
860  | 0  |   const auto entries = cib()->entries;  | 
861  | 0  |   for (auto i = 0U; i < cib()->entry_count; i++) { | 
862  | 0  |     const auto& entry = entries[i];  | 
863  | 0  |     v.emplace_back(bm_entry{entry.addr, entry.block_count, entry.free_count, | 
864  | 0  |                             entry.bm_addr});  | 
865  | 0  |   }  | 
866  |  | 
  | 
867  | 0  |   return v;  | 
868  | 0  | }  | 
869  |  |  | 
870  |  | APFSSpacemanCAB::APFSSpacemanCAB(const APFSPool& pool,  | 
871  |  |                                  const apfs_block_num block_num)  | 
872  | 0  |     : APFSObject(pool, block_num) { | 
873  | 0  |   if (obj_type() != APFS_OBJ_TYPE_SPACEMAN_CAB) { | 
874  | 0  |     throw std::runtime_error("APFSSpacemanCAB: invalid object type"); | 
875  | 0  |   }  | 
876  | 0  | }  | 
877  |  |  | 
878  | 0  | const std::vector<apfs_block_num> APFSSpacemanCAB::cib_blocks() const { | 
879  | 0  |   std::vector<apfs_block_num> v{}; | 
880  | 0  |   v.reserve(cib_count());  | 
881  |  | 
  | 
882  | 0  |   const auto entries = cab()->cib_blocks;  | 
883  |  | 
  | 
884  | 0  |   for (auto i = 0U; i < cib_count(); i++) { | 
885  | 0  |     v.emplace_back(entries[i]);  | 
886  | 0  |   }  | 
887  |  | 
  | 
888  | 0  |   return v;  | 
889  | 0  | }  | 
890  |  |  | 
891  |  | APFSBitmapBlock::APFSBitmapBlock(const APFSPool& pool,  | 
892  |  |                                  const APFSSpacemanCIB::bm_entry& entry)  | 
893  | 0  |     : APFSBlock(pool, entry.bm_block), _entry{entry} {} | 
894  |  |  | 
895  | 0  | uint32_t APFSBitmapBlock::next() noexcept { | 
896  | 0  |   while (!done()) { | 
897  |  |     // Calculate the index of the bit to be evaluated.  | 
898  | 0  |     const auto i = _hint % cached_bits;  | 
899  |  |  | 
900  |  |     // If we're evaluating the first bit then we need to cache the next set  | 
901  |  |     // from the array.  | 
902  | 0  |     if (i == 0) { | 
903  | 0  |       cache_next();  | 
904  |  |  | 
905  |  |       // If there are no set bits then there's nothing to scan for, so let's  | 
906  |  |       // try again with the next set of bits.  | 
907  | 0  |       if (_cache == 0) { | 
908  | 0  |         _hint += cached_bits;  | 
909  | 0  |         continue;  | 
910  | 0  |       }  | 
911  | 0  |     }  | 
912  |  |  | 
913  |  |     // Mask the fetched value and count the number of trailing zero bits.  | 
914  | 0  |     const auto c = lsbset((_cache >> i) << i);  | 
915  |  |  | 
916  |  |     // If c is non-zero then there are set bits.  | 
917  | 0  |     if (c != 0) { | 
918  |  |       // There are set bits.  We just need to make sure that they're within  | 
919  |  |       // the range we're scanning for.  | 
920  |  |  | 
921  |  |       // Adjust the hint for the next call  | 
922  | 0  |       _hint += c - i;  | 
923  |  |  | 
924  |  |       // Check to see if we're still in range  | 
925  | 0  |       if (_hint - 1 < _entry.total_blocks) { | 
926  | 0  |         return _hint - 1;  | 
927  | 0  |       }  | 
928  |  |  | 
929  |  |       // The hit is outside of our scanned range  | 
930  | 0  |       return no_bits_left;  | 
931  | 0  |     }  | 
932  |  |  | 
933  |  |     // There are no set bits, so we need to adjust the hint to the next set of  | 
934  |  |     // bits and try again.  | 
935  | 0  |     _hint += cached_bits - i;  | 
936  | 0  |   }  | 
937  |  |  | 
938  | 0  |   return no_bits_left;  | 
939  | 0  | }  | 
940  |  |  | 
941  | 0  | const std::vector<APFSSpaceman::range> APFSBitmapBlock::unallocated_ranges() { | 
942  |  |   // Check for special case where all blocks are allocated  | 
943  | 0  |   if (_entry.free_blocks == 0) { | 
944  | 0  |     return {}; | 
945  | 0  |   }  | 
946  |  |  | 
947  |  |   // Check for special cases where all blocks are free  | 
948  | 0  |   if (_entry.free_blocks == _entry.total_blocks) { | 
949  | 0  |     return {{_entry.offset, _entry.total_blocks}}; | 
950  | 0  |   }  | 
951  |  |  | 
952  | 0  |   reset();  | 
953  | 0  |   _mode = mode::unset;  | 
954  |  | 
  | 
955  | 0  |   std::vector<APFSSpaceman::range> v{}; | 
956  |  | 
  | 
957  | 0  |   while (!done()) { | 
958  |  |     // Get the start of the range.  | 
959  | 0  |     const auto s = next();  | 
960  |  |  | 
961  |  |     // If there's no start then we're done.  | 
962  | 0  |     if (s == no_bits_left) { | 
963  | 0  |       break;  | 
964  | 0  |     }  | 
965  |  |  | 
966  |  |     // Toggle the scan mode to look for the next type of bit.  | 
967  | 0  |     toggle_mode();  | 
968  |  |  | 
969  |  |     // Get the end of the range.  | 
970  | 0  |     auto e = next();  | 
971  |  |  | 
972  |  |     // If there's no end then we set the end of the range to the end of the  | 
973  |  |     // bitmap.  | 
974  | 0  |     if (e == no_bits_left) { | 
975  | 0  |       e = _entry.total_blocks;  | 
976  | 0  |     }  | 
977  |  |  | 
978  |  |     // Add the range description to the vector.  | 
979  | 0  |     v.emplace_back(APFSSpaceman::range{s + _entry.offset, e - s}); | 
980  |  |  | 
981  |  |     // Toggle the scan mode for the next scan.  | 
982  | 0  |     toggle_mode();  | 
983  | 0  |   }  | 
984  |  | 
  | 
985  | 0  |   return v;  | 
986  | 0  | }  | 
987  |  |  | 
988  |  | APFSKeybag::APFSKeybag(const APFSPool& pool, const apfs_block_num block_num,  | 
989  |  |                        const uint8_t* key, const uint8_t* key2)  | 
990  | 0  |     : APFSObject(pool, block_num) { | 
991  | 0  |   decrypt(key, key2);  | 
992  |  | 
  | 
993  | 0  |   if (!validate_checksum()) { | 
994  | 0  |     throw std::runtime_error("keybag did not decrypt properly"); | 
995  | 0  |   }  | 
996  |  |  | 
997  | 0  |   if (kb()->version != 2) { | 
998  | 0  |     throw std::runtime_error("keybag version not supported"); | 
999  | 0  |   }  | 
1000  | 0  | }  | 
1001  |  |  | 
1002  |  | std::unique_ptr<uint8_t[]> APFSKeybag::get_key(const TSKGuid& uuid,  | 
1003  | 0  |                                                uint16_t type) const { | 
1004  | 0  |   if (kb()->num_entries == 0) { | 
1005  | 0  |     return nullptr;  | 
1006  | 0  |   }  | 
1007  |  |  | 
1008  |  |   // First key is immediately after the header  | 
1009  | 0  |   auto next_key = kb()->first_key;  | 
1010  |  | 
  | 
1011  | 0  |   for (auto i = 0U; i < kb()->num_entries; i++) { | 
1012  | 0  |     if (next_key->type == type &&  | 
1013  | 0  |         std::memcmp(next_key->uuid, uuid.bytes().data(), 16) == 0) { | 
1014  |  |       // We've found a matching key.  Copy it's data to a pointer and return it.  | 
1015  | 0  |       const auto data = reinterpret_cast<const uint8_t*>(next_key + 1);  | 
1016  |  |  | 
1017  |  |       // We're padding the data with an extra byte so we can null-terminate  | 
1018  |  |       // any data strings.  There might be a better way.  | 
1019  | 0  |       auto dp = std::make_unique<uint8_t[]>(next_key->length + 1);  | 
1020  |  | 
  | 
1021  | 0  |       std::memcpy(dp.get(), data, next_key->length);  | 
1022  |  | 
  | 
1023  | 0  |       return dp;  | 
1024  | 0  |     }  | 
1025  |  |  | 
1026  |  |     // Calculate address of next key (ensuring alignment)  | 
1027  |  |  | 
1028  | 0  |     const auto nk_addr =  | 
1029  | 0  |         (uintptr_t)next_key +  | 
1030  | 0  |         ((sizeof(*next_key) + next_key->length + 0x0F) & ~0x0FULL);  | 
1031  |  | 
  | 
1032  | 0  |     next_key = reinterpret_cast<const apfs_keybag_key*>(nk_addr);  | 
1033  | 0  |   }  | 
1034  |  |  | 
1035  |  |   // Not Found  | 
1036  | 0  |   return nullptr;  | 
1037  | 0  | }  | 
1038  |  |  | 
1039  | 0  | std::vector<APFSKeybag::key> APFSKeybag::get_keys() const { | 
1040  | 0  |   std::vector<key> keys;  | 
1041  |  |  | 
1042  |  |   // First key is immediately after the header  | 
1043  | 0  |   auto next_key = kb()->first_key;  | 
1044  |  | 
  | 
1045  | 0  |   for (auto i = 0U; i < kb()->num_entries; i++) { | 
1046  | 0  |     const auto data = reinterpret_cast<const uint8_t*>(next_key + 1);  | 
1047  |  |  | 
1048  |  |     // We're padding the data with an extra byte so we can null-terminate  | 
1049  |  |     // any data strings.  There might be a better way.  | 
1050  | 0  |     auto dp = std::make_unique<uint8_t[]>(next_key->length + 1);  | 
1051  |  | 
  | 
1052  | 0  |     std::memcpy(dp.get(), data, next_key->length);  | 
1053  |  | 
  | 
1054  | 0  |     keys.emplace_back(key{{next_key->uuid}, std::move(dp), next_key->type}); | 
1055  |  |  | 
1056  |  |     // Calculate address of next key (ensuring alignment)  | 
1057  | 0  |     const auto nk_addr =  | 
1058  | 0  |         (uintptr_t)next_key +  | 
1059  | 0  |         ((sizeof(*next_key) + next_key->length + 0x0F) & ~0x0FULL);  | 
1060  |  | 
  | 
1061  | 0  |     next_key = reinterpret_cast<const apfs_keybag_key*>(nk_addr);  | 
1062  | 0  |   }  | 
1063  |  | 
  | 
1064  | 0  |   return keys;  | 
1065  | 0  | }  | 
1066  |  |  | 
1067  |  | APFSSuperblock::Keybag::Keybag(const APFSSuperblock& sb)  | 
1068  | 0  |     : APFSKeybag(sb.pool(), sb.sb()->keylocker.start_paddr, sb.sb()->uuid,  | 
1069  | 0  |                  sb.sb()->uuid) { | 
1070  | 0  |   if (obj_type_and_flags() != APFS_OBJ_TYPE_CONTAINER_KEYBAG) { | 
1071  | 0  |     throw std::runtime_error("APFSSuperblock::Keybag: invalid object type"); | 
1072  | 0  |   }  | 
1073  |  |  | 
1074  | 0  |   if (sb.sb()->keylocker.block_count != 1) { | 
1075  | 0  |     throw std::runtime_error("only single block keybags are supported"); | 
1076  | 0  |   }  | 
1077  | 0  | }  | 
1078  |  |  | 
1079  |  | APFSExtentRefBtreeNode::iterator APFSExtentRefBtreeNode::find(  | 
1080  | 0  |     apfs_block_num block) const { | 
1081  | 0  |   return APFSBtreeNode::find(  | 
1082  | 0  |       block, [](const auto& key, const auto block) noexcept->int64_t { | 
1083  | 0  |         return key.template as<APFSPhysicalExtentKey>()->start_block() - block;  | 
1084  | 0  |       });  | 
1085  | 0  | }  | 
1086  |  |  | 
1087  |  | APFSFileSystem::Keybag::Keybag(const APFSFileSystem& vol,  | 
1088  |  |                                apfs_block_num block_num)  | 
1089  | 0  |     : APFSKeybag(vol.pool(), block_num, vol.fs()->uuid, vol.fs()->uuid) { | 
1090  | 0  |   if (obj_type_and_flags() != APFS_OBJ_TYPE_VOLUME_RECOVERY_KEYBAG) { | 
1091  | 0  |     throw std::runtime_error("APFSFileSystem::Keybag: invalid object type"); | 
1092  | 0  |   }  | 
1093  | 0  | }  |