/rust/registry/src/index.crates.io-6f17d22bba15001f/chrono-0.4.41/src/datetime/mod.rs
Line | Count | Source (jump to first uncovered line) |
1 | | // This is a part of Chrono. |
2 | | // See README.md and LICENSE.txt for details. |
3 | | |
4 | | //! ISO 8601 date and time with time zone. |
5 | | |
6 | | #[cfg(all(feature = "alloc", not(feature = "std"), not(test)))] |
7 | | use alloc::string::String; |
8 | | use core::borrow::Borrow; |
9 | | use core::cmp::Ordering; |
10 | | use core::fmt::Write; |
11 | | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
12 | | use core::time::Duration; |
13 | | use core::{fmt, hash, str}; |
14 | | #[cfg(feature = "std")] |
15 | | use std::time::{SystemTime, UNIX_EPOCH}; |
16 | | |
17 | | #[allow(deprecated)] |
18 | | use crate::Date; |
19 | | #[cfg(all(feature = "unstable-locales", feature = "alloc"))] |
20 | | use crate::format::Locale; |
21 | | #[cfg(feature = "alloc")] |
22 | | use crate::format::{DelayedFormat, SecondsFormat, write_rfc2822, write_rfc3339}; |
23 | | use crate::format::{ |
24 | | Fixed, Item, ParseError, ParseResult, Parsed, StrftimeItems, TOO_LONG, parse, |
25 | | parse_and_remainder, parse_rfc3339, |
26 | | }; |
27 | | use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime}; |
28 | | #[cfg(feature = "clock")] |
29 | | use crate::offset::Local; |
30 | | use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc}; |
31 | | use crate::{Datelike, Months, TimeDelta, Timelike, Weekday}; |
32 | | use crate::{expect, try_opt}; |
33 | | |
34 | | #[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))] |
35 | | use rkyv::{Archive, Deserialize, Serialize}; |
36 | | |
37 | | /// documented at re-export site |
38 | | #[cfg(feature = "serde")] |
39 | | pub(super) mod serde; |
40 | | |
41 | | #[cfg(test)] |
42 | | mod tests; |
43 | | |
44 | | /// ISO 8601 combined date and time with time zone. |
45 | | /// |
46 | | /// There are some constructors implemented here (the `from_*` methods), but |
47 | | /// the general-purpose constructors are all via the methods on the |
48 | | /// [`TimeZone`](./offset/trait.TimeZone.html) implementations. |
49 | | #[derive(Clone)] |
50 | | #[cfg_attr( |
51 | | any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"), |
52 | | derive(Archive, Deserialize, Serialize), |
53 | | archive(compare(PartialEq, PartialOrd)) |
54 | | )] |
55 | | #[cfg_attr(feature = "rkyv-validation", archive(check_bytes))] |
56 | | pub struct DateTime<Tz: TimeZone> { |
57 | | datetime: NaiveDateTime, |
58 | | offset: Tz::Offset, |
59 | | } |
60 | | |
61 | | /// The minimum possible `DateTime<Utc>`. |
62 | | #[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")] |
63 | | pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC; |
64 | | /// The maximum possible `DateTime<Utc>`. |
65 | | #[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")] |
66 | | pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC; |
67 | | |
68 | | impl<Tz: TimeZone> DateTime<Tz> { |
69 | | /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. |
70 | | /// |
71 | | /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or |
72 | | /// passing it through FFI. |
73 | | /// |
74 | | /// For regular use you will probably want to use a method such as |
75 | | /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead. |
76 | | /// |
77 | | /// # Example |
78 | | /// |
79 | | /// ``` |
80 | | /// # #[cfg(feature = "clock")] { |
81 | | /// use chrono::{DateTime, Local}; |
82 | | /// |
83 | | /// let dt = Local::now(); |
84 | | /// // Get components |
85 | | /// let naive_utc = dt.naive_utc(); |
86 | | /// let offset = dt.offset().clone(); |
87 | | /// // Serialize, pass through FFI... and recreate the `DateTime`: |
88 | | /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset); |
89 | | /// assert_eq!(dt, dt_new); |
90 | | /// # } |
91 | | /// ``` |
92 | | #[inline] |
93 | | #[must_use] |
94 | 0 | pub const fn from_naive_utc_and_offset( |
95 | 0 | datetime: NaiveDateTime, |
96 | 0 | offset: Tz::Offset, |
97 | 0 | ) -> DateTime<Tz> { |
98 | 0 | DateTime { datetime, offset } |
99 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::from_naive_utc_and_offset Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::fixed::FixedOffset>>::from_naive_utc_and_offset Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::from_naive_utc_and_offset |
100 | | |
101 | | /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. |
102 | | #[inline] |
103 | | #[must_use] |
104 | | #[deprecated( |
105 | | since = "0.4.27", |
106 | | note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead" |
107 | | )] |
108 | 0 | pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> { |
109 | 0 | DateTime { datetime, offset } |
110 | 0 | } |
111 | | |
112 | | /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`. |
113 | | /// |
114 | | /// # Panics |
115 | | /// |
116 | | /// Panics if the local datetime can't be converted to UTC because it would be out of range. |
117 | | /// |
118 | | /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`, |
119 | | /// and the offset from UTC pushes it beyond that. |
120 | | #[inline] |
121 | | #[must_use] |
122 | | #[deprecated( |
123 | | since = "0.4.27", |
124 | | note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead" |
125 | | )] |
126 | 0 | pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> { |
127 | 0 | let datetime_utc = datetime - offset.fix(); |
128 | 0 |
|
129 | 0 | DateTime { datetime: datetime_utc, offset } |
130 | 0 | } |
131 | | |
132 | | /// Retrieves the date component with an associated timezone. |
133 | | /// |
134 | | /// Unless you are immediately planning on turning this into a `DateTime` |
135 | | /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method. |
136 | | /// |
137 | | /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it, |
138 | | /// so should be preferred to [`Date`] any time you truly want to operate on dates. |
139 | | /// |
140 | | /// # Panics |
141 | | /// |
142 | | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
143 | | /// method will panic if the offset from UTC would push the local date outside of the |
144 | | /// representable range of a [`Date`]. |
145 | | #[inline] |
146 | | #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")] |
147 | | #[allow(deprecated)] |
148 | | #[must_use] |
149 | 0 | pub fn date(&self) -> Date<Tz> { |
150 | 0 | Date::from_utc(self.naive_local().date(), self.offset.clone()) |
151 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::date Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::date |
152 | | |
153 | | /// Retrieves the date component. |
154 | | /// |
155 | | /// # Panics |
156 | | /// |
157 | | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
158 | | /// method will panic if the offset from UTC would push the local date outside of the |
159 | | /// representable range of a [`NaiveDate`]. |
160 | | /// |
161 | | /// # Example |
162 | | /// |
163 | | /// ``` |
164 | | /// use chrono::prelude::*; |
165 | | /// |
166 | | /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); |
167 | | /// let other: DateTime<FixedOffset> = |
168 | | /// FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); |
169 | | /// assert_eq!(date.date_naive(), other.date_naive()); |
170 | | /// ``` |
171 | | #[inline] |
172 | | #[must_use] |
173 | 0 | pub fn date_naive(&self) -> NaiveDate { |
174 | 0 | self.naive_local().date() |
175 | 0 | } |
176 | | |
177 | | /// Retrieves the time component. |
178 | | #[inline] |
179 | | #[must_use] |
180 | 0 | pub fn time(&self) -> NaiveTime { |
181 | 0 | self.datetime.time() + self.offset.fix() |
182 | 0 | } |
183 | | |
184 | | /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC |
185 | | /// (aka "UNIX timestamp"). |
186 | | /// |
187 | | /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed |
188 | | /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`]. |
189 | | /// |
190 | | /// ``` |
191 | | /// use chrono::{DateTime, TimeZone, Utc}; |
192 | | /// |
193 | | /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap(); |
194 | | /// assert_eq!(dt.timestamp(), 1431648000); |
195 | | /// |
196 | | /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); |
197 | | /// ``` |
198 | | #[inline] |
199 | | #[must_use] |
200 | 0 | pub const fn timestamp(&self) -> i64 { |
201 | 0 | let gregorian_day = self.datetime.date().num_days_from_ce() as i64; |
202 | 0 | let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64; |
203 | 0 | (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight |
204 | 0 | } |
205 | | |
206 | | /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC. |
207 | | /// |
208 | | /// # Example |
209 | | /// |
210 | | /// ``` |
211 | | /// use chrono::{NaiveDate, Utc}; |
212 | | /// |
213 | | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
214 | | /// .unwrap() |
215 | | /// .and_hms_milli_opt(0, 0, 1, 444) |
216 | | /// .unwrap() |
217 | | /// .and_local_timezone(Utc) |
218 | | /// .unwrap(); |
219 | | /// assert_eq!(dt.timestamp_millis(), 1_444); |
220 | | /// |
221 | | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
222 | | /// .unwrap() |
223 | | /// .and_hms_milli_opt(1, 46, 40, 555) |
224 | | /// .unwrap() |
225 | | /// .and_local_timezone(Utc) |
226 | | /// .unwrap(); |
227 | | /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555); |
228 | | /// ``` |
229 | | #[inline] |
230 | | #[must_use] |
231 | 0 | pub const fn timestamp_millis(&self) -> i64 { |
232 | 0 | let as_ms = self.timestamp() * 1000; |
233 | 0 | as_ms + self.timestamp_subsec_millis() as i64 |
234 | 0 | } |
235 | | |
236 | | /// Returns the number of non-leap-microseconds since January 1, 1970 UTC. |
237 | | /// |
238 | | /// # Example |
239 | | /// |
240 | | /// ``` |
241 | | /// use chrono::{NaiveDate, Utc}; |
242 | | /// |
243 | | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
244 | | /// .unwrap() |
245 | | /// .and_hms_micro_opt(0, 0, 1, 444) |
246 | | /// .unwrap() |
247 | | /// .and_local_timezone(Utc) |
248 | | /// .unwrap(); |
249 | | /// assert_eq!(dt.timestamp_micros(), 1_000_444); |
250 | | /// |
251 | | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
252 | | /// .unwrap() |
253 | | /// .and_hms_micro_opt(1, 46, 40, 555) |
254 | | /// .unwrap() |
255 | | /// .and_local_timezone(Utc) |
256 | | /// .unwrap(); |
257 | | /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555); |
258 | | /// ``` |
259 | | #[inline] |
260 | | #[must_use] |
261 | 0 | pub const fn timestamp_micros(&self) -> i64 { |
262 | 0 | let as_us = self.timestamp() * 1_000_000; |
263 | 0 | as_us + self.timestamp_subsec_micros() as i64 |
264 | 0 | } |
265 | | |
266 | | /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. |
267 | | /// |
268 | | /// # Panics |
269 | | /// |
270 | | /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on |
271 | | /// an out of range `DateTime`. |
272 | | /// |
273 | | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
274 | | /// and 2262-04-11T23:47:16.854775807. |
275 | | #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")] |
276 | | #[inline] |
277 | | #[must_use] |
278 | 0 | pub const fn timestamp_nanos(&self) -> i64 { |
279 | 0 | expect( |
280 | 0 | self.timestamp_nanos_opt(), |
281 | 0 | "value can not be represented in a timestamp with nanosecond precision.", |
282 | 0 | ) |
283 | 0 | } |
284 | | |
285 | | /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. |
286 | | /// |
287 | | /// # Errors |
288 | | /// |
289 | | /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns |
290 | | /// `None` on an out of range `DateTime`. |
291 | | /// |
292 | | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
293 | | /// and 2262-04-11T23:47:16.854775807. |
294 | | /// |
295 | | /// # Example |
296 | | /// |
297 | | /// ``` |
298 | | /// use chrono::{NaiveDate, Utc}; |
299 | | /// |
300 | | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
301 | | /// .unwrap() |
302 | | /// .and_hms_nano_opt(0, 0, 1, 444) |
303 | | /// .unwrap() |
304 | | /// .and_local_timezone(Utc) |
305 | | /// .unwrap(); |
306 | | /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444)); |
307 | | /// |
308 | | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
309 | | /// .unwrap() |
310 | | /// .and_hms_nano_opt(1, 46, 40, 555) |
311 | | /// .unwrap() |
312 | | /// .and_local_timezone(Utc) |
313 | | /// .unwrap(); |
314 | | /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555)); |
315 | | /// |
316 | | /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) |
317 | | /// .unwrap() |
318 | | /// .and_hms_nano_opt(0, 12, 43, 145_224_192) |
319 | | /// .unwrap() |
320 | | /// .and_local_timezone(Utc) |
321 | | /// .unwrap(); |
322 | | /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808)); |
323 | | /// |
324 | | /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) |
325 | | /// .unwrap() |
326 | | /// .and_hms_nano_opt(23, 47, 16, 854_775_807) |
327 | | /// .unwrap() |
328 | | /// .and_local_timezone(Utc) |
329 | | /// .unwrap(); |
330 | | /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807)); |
331 | | /// |
332 | | /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) |
333 | | /// .unwrap() |
334 | | /// .and_hms_nano_opt(0, 12, 43, 145_224_191) |
335 | | /// .unwrap() |
336 | | /// .and_local_timezone(Utc) |
337 | | /// .unwrap(); |
338 | | /// assert_eq!(dt.timestamp_nanos_opt(), None); |
339 | | /// |
340 | | /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) |
341 | | /// .unwrap() |
342 | | /// .and_hms_nano_opt(23, 47, 16, 854_775_808) |
343 | | /// .unwrap() |
344 | | /// .and_local_timezone(Utc) |
345 | | /// .unwrap(); |
346 | | /// assert_eq!(dt.timestamp_nanos_opt(), None); |
347 | | /// ``` |
348 | | #[inline] |
349 | | #[must_use] |
350 | 0 | pub const fn timestamp_nanos_opt(&self) -> Option<i64> { |
351 | 0 | let mut timestamp = self.timestamp(); |
352 | 0 | let mut subsec_nanos = self.timestamp_subsec_nanos() as i64; |
353 | 0 | // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while |
354 | 0 | // the final value can be represented as an `i64`. |
355 | 0 | // As workaround we converting the negative case to: |
356 | 0 | // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)`` |
357 | 0 | // |
358 | 0 | // Also see <https://github.com/chronotope/chrono/issues/1289>. |
359 | 0 | if timestamp < 0 { |
360 | 0 | subsec_nanos -= 1_000_000_000; |
361 | 0 | timestamp += 1; |
362 | 0 | } |
363 | 0 | try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos) |
364 | 0 | } |
365 | | |
366 | | /// Returns the number of milliseconds since the last second boundary. |
367 | | /// |
368 | | /// In event of a leap second this may exceed 999. |
369 | | #[inline] |
370 | | #[must_use] |
371 | 0 | pub const fn timestamp_subsec_millis(&self) -> u32 { |
372 | 0 | self.timestamp_subsec_nanos() / 1_000_000 |
373 | 0 | } |
374 | | |
375 | | /// Returns the number of microseconds since the last second boundary. |
376 | | /// |
377 | | /// In event of a leap second this may exceed 999,999. |
378 | | #[inline] |
379 | | #[must_use] |
380 | 0 | pub const fn timestamp_subsec_micros(&self) -> u32 { |
381 | 0 | self.timestamp_subsec_nanos() / 1_000 |
382 | 0 | } |
383 | | |
384 | | /// Returns the number of nanoseconds since the last second boundary |
385 | | /// |
386 | | /// In event of a leap second this may exceed 999,999,999. |
387 | | #[inline] |
388 | | #[must_use] |
389 | 0 | pub const fn timestamp_subsec_nanos(&self) -> u32 { |
390 | 0 | self.datetime.time().nanosecond() |
391 | 0 | } |
392 | | |
393 | | /// Retrieves an associated offset from UTC. |
394 | | #[inline] |
395 | | #[must_use] |
396 | 0 | pub const fn offset(&self) -> &Tz::Offset { |
397 | 0 | &self.offset |
398 | 0 | } |
399 | | |
400 | | /// Retrieves an associated time zone. |
401 | | #[inline] |
402 | | #[must_use] |
403 | 0 | pub fn timezone(&self) -> Tz { |
404 | 0 | TimeZone::from_offset(&self.offset) |
405 | 0 | } |
406 | | |
407 | | /// Changes the associated time zone. |
408 | | /// The returned `DateTime` references the same instant of time from the perspective of the |
409 | | /// provided time zone. |
410 | | #[inline] |
411 | | #[must_use] |
412 | 0 | pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> { |
413 | 0 | tz.from_utc_datetime(&self.datetime) |
414 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::with_timezone::<chrono::offset::fixed::FixedOffset> Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::with_timezone::<chrono::offset::local::Local> Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::fixed::FixedOffset>>::with_timezone::<chrono::offset::utc::Utc> Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::fixed::FixedOffset>>::with_timezone::<chrono::offset::local::Local> Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::with_timezone::<chrono::offset::utc::Utc> Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::with_timezone::<chrono::offset::fixed::FixedOffset> |
415 | | |
416 | | /// Fix the offset from UTC to its current value, dropping the associated timezone information. |
417 | | /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`. |
418 | | #[inline] |
419 | | #[must_use] |
420 | 0 | pub fn fixed_offset(&self) -> DateTime<FixedOffset> { |
421 | 0 | self.with_timezone(&self.offset().fix()) |
422 | 0 | } |
423 | | |
424 | | /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone |
425 | | /// information. |
426 | | #[inline] |
427 | | #[must_use] |
428 | 0 | pub const fn to_utc(&self) -> DateTime<Utc> { |
429 | 0 | DateTime { datetime: self.datetime, offset: Utc } |
430 | 0 | } |
431 | | |
432 | | /// Adds given `TimeDelta` to the current date and time. |
433 | | /// |
434 | | /// # Errors |
435 | | /// |
436 | | /// Returns `None` if the resulting date would be out of range. |
437 | | #[inline] |
438 | | #[must_use] |
439 | 0 | pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> { |
440 | 0 | let datetime = self.datetime.checked_add_signed(rhs)?; |
441 | 0 | let tz = self.timezone(); |
442 | 0 | Some(tz.from_utc_datetime(&datetime)) |
443 | 0 | } |
444 | | |
445 | | /// Adds given `Months` to the current date and time. |
446 | | /// |
447 | | /// Uses the last day of the month if the day does not exist in the resulting month. |
448 | | /// |
449 | | /// See [`NaiveDate::checked_add_months`] for more details on behavior. |
450 | | /// |
451 | | /// # Errors |
452 | | /// |
453 | | /// Returns `None` if: |
454 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
455 | | /// daylight saving time transition. |
456 | | /// - The resulting UTC datetime would be out of range. |
457 | | /// - The resulting local datetime would be out of range (unless `months` is zero). |
458 | | #[must_use] |
459 | 0 | pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> { |
460 | 0 | // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate |
461 | 0 | // the resulting date, with which we can return `Some` even for an out of range local |
462 | 0 | // datetime. |
463 | 0 | self.overflowing_naive_local() |
464 | 0 | .checked_add_months(months)? |
465 | 0 | .and_local_timezone(Tz::from_offset(&self.offset)) |
466 | 0 | .single() |
467 | 0 | } |
468 | | |
469 | | /// Subtracts given `TimeDelta` from the current date and time. |
470 | | /// |
471 | | /// # Errors |
472 | | /// |
473 | | /// Returns `None` if the resulting date would be out of range. |
474 | | #[inline] |
475 | | #[must_use] |
476 | 0 | pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> { |
477 | 0 | let datetime = self.datetime.checked_sub_signed(rhs)?; |
478 | 0 | let tz = self.timezone(); |
479 | 0 | Some(tz.from_utc_datetime(&datetime)) |
480 | 0 | } |
481 | | |
482 | | /// Subtracts given `Months` from the current date and time. |
483 | | /// |
484 | | /// Uses the last day of the month if the day does not exist in the resulting month. |
485 | | /// |
486 | | /// See [`NaiveDate::checked_sub_months`] for more details on behavior. |
487 | | /// |
488 | | /// # Errors |
489 | | /// |
490 | | /// Returns `None` if: |
491 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
492 | | /// daylight saving time transition. |
493 | | /// - The resulting UTC datetime would be out of range. |
494 | | /// - The resulting local datetime would be out of range (unless `months` is zero). |
495 | | #[must_use] |
496 | 0 | pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> { |
497 | 0 | // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate |
498 | 0 | // the resulting date, with which we can return `Some` even for an out of range local |
499 | 0 | // datetime. |
500 | 0 | self.overflowing_naive_local() |
501 | 0 | .checked_sub_months(months)? |
502 | 0 | .and_local_timezone(Tz::from_offset(&self.offset)) |
503 | 0 | .single() |
504 | 0 | } |
505 | | |
506 | | /// Add a duration in [`Days`] to the date part of the `DateTime`. |
507 | | /// |
508 | | /// # Errors |
509 | | /// |
510 | | /// Returns `None` if: |
511 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
512 | | /// daylight saving time transition. |
513 | | /// - The resulting UTC datetime would be out of range. |
514 | | /// - The resulting local datetime would be out of range (unless `days` is zero). |
515 | | #[must_use] |
516 | 0 | pub fn checked_add_days(self, days: Days) -> Option<Self> { |
517 | 0 | if days == Days::new(0) { |
518 | 0 | return Some(self); |
519 | 0 | } |
520 | 0 | // `NaiveDate::add_days` has a fast path if the result remains within the same year, that |
521 | 0 | // does not validate the resulting date. This allows us to return `Some` even for an out of |
522 | 0 | // range local datetime when adding `Days(0)`. |
523 | 0 | self.overflowing_naive_local() |
524 | 0 | .checked_add_days(days) |
525 | 0 | .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) |
526 | 0 | .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC) |
527 | 0 | } |
528 | | |
529 | | /// Subtract a duration in [`Days`] from the date part of the `DateTime`. |
530 | | /// |
531 | | /// # Errors |
532 | | /// |
533 | | /// Returns `None` if: |
534 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
535 | | /// daylight saving time transition. |
536 | | /// - The resulting UTC datetime would be out of range. |
537 | | /// - The resulting local datetime would be out of range (unless `days` is zero). |
538 | | #[must_use] |
539 | 0 | pub fn checked_sub_days(self, days: Days) -> Option<Self> { |
540 | 0 | // `NaiveDate::add_days` has a fast path if the result remains within the same year, that |
541 | 0 | // does not validate the resulting date. This allows us to return `Some` even for an out of |
542 | 0 | // range local datetime when adding `Days(0)`. |
543 | 0 | self.overflowing_naive_local() |
544 | 0 | .checked_sub_days(days) |
545 | 0 | .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) |
546 | 0 | .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC) |
547 | 0 | } |
548 | | |
549 | | /// Subtracts another `DateTime` from the current date and time. |
550 | | /// This does not overflow or underflow at all. |
551 | | #[inline] |
552 | | #[must_use] |
553 | 0 | pub fn signed_duration_since<Tz2: TimeZone>( |
554 | 0 | self, |
555 | 0 | rhs: impl Borrow<DateTime<Tz2>>, |
556 | 0 | ) -> TimeDelta { |
557 | 0 | self.datetime.signed_duration_since(rhs.borrow().datetime) |
558 | 0 | } |
559 | | |
560 | | /// Returns a view to the naive UTC datetime. |
561 | | #[inline] |
562 | | #[must_use] |
563 | 0 | pub const fn naive_utc(&self) -> NaiveDateTime { |
564 | 0 | self.datetime |
565 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::naive_utc Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::naive_utc |
566 | | |
567 | | /// Returns a view to the naive local datetime. |
568 | | /// |
569 | | /// # Panics |
570 | | /// |
571 | | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
572 | | /// method will panic if the offset from UTC would push the local datetime outside of the |
573 | | /// representable range of a [`NaiveDateTime`]. |
574 | | #[inline] |
575 | | #[must_use] |
576 | 0 | pub fn naive_local(&self) -> NaiveDateTime { |
577 | 0 | self.datetime |
578 | 0 | .checked_add_offset(self.offset.fix()) |
579 | 0 | .expect("Local time out of range for `NaiveDateTime`") |
580 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::naive_local Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::naive_local |
581 | | |
582 | | /// Returns the naive local datetime. |
583 | | /// |
584 | | /// This makes use of the buffer space outside of the representable range of values of |
585 | | /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed |
586 | | /// outside chrono. |
587 | | #[inline] |
588 | | #[must_use] |
589 | 0 | pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime { |
590 | 0 | self.datetime.overflowing_add_offset(self.offset.fix()) |
591 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::overflowing_naive_local Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::overflowing_naive_local |
592 | | |
593 | | /// Retrieve the elapsed years from now to the given [`DateTime`]. |
594 | | /// |
595 | | /// # Errors |
596 | | /// |
597 | | /// Returns `None` if `base > self`. |
598 | | #[must_use] |
599 | 0 | pub fn years_since(&self, base: Self) -> Option<u32> { |
600 | 0 | let mut years = self.year() - base.year(); |
601 | 0 | let earlier_time = |
602 | 0 | (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time()); |
603 | 0 |
|
604 | 0 | years -= match earlier_time { |
605 | 0 | true => 1, |
606 | 0 | false => 0, |
607 | | }; |
608 | | |
609 | 0 | match years >= 0 { |
610 | 0 | true => Some(years as u32), |
611 | 0 | false => None, |
612 | | } |
613 | 0 | } |
614 | | |
615 | | /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`. |
616 | | /// |
617 | | /// # Panics |
618 | | /// |
619 | | /// Panics if the date can not be represented in this format: the year may not be negative and |
620 | | /// can not have more than 4 digits. |
621 | | #[cfg(feature = "alloc")] |
622 | | #[must_use] |
623 | 0 | pub fn to_rfc2822(&self) -> String { |
624 | 0 | let mut result = String::with_capacity(32); |
625 | 0 | write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix()) |
626 | 0 | .expect("writing rfc2822 datetime to string should never fail"); |
627 | 0 | result |
628 | 0 | } |
629 | | |
630 | | /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`. |
631 | | #[cfg(feature = "alloc")] |
632 | | #[must_use] |
633 | 0 | pub fn to_rfc3339(&self) -> String { |
634 | 0 | // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking. |
635 | 0 | let mut result = String::with_capacity(32); |
636 | 0 | let naive = self.overflowing_naive_local(); |
637 | 0 | let offset = self.offset.fix(); |
638 | 0 | write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false) |
639 | 0 | .expect("writing rfc3339 datetime to string should never fail"); |
640 | 0 | result |
641 | 0 | } |
642 | | |
643 | | /// Return an RFC 3339 and ISO 8601 date and time string with subseconds |
644 | | /// formatted as per `SecondsFormat`. |
645 | | /// |
646 | | /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as |
647 | | /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses |
648 | | /// [`Fixed::TimezoneOffsetColon`] |
649 | | /// |
650 | | /// # Examples |
651 | | /// |
652 | | /// ```rust |
653 | | /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate}; |
654 | | /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26) |
655 | | /// .unwrap() |
656 | | /// .and_hms_micro_opt(18, 30, 9, 453_829) |
657 | | /// .unwrap() |
658 | | /// .and_utc(); |
659 | | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00"); |
660 | | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z"); |
661 | | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z"); |
662 | | /// |
663 | | /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap(); |
664 | | /// let dt = pst |
665 | | /// .from_local_datetime( |
666 | | /// &NaiveDate::from_ymd_opt(2018, 1, 26) |
667 | | /// .unwrap() |
668 | | /// .and_hms_micro_opt(10, 30, 9, 453_829) |
669 | | /// .unwrap(), |
670 | | /// ) |
671 | | /// .unwrap(); |
672 | | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00"); |
673 | | /// ``` |
674 | | #[cfg(feature = "alloc")] |
675 | | #[must_use] |
676 | 0 | pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String { |
677 | 0 | let mut result = String::with_capacity(38); |
678 | 0 | write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z) |
679 | 0 | .expect("writing rfc3339 datetime to string should never fail"); |
680 | 0 | result |
681 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::to_rfc3339_opts Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::to_rfc3339_opts Unexecuted instantiation: <chrono::datetime::DateTime<_>>::to_rfc3339_opts |
682 | | |
683 | | /// Set the time to a new fixed time on the existing date. |
684 | | /// |
685 | | /// # Errors |
686 | | /// |
687 | | /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a |
688 | | /// `DateTime`, and `with_time` would push the value in UTC out of range. |
689 | | /// |
690 | | /// # Example |
691 | | /// |
692 | | /// ``` |
693 | | /// # #[cfg(feature = "clock")] { |
694 | | /// use chrono::{Local, NaiveTime}; |
695 | | /// |
696 | | /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap(); |
697 | | /// let today_noon = Local::now().with_time(noon); |
698 | | /// let today_midnight = Local::now().with_time(NaiveTime::MIN); |
699 | | /// |
700 | | /// assert_eq!(today_noon.single().unwrap().time(), noon); |
701 | | /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN); |
702 | | /// # } |
703 | | /// ``` |
704 | | #[must_use] |
705 | 0 | pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> { |
706 | 0 | self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time)) |
707 | 0 | } |
708 | | |
709 | | /// The minimum possible `DateTime<Utc>`. |
710 | | pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc }; |
711 | | /// The maximum possible `DateTime<Utc>`. |
712 | | pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc }; |
713 | | } |
714 | | |
715 | | impl DateTime<Utc> { |
716 | | /// Makes a new `DateTime<Utc>` from the number of non-leap seconds |
717 | | /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp") |
718 | | /// and the number of nanoseconds since the last whole non-leap second. |
719 | | /// |
720 | | /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and |
721 | | /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos). |
722 | | /// |
723 | | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
724 | | /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`]. |
725 | | /// |
726 | | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
727 | | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
728 | | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
729 | | /// |
730 | | /// # Errors |
731 | | /// |
732 | | /// Returns `None` on out-of-range number of seconds and/or |
733 | | /// invalid nanosecond, otherwise returns `Some(DateTime {...})`. |
734 | | /// |
735 | | /// # Example |
736 | | /// |
737 | | /// ``` |
738 | | /// use chrono::DateTime; |
739 | | /// |
740 | | /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp"); |
741 | | /// |
742 | | /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC"); |
743 | | /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); |
744 | | /// ``` |
745 | | #[inline] |
746 | | #[must_use] |
747 | 0 | pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> { |
748 | 0 | let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY; |
749 | 0 | let secs = secs.rem_euclid(86_400); |
750 | 0 | if days < i32::MIN as i64 || days > i32::MAX as i64 { |
751 | 0 | return None; |
752 | 0 | } |
753 | 0 | let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32)); |
754 | 0 | let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs)); |
755 | 0 | Some(date.and_time(time).and_utc()) |
756 | 0 | } |
757 | | |
758 | | /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds |
759 | | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
760 | | /// |
761 | | /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis). |
762 | | /// |
763 | | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
764 | | /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`]. |
765 | | /// |
766 | | /// # Errors |
767 | | /// |
768 | | /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`. |
769 | | /// |
770 | | /// # Example |
771 | | /// |
772 | | /// ``` |
773 | | /// use chrono::DateTime; |
774 | | /// |
775 | | /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp"); |
776 | | /// |
777 | | /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC"); |
778 | | /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt); |
779 | | /// ``` |
780 | | #[inline] |
781 | | #[must_use] |
782 | 0 | pub const fn from_timestamp_millis(millis: i64) -> Option<Self> { |
783 | 0 | let secs = millis.div_euclid(1000); |
784 | 0 | let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000; |
785 | 0 | Self::from_timestamp(secs, nsecs) |
786 | 0 | } |
787 | | |
788 | | /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds |
789 | | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
790 | | /// |
791 | | /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros). |
792 | | /// |
793 | | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
794 | | /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`]. |
795 | | /// |
796 | | /// # Errors |
797 | | /// |
798 | | /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` |
799 | | /// (more than ca. 262,000 years away from common era) |
800 | | /// |
801 | | /// # Example |
802 | | /// |
803 | | /// ``` |
804 | | /// use chrono::DateTime; |
805 | | /// |
806 | | /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC |
807 | | /// let dt = DateTime::from_timestamp_micros(timestamp_micros); |
808 | | /// assert!(dt.is_some()); |
809 | | /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros()); |
810 | | /// |
811 | | /// // Negative timestamps (before the UNIX epoch) are supported as well. |
812 | | /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC |
813 | | /// let dt = DateTime::from_timestamp_micros(timestamp_micros); |
814 | | /// assert!(dt.is_some()); |
815 | | /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros()); |
816 | | /// ``` |
817 | | #[inline] |
818 | | #[must_use] |
819 | 0 | pub const fn from_timestamp_micros(micros: i64) -> Option<Self> { |
820 | 0 | let secs = micros.div_euclid(1_000_000); |
821 | 0 | let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; |
822 | 0 | Self::from_timestamp(secs, nsecs) |
823 | 0 | } |
824 | | |
825 | | /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds |
826 | | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
827 | | /// |
828 | | /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos). |
829 | | /// |
830 | | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
831 | | /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`]. |
832 | | /// |
833 | | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
834 | | /// |
835 | | /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can |
836 | | /// be represented as a `DateTime` this method never fails. |
837 | | /// |
838 | | /// # Example |
839 | | /// |
840 | | /// ``` |
841 | | /// use chrono::DateTime; |
842 | | /// |
843 | | /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC |
844 | | /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); |
845 | | /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); |
846 | | /// |
847 | | /// // Negative timestamps (before the UNIX epoch) are supported as well. |
848 | | /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC |
849 | | /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); |
850 | | /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); |
851 | | /// ``` |
852 | | #[inline] |
853 | | #[must_use] |
854 | 0 | pub const fn from_timestamp_nanos(nanos: i64) -> Self { |
855 | 0 | let secs = nanos.div_euclid(1_000_000_000); |
856 | 0 | let nsecs = nanos.rem_euclid(1_000_000_000) as u32; |
857 | 0 | expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range") |
858 | 0 | } |
859 | | |
860 | | /// The Unix Epoch, 1970-01-01 00:00:00 UTC. |
861 | | pub const UNIX_EPOCH: Self = |
862 | | expect(NaiveDate::from_ymd_opt(1970, 1, 1), "").and_time(NaiveTime::MIN).and_utc(); |
863 | | } |
864 | | |
865 | | impl Default for DateTime<Utc> { |
866 | 0 | fn default() -> Self { |
867 | 0 | Utc.from_utc_datetime(&NaiveDateTime::default()) |
868 | 0 | } |
869 | | } |
870 | | |
871 | | #[cfg(feature = "clock")] |
872 | | impl Default for DateTime<Local> { |
873 | 0 | fn default() -> Self { |
874 | 0 | Local.from_utc_datetime(&NaiveDateTime::default()) |
875 | 0 | } |
876 | | } |
877 | | |
878 | | impl Default for DateTime<FixedOffset> { |
879 | 0 | fn default() -> Self { |
880 | 0 | FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default()) |
881 | 0 | } |
882 | | } |
883 | | |
884 | | /// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance. |
885 | | impl From<DateTime<Utc>> for DateTime<FixedOffset> { |
886 | | /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance. |
887 | | /// |
888 | | /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by |
889 | | /// this will be created with a fixed timezone offset of 0. |
890 | 0 | fn from(src: DateTime<Utc>) -> Self { |
891 | 0 | src.with_timezone(&FixedOffset::east_opt(0).unwrap()) |
892 | 0 | } |
893 | | } |
894 | | |
895 | | /// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance. |
896 | | #[cfg(feature = "clock")] |
897 | | impl From<DateTime<Utc>> for DateTime<Local> { |
898 | | /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance. |
899 | | /// |
900 | | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones. |
901 | 0 | fn from(src: DateTime<Utc>) -> Self { |
902 | 0 | src.with_timezone(&Local) |
903 | 0 | } |
904 | | } |
905 | | |
906 | | /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance. |
907 | | impl From<DateTime<FixedOffset>> for DateTime<Utc> { |
908 | | /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance. |
909 | | /// |
910 | | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone |
911 | | /// difference. |
912 | 0 | fn from(src: DateTime<FixedOffset>) -> Self { |
913 | 0 | src.with_timezone(&Utc) |
914 | 0 | } |
915 | | } |
916 | | |
917 | | /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance. |
918 | | #[cfg(feature = "clock")] |
919 | | impl From<DateTime<FixedOffset>> for DateTime<Local> { |
920 | | /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance. |
921 | | /// |
922 | | /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local |
923 | | /// time. |
924 | 0 | fn from(src: DateTime<FixedOffset>) -> Self { |
925 | 0 | src.with_timezone(&Local) |
926 | 0 | } |
927 | | } |
928 | | |
929 | | /// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance. |
930 | | #[cfg(feature = "clock")] |
931 | | impl From<DateTime<Local>> for DateTime<Utc> { |
932 | | /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance. |
933 | | /// |
934 | | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in |
935 | | /// timezones. |
936 | 0 | fn from(src: DateTime<Local>) -> Self { |
937 | 0 | src.with_timezone(&Utc) |
938 | 0 | } |
939 | | } |
940 | | |
941 | | /// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance. |
942 | | #[cfg(feature = "clock")] |
943 | | impl From<DateTime<Local>> for DateTime<FixedOffset> { |
944 | | /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance. |
945 | | /// |
946 | | /// Conversion is performed via [`DateTime::with_timezone`]. |
947 | 0 | fn from(src: DateTime<Local>) -> Self { |
948 | 0 | src.with_timezone(&src.offset().fix()) |
949 | 0 | } |
950 | | } |
951 | | |
952 | | /// Maps the local datetime to other datetime with given conversion function. |
953 | 0 | fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>> |
954 | 0 | where |
955 | 0 | F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>, |
956 | 0 | { |
957 | 0 | f(dt.overflowing_naive_local()) |
958 | 0 | .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single()) |
959 | 0 | .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC) |
960 | 0 | } |
961 | | |
962 | | impl DateTime<FixedOffset> { |
963 | | /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value. |
964 | | /// |
965 | | /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`) |
966 | | /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`]. |
967 | | /// |
968 | | /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP |
969 | | /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in |
970 | | /// 2008. |
971 | | /// |
972 | | /// # Support for the obsolete date format |
973 | | /// |
974 | | /// - A 2-digit year is interpreted to be a year in 1950-2049. |
975 | | /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and |
976 | | /// [Appendix A.5] |
977 | | /// - Single letter 'military' time zone names are parsed as a `-0000` offset. |
978 | | /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because |
979 | | /// the meaning is now ambiguous, the standard says they should be considered as `-0000` |
980 | | /// unless there is out-of-band information confirming their meaning. |
981 | | /// The exception is `Z`, which remains identical to `+0000`. |
982 | | /// |
983 | | /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3 |
984 | | /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5 |
985 | | /// |
986 | | /// # Example |
987 | | /// |
988 | | /// ``` |
989 | | /// # use chrono::{DateTime, FixedOffset, TimeZone}; |
990 | | /// assert_eq!( |
991 | | /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(), |
992 | | /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() |
993 | | /// ); |
994 | | /// ``` |
995 | 0 | pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> { |
996 | | const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)]; |
997 | 0 | let mut parsed = Parsed::new(); |
998 | 0 | parse(&mut parsed, s, ITEMS.iter())?; |
999 | 0 | parsed.to_datetime() |
1000 | 0 | } |
1001 | | |
1002 | | /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value. |
1003 | | /// |
1004 | | /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are |
1005 | | /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a |
1006 | | /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide |
1007 | | /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly |
1008 | | /// encountered variety of RFC 3339 formats. |
1009 | | /// |
1010 | | /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing |
1011 | | /// values in a wide range of formats, only some of which represent actual date-and-time |
1012 | | /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are |
1013 | | /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601 |
1014 | | /// values (or the other way around). |
1015 | 0 | pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> { |
1016 | 0 | let mut parsed = Parsed::new(); |
1017 | 0 | let (s, _) = parse_rfc3339(&mut parsed, s)?; |
1018 | 0 | if !s.is_empty() { |
1019 | 0 | return Err(TOO_LONG); |
1020 | 0 | } |
1021 | 0 | parsed.to_datetime() |
1022 | 0 | } |
1023 | | |
1024 | | /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value. |
1025 | | /// |
1026 | | /// Note that this method *requires a timezone* in the input string. See |
1027 | | /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str) |
1028 | | /// for a version that does not require a timezone in the to-be-parsed str. The returned |
1029 | | /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone. |
1030 | | /// |
1031 | | /// See the [`format::strftime` module](crate::format::strftime) for supported format |
1032 | | /// sequences. |
1033 | | /// |
1034 | | /// # Example |
1035 | | /// |
1036 | | /// ```rust |
1037 | | /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone}; |
1038 | | /// |
1039 | | /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z"); |
1040 | | /// assert_eq!( |
1041 | | /// dt, |
1042 | | /// Ok(FixedOffset::east_opt(0) |
1043 | | /// .unwrap() |
1044 | | /// .from_local_datetime( |
1045 | | /// &NaiveDate::from_ymd_opt(1983, 4, 13) |
1046 | | /// .unwrap() |
1047 | | /// .and_hms_milli_opt(12, 9, 14, 274) |
1048 | | /// .unwrap() |
1049 | | /// ) |
1050 | | /// .unwrap()) |
1051 | | /// ); |
1052 | | /// ``` |
1053 | 0 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> { |
1054 | 0 | let mut parsed = Parsed::new(); |
1055 | 0 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
1056 | 0 | parsed.to_datetime() |
1057 | 0 | } |
1058 | | |
1059 | | /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a |
1060 | | /// slice with the remaining portion of the string. |
1061 | | /// |
1062 | | /// Note that this method *requires a timezone* in the input string. See |
1063 | | /// [`NaiveDateTime::parse_and_remainder`] for a version that does not |
1064 | | /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`] |
1065 | | /// reflecting the parsed timezone. |
1066 | | /// |
1067 | | /// See the [`format::strftime` module](./format/strftime/index.html) for supported format |
1068 | | /// sequences. |
1069 | | /// |
1070 | | /// Similar to [`parse_from_str`](#method.parse_from_str). |
1071 | | /// |
1072 | | /// # Example |
1073 | | /// |
1074 | | /// ```rust |
1075 | | /// # use chrono::{DateTime, FixedOffset, TimeZone}; |
1076 | | /// let (datetime, remainder) = DateTime::parse_and_remainder( |
1077 | | /// "2015-02-18 23:16:09 +0200 trailing text", |
1078 | | /// "%Y-%m-%d %H:%M:%S %z", |
1079 | | /// ) |
1080 | | /// .unwrap(); |
1081 | | /// assert_eq!( |
1082 | | /// datetime, |
1083 | | /// FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() |
1084 | | /// ); |
1085 | | /// assert_eq!(remainder, " trailing text"); |
1086 | | /// ``` |
1087 | 0 | pub fn parse_and_remainder<'a>( |
1088 | 0 | s: &'a str, |
1089 | 0 | fmt: &str, |
1090 | 0 | ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> { |
1091 | 0 | let mut parsed = Parsed::new(); |
1092 | 0 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
1093 | 0 | parsed.to_datetime().map(|d| (d, remainder)) |
1094 | 0 | } |
1095 | | } |
1096 | | |
1097 | | impl<Tz: TimeZone> DateTime<Tz> |
1098 | | where |
1099 | | Tz::Offset: fmt::Display, |
1100 | | { |
1101 | | /// Formats the combined date and time with the specified formatting items. |
1102 | | #[cfg(feature = "alloc")] |
1103 | | #[inline] |
1104 | | #[must_use] |
1105 | 0 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
1106 | 0 | where |
1107 | 0 | I: Iterator<Item = B> + Clone, |
1108 | 0 | B: Borrow<Item<'a>>, |
1109 | 0 | { |
1110 | 0 | let local = self.overflowing_naive_local(); |
1111 | 0 | DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items) |
1112 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::format_with_items::<chrono::format::strftime::StrftimeItems, chrono::format::Item> Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::format_with_items::<chrono::format::strftime::StrftimeItems, chrono::format::Item> Unexecuted instantiation: <chrono::datetime::DateTime<_>>::format_with_items::<_, _> |
1113 | | |
1114 | | /// Formats the combined date and time per the specified format string. |
1115 | | /// |
1116 | | /// See the [`crate::format::strftime`] module for the supported escape sequences. |
1117 | | /// |
1118 | | /// # Example |
1119 | | /// ```rust |
1120 | | /// use chrono::prelude::*; |
1121 | | /// |
1122 | | /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap(); |
1123 | | /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M")); |
1124 | | /// assert_eq!(formatted, "02/04/2017 12:50"); |
1125 | | /// ``` |
1126 | | #[cfg(feature = "alloc")] |
1127 | | #[inline] |
1128 | | #[must_use] |
1129 | 0 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
1130 | 0 | self.format_with_items(StrftimeItems::new(fmt)) |
1131 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc>>::format Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local>>::format Unexecuted instantiation: <chrono::datetime::DateTime<_>>::format |
1132 | | |
1133 | | /// Formats the combined date and time with the specified formatting items and locale. |
1134 | | #[cfg(all(feature = "unstable-locales", feature = "alloc"))] |
1135 | | #[inline] |
1136 | | #[must_use] |
1137 | | pub fn format_localized_with_items<'a, I, B>( |
1138 | | &self, |
1139 | | items: I, |
1140 | | locale: Locale, |
1141 | | ) -> DelayedFormat<I> |
1142 | | where |
1143 | | I: Iterator<Item = B> + Clone, |
1144 | | B: Borrow<Item<'a>>, |
1145 | | { |
1146 | | let local = self.overflowing_naive_local(); |
1147 | | DelayedFormat::new_with_offset_and_locale( |
1148 | | Some(local.date()), |
1149 | | Some(local.time()), |
1150 | | &self.offset, |
1151 | | items, |
1152 | | locale, |
1153 | | ) |
1154 | | } |
1155 | | |
1156 | | /// Formats the combined date and time per the specified format string and |
1157 | | /// locale. |
1158 | | /// |
1159 | | /// See the [`crate::format::strftime`] module on the supported escape |
1160 | | /// sequences. |
1161 | | #[cfg(all(feature = "unstable-locales", feature = "alloc"))] |
1162 | | #[inline] |
1163 | | #[must_use] |
1164 | | pub fn format_localized<'a>( |
1165 | | &self, |
1166 | | fmt: &'a str, |
1167 | | locale: Locale, |
1168 | | ) -> DelayedFormat<StrftimeItems<'a>> { |
1169 | | self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale) |
1170 | | } |
1171 | | } |
1172 | | |
1173 | | impl<Tz: TimeZone> Datelike for DateTime<Tz> { |
1174 | | #[inline] |
1175 | 0 | fn year(&self) -> i32 { |
1176 | 0 | self.overflowing_naive_local().year() |
1177 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as chrono::traits::Datelike>::year Unexecuted instantiation: <chrono::datetime::DateTime<_> as chrono::traits::Datelike>::year |
1178 | | #[inline] |
1179 | 0 | fn month(&self) -> u32 { |
1180 | 0 | self.overflowing_naive_local().month() |
1181 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as chrono::traits::Datelike>::month Unexecuted instantiation: <chrono::datetime::DateTime<_> as chrono::traits::Datelike>::month |
1182 | | #[inline] |
1183 | 0 | fn month0(&self) -> u32 { |
1184 | 0 | self.overflowing_naive_local().month0() |
1185 | 0 | } |
1186 | | #[inline] |
1187 | 0 | fn day(&self) -> u32 { |
1188 | 0 | self.overflowing_naive_local().day() |
1189 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as chrono::traits::Datelike>::day Unexecuted instantiation: <chrono::datetime::DateTime<_> as chrono::traits::Datelike>::day |
1190 | | #[inline] |
1191 | 0 | fn day0(&self) -> u32 { |
1192 | 0 | self.overflowing_naive_local().day0() |
1193 | 0 | } |
1194 | | #[inline] |
1195 | 0 | fn ordinal(&self) -> u32 { |
1196 | 0 | self.overflowing_naive_local().ordinal() |
1197 | 0 | } |
1198 | | #[inline] |
1199 | 0 | fn ordinal0(&self) -> u32 { |
1200 | 0 | self.overflowing_naive_local().ordinal0() |
1201 | 0 | } |
1202 | | #[inline] |
1203 | 0 | fn weekday(&self) -> Weekday { |
1204 | 0 | self.overflowing_naive_local().weekday() |
1205 | 0 | } |
1206 | | #[inline] |
1207 | 0 | fn iso_week(&self) -> IsoWeek { |
1208 | 0 | self.overflowing_naive_local().iso_week() |
1209 | 0 | } |
1210 | | |
1211 | | #[inline] |
1212 | | /// Makes a new `DateTime` with the year number changed, while keeping the same month and day. |
1213 | | /// |
1214 | | /// See also the [`NaiveDate::with_year`] method. |
1215 | | /// |
1216 | | /// # Errors |
1217 | | /// |
1218 | | /// Returns `None` if: |
1219 | | /// - The resulting date does not exist (February 29 in a non-leap year). |
1220 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1221 | | /// daylight saving time transition. |
1222 | | /// - The resulting UTC datetime would be out of range. |
1223 | | /// - The resulting local datetime would be out of range (unless the year remains the same). |
1224 | 0 | fn with_year(&self, year: i32) -> Option<DateTime<Tz>> { |
1225 | 0 | map_local(self, |dt| match dt.year() == year { |
1226 | 0 | true => Some(dt), |
1227 | 0 | false => dt.with_year(year), |
1228 | 0 | }) |
1229 | 0 | } |
1230 | | |
1231 | | /// Makes a new `DateTime` with the month number (starting from 1) changed. |
1232 | | /// |
1233 | | /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. |
1234 | | /// |
1235 | | /// See also the [`NaiveDate::with_month`] method. |
1236 | | /// |
1237 | | /// # Errors |
1238 | | /// |
1239 | | /// Returns `None` if: |
1240 | | /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). |
1241 | | /// - The value for `month` is invalid. |
1242 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1243 | | /// daylight saving time transition. |
1244 | | #[inline] |
1245 | 0 | fn with_month(&self, month: u32) -> Option<DateTime<Tz>> { |
1246 | 0 | map_local(self, |datetime| datetime.with_month(month)) |
1247 | 0 | } |
1248 | | |
1249 | | /// Makes a new `DateTime` with the month number (starting from 0) changed. |
1250 | | /// |
1251 | | /// See also the [`NaiveDate::with_month0`] method. |
1252 | | /// |
1253 | | /// # Errors |
1254 | | /// |
1255 | | /// Returns `None` if: |
1256 | | /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). |
1257 | | /// - The value for `month0` is invalid. |
1258 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1259 | | /// daylight saving time transition. |
1260 | | #[inline] |
1261 | 0 | fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> { |
1262 | 0 | map_local(self, |datetime| datetime.with_month0(month0)) |
1263 | 0 | } |
1264 | | |
1265 | | /// Makes a new `DateTime` with the day of month (starting from 1) changed. |
1266 | | /// |
1267 | | /// See also the [`NaiveDate::with_day`] method. |
1268 | | /// |
1269 | | /// # Errors |
1270 | | /// |
1271 | | /// Returns `None` if: |
1272 | | /// - The resulting date does not exist (for example `day(31)` in April). |
1273 | | /// - The value for `day` is invalid. |
1274 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1275 | | /// daylight saving time transition. |
1276 | | #[inline] |
1277 | 0 | fn with_day(&self, day: u32) -> Option<DateTime<Tz>> { |
1278 | 0 | map_local(self, |datetime| datetime.with_day(day)) |
1279 | 0 | } |
1280 | | |
1281 | | /// Makes a new `DateTime` with the day of month (starting from 0) changed. |
1282 | | /// |
1283 | | /// See also the [`NaiveDate::with_day0`] method. |
1284 | | /// |
1285 | | /// # Errors |
1286 | | /// |
1287 | | /// Returns `None` if: |
1288 | | /// - The resulting date does not exist (for example `day(30)` in April). |
1289 | | /// - The value for `day0` is invalid. |
1290 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1291 | | /// daylight saving time transition. |
1292 | | #[inline] |
1293 | 0 | fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> { |
1294 | 0 | map_local(self, |datetime| datetime.with_day0(day0)) |
1295 | 0 | } |
1296 | | |
1297 | | /// Makes a new `DateTime` with the day of year (starting from 1) changed. |
1298 | | /// |
1299 | | /// See also the [`NaiveDate::with_ordinal`] method. |
1300 | | /// |
1301 | | /// # Errors |
1302 | | /// |
1303 | | /// Returns `None` if: |
1304 | | /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). |
1305 | | /// - The value for `ordinal` is invalid. |
1306 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1307 | | /// daylight saving time transition. |
1308 | | #[inline] |
1309 | 0 | fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> { |
1310 | 0 | map_local(self, |datetime| datetime.with_ordinal(ordinal)) |
1311 | 0 | } |
1312 | | |
1313 | | /// Makes a new `DateTime` with the day of year (starting from 0) changed. |
1314 | | /// |
1315 | | /// See also the [`NaiveDate::with_ordinal0`] method. |
1316 | | /// |
1317 | | /// # Errors |
1318 | | /// |
1319 | | /// Returns `None` if: |
1320 | | /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). |
1321 | | /// - The value for `ordinal0` is invalid. |
1322 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1323 | | /// daylight saving time transition. |
1324 | | #[inline] |
1325 | 0 | fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> { |
1326 | 0 | map_local(self, |datetime| datetime.with_ordinal0(ordinal0)) |
1327 | 0 | } |
1328 | | } |
1329 | | |
1330 | | impl<Tz: TimeZone> Timelike for DateTime<Tz> { |
1331 | | #[inline] |
1332 | 0 | fn hour(&self) -> u32 { |
1333 | 0 | self.overflowing_naive_local().hour() |
1334 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as chrono::traits::Timelike>::hour Unexecuted instantiation: <chrono::datetime::DateTime<_> as chrono::traits::Timelike>::hour |
1335 | | #[inline] |
1336 | 0 | fn minute(&self) -> u32 { |
1337 | 0 | self.overflowing_naive_local().minute() |
1338 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as chrono::traits::Timelike>::minute Unexecuted instantiation: <chrono::datetime::DateTime<_> as chrono::traits::Timelike>::minute |
1339 | | #[inline] |
1340 | 0 | fn second(&self) -> u32 { |
1341 | 0 | self.overflowing_naive_local().second() |
1342 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as chrono::traits::Timelike>::second Unexecuted instantiation: <chrono::datetime::DateTime<_> as chrono::traits::Timelike>::second |
1343 | | #[inline] |
1344 | 0 | fn nanosecond(&self) -> u32 { |
1345 | 0 | self.overflowing_naive_local().nanosecond() |
1346 | 0 | } |
1347 | | |
1348 | | /// Makes a new `DateTime` with the hour number changed. |
1349 | | /// |
1350 | | /// See also the [`NaiveTime::with_hour`] method. |
1351 | | /// |
1352 | | /// # Errors |
1353 | | /// |
1354 | | /// Returns `None` if: |
1355 | | /// - The value for `hour` is invalid. |
1356 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1357 | | /// daylight saving time transition. |
1358 | | #[inline] |
1359 | 0 | fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> { |
1360 | 0 | map_local(self, |datetime| datetime.with_hour(hour)) |
1361 | 0 | } |
1362 | | |
1363 | | /// Makes a new `DateTime` with the minute number changed. |
1364 | | /// |
1365 | | /// See also the [`NaiveTime::with_minute`] method. |
1366 | | /// |
1367 | | /// # Errors |
1368 | | /// |
1369 | | /// - The value for `minute` is invalid. |
1370 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1371 | | /// daylight saving time transition. |
1372 | | #[inline] |
1373 | 0 | fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> { |
1374 | 0 | map_local(self, |datetime| datetime.with_minute(min)) |
1375 | 0 | } |
1376 | | |
1377 | | /// Makes a new `DateTime` with the second number changed. |
1378 | | /// |
1379 | | /// As with the [`second`](#method.second) method, |
1380 | | /// the input range is restricted to 0 through 59. |
1381 | | /// |
1382 | | /// See also the [`NaiveTime::with_second`] method. |
1383 | | /// |
1384 | | /// # Errors |
1385 | | /// |
1386 | | /// Returns `None` if: |
1387 | | /// - The value for `second` is invalid. |
1388 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1389 | | /// daylight saving time transition. |
1390 | | #[inline] |
1391 | 0 | fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> { |
1392 | 0 | map_local(self, |datetime| datetime.with_second(sec)) |
1393 | 0 | } |
1394 | | |
1395 | | /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed. |
1396 | | /// |
1397 | | /// Returns `None` when the resulting `NaiveDateTime` would be invalid. |
1398 | | /// As with the [`NaiveDateTime::nanosecond`] method, |
1399 | | /// the input range can exceed 1,000,000,000 for leap seconds. |
1400 | | /// |
1401 | | /// See also the [`NaiveTime::with_nanosecond`] method. |
1402 | | /// |
1403 | | /// # Errors |
1404 | | /// |
1405 | | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
1406 | | #[inline] |
1407 | 0 | fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> { |
1408 | 0 | map_local(self, |datetime| datetime.with_nanosecond(nano)) |
1409 | 0 | } |
1410 | | } |
1411 | | |
1412 | | // We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can |
1413 | | // be `Copy`. Implement it manually if the two types we do have are `Copy`. |
1414 | | impl<Tz: TimeZone> Copy for DateTime<Tz> |
1415 | | where |
1416 | | <Tz as TimeZone>::Offset: Copy, |
1417 | | NaiveDateTime: Copy, |
1418 | | { |
1419 | | } |
1420 | | |
1421 | | impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> { |
1422 | 0 | fn eq(&self, other: &DateTime<Tz2>) -> bool { |
1423 | 0 | self.datetime == other.datetime |
1424 | 0 | } |
1425 | | } |
1426 | | |
1427 | | impl<Tz: TimeZone> Eq for DateTime<Tz> {} |
1428 | | |
1429 | | impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> { |
1430 | | /// Compare two DateTimes based on their true time, ignoring time zones |
1431 | | /// |
1432 | | /// # Example |
1433 | | /// |
1434 | | /// ``` |
1435 | | /// use chrono::prelude::*; |
1436 | | /// |
1437 | | /// let earlier = Utc |
1438 | | /// .with_ymd_and_hms(2015, 5, 15, 2, 0, 0) |
1439 | | /// .unwrap() |
1440 | | /// .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap()); |
1441 | | /// let later = Utc |
1442 | | /// .with_ymd_and_hms(2015, 5, 15, 3, 0, 0) |
1443 | | /// .unwrap() |
1444 | | /// .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap()); |
1445 | | /// |
1446 | | /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00"); |
1447 | | /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00"); |
1448 | | /// |
1449 | | /// assert!(later > earlier); |
1450 | | /// ``` |
1451 | 0 | fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> { |
1452 | 0 | self.datetime.partial_cmp(&other.datetime) |
1453 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as core::cmp::PartialOrd>::partial_cmp Unexecuted instantiation: <chrono::datetime::DateTime<_> as core::cmp::PartialOrd<chrono::datetime::DateTime<_>>>::partial_cmp |
1454 | | } |
1455 | | |
1456 | | impl<Tz: TimeZone> Ord for DateTime<Tz> { |
1457 | 0 | fn cmp(&self, other: &DateTime<Tz>) -> Ordering { |
1458 | 0 | self.datetime.cmp(&other.datetime) |
1459 | 0 | } |
1460 | | } |
1461 | | |
1462 | | impl<Tz: TimeZone> hash::Hash for DateTime<Tz> { |
1463 | 0 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
1464 | 0 | self.datetime.hash(state) |
1465 | 0 | } |
1466 | | } |
1467 | | |
1468 | | /// Add `TimeDelta` to `DateTime`. |
1469 | | /// |
1470 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1471 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1472 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1473 | | /// |
1474 | | /// # Panics |
1475 | | /// |
1476 | | /// Panics if the resulting date would be out of range. |
1477 | | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1478 | | impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> { |
1479 | | type Output = DateTime<Tz>; |
1480 | | |
1481 | | #[inline] |
1482 | 0 | fn add(self, rhs: TimeDelta) -> DateTime<Tz> { |
1483 | 0 | self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed") |
1484 | 0 | } |
1485 | | } |
1486 | | |
1487 | | /// Add `std::time::Duration` to `DateTime`. |
1488 | | /// |
1489 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1490 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1491 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1492 | | /// |
1493 | | /// # Panics |
1494 | | /// |
1495 | | /// Panics if the resulting date would be out of range. |
1496 | | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1497 | | impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> { |
1498 | | type Output = DateTime<Tz>; |
1499 | | |
1500 | | #[inline] |
1501 | 0 | fn add(self, rhs: Duration) -> DateTime<Tz> { |
1502 | 0 | let rhs = TimeDelta::from_std(rhs) |
1503 | 0 | .expect("overflow converting from core::time::Duration to TimeDelta"); |
1504 | 0 | self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed") |
1505 | 0 | } |
1506 | | } |
1507 | | |
1508 | | /// Add-assign `chrono::Duration` to `DateTime`. |
1509 | | /// |
1510 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1511 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1512 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1513 | | /// |
1514 | | /// # Panics |
1515 | | /// |
1516 | | /// Panics if the resulting date would be out of range. |
1517 | | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1518 | | impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> { |
1519 | | #[inline] |
1520 | 0 | fn add_assign(&mut self, rhs: TimeDelta) { |
1521 | 0 | let datetime = |
1522 | 0 | self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed"); |
1523 | 0 | let tz = self.timezone(); |
1524 | 0 | *self = tz.from_utc_datetime(&datetime); |
1525 | 0 | } |
1526 | | } |
1527 | | |
1528 | | /// Add-assign `std::time::Duration` to `DateTime`. |
1529 | | /// |
1530 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1531 | | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1532 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1533 | | /// |
1534 | | /// # Panics |
1535 | | /// |
1536 | | /// Panics if the resulting date would be out of range. |
1537 | | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1538 | | impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> { |
1539 | | #[inline] |
1540 | 0 | fn add_assign(&mut self, rhs: Duration) { |
1541 | 0 | let rhs = TimeDelta::from_std(rhs) |
1542 | 0 | .expect("overflow converting from core::time::Duration to TimeDelta"); |
1543 | 0 | *self += rhs; |
1544 | 0 | } |
1545 | | } |
1546 | | |
1547 | | /// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged). |
1548 | | /// |
1549 | | /// # Panics |
1550 | | /// |
1551 | | /// Panics if the resulting date would be out of range. |
1552 | | impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> { |
1553 | | type Output = DateTime<Tz>; |
1554 | | |
1555 | | #[inline] |
1556 | 0 | fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> { |
1557 | 0 | self.datetime = |
1558 | 0 | self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed"); |
1559 | 0 | self |
1560 | 0 | } |
1561 | | } |
1562 | | |
1563 | | /// Add `Months` to `DateTime`. |
1564 | | /// |
1565 | | /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for |
1566 | | /// details. |
1567 | | /// |
1568 | | /// # Panics |
1569 | | /// |
1570 | | /// Panics if: |
1571 | | /// - The resulting date would be out of range. |
1572 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1573 | | /// daylight saving time transition. |
1574 | | /// |
1575 | | /// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead. |
1576 | | impl<Tz: TimeZone> Add<Months> for DateTime<Tz> { |
1577 | | type Output = DateTime<Tz>; |
1578 | | |
1579 | 0 | fn add(self, rhs: Months) -> Self::Output { |
1580 | 0 | self.checked_add_months(rhs).expect("`DateTime + Months` out of range") |
1581 | 0 | } |
1582 | | } |
1583 | | |
1584 | | /// Subtract `TimeDelta` from `DateTime`. |
1585 | | /// |
1586 | | /// This is the same as the addition with a negated `TimeDelta`. |
1587 | | /// |
1588 | | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1589 | | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1590 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1591 | | /// |
1592 | | /// # Panics |
1593 | | /// |
1594 | | /// Panics if the resulting date would be out of range. |
1595 | | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1596 | | impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> { |
1597 | | type Output = DateTime<Tz>; |
1598 | | |
1599 | | #[inline] |
1600 | 0 | fn sub(self, rhs: TimeDelta) -> DateTime<Tz> { |
1601 | 0 | self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed") |
1602 | 0 | } |
1603 | | } |
1604 | | |
1605 | | /// Subtract `std::time::Duration` from `DateTime`. |
1606 | | /// |
1607 | | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1608 | | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1609 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1610 | | /// |
1611 | | /// # Panics |
1612 | | /// |
1613 | | /// Panics if the resulting date would be out of range. |
1614 | | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1615 | | impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> { |
1616 | | type Output = DateTime<Tz>; |
1617 | | |
1618 | | #[inline] |
1619 | 0 | fn sub(self, rhs: Duration) -> DateTime<Tz> { |
1620 | 0 | let rhs = TimeDelta::from_std(rhs) |
1621 | 0 | .expect("overflow converting from core::time::Duration to TimeDelta"); |
1622 | 0 | self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed") |
1623 | 0 | } |
1624 | | } |
1625 | | |
1626 | | /// Subtract-assign `TimeDelta` from `DateTime`. |
1627 | | /// |
1628 | | /// This is the same as the addition with a negated `TimeDelta`. |
1629 | | /// |
1630 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1631 | | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1632 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1633 | | /// |
1634 | | /// # Panics |
1635 | | /// |
1636 | | /// Panics if the resulting date would be out of range. |
1637 | | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1638 | | impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> { |
1639 | | #[inline] |
1640 | 0 | fn sub_assign(&mut self, rhs: TimeDelta) { |
1641 | 0 | let datetime = |
1642 | 0 | self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed"); |
1643 | 0 | let tz = self.timezone(); |
1644 | 0 | *self = tz.from_utc_datetime(&datetime) |
1645 | 0 | } |
1646 | | } |
1647 | | |
1648 | | /// Subtract-assign `std::time::Duration` from `DateTime`. |
1649 | | /// |
1650 | | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1651 | | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1652 | | /// the assumption becomes that **there is exactly a single leap second ever**. |
1653 | | /// |
1654 | | /// # Panics |
1655 | | /// |
1656 | | /// Panics if the resulting date would be out of range. |
1657 | | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1658 | | impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> { |
1659 | | #[inline] |
1660 | 0 | fn sub_assign(&mut self, rhs: Duration) { |
1661 | 0 | let rhs = TimeDelta::from_std(rhs) |
1662 | 0 | .expect("overflow converting from core::time::Duration to TimeDelta"); |
1663 | 0 | *self -= rhs; |
1664 | 0 | } |
1665 | | } |
1666 | | |
1667 | | /// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged). |
1668 | | /// |
1669 | | /// # Panics |
1670 | | /// |
1671 | | /// Panics if the resulting date would be out of range. |
1672 | | impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> { |
1673 | | type Output = DateTime<Tz>; |
1674 | | |
1675 | | #[inline] |
1676 | 0 | fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> { |
1677 | 0 | self.datetime = |
1678 | 0 | self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed"); |
1679 | 0 | self |
1680 | 0 | } |
1681 | | } |
1682 | | |
1683 | | /// Subtract `Months` from `DateTime`. |
1684 | | /// |
1685 | | /// The result will be clamped to valid days in the resulting month, see |
1686 | | /// [`DateTime<Tz>::checked_sub_months`] for details. |
1687 | | /// |
1688 | | /// # Panics |
1689 | | /// |
1690 | | /// Panics if: |
1691 | | /// - The resulting date would be out of range. |
1692 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1693 | | /// daylight saving time transition. |
1694 | | /// |
1695 | | /// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead. |
1696 | | impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> { |
1697 | | type Output = DateTime<Tz>; |
1698 | | |
1699 | 0 | fn sub(self, rhs: Months) -> Self::Output { |
1700 | 0 | self.checked_sub_months(rhs).expect("`DateTime - Months` out of range") |
1701 | 0 | } |
1702 | | } |
1703 | | |
1704 | | impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> { |
1705 | | type Output = TimeDelta; |
1706 | | |
1707 | | #[inline] |
1708 | 0 | fn sub(self, rhs: DateTime<Tz>) -> TimeDelta { |
1709 | 0 | self.signed_duration_since(rhs) |
1710 | 0 | } |
1711 | | } |
1712 | | |
1713 | | impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> { |
1714 | | type Output = TimeDelta; |
1715 | | |
1716 | | #[inline] |
1717 | 0 | fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta { |
1718 | 0 | self.signed_duration_since(rhs) |
1719 | 0 | } |
1720 | | } |
1721 | | |
1722 | | /// Add `Days` to `NaiveDateTime`. |
1723 | | /// |
1724 | | /// # Panics |
1725 | | /// |
1726 | | /// Panics if: |
1727 | | /// - The resulting date would be out of range. |
1728 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1729 | | /// daylight saving time transition. |
1730 | | /// |
1731 | | /// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead. |
1732 | | impl<Tz: TimeZone> Add<Days> for DateTime<Tz> { |
1733 | | type Output = DateTime<Tz>; |
1734 | | |
1735 | 0 | fn add(self, days: Days) -> Self::Output { |
1736 | 0 | self.checked_add_days(days).expect("`DateTime + Days` out of range") |
1737 | 0 | } |
1738 | | } |
1739 | | |
1740 | | /// Subtract `Days` from `DateTime`. |
1741 | | /// |
1742 | | /// # Panics |
1743 | | /// |
1744 | | /// Panics if: |
1745 | | /// - The resulting date would be out of range. |
1746 | | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1747 | | /// daylight saving time transition. |
1748 | | /// |
1749 | | /// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead. |
1750 | | impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> { |
1751 | | type Output = DateTime<Tz>; |
1752 | | |
1753 | 0 | fn sub(self, days: Days) -> Self::Output { |
1754 | 0 | self.checked_sub_days(days).expect("`DateTime - Days` out of range") |
1755 | 0 | } |
1756 | | } |
1757 | | |
1758 | | impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> { |
1759 | 0 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1760 | 0 | self.overflowing_naive_local().fmt(f)?; |
1761 | 0 | self.offset.fmt(f) |
1762 | 0 | } Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::local::Local> as core::fmt::Debug>::fmt Unexecuted instantiation: <chrono::datetime::DateTime<chrono::offset::utc::Utc> as core::fmt::Debug>::fmt |
1763 | | } |
1764 | | |
1765 | | // `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because |
1766 | | // deriving a trait recursively does not propagate trait defined associated types with their own |
1767 | | // constraints: |
1768 | | // In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived` |
1769 | | // cannot be formatted using `{:?}` because it doesn't implement `Debug`. |
1770 | | // See below for further discussion: |
1771 | | // * https://github.com/rust-lang/rust/issues/26925 |
1772 | | // * https://github.com/rkyv/rkyv/issues/333 |
1773 | | // * https://github.com/dtolnay/syn/issues/370 |
1774 | | #[cfg(feature = "rkyv-validation")] |
1775 | | impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz> |
1776 | | where |
1777 | | Tz: Archive, |
1778 | | <Tz as Archive>::Archived: fmt::Debug, |
1779 | | <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug, |
1780 | | <Tz as TimeZone>::Offset: fmt::Debug + Archive, |
1781 | | { |
1782 | | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1783 | | f.debug_struct("ArchivedDateTime") |
1784 | | .field("datetime", &self.datetime) |
1785 | | .field("offset", &self.offset) |
1786 | | .finish() |
1787 | | } |
1788 | | } |
1789 | | |
1790 | | impl<Tz: TimeZone> fmt::Display for DateTime<Tz> |
1791 | | where |
1792 | | Tz::Offset: fmt::Display, |
1793 | | { |
1794 | 0 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1795 | 0 | self.overflowing_naive_local().fmt(f)?; |
1796 | 0 | f.write_char(' ')?; |
1797 | 0 | self.offset.fmt(f) |
1798 | 0 | } |
1799 | | } |
1800 | | |
1801 | | /// Accepts a relaxed form of RFC3339. |
1802 | | /// A space or a 'T' are accepted as the separator between the date and time |
1803 | | /// parts. |
1804 | | /// |
1805 | | /// All of these examples are equivalent: |
1806 | | /// ``` |
1807 | | /// # use chrono::{DateTime, Utc}; |
1808 | | /// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?; |
1809 | | /// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?; |
1810 | | /// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?; |
1811 | | /// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?; |
1812 | | /// # Ok::<(), chrono::ParseError>(()) |
1813 | | /// ``` |
1814 | | impl str::FromStr for DateTime<Utc> { |
1815 | | type Err = ParseError; |
1816 | | |
1817 | 0 | fn from_str(s: &str) -> ParseResult<DateTime<Utc>> { |
1818 | 0 | s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc)) |
1819 | 0 | } |
1820 | | } |
1821 | | |
1822 | | /// Accepts a relaxed form of RFC3339. |
1823 | | /// A space or a 'T' are accepted as the separator between the date and time |
1824 | | /// parts. |
1825 | | /// |
1826 | | /// All of these examples are equivalent: |
1827 | | /// ``` |
1828 | | /// # use chrono::{DateTime, Local}; |
1829 | | /// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?; |
1830 | | /// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?; |
1831 | | /// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?; |
1832 | | /// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?; |
1833 | | /// # Ok::<(), chrono::ParseError>(()) |
1834 | | /// ``` |
1835 | | #[cfg(feature = "clock")] |
1836 | | impl str::FromStr for DateTime<Local> { |
1837 | | type Err = ParseError; |
1838 | | |
1839 | 0 | fn from_str(s: &str) -> ParseResult<DateTime<Local>> { |
1840 | 0 | s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local)) |
1841 | 0 | } |
1842 | | } |
1843 | | |
1844 | | #[cfg(feature = "std")] |
1845 | | impl From<SystemTime> for DateTime<Utc> { |
1846 | 0 | fn from(t: SystemTime) -> DateTime<Utc> { |
1847 | 0 | let (sec, nsec) = match t.duration_since(UNIX_EPOCH) { |
1848 | 0 | Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()), |
1849 | 0 | Err(e) => { |
1850 | 0 | // unlikely but should be handled |
1851 | 0 | let dur = e.duration(); |
1852 | 0 | let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos()); |
1853 | 0 | if nsec == 0 { (-sec, 0) } else { (-sec - 1, 1_000_000_000 - nsec) } |
1854 | | } |
1855 | | }; |
1856 | 0 | Utc.timestamp_opt(sec, nsec).unwrap() |
1857 | 0 | } |
1858 | | } |
1859 | | |
1860 | | #[cfg(feature = "clock")] |
1861 | | impl From<SystemTime> for DateTime<Local> { |
1862 | 0 | fn from(t: SystemTime) -> DateTime<Local> { |
1863 | 0 | DateTime::<Utc>::from(t).with_timezone(&Local) |
1864 | 0 | } |
1865 | | } |
1866 | | |
1867 | | #[cfg(feature = "std")] |
1868 | | impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime { |
1869 | 0 | fn from(dt: DateTime<Tz>) -> SystemTime { |
1870 | 0 | let sec = dt.timestamp(); |
1871 | 0 | let nsec = dt.timestamp_subsec_nanos(); |
1872 | 0 | if sec < 0 { |
1873 | | // unlikely but should be handled |
1874 | 0 | UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec) |
1875 | | } else { |
1876 | 0 | UNIX_EPOCH + Duration::new(sec as u64, nsec) |
1877 | | } |
1878 | 0 | } |
1879 | | } |
1880 | | |
1881 | | #[cfg(all( |
1882 | | target_arch = "wasm32", |
1883 | | feature = "wasmbind", |
1884 | | not(any(target_os = "emscripten", target_os = "wasi")) |
1885 | | ))] |
1886 | | impl From<js_sys::Date> for DateTime<Utc> { |
1887 | | fn from(date: js_sys::Date) -> DateTime<Utc> { |
1888 | | DateTime::<Utc>::from(&date) |
1889 | | } |
1890 | | } |
1891 | | |
1892 | | #[cfg(all( |
1893 | | target_arch = "wasm32", |
1894 | | feature = "wasmbind", |
1895 | | not(any(target_os = "emscripten", target_os = "wasi")) |
1896 | | ))] |
1897 | | impl From<&js_sys::Date> for DateTime<Utc> { |
1898 | | fn from(date: &js_sys::Date) -> DateTime<Utc> { |
1899 | | Utc.timestamp_millis_opt(date.get_time() as i64).unwrap() |
1900 | | } |
1901 | | } |
1902 | | |
1903 | | #[cfg(all( |
1904 | | target_arch = "wasm32", |
1905 | | feature = "wasmbind", |
1906 | | not(any(target_os = "emscripten", target_os = "wasi")) |
1907 | | ))] |
1908 | | impl From<DateTime<Utc>> for js_sys::Date { |
1909 | | /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy, |
1910 | | /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000 |
1911 | | /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS. |
1912 | | fn from(date: DateTime<Utc>) -> js_sys::Date { |
1913 | | let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64); |
1914 | | js_sys::Date::new(&js_millis) |
1915 | | } |
1916 | | } |
1917 | | |
1918 | | // Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to |
1919 | | // the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary. |
1920 | | #[cfg(all(feature = "arbitrary", feature = "std"))] |
1921 | | impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz> |
1922 | | where |
1923 | | Tz: TimeZone, |
1924 | | <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>, |
1925 | | { |
1926 | | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> { |
1927 | | let datetime = NaiveDateTime::arbitrary(u)?; |
1928 | | let offset = <Tz as TimeZone>::Offset::arbitrary(u)?; |
1929 | | Ok(DateTime::from_naive_utc_and_offset(datetime, offset)) |
1930 | | } |
1931 | | } |
1932 | | |
1933 | | /// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0. |
1934 | | /// 4 full leap year cycles until December 31, 1600 4 * 146097 = 584388 |
1935 | | /// 1 day until January 1, 1601 1 |
1936 | | /// 369 years until Januari 1, 1970 369 * 365 = 134685 |
1937 | | /// of which floor(369 / 4) are leap years floor(369 / 4) = 92 |
1938 | | /// except for 1700, 1800 and 1900 -3 + |
1939 | | /// -------- |
1940 | | /// 719163 |
1941 | | const UNIX_EPOCH_DAY: i64 = 719_163; |