Coverage Report

Created: 2025-11-11 06:05

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/regex-automata-0.4.13/src/meta/regex.rs
Line
Count
Source
1
use core::{
2
    borrow::Borrow,
3
    panic::{RefUnwindSafe, UnwindSafe},
4
};
5
6
use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};
7
8
use regex_syntax::{
9
    ast,
10
    hir::{self, Hir},
11
};
12
13
use crate::{
14
    meta::{
15
        error::BuildError,
16
        strategy::{self, Strategy},
17
        wrappers,
18
    },
19
    nfa::thompson::WhichCaptures,
20
    util::{
21
        captures::{Captures, GroupInfo},
22
        iter,
23
        pool::{Pool, PoolGuard},
24
        prefilter::Prefilter,
25
        primitives::{NonMaxUsize, PatternID},
26
        search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
27
    },
28
};
29
30
/// A type alias for our pool of meta::Cache that fixes the type parameters to
31
/// what we use for the meta regex below.
32
type CachePool = Pool<Cache, CachePoolFn>;
33
34
/// Same as above, but for the guard returned by a pool.
35
type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36
37
/// The type of the closure we use to create new caches. We need to spell out
38
/// all of the marker traits or else we risk leaking !MARKER impls.
39
type CachePoolFn =
40
    Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
41
42
/// A regex matcher that works by composing several other regex matchers
43
/// automatically.
44
///
45
/// In effect, a meta regex papers over a lot of the quirks or performance
46
/// problems in each of the regex engines in this crate. Its goal is to provide
47
/// an infallible and simple API that "just does the right thing" in the common
48
/// case.
49
///
50
/// A meta regex is the implementation of a `Regex` in the `regex` crate.
51
/// Indeed, the `regex` crate API is essentially just a light wrapper over
52
/// this type. This includes the `regex` crate's `RegexSet` API!
53
///
54
/// # Composition
55
///
56
/// This is called a "meta" matcher precisely because it uses other regex
57
/// matchers to provide a convenient high level regex API. Here are some
58
/// examples of how other regex matchers are composed:
59
///
60
/// * When calling [`Regex::captures`], instead of immediately
61
/// running a slower but more capable regex engine like the
62
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
63
/// will usually first look for the bounds of a match with a higher throughput
64
/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
65
/// is a slower engine like `PikeVM` used to find the matching span for each
66
/// capture group.
67
/// * While higher throughout engines like the lazy DFA cannot handle
68
/// Unicode word boundaries in general, they can still be used on pure ASCII
69
/// haystacks by pretending that Unicode word boundaries are just plain ASCII
70
/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
71
/// will automatically switch to a (possibly slower) regex engine that supports
72
/// Unicode word boundaries in general.
73
/// * In some cases where a regex pattern is just a simple literal or a small
74
/// set of literals, an actual regex engine won't be used at all. Instead,
75
/// substring or multi-substring search algorithms will be employed.
76
///
77
/// There are many other forms of composition happening too, but the above
78
/// should give a general idea. In particular, it may perhaps be surprising
79
/// that *multiple* regex engines might get executed for a single search. That
80
/// is, the decision of what regex engine to use is not _just_ based on the
81
/// pattern, but also based on the dynamic execution of the search itself.
82
///
83
/// The primary reason for this composition is performance. The fundamental
84
/// tension is that the faster engines tend to be less capable, and the more
85
/// capable engines tend to be slower.
86
///
87
/// Note that the forms of composition that are allowed are determined by
88
/// compile time crate features and configuration. For example, if the `hybrid`
89
/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
90
/// meta regex engine will never use a lazy DFA.
91
///
92
/// # Synchronization and cloning
93
///
94
/// Most of the regex engines in this crate require some kind of mutable
95
/// "scratch" space to read and write from while performing a search. Since
96
/// a meta regex composes these regex engines, a meta regex also requires
97
/// mutable scratch space. This scratch space is called a [`Cache`].
98
///
99
/// Most regex engines _also_ usually have a read-only component, typically
100
/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
101
///
102
/// In order to make the `Regex` API convenient, most of the routines hide
103
/// the fact that a `Cache` is needed at all. To achieve this, a [memory
104
/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
105
/// values in a thread safe way that also permits reuse. This in turn implies
106
/// that every such search call requires some form of synchronization. Usually
107
/// this synchronization is fast enough to not notice, but in some cases, it
108
/// can be a bottleneck. This typically occurs when all of the following are
109
/// true:
110
///
111
/// * The same `Regex` is shared across multiple threads simultaneously,
112
/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
113
/// similar from the `once_cell` or `lazy_static` crates.
114
/// * The primary unit of work in each thread is a regex search.
115
/// * Searches are run on very short haystacks.
116
///
117
/// This particular case can lead to high contention on the pool used by a
118
/// `Regex` internally, which can in turn increase latency to a noticeable
119
/// effect. This cost can be mitigated in one of the following ways:
120
///
121
/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
122
/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
123
/// But it does lead to each `Regex` having its own memory pool, which in
124
/// turn eliminates the problem of contention. In general, this technique should
125
/// not result in any additional memory usage when compared to sharing the same
126
/// `Regex` across multiple threads simultaneously.
127
/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
128
/// a `Cache` explicitly. In this case, it is up to you to determine how best
129
/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
130
/// storage if your use case allows for it.
131
///
132
/// Overall, this is an issue that happens rarely in practice, but it can
133
/// happen.
134
///
135
/// # Warning: spin-locks may be used in alloc-only mode
136
///
137
/// When this crate is built without the `std` feature and the high level APIs
138
/// on a `Regex` are used, then a spin-lock will be used to synchronize access
139
/// to an internal pool of `Cache` values. This may be undesirable because
140
/// a spin-lock is [effectively impossible to implement correctly in user
141
/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
142
/// result in a deadlock.
143
///
144
/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
145
///
146
/// If one wants to avoid the use of spin-locks when the `std` feature is
147
/// disabled, then you must use APIs that accept a `Cache` value explicitly.
148
/// For example, [`Regex::search_with`].
149
///
150
/// # Example
151
///
152
/// ```
153
/// use regex_automata::meta::Regex;
154
///
155
/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
156
/// assert!(re.is_match("2010-03-14"));
157
///
158
/// # Ok::<(), Box<dyn std::error::Error>>(())
159
/// ```
160
///
161
/// # Example: anchored search
162
///
163
/// This example shows how to use [`Input::anchored`] to run an anchored
164
/// search, even when the regex pattern itself isn't anchored. An anchored
165
/// search guarantees that if a match is found, then the start offset of the
166
/// match corresponds to the offset at which the search was started.
167
///
168
/// ```
169
/// use regex_automata::{meta::Regex, Anchored, Input, Match};
170
///
171
/// let re = Regex::new(r"\bfoo\b")?;
172
/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
173
/// // The offsets are in terms of the original haystack.
174
/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
175
///
176
/// // Notice that no match occurs here, because \b still takes the
177
/// // surrounding context into account, even if it means looking back
178
/// // before the start of your search.
179
/// let hay = "xxfoo xx";
180
/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
181
/// assert_eq!(None, re.find(input));
182
/// // Indeed, you cannot achieve the above by simply slicing the
183
/// // haystack itself, since the regex engine can't see the
184
/// // surrounding context. This is why 'Input' permits setting
185
/// // the bounds of a search!
186
/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
187
/// // WRONG!
188
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
189
///
190
/// # Ok::<(), Box<dyn std::error::Error>>(())
191
/// ```
192
///
193
/// # Example: earliest search
194
///
195
/// This example shows how to use [`Input::earliest`] to run a search that
196
/// might stop before finding the typical leftmost match.
197
///
198
/// ```
199
/// use regex_automata::{meta::Regex, Anchored, Input, Match};
200
///
201
/// let re = Regex::new(r"[a-z]{3}|b")?;
202
/// let input = Input::new("abc").earliest(true);
203
/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
204
///
205
/// // Note that "earliest" isn't really a match semantic unto itself.
206
/// // Instead, it is merely an instruction to whatever regex engine
207
/// // gets used internally to quit as soon as it can. For example,
208
/// // this regex uses a different search technique, and winds up
209
/// // producing a different (but valid) match!
210
/// let re = Regex::new(r"abc|b")?;
211
/// let input = Input::new("abc").earliest(true);
212
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
213
///
214
/// # Ok::<(), Box<dyn std::error::Error>>(())
215
/// ```
216
///
217
/// # Example: change the line terminator
218
///
219
/// This example shows how to enable multi-line mode by default and change
220
/// the line terminator to the NUL byte:
221
///
222
/// ```
223
/// use regex_automata::{meta::Regex, util::syntax, Match};
224
///
225
/// let re = Regex::builder()
226
///     .syntax(syntax::Config::new().multi_line(true))
227
///     .configure(Regex::config().line_terminator(b'\x00'))
228
///     .build(r"^foo$")?;
229
/// let hay = "\x00foo\x00";
230
/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
231
///
232
/// # Ok::<(), Box<dyn std::error::Error>>(())
233
/// ```
234
#[derive(Debug)]
235
pub struct Regex {
236
    /// The actual regex implementation.
237
    imp: Arc<RegexI>,
238
    /// A thread safe pool of caches.
239
    ///
240
    /// For the higher level search APIs, a `Cache` is automatically plucked
241
    /// from this pool before running a search. The lower level `with` methods
242
    /// permit the caller to provide their own cache, thereby bypassing
243
    /// accesses to this pool.
244
    ///
245
    /// Note that we put this outside the `Arc` so that cloning a `Regex`
246
    /// results in creating a fresh `CachePool`. This in turn permits callers
247
    /// to clone regexes into separate threads where each such regex gets
248
    /// the pool's "thread owner" optimization. Otherwise, if one shares the
249
    /// `Regex` directly, then the pool will go through a slower mutex path for
250
    /// all threads except for the "owner."
251
    pool: CachePool,
252
}
253
254
/// The internal implementation of `Regex`, split out so that it can be wrapped
255
/// in an `Arc`.
256
#[derive(Debug)]
257
struct RegexI {
258
    /// The core matching engine.
259
    ///
260
    /// Why is this reference counted when RegexI is already wrapped in an Arc?
261
    /// Well, we need to capture this in a closure to our `Pool` below in order
262
    /// to create new `Cache` values when needed. So since it needs to be in
263
    /// two places, we make it reference counted.
264
    ///
265
    /// We make `RegexI` itself reference counted too so that `Regex` itself
266
    /// stays extremely small and very cheap to clone.
267
    strat: Arc<dyn Strategy>,
268
    /// Metadata about the regexes driving the strategy. The metadata is also
269
    /// usually stored inside the strategy too, but we put it here as well
270
    /// so that we can get quick access to it (without virtual calls) before
271
    /// executing the regex engine. For example, we use this metadata to
272
    /// detect a subset of cases where we know a match is impossible, and can
273
    /// thus avoid calling into the strategy at all.
274
    ///
275
    /// Since `RegexInfo` is stored in multiple places, it is also reference
276
    /// counted.
277
    info: RegexInfo,
278
}
279
280
/// Convenience constructors for a `Regex` using the default configuration.
281
impl Regex {
282
    /// Builds a `Regex` from a single pattern string using the default
283
    /// configuration.
284
    ///
285
    /// If there was a problem parsing the pattern or a problem turning it into
286
    /// a regex matcher, then an error is returned.
287
    ///
288
    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
289
    /// with a [`Config`].
290
    ///
291
    /// # Example
292
    ///
293
    /// ```
294
    /// use regex_automata::{meta::Regex, Match};
295
    ///
296
    /// let re = Regex::new(r"(?Rm)^foo$")?;
297
    /// let hay = "\r\nfoo\r\n";
298
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
299
    ///
300
    /// # Ok::<(), Box<dyn std::error::Error>>(())
301
    /// ```
302
0
    pub fn new(pattern: &str) -> Result<Regex, BuildError> {
303
0
        Regex::builder().build(pattern)
304
0
    }
305
306
    /// Builds a `Regex` from many pattern strings using the default
307
    /// configuration.
308
    ///
309
    /// If there was a problem parsing any of the patterns or a problem turning
310
    /// them into a regex matcher, then an error is returned.
311
    ///
312
    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
313
    /// with a [`Config`].
314
    ///
315
    /// # Example: simple lexer
316
    ///
317
    /// This simplistic example leverages the multi-pattern support to build a
318
    /// simple little lexer. The pattern ID in the match tells you which regex
319
    /// matched, which in turn might be used to map back to the "type" of the
320
    /// token returned by the lexer.
321
    ///
322
    /// ```
323
    /// use regex_automata::{meta::Regex, Match};
324
    ///
325
    /// let re = Regex::new_many(&[
326
    ///     r"[[:space:]]",
327
    ///     r"[A-Za-z0-9][A-Za-z0-9_]+",
328
    ///     r"->",
329
    ///     r".",
330
    /// ])?;
331
    /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
332
    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
333
    /// assert_eq!(matches, vec![
334
    ///     Match::must(1, 0..2),   // 'fn'
335
    ///     Match::must(0, 2..3),   // ' '
336
    ///     Match::must(1, 3..10),  // 'is_boss'
337
    ///     Match::must(3, 10..11), // '('
338
    ///     Match::must(1, 11..16), // 'bruce'
339
    ///     Match::must(3, 16..17), // ':'
340
    ///     Match::must(0, 17..18), // ' '
341
    ///     Match::must(1, 18..21), // 'i32'
342
    ///     Match::must(3, 21..22), // ','
343
    ///     Match::must(0, 22..23), // ' '
344
    ///     Match::must(1, 23..34), // 'springsteen'
345
    ///     Match::must(3, 34..35), // ':'
346
    ///     Match::must(0, 35..36), // ' '
347
    ///     Match::must(1, 36..42), // 'String'
348
    ///     Match::must(3, 42..43), // ')'
349
    ///     Match::must(0, 43..44), // ' '
350
    ///     Match::must(2, 44..46), // '->'
351
    ///     Match::must(0, 46..47), // ' '
352
    ///     Match::must(1, 47..51), // 'bool'
353
    ///     Match::must(3, 51..52), // ';'
354
    /// ]);
355
    ///
356
    /// # Ok::<(), Box<dyn std::error::Error>>(())
357
    /// ```
358
    ///
359
    /// One can write a lexer like the above using a regex like
360
    /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
361
    /// but then you need to ask whether capture group matched to determine
362
    /// which branch in the regex matched, and thus, which token the match
363
    /// corresponds to. In contrast, the above example includes the pattern ID
364
    /// in the match. There's no need to use capture groups at all.
365
    ///
366
    /// # Example: finding the pattern that caused an error
367
    ///
368
    /// When a syntax error occurs, it is possible to ask which pattern
369
    /// caused the syntax error.
370
    ///
371
    /// ```
372
    /// use regex_automata::{meta::Regex, PatternID};
373
    ///
374
    /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
375
    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
376
    /// ```
377
    ///
378
    /// # Example: zero patterns is valid
379
    ///
380
    /// Building a regex with zero patterns results in a regex that never
381
    /// matches anything. Because this routine is generic, passing an empty
382
    /// slice usually requires a turbo-fish (or something else to help type
383
    /// inference).
384
    ///
385
    /// ```
386
    /// use regex_automata::{meta::Regex, util::syntax, Match};
387
    ///
388
    /// let re = Regex::new_many::<&str>(&[])?;
389
    /// assert_eq!(None, re.find(""));
390
    ///
391
    /// # Ok::<(), Box<dyn std::error::Error>>(())
392
    /// ```
393
0
    pub fn new_many<P: AsRef<str>>(
394
0
        patterns: &[P],
395
0
    ) -> Result<Regex, BuildError> {
396
0
        Regex::builder().build_many(patterns)
397
0
    }
398
399
    /// Return a default configuration for a `Regex`.
400
    ///
401
    /// This is a convenience routine to avoid needing to import the [`Config`]
402
    /// type when customizing the construction of a `Regex`.
403
    ///
404
    /// # Example: lower the NFA size limit
405
    ///
406
    /// In some cases, the default size limit might be too big. The size limit
407
    /// can be lowered, which will prevent large regex patterns from compiling.
408
    ///
409
    /// ```
410
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
411
    /// use regex_automata::meta::Regex;
412
    ///
413
    /// let result = Regex::builder()
414
    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
415
    ///     // Not even 20KB is enough to build a single large Unicode class!
416
    ///     .build(r"\pL");
417
    /// assert!(result.is_err());
418
    ///
419
    /// # Ok::<(), Box<dyn std::error::Error>>(())
420
    /// ```
421
0
    pub fn config() -> Config {
422
0
        Config::new()
423
0
    }
424
425
    /// Return a builder for configuring the construction of a `Regex`.
426
    ///
427
    /// This is a convenience routine to avoid needing to import the
428
    /// [`Builder`] type in common cases.
429
    ///
430
    /// # Example: change the line terminator
431
    ///
432
    /// This example shows how to enable multi-line mode by default and change
433
    /// the line terminator to the NUL byte:
434
    ///
435
    /// ```
436
    /// use regex_automata::{meta::Regex, util::syntax, Match};
437
    ///
438
    /// let re = Regex::builder()
439
    ///     .syntax(syntax::Config::new().multi_line(true))
440
    ///     .configure(Regex::config().line_terminator(b'\x00'))
441
    ///     .build(r"^foo$")?;
442
    /// let hay = "\x00foo\x00";
443
    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
444
    ///
445
    /// # Ok::<(), Box<dyn std::error::Error>>(())
446
    /// ```
447
0
    pub fn builder() -> Builder {
448
0
        Builder::new()
449
0
    }
450
}
451
452
/// High level convenience routines for using a regex to search a haystack.
453
impl Regex {
454
    /// Returns true if and only if this regex matches the given haystack.
455
    ///
456
    /// This routine may short circuit if it knows that scanning future input
457
    /// will never lead to a different result. (Consider how this might make
458
    /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
459
    /// This routine _may_ stop after it sees the first `a`, but routines like
460
    /// `find` need to continue searching because `+` is greedy by default.)
461
    ///
462
    /// # Example
463
    ///
464
    /// ```
465
    /// use regex_automata::meta::Regex;
466
    ///
467
    /// let re = Regex::new("foo[0-9]+bar")?;
468
    ///
469
    /// assert!(re.is_match("foo12345bar"));
470
    /// assert!(!re.is_match("foobar"));
471
    ///
472
    /// # Ok::<(), Box<dyn std::error::Error>>(())
473
    /// ```
474
    ///
475
    /// # Example: consistency with search APIs
476
    ///
477
    /// `is_match` is guaranteed to return `true` whenever `find` returns a
478
    /// match. This includes searches that are executed entirely within a
479
    /// codepoint:
480
    ///
481
    /// ```
482
    /// use regex_automata::{meta::Regex, Input};
483
    ///
484
    /// let re = Regex::new("a*")?;
485
    ///
486
    /// // This doesn't match because the default configuration bans empty
487
    /// // matches from splitting a codepoint.
488
    /// assert!(!re.is_match(Input::new("☃").span(1..2)));
489
    /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
490
    ///
491
    /// # Ok::<(), Box<dyn std::error::Error>>(())
492
    /// ```
493
    ///
494
    /// Notice that when UTF-8 mode is disabled, then the above reports a
495
    /// match because the restriction against zero-width matches that split a
496
    /// codepoint has been lifted:
497
    ///
498
    /// ```
499
    /// use regex_automata::{meta::Regex, Input, Match};
500
    ///
501
    /// let re = Regex::builder()
502
    ///     .configure(Regex::config().utf8_empty(false))
503
    ///     .build("a*")?;
504
    ///
505
    /// assert!(re.is_match(Input::new("☃").span(1..2)));
506
    /// assert_eq!(
507
    ///     Some(Match::must(0, 1..1)),
508
    ///     re.find(Input::new("☃").span(1..2)),
509
    /// );
510
    ///
511
    /// # Ok::<(), Box<dyn std::error::Error>>(())
512
    /// ```
513
    ///
514
    /// A similar idea applies when using line anchors with CRLF mode enabled,
515
    /// which prevents them from matching between a `\r` and a `\n`.
516
    ///
517
    /// ```
518
    /// use regex_automata::{meta::Regex, Input, Match};
519
    ///
520
    /// let re = Regex::new(r"(?Rm:$)")?;
521
    /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
522
    /// // A regular line anchor, which only considers \n as a
523
    /// // line terminator, will match.
524
    /// let re = Regex::new(r"(?m:$)")?;
525
    /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
526
    ///
527
    /// # Ok::<(), Box<dyn std::error::Error>>(())
528
    /// ```
529
    #[inline]
530
0
    pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
531
0
        let input = input.into().earliest(true);
532
0
        if self.imp.info.is_impossible(&input) {
533
0
            return false;
534
0
        }
535
0
        let mut guard = self.pool.get();
536
0
        let result = self.imp.strat.is_match(&mut guard, &input);
537
        // See 'Regex::search' for why we put the guard back explicitly.
538
0
        PoolGuard::put(guard);
539
0
        result
540
0
    }
541
542
    /// Executes a leftmost search and returns the first match that is found,
543
    /// if one exists.
544
    ///
545
    /// # Example
546
    ///
547
    /// ```
548
    /// use regex_automata::{meta::Regex, Match};
549
    ///
550
    /// let re = Regex::new("foo[0-9]+")?;
551
    /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
552
    ///
553
    /// # Ok::<(), Box<dyn std::error::Error>>(())
554
    /// ```
555
    #[inline]
556
0
    pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
557
0
        self.search(&input.into())
558
0
    }
559
560
    /// Executes a leftmost forward search and writes the spans of capturing
561
    /// groups that participated in a match into the provided [`Captures`]
562
    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563
    /// to return `false`.
564
    ///
565
    /// # Example
566
    ///
567
    /// ```
568
    /// use regex_automata::{meta::Regex, Span};
569
    ///
570
    /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571
    /// let mut caps = re.create_captures();
572
    ///
573
    /// re.captures("2010-03-14", &mut caps);
574
    /// assert!(caps.is_match());
575
    /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576
    /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577
    /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578
    ///
579
    /// # Ok::<(), Box<dyn std::error::Error>>(())
580
    /// ```
581
    #[inline]
582
0
    pub fn captures<'h, I: Into<Input<'h>>>(
583
0
        &self,
584
0
        input: I,
585
0
        caps: &mut Captures,
586
0
    ) {
587
0
        self.search_captures(&input.into(), caps)
588
0
    }
589
590
    /// Returns an iterator over all non-overlapping leftmost matches in
591
    /// the given haystack. If no match exists, then the iterator yields no
592
    /// elements.
593
    ///
594
    /// # Example
595
    ///
596
    /// ```
597
    /// use regex_automata::{meta::Regex, Match};
598
    ///
599
    /// let re = Regex::new("foo[0-9]+")?;
600
    /// let haystack = "foo1 foo12 foo123";
601
    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
602
    /// assert_eq!(matches, vec![
603
    ///     Match::must(0, 0..4),
604
    ///     Match::must(0, 5..10),
605
    ///     Match::must(0, 11..17),
606
    /// ]);
607
    /// # Ok::<(), Box<dyn std::error::Error>>(())
608
    /// ```
609
    #[inline]
610
0
    pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
611
0
        &'r self,
612
0
        input: I,
613
0
    ) -> FindMatches<'r, 'h> {
614
0
        let cache = self.pool.get();
615
0
        let it = iter::Searcher::new(input.into());
616
0
        FindMatches { re: self, cache, it }
617
0
    }
618
619
    /// Returns an iterator over all non-overlapping `Captures` values. If no
620
    /// match exists, then the iterator yields no elements.
621
    ///
622
    /// This yields the same matches as [`Regex::find_iter`], but it includes
623
    /// the spans of all capturing groups that participate in each match.
624
    ///
625
    /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
626
    /// how to correctly iterate over all matches in a haystack while avoiding
627
    /// the creation of a new `Captures` value for every match. (Which you are
628
    /// forced to do with an `Iterator`.)
629
    ///
630
    /// # Example
631
    ///
632
    /// ```
633
    /// use regex_automata::{meta::Regex, Span};
634
    ///
635
    /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
636
    ///
637
    /// let haystack = "foo1 foo12 foo123";
638
    /// let matches: Vec<Span> = re
639
    ///     .captures_iter(haystack)
640
    ///     // The unwrap is OK since 'numbers' matches if the pattern matches.
641
    ///     .map(|caps| caps.get_group_by_name("numbers").unwrap())
642
    ///     .collect();
643
    /// assert_eq!(matches, vec![
644
    ///     Span::from(3..4),
645
    ///     Span::from(8..10),
646
    ///     Span::from(14..17),
647
    /// ]);
648
    /// # Ok::<(), Box<dyn std::error::Error>>(())
649
    /// ```
650
    #[inline]
651
0
    pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
652
0
        &'r self,
653
0
        input: I,
654
0
    ) -> CapturesMatches<'r, 'h> {
655
0
        let cache = self.pool.get();
656
0
        let caps = self.create_captures();
657
0
        let it = iter::Searcher::new(input.into());
658
0
        CapturesMatches { re: self, cache, caps, it }
659
0
    }
660
661
    /// Returns an iterator of spans of the haystack given, delimited by a
662
    /// match of the regex. Namely, each element of the iterator corresponds to
663
    /// a part of the haystack that *isn't* matched by the regular expression.
664
    ///
665
    /// # Example
666
    ///
667
    /// To split a string delimited by arbitrary amounts of spaces or tabs:
668
    ///
669
    /// ```
670
    /// use regex_automata::meta::Regex;
671
    ///
672
    /// let re = Regex::new(r"[ \t]+")?;
673
    /// let hay = "a b \t  c\td    e";
674
    /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
675
    /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
676
    ///
677
    /// # Ok::<(), Box<dyn std::error::Error>>(())
678
    /// ```
679
    ///
680
    /// # Example: more cases
681
    ///
682
    /// Basic usage:
683
    ///
684
    /// ```
685
    /// use regex_automata::meta::Regex;
686
    ///
687
    /// let re = Regex::new(r" ")?;
688
    /// let hay = "Mary had a little lamb";
689
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690
    /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
691
    ///
692
    /// let re = Regex::new(r"X")?;
693
    /// let hay = "";
694
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695
    /// assert_eq!(got, vec![""]);
696
    ///
697
    /// let re = Regex::new(r"X")?;
698
    /// let hay = "lionXXtigerXleopard";
699
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
700
    /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
701
    ///
702
    /// let re = Regex::new(r"::")?;
703
    /// let hay = "lion::tiger::leopard";
704
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
705
    /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
706
    ///
707
    /// # Ok::<(), Box<dyn std::error::Error>>(())
708
    /// ```
709
    ///
710
    /// If a haystack contains multiple contiguous matches, you will end up
711
    /// with empty spans yielded by the iterator:
712
    ///
713
    /// ```
714
    /// use regex_automata::meta::Regex;
715
    ///
716
    /// let re = Regex::new(r"X")?;
717
    /// let hay = "XXXXaXXbXc";
718
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
719
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
720
    ///
721
    /// let re = Regex::new(r"/")?;
722
    /// let hay = "(///)";
723
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
724
    /// assert_eq!(got, vec!["(", "", "", ")"]);
725
    ///
726
    /// # Ok::<(), Box<dyn std::error::Error>>(())
727
    /// ```
728
    ///
729
    /// Separators at the start or end of a haystack are neighbored by empty
730
    /// spans.
731
    ///
732
    /// ```
733
    /// use regex_automata::meta::Regex;
734
    ///
735
    /// let re = Regex::new(r"0")?;
736
    /// let hay = "010";
737
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
738
    /// assert_eq!(got, vec!["", "1", ""]);
739
    ///
740
    /// # Ok::<(), Box<dyn std::error::Error>>(())
741
    /// ```
742
    ///
743
    /// When the empty string is used as a regex, it splits at every valid
744
    /// UTF-8 boundary by default (which includes the beginning and end of the
745
    /// haystack):
746
    ///
747
    /// ```
748
    /// use regex_automata::meta::Regex;
749
    ///
750
    /// let re = Regex::new(r"")?;
751
    /// let hay = "rust";
752
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
753
    /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
754
    ///
755
    /// // Splitting by an empty string is UTF-8 aware by default!
756
    /// let re = Regex::new(r"")?;
757
    /// let hay = "☃";
758
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
759
    /// assert_eq!(got, vec!["", "☃", ""]);
760
    ///
761
    /// # Ok::<(), Box<dyn std::error::Error>>(())
762
    /// ```
763
    ///
764
    /// But note that UTF-8 mode for empty strings can be disabled, which will
765
    /// then result in a match at every byte offset in the haystack,
766
    /// including between every UTF-8 code unit.
767
    ///
768
    /// ```
769
    /// use regex_automata::meta::Regex;
770
    ///
771
    /// let re = Regex::builder()
772
    ///     .configure(Regex::config().utf8_empty(false))
773
    ///     .build(r"")?;
774
    /// let hay = "☃".as_bytes();
775
    /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
776
    /// assert_eq!(got, vec![
777
    ///     // Writing byte string slices is just brutal. The problem is that
778
    ///     // b"foo" has type &[u8; 3] instead of &[u8].
779
    ///     &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
780
    /// ]);
781
    ///
782
    /// # Ok::<(), Box<dyn std::error::Error>>(())
783
    /// ```
784
    ///
785
    /// Contiguous separators (commonly shows up with whitespace), can lead to
786
    /// possibly surprising behavior. For example, this code is correct:
787
    ///
788
    /// ```
789
    /// use regex_automata::meta::Regex;
790
    ///
791
    /// let re = Regex::new(r" ")?;
792
    /// let hay = "    a  b c";
793
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
794
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
795
    ///
796
    /// # Ok::<(), Box<dyn std::error::Error>>(())
797
    /// ```
798
    ///
799
    /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
800
    /// to match contiguous space characters:
801
    ///
802
    /// ```
803
    /// use regex_automata::meta::Regex;
804
    ///
805
    /// let re = Regex::new(r" +")?;
806
    /// let hay = "    a  b c";
807
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
808
    /// // N.B. This does still include a leading empty span because ' +'
809
    /// // matches at the beginning of the haystack.
810
    /// assert_eq!(got, vec!["", "a", "b", "c"]);
811
    ///
812
    /// # Ok::<(), Box<dyn std::error::Error>>(())
813
    /// ```
814
    #[inline]
815
0
    pub fn split<'r, 'h, I: Into<Input<'h>>>(
816
0
        &'r self,
817
0
        input: I,
818
0
    ) -> Split<'r, 'h> {
819
0
        Split { finder: self.find_iter(input), last: 0 }
820
0
    }
821
822
    /// Returns an iterator of at most `limit` spans of the haystack given,
823
    /// delimited by a match of the regex. (A `limit` of `0` will return no
824
    /// spans.) Namely, each element of the iterator corresponds to a part
825
    /// of the haystack that *isn't* matched by the regular expression. The
826
    /// remainder of the haystack that is not split will be the last element in
827
    /// the iterator.
828
    ///
829
    /// # Example
830
    ///
831
    /// Get the first two words in some haystack:
832
    ///
833
    /// ```
834
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
835
    /// use regex_automata::meta::Regex;
836
    ///
837
    /// let re = Regex::new(r"\W+").unwrap();
838
    /// let hay = "Hey! How are you?";
839
    /// let fields: Vec<&str> =
840
    ///     re.splitn(hay, 3).map(|span| &hay[span]).collect();
841
    /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
842
    ///
843
    /// # Ok::<(), Box<dyn std::error::Error>>(())
844
    /// ```
845
    ///
846
    /// # Examples: more cases
847
    ///
848
    /// ```
849
    /// use regex_automata::meta::Regex;
850
    ///
851
    /// let re = Regex::new(r" ")?;
852
    /// let hay = "Mary had a little lamb";
853
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
854
    /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
855
    ///
856
    /// let re = Regex::new(r"X")?;
857
    /// let hay = "";
858
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
859
    /// assert_eq!(got, vec![""]);
860
    ///
861
    /// let re = Regex::new(r"X")?;
862
    /// let hay = "lionXXtigerXleopard";
863
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
864
    /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
865
    ///
866
    /// let re = Regex::new(r"::")?;
867
    /// let hay = "lion::tiger::leopard";
868
    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
869
    /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
870
    ///
871
    /// let re = Regex::new(r"X")?;
872
    /// let hay = "abcXdef";
873
    /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
874
    /// assert_eq!(got, vec!["abcXdef"]);
875
    ///
876
    /// let re = Regex::new(r"X")?;
877
    /// let hay = "abcdef";
878
    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
879
    /// assert_eq!(got, vec!["abcdef"]);
880
    ///
881
    /// let re = Regex::new(r"X")?;
882
    /// let hay = "abcXdef";
883
    /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
884
    /// assert!(got.is_empty());
885
    ///
886
    /// # Ok::<(), Box<dyn std::error::Error>>(())
887
    /// ```
888
0
    pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
889
0
        &'r self,
890
0
        input: I,
891
0
        limit: usize,
892
0
    ) -> SplitN<'r, 'h> {
893
0
        SplitN { splits: self.split(input), limit }
894
0
    }
895
}
896
897
/// Lower level search routines that give more control.
898
impl Regex {
899
    /// Returns the start and end offset of the leftmost match. If no match
900
    /// exists, then `None` is returned.
901
    ///
902
    /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
903
    /// instead of an `Into<Input>`.
904
    ///
905
    /// # Example
906
    ///
907
    /// ```
908
    /// use regex_automata::{meta::Regex, Input, Match};
909
    ///
910
    /// let re = Regex::new(r"Samwise|Sam")?;
911
    /// let input = Input::new(
912
    ///     "one of the chief characters, Samwise the Brave",
913
    /// );
914
    /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
915
    ///
916
    /// # Ok::<(), Box<dyn std::error::Error>>(())
917
    /// ```
918
    #[inline]
919
0
    pub fn search(&self, input: &Input<'_>) -> Option<Match> {
920
0
        if self.imp.info.captures_disabled()
921
0
            || self.imp.info.is_impossible(input)
922
        {
923
0
            return None;
924
0
        }
925
0
        let mut guard = self.pool.get();
926
0
        let result = self.imp.strat.search(&mut guard, input);
927
        // We do this dance with the guard and explicitly put it back in the
928
        // pool because it seems to result in better codegen. If we let the
929
        // guard's Drop impl put it back in the pool, then functions like
930
        // ptr::drop_in_place get called and they *don't* get inlined. This
931
        // isn't usually a big deal, but in latency sensitive benchmarks the
932
        // extra function call can matter.
933
        //
934
        // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
935
        // the effects here.
936
        //
937
        // Note that this doesn't eliminate the latency effects of using the
938
        // pool. There is still some (minor) cost for the "thread owner" of the
939
        // pool. (i.e., The thread that first calls a regex search routine.)
940
        // However, for other threads using the regex, the pool access can be
941
        // quite expensive as it goes through a mutex. Callers can avoid this
942
        // by either cloning the Regex (which creates a distinct copy of the
943
        // pool), or callers can use the lower level APIs that accept a 'Cache'
944
        // directly and do their own handling.
945
0
        PoolGuard::put(guard);
946
0
        result
947
0
    }
948
949
    /// Returns the end offset of the leftmost match. If no match exists, then
950
    /// `None` is returned.
951
    ///
952
    /// This is distinct from [`Regex::search`] in that it only returns the end
953
    /// of a match and not the start of the match. Depending on a variety of
954
    /// implementation details, this _may_ permit the regex engine to do less
955
    /// overall work. For example, if a DFA is being used to execute a search,
956
    /// then the start of a match usually requires running a separate DFA in
957
    /// reverse to the find the start of a match. If one only needs the end of
958
    /// a match, then the separate reverse scan to find the start of a match
959
    /// can be skipped. (Note that the reverse scan is avoided even when using
960
    /// `Regex::search` when possible, for example, in the case of an anchored
961
    /// search.)
962
    ///
963
    /// # Example
964
    ///
965
    /// ```
966
    /// use regex_automata::{meta::Regex, Input, HalfMatch};
967
    ///
968
    /// let re = Regex::new(r"Samwise|Sam")?;
969
    /// let input = Input::new(
970
    ///     "one of the chief characters, Samwise the Brave",
971
    /// );
972
    /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
973
    ///
974
    /// # Ok::<(), Box<dyn std::error::Error>>(())
975
    /// ```
976
    #[inline]
977
0
    pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
978
0
        if self.imp.info.captures_disabled()
979
0
            || self.imp.info.is_impossible(input)
980
        {
981
0
            return None;
982
0
        }
983
0
        let mut guard = self.pool.get();
984
0
        let result = self.imp.strat.search_half(&mut guard, input);
985
        // See 'Regex::search' for why we put the guard back explicitly.
986
0
        PoolGuard::put(guard);
987
0
        result
988
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half
Unexecuted instantiation: <regex_automata::meta::regex::Regex>::search_half
989
990
    /// Executes a leftmost forward search and writes the spans of capturing
991
    /// groups that participated in a match into the provided [`Captures`]
992
    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
993
    /// to return `false`.
994
    ///
995
    /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
996
    /// instead of an `Into<Input>`.
997
    ///
998
    /// # Example: specific pattern search
999
    ///
1000
    /// This example shows how to build a multi-pattern `Regex` that permits
1001
    /// searching for specific patterns.
1002
    ///
1003
    /// ```
1004
    /// use regex_automata::{
1005
    ///     meta::Regex,
1006
    ///     Anchored, Match, PatternID, Input,
1007
    /// };
1008
    ///
1009
    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1010
    /// let mut caps = re.create_captures();
1011
    /// let haystack = "foo123";
1012
    ///
1013
    /// // Since we are using the default leftmost-first match and both
1014
    /// // patterns match at the same starting position, only the first pattern
1015
    /// // will be returned in this case when doing a search for any of the
1016
    /// // patterns.
1017
    /// let expected = Some(Match::must(0, 0..6));
1018
    /// re.search_captures(&Input::new(haystack), &mut caps);
1019
    /// assert_eq!(expected, caps.get_match());
1020
    ///
1021
    /// // But if we want to check whether some other pattern matches, then we
1022
    /// // can provide its pattern ID.
1023
    /// let expected = Some(Match::must(1, 0..6));
1024
    /// let input = Input::new(haystack)
1025
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1026
    /// re.search_captures(&input, &mut caps);
1027
    /// assert_eq!(expected, caps.get_match());
1028
    ///
1029
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1030
    /// ```
1031
    ///
1032
    /// # Example: specifying the bounds of a search
1033
    ///
1034
    /// This example shows how providing the bounds of a search can produce
1035
    /// different results than simply sub-slicing the haystack.
1036
    ///
1037
    /// ```
1038
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1039
    /// use regex_automata::{meta::Regex, Match, Input};
1040
    ///
1041
    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1042
    /// let mut caps = re.create_captures();
1043
    /// let haystack = "foo123bar";
1044
    ///
1045
    /// // Since we sub-slice the haystack, the search doesn't know about
1046
    /// // the larger context and assumes that `123` is surrounded by word
1047
    /// // boundaries. And of course, the match position is reported relative
1048
    /// // to the sub-slice as well, which means we get `0..3` instead of
1049
    /// // `3..6`.
1050
    /// let expected = Some(Match::must(0, 0..3));
1051
    /// let input = Input::new(&haystack[3..6]);
1052
    /// re.search_captures(&input, &mut caps);
1053
    /// assert_eq!(expected, caps.get_match());
1054
    ///
1055
    /// // But if we provide the bounds of the search within the context of the
1056
    /// // entire haystack, then the search can take the surrounding context
1057
    /// // into account. (And if we did find a match, it would be reported
1058
    /// // as a valid offset into `haystack` instead of its sub-slice.)
1059
    /// let expected = None;
1060
    /// let input = Input::new(haystack).range(3..6);
1061
    /// re.search_captures(&input, &mut caps);
1062
    /// assert_eq!(expected, caps.get_match());
1063
    ///
1064
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1065
    /// ```
1066
    #[inline]
1067
0
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1068
0
        caps.set_pattern(None);
1069
0
        let pid = self.search_slots(input, caps.slots_mut());
1070
0
        caps.set_pattern(pid);
1071
0
    }
1072
1073
    /// Executes a leftmost forward search and writes the spans of capturing
1074
    /// groups that participated in a match into the provided `slots`, and
1075
    /// returns the matching pattern ID. The contents of the slots for patterns
1076
    /// other than the matching pattern are unspecified. If no match was found,
1077
    /// then `None` is returned and the contents of `slots` is unspecified.
1078
    ///
1079
    /// This is like [`Regex::search`], but it accepts a raw slots slice
1080
    /// instead of a `Captures` value. This is useful in contexts where you
1081
    /// don't want or need to allocate a `Captures`.
1082
    ///
1083
    /// It is legal to pass _any_ number of slots to this routine. If the regex
1084
    /// engine would otherwise write a slot offset that doesn't fit in the
1085
    /// provided slice, then it is simply skipped. In general though, there are
1086
    /// usually three slice lengths you might want to use:
1087
    ///
1088
    /// * An empty slice, if you only care about which pattern matched.
1089
    /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1090
    /// only care about the overall match spans for each matching pattern.
1091
    /// * A slice with
1092
    /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1093
    /// permits recording match offsets for every capturing group in every
1094
    /// pattern.
1095
    ///
1096
    /// # Example
1097
    ///
1098
    /// This example shows how to find the overall match offsets in a
1099
    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1100
    /// can put our slots right on the stack.
1101
    ///
1102
    /// ```
1103
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1104
    /// use regex_automata::{meta::Regex, PatternID, Input};
1105
    ///
1106
    /// let re = Regex::new_many(&[
1107
    ///     r"\pL+",
1108
    ///     r"\d+",
1109
    /// ])?;
1110
    /// let input = Input::new("!@#123");
1111
    ///
1112
    /// // We only care about the overall match offsets here, so we just
1113
    /// // allocate two slots for each pattern. Each slot records the start
1114
    /// // and end of the match.
1115
    /// let mut slots = [None; 4];
1116
    /// let pid = re.search_slots(&input, &mut slots);
1117
    /// assert_eq!(Some(PatternID::must(1)), pid);
1118
    ///
1119
    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1120
    /// // See 'GroupInfo' for more details on the mapping between groups and
1121
    /// // slot indices.
1122
    /// let slot_start = pid.unwrap().as_usize() * 2;
1123
    /// let slot_end = slot_start + 1;
1124
    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1125
    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1126
    ///
1127
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1128
    /// ```
1129
    #[inline]
1130
0
    pub fn search_slots(
1131
0
        &self,
1132
0
        input: &Input<'_>,
1133
0
        slots: &mut [Option<NonMaxUsize>],
1134
0
    ) -> Option<PatternID> {
1135
0
        if self.imp.info.captures_disabled()
1136
0
            || self.imp.info.is_impossible(input)
1137
        {
1138
0
            return None;
1139
0
        }
1140
0
        let mut guard = self.pool.get();
1141
0
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
1142
        // See 'Regex::search' for why we put the guard back explicitly.
1143
0
        PoolGuard::put(guard);
1144
0
        result
1145
0
    }
1146
1147
    /// Writes the set of patterns that match anywhere in the given search
1148
    /// configuration to `patset`. If multiple patterns match at the same
1149
    /// position and this `Regex` was configured with [`MatchKind::All`]
1150
    /// semantics, then all matching patterns are written to the given set.
1151
    ///
1152
    /// Unless all of the patterns in this `Regex` are anchored, then generally
1153
    /// speaking, this will scan the entire haystack.
1154
    ///
1155
    /// This search routine *does not* clear the pattern set. This gives some
1156
    /// flexibility to the caller (e.g., running multiple searches with the
1157
    /// same pattern set), but does make the API bug-prone if you're reusing
1158
    /// the same pattern set for multiple searches but intended them to be
1159
    /// independent.
1160
    ///
1161
    /// If a pattern ID matched but the given `PatternSet` does not have
1162
    /// sufficient capacity to store it, then it is not inserted and silently
1163
    /// dropped.
1164
    ///
1165
    /// # Example
1166
    ///
1167
    /// This example shows how to find all matching patterns in a haystack,
1168
    /// even when some patterns match at the same position as other patterns.
1169
    /// It is important that we configure the `Regex` with [`MatchKind::All`]
1170
    /// semantics here, or else overlapping matches will not be reported.
1171
    ///
1172
    /// ```
1173
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1174
    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1175
    ///
1176
    /// let patterns = &[
1177
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1178
    /// ];
1179
    /// let re = Regex::builder()
1180
    ///     .configure(Regex::config().match_kind(MatchKind::All))
1181
    ///     .build_many(patterns)?;
1182
    ///
1183
    /// let input = Input::new("foobar");
1184
    /// let mut patset = PatternSet::new(re.pattern_len());
1185
    /// re.which_overlapping_matches(&input, &mut patset);
1186
    /// let expected = vec![0, 2, 3, 4, 6];
1187
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1188
    /// assert_eq!(expected, got);
1189
    ///
1190
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1191
    /// ```
1192
    #[inline]
1193
0
    pub fn which_overlapping_matches(
1194
0
        &self,
1195
0
        input: &Input<'_>,
1196
0
        patset: &mut PatternSet,
1197
0
    ) {
1198
0
        if self.imp.info.is_impossible(input) {
1199
0
            return;
1200
0
        }
1201
0
        let mut guard = self.pool.get();
1202
0
        let result = self
1203
0
            .imp
1204
0
            .strat
1205
0
            .which_overlapping_matches(&mut guard, input, patset);
1206
        // See 'Regex::search' for why we put the guard back explicitly.
1207
0
        PoolGuard::put(guard);
1208
0
        result
1209
0
    }
1210
}
1211
1212
/// Lower level search routines that give more control, and require the caller
1213
/// to provide an explicit [`Cache`] parameter.
1214
impl Regex {
1215
    /// This is like [`Regex::search`], but requires the caller to
1216
    /// explicitly pass a [`Cache`].
1217
    ///
1218
    /// # Why pass a `Cache` explicitly?
1219
    ///
1220
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1221
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1222
    /// pool can be slower in some cases when a `Regex` is used from multiple
1223
    /// threads simultaneously. Typically, performance only becomes an issue
1224
    /// when there is heavy contention, which in turn usually only occurs
1225
    /// when each thread's primary unit of work is a regex search on a small
1226
    /// haystack.
1227
    ///
1228
    /// # Example
1229
    ///
1230
    /// ```
1231
    /// use regex_automata::{meta::Regex, Input, Match};
1232
    ///
1233
    /// let re = Regex::new(r"Samwise|Sam")?;
1234
    /// let mut cache = re.create_cache();
1235
    /// let input = Input::new(
1236
    ///     "one of the chief characters, Samwise the Brave",
1237
    /// );
1238
    /// assert_eq!(
1239
    ///     Some(Match::must(0, 29..36)),
1240
    ///     re.search_with(&mut cache, &input),
1241
    /// );
1242
    ///
1243
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1244
    /// ```
1245
    #[inline]
1246
0
    pub fn search_with(
1247
0
        &self,
1248
0
        cache: &mut Cache,
1249
0
        input: &Input<'_>,
1250
0
    ) -> Option<Match> {
1251
0
        if self.imp.info.captures_disabled()
1252
0
            || self.imp.info.is_impossible(input)
1253
        {
1254
0
            return None;
1255
0
        }
1256
0
        self.imp.strat.search(cache, input)
1257
0
    }
1258
1259
    /// This is like [`Regex::search_half`], but requires the caller to
1260
    /// explicitly pass a [`Cache`].
1261
    ///
1262
    /// # Why pass a `Cache` explicitly?
1263
    ///
1264
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1265
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1266
    /// pool can be slower in some cases when a `Regex` is used from multiple
1267
    /// threads simultaneously. Typically, performance only becomes an issue
1268
    /// when there is heavy contention, which in turn usually only occurs
1269
    /// when each thread's primary unit of work is a regex search on a small
1270
    /// haystack.
1271
    ///
1272
    /// # Example
1273
    ///
1274
    /// ```
1275
    /// use regex_automata::{meta::Regex, Input, HalfMatch};
1276
    ///
1277
    /// let re = Regex::new(r"Samwise|Sam")?;
1278
    /// let mut cache = re.create_cache();
1279
    /// let input = Input::new(
1280
    ///     "one of the chief characters, Samwise the Brave",
1281
    /// );
1282
    /// assert_eq!(
1283
    ///     Some(HalfMatch::must(0, 36)),
1284
    ///     re.search_half_with(&mut cache, &input),
1285
    /// );
1286
    ///
1287
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1288
    /// ```
1289
    #[inline]
1290
0
    pub fn search_half_with(
1291
0
        &self,
1292
0
        cache: &mut Cache,
1293
0
        input: &Input<'_>,
1294
0
    ) -> Option<HalfMatch> {
1295
0
        if self.imp.info.captures_disabled()
1296
0
            || self.imp.info.is_impossible(input)
1297
        {
1298
0
            return None;
1299
0
        }
1300
0
        self.imp.strat.search_half(cache, input)
1301
0
    }
1302
1303
    /// This is like [`Regex::search_captures`], but requires the caller to
1304
    /// explicitly pass a [`Cache`].
1305
    ///
1306
    /// # Why pass a `Cache` explicitly?
1307
    ///
1308
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1309
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1310
    /// pool can be slower in some cases when a `Regex` is used from multiple
1311
    /// threads simultaneously. Typically, performance only becomes an issue
1312
    /// when there is heavy contention, which in turn usually only occurs
1313
    /// when each thread's primary unit of work is a regex search on a small
1314
    /// haystack.
1315
    ///
1316
    /// # Example: specific pattern search
1317
    ///
1318
    /// This example shows how to build a multi-pattern `Regex` that permits
1319
    /// searching for specific patterns.
1320
    ///
1321
    /// ```
1322
    /// use regex_automata::{
1323
    ///     meta::Regex,
1324
    ///     Anchored, Match, PatternID, Input,
1325
    /// };
1326
    ///
1327
    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1328
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1329
    /// let haystack = "foo123";
1330
    ///
1331
    /// // Since we are using the default leftmost-first match and both
1332
    /// // patterns match at the same starting position, only the first pattern
1333
    /// // will be returned in this case when doing a search for any of the
1334
    /// // patterns.
1335
    /// let expected = Some(Match::must(0, 0..6));
1336
    /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1337
    /// assert_eq!(expected, caps.get_match());
1338
    ///
1339
    /// // But if we want to check whether some other pattern matches, then we
1340
    /// // can provide its pattern ID.
1341
    /// let expected = Some(Match::must(1, 0..6));
1342
    /// let input = Input::new(haystack)
1343
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
1344
    /// re.search_captures_with(&mut cache, &input, &mut caps);
1345
    /// assert_eq!(expected, caps.get_match());
1346
    ///
1347
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1348
    /// ```
1349
    ///
1350
    /// # Example: specifying the bounds of a search
1351
    ///
1352
    /// This example shows how providing the bounds of a search can produce
1353
    /// different results than simply sub-slicing the haystack.
1354
    ///
1355
    /// ```
1356
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1357
    /// use regex_automata::{meta::Regex, Match, Input};
1358
    ///
1359
    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1360
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1361
    /// let haystack = "foo123bar";
1362
    ///
1363
    /// // Since we sub-slice the haystack, the search doesn't know about
1364
    /// // the larger context and assumes that `123` is surrounded by word
1365
    /// // boundaries. And of course, the match position is reported relative
1366
    /// // to the sub-slice as well, which means we get `0..3` instead of
1367
    /// // `3..6`.
1368
    /// let expected = Some(Match::must(0, 0..3));
1369
    /// let input = Input::new(&haystack[3..6]);
1370
    /// re.search_captures_with(&mut cache, &input, &mut caps);
1371
    /// assert_eq!(expected, caps.get_match());
1372
    ///
1373
    /// // But if we provide the bounds of the search within the context of the
1374
    /// // entire haystack, then the search can take the surrounding context
1375
    /// // into account. (And if we did find a match, it would be reported
1376
    /// // as a valid offset into `haystack` instead of its sub-slice.)
1377
    /// let expected = None;
1378
    /// let input = Input::new(haystack).range(3..6);
1379
    /// re.search_captures_with(&mut cache, &input, &mut caps);
1380
    /// assert_eq!(expected, caps.get_match());
1381
    ///
1382
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1383
    /// ```
1384
    #[inline]
1385
0
    pub fn search_captures_with(
1386
0
        &self,
1387
0
        cache: &mut Cache,
1388
0
        input: &Input<'_>,
1389
0
        caps: &mut Captures,
1390
0
    ) {
1391
0
        caps.set_pattern(None);
1392
0
        let pid = self.search_slots_with(cache, input, caps.slots_mut());
1393
0
        caps.set_pattern(pid);
1394
0
    }
1395
1396
    /// This is like [`Regex::search_slots`], but requires the caller to
1397
    /// explicitly pass a [`Cache`].
1398
    ///
1399
    /// # Why pass a `Cache` explicitly?
1400
    ///
1401
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1402
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1403
    /// pool can be slower in some cases when a `Regex` is used from multiple
1404
    /// threads simultaneously. Typically, performance only becomes an issue
1405
    /// when there is heavy contention, which in turn usually only occurs
1406
    /// when each thread's primary unit of work is a regex search on a small
1407
    /// haystack.
1408
    ///
1409
    /// # Example
1410
    ///
1411
    /// This example shows how to find the overall match offsets in a
1412
    /// multi-pattern search without allocating a `Captures` value. Indeed, we
1413
    /// can put our slots right on the stack.
1414
    ///
1415
    /// ```
1416
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1417
    /// use regex_automata::{meta::Regex, PatternID, Input};
1418
    ///
1419
    /// let re = Regex::new_many(&[
1420
    ///     r"\pL+",
1421
    ///     r"\d+",
1422
    /// ])?;
1423
    /// let mut cache = re.create_cache();
1424
    /// let input = Input::new("!@#123");
1425
    ///
1426
    /// // We only care about the overall match offsets here, so we just
1427
    /// // allocate two slots for each pattern. Each slot records the start
1428
    /// // and end of the match.
1429
    /// let mut slots = [None; 4];
1430
    /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1431
    /// assert_eq!(Some(PatternID::must(1)), pid);
1432
    ///
1433
    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1434
    /// // See 'GroupInfo' for more details on the mapping between groups and
1435
    /// // slot indices.
1436
    /// let slot_start = pid.unwrap().as_usize() * 2;
1437
    /// let slot_end = slot_start + 1;
1438
    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1439
    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1440
    ///
1441
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1442
    /// ```
1443
    #[inline]
1444
0
    pub fn search_slots_with(
1445
0
        &self,
1446
0
        cache: &mut Cache,
1447
0
        input: &Input<'_>,
1448
0
        slots: &mut [Option<NonMaxUsize>],
1449
0
    ) -> Option<PatternID> {
1450
0
        if self.imp.info.captures_disabled()
1451
0
            || self.imp.info.is_impossible(input)
1452
        {
1453
0
            return None;
1454
0
        }
1455
0
        self.imp.strat.search_slots(cache, input, slots)
1456
0
    }
1457
1458
    /// This is like [`Regex::which_overlapping_matches`], but requires the
1459
    /// caller to explicitly pass a [`Cache`].
1460
    ///
1461
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
1462
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
1463
    /// pool can be slower in some cases when a `Regex` is used from multiple
1464
    /// threads simultaneously. Typically, performance only becomes an issue
1465
    /// when there is heavy contention, which in turn usually only occurs
1466
    /// when each thread's primary unit of work is a regex search on a small
1467
    /// haystack.
1468
    ///
1469
    /// # Why pass a `Cache` explicitly?
1470
    ///
1471
    /// # Example
1472
    ///
1473
    /// ```
1474
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1475
    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1476
    ///
1477
    /// let patterns = &[
1478
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1479
    /// ];
1480
    /// let re = Regex::builder()
1481
    ///     .configure(Regex::config().match_kind(MatchKind::All))
1482
    ///     .build_many(patterns)?;
1483
    /// let mut cache = re.create_cache();
1484
    ///
1485
    /// let input = Input::new("foobar");
1486
    /// let mut patset = PatternSet::new(re.pattern_len());
1487
    /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
1488
    /// let expected = vec![0, 2, 3, 4, 6];
1489
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1490
    /// assert_eq!(expected, got);
1491
    ///
1492
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1493
    /// ```
1494
    #[inline]
1495
0
    pub fn which_overlapping_matches_with(
1496
0
        &self,
1497
0
        cache: &mut Cache,
1498
0
        input: &Input<'_>,
1499
0
        patset: &mut PatternSet,
1500
0
    ) {
1501
0
        if self.imp.info.is_impossible(input) {
1502
0
            return;
1503
0
        }
1504
0
        self.imp.strat.which_overlapping_matches(cache, input, patset)
1505
0
    }
1506
}
1507
1508
/// Various non-search routines for querying properties of a `Regex` and
1509
/// convenience routines for creating [`Captures`] and [`Cache`] values.
1510
impl Regex {
1511
    /// Creates a new object for recording capture group offsets. This is used
1512
    /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1513
    ///
1514
    /// This is a convenience routine for
1515
    /// `Captures::all(re.group_info().clone())`. Callers may build other types
1516
    /// of `Captures` values that record less information (and thus require
1517
    /// less work from the regex engine) using [`Captures::matches`] and
1518
    /// [`Captures::empty`].
1519
    ///
1520
    /// # Example
1521
    ///
1522
    /// This shows some alternatives to [`Regex::create_captures`]:
1523
    ///
1524
    /// ```
1525
    /// use regex_automata::{
1526
    ///     meta::Regex,
1527
    ///     util::captures::Captures,
1528
    ///     Match, PatternID, Span,
1529
    /// };
1530
    ///
1531
    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1532
    ///
1533
    /// // This is equivalent to Regex::create_captures. It stores matching
1534
    /// // offsets for all groups in the regex.
1535
    /// let mut all = Captures::all(re.group_info().clone());
1536
    /// re.captures("Bruce Springsteen", &mut all);
1537
    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1538
    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1539
    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1540
    ///
1541
    /// // In this version, we only care about the implicit groups, which
1542
    /// // means offsets for the explicit groups will be unavailable. It can
1543
    /// // sometimes be faster to ask for fewer groups, since the underlying
1544
    /// // regex engine needs to do less work to keep track of them.
1545
    /// let mut matches = Captures::matches(re.group_info().clone());
1546
    /// re.captures("Bruce Springsteen", &mut matches);
1547
    /// // We still get the overall match info.
1548
    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1549
    /// // But now the explicit groups are unavailable.
1550
    /// assert_eq!(None, matches.get_group_by_name("first"));
1551
    /// assert_eq!(None, matches.get_group_by_name("last"));
1552
    ///
1553
    /// // Finally, in this version, we don't ask to keep track of offsets for
1554
    /// // *any* groups. All we get back is whether a match occurred, and if
1555
    /// // so, the ID of the pattern that matched.
1556
    /// let mut empty = Captures::empty(re.group_info().clone());
1557
    /// re.captures("Bruce Springsteen", &mut empty);
1558
    /// // it's a match!
1559
    /// assert!(empty.is_match());
1560
    /// // for pattern ID 0
1561
    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1562
    /// // Match offsets are unavailable.
1563
    /// assert_eq!(None, empty.get_match());
1564
    /// // And of course, explicit groups are unavailable too.
1565
    /// assert_eq!(None, empty.get_group_by_name("first"));
1566
    /// assert_eq!(None, empty.get_group_by_name("last"));
1567
    ///
1568
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1569
    /// ```
1570
0
    pub fn create_captures(&self) -> Captures {
1571
0
        Captures::all(self.group_info().clone())
1572
0
    }
1573
1574
    /// Creates a new cache for use with lower level search APIs like
1575
    /// [`Regex::search_with`].
1576
    ///
1577
    /// The cache returned should only be used for searches for this `Regex`.
1578
    /// If you want to reuse the cache for another `Regex`, then you must call
1579
    /// [`Cache::reset`] with that `Regex`.
1580
    ///
1581
    /// This is a convenience routine for [`Cache::new`].
1582
    ///
1583
    /// # Example
1584
    ///
1585
    /// ```
1586
    /// use regex_automata::{meta::Regex, Input, Match};
1587
    ///
1588
    /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1589
    /// let mut cache = re.create_cache();
1590
    /// let input = Input::new("crazy janey and her mission man");
1591
    /// assert_eq!(
1592
    ///     Some(Match::must(0, 20..31)),
1593
    ///     re.search_with(&mut cache, &input),
1594
    /// );
1595
    ///
1596
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1597
    /// ```
1598
0
    pub fn create_cache(&self) -> Cache {
1599
0
        self.imp.strat.create_cache()
1600
0
    }
1601
1602
    /// Returns the total number of patterns in this regex.
1603
    ///
1604
    /// The standard [`Regex::new`] constructor always results in a `Regex`
1605
    /// with a single pattern, but [`Regex::new_many`] permits building a
1606
    /// multi-pattern regex.
1607
    ///
1608
    /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1609
    /// any match is `Regex::pattern_len() - 1`. In the case where the number
1610
    /// of patterns is `0`, a match is impossible.
1611
    ///
1612
    /// # Example
1613
    ///
1614
    /// ```
1615
    /// use regex_automata::meta::Regex;
1616
    ///
1617
    /// let re = Regex::new(r"(?m)^[a-z]$")?;
1618
    /// assert_eq!(1, re.pattern_len());
1619
    ///
1620
    /// let re = Regex::new_many::<&str>(&[])?;
1621
    /// assert_eq!(0, re.pattern_len());
1622
    ///
1623
    /// let re = Regex::new_many(&["a", "b", "c"])?;
1624
    /// assert_eq!(3, re.pattern_len());
1625
    ///
1626
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1627
    /// ```
1628
0
    pub fn pattern_len(&self) -> usize {
1629
0
        self.imp.info.pattern_len()
1630
0
    }
1631
1632
    /// Returns the total number of capturing groups.
1633
    ///
1634
    /// This includes the implicit capturing group corresponding to the
1635
    /// entire match. Therefore, the minimum value returned is `1`.
1636
    ///
1637
    /// # Example
1638
    ///
1639
    /// This shows a few patterns and how many capture groups they have.
1640
    ///
1641
    /// ```
1642
    /// use regex_automata::meta::Regex;
1643
    ///
1644
    /// let len = |pattern| {
1645
    ///     Regex::new(pattern).map(|re| re.captures_len())
1646
    /// };
1647
    ///
1648
    /// assert_eq!(1, len("a")?);
1649
    /// assert_eq!(2, len("(a)")?);
1650
    /// assert_eq!(3, len("(a)|(b)")?);
1651
    /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1652
    /// assert_eq!(2, len("(a)|b")?);
1653
    /// assert_eq!(2, len("a|(b)")?);
1654
    /// assert_eq!(2, len("(b)*")?);
1655
    /// assert_eq!(2, len("(b)+")?);
1656
    ///
1657
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1658
    /// ```
1659
    ///
1660
    /// # Example: multiple patterns
1661
    ///
1662
    /// This routine also works for multiple patterns. The total number is
1663
    /// the sum of the capture groups of each pattern.
1664
    ///
1665
    /// ```
1666
    /// use regex_automata::meta::Regex;
1667
    ///
1668
    /// let len = |patterns| {
1669
    ///     Regex::new_many(patterns).map(|re| re.captures_len())
1670
    /// };
1671
    ///
1672
    /// assert_eq!(2, len(&["a", "b"])?);
1673
    /// assert_eq!(4, len(&["(a)", "(b)"])?);
1674
    /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1675
    /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1676
    /// assert_eq!(3, len(&["(a)", "b"])?);
1677
    /// assert_eq!(3, len(&["a", "(b)"])?);
1678
    /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1679
    /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1680
    ///
1681
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1682
    /// ```
1683
0
    pub fn captures_len(&self) -> usize {
1684
0
        self.imp
1685
0
            .info
1686
0
            .props_union()
1687
0
            .explicit_captures_len()
1688
0
            .saturating_add(self.pattern_len())
1689
0
    }
1690
1691
    /// Returns the total number of capturing groups that appear in every
1692
    /// possible match.
1693
    ///
1694
    /// If the number of capture groups can vary depending on the match, then
1695
    /// this returns `None`. That is, a value is only returned when the number
1696
    /// of matching groups is invariant or "static."
1697
    ///
1698
    /// Note that like [`Regex::captures_len`], this **does** include the
1699
    /// implicit capturing group corresponding to the entire match. Therefore,
1700
    /// when a non-None value is returned, it is guaranteed to be at least `1`.
1701
    /// Stated differently, a return value of `Some(0)` is impossible.
1702
    ///
1703
    /// # Example
1704
    ///
1705
    /// This shows a few cases where a static number of capture groups is
1706
    /// available and a few cases where it is not.
1707
    ///
1708
    /// ```
1709
    /// use regex_automata::meta::Regex;
1710
    ///
1711
    /// let len = |pattern| {
1712
    ///     Regex::new(pattern).map(|re| re.static_captures_len())
1713
    /// };
1714
    ///
1715
    /// assert_eq!(Some(1), len("a")?);
1716
    /// assert_eq!(Some(2), len("(a)")?);
1717
    /// assert_eq!(Some(2), len("(a)|(b)")?);
1718
    /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1719
    /// assert_eq!(None, len("(a)|b")?);
1720
    /// assert_eq!(None, len("a|(b)")?);
1721
    /// assert_eq!(None, len("(b)*")?);
1722
    /// assert_eq!(Some(2), len("(b)+")?);
1723
    ///
1724
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1725
    /// ```
1726
    ///
1727
    /// # Example: multiple patterns
1728
    ///
1729
    /// This property extends to regexes with multiple patterns as well. In
1730
    /// order for their to be a static number of capture groups in this case,
1731
    /// every pattern must have the same static number.
1732
    ///
1733
    /// ```
1734
    /// use regex_automata::meta::Regex;
1735
    ///
1736
    /// let len = |patterns| {
1737
    ///     Regex::new_many(patterns).map(|re| re.static_captures_len())
1738
    /// };
1739
    ///
1740
    /// assert_eq!(Some(1), len(&["a", "b"])?);
1741
    /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1742
    /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1743
    /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1744
    /// assert_eq!(None, len(&["(a)", "b"])?);
1745
    /// assert_eq!(None, len(&["a", "(b)"])?);
1746
    /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1747
    /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1748
    ///
1749
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1750
    /// ```
1751
    #[inline]
1752
0
    pub fn static_captures_len(&self) -> Option<usize> {
1753
0
        self.imp
1754
0
            .info
1755
0
            .props_union()
1756
0
            .static_explicit_captures_len()
1757
0
            .map(|len| len.saturating_add(1))
1758
0
    }
1759
1760
    /// Return information about the capture groups in this `Regex`.
1761
    ///
1762
    /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1763
    /// is responsible for maintaining a mapping between the capture groups
1764
    /// in the concrete syntax of zero or more regex patterns and their
1765
    /// internal representation used by some of the regex matchers. It is also
1766
    /// responsible for maintaining a mapping between the name of each group
1767
    /// (if one exists) and its corresponding group index.
1768
    ///
1769
    /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1770
    /// which is some mutable space where group offsets are stored as a result
1771
    /// of a search.
1772
    ///
1773
    /// # Example
1774
    ///
1775
    /// This shows some alternatives to [`Regex::create_captures`]:
1776
    ///
1777
    /// ```
1778
    /// use regex_automata::{
1779
    ///     meta::Regex,
1780
    ///     util::captures::Captures,
1781
    ///     Match, PatternID, Span,
1782
    /// };
1783
    ///
1784
    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1785
    ///
1786
    /// // This is equivalent to Regex::create_captures. It stores matching
1787
    /// // offsets for all groups in the regex.
1788
    /// let mut all = Captures::all(re.group_info().clone());
1789
    /// re.captures("Bruce Springsteen", &mut all);
1790
    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1791
    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1792
    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1793
    ///
1794
    /// // In this version, we only care about the implicit groups, which
1795
    /// // means offsets for the explicit groups will be unavailable. It can
1796
    /// // sometimes be faster to ask for fewer groups, since the underlying
1797
    /// // regex engine needs to do less work to keep track of them.
1798
    /// let mut matches = Captures::matches(re.group_info().clone());
1799
    /// re.captures("Bruce Springsteen", &mut matches);
1800
    /// // We still get the overall match info.
1801
    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1802
    /// // But now the explicit groups are unavailable.
1803
    /// assert_eq!(None, matches.get_group_by_name("first"));
1804
    /// assert_eq!(None, matches.get_group_by_name("last"));
1805
    ///
1806
    /// // Finally, in this version, we don't ask to keep track of offsets for
1807
    /// // *any* groups. All we get back is whether a match occurred, and if
1808
    /// // so, the ID of the pattern that matched.
1809
    /// let mut empty = Captures::empty(re.group_info().clone());
1810
    /// re.captures("Bruce Springsteen", &mut empty);
1811
    /// // it's a match!
1812
    /// assert!(empty.is_match());
1813
    /// // for pattern ID 0
1814
    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1815
    /// // Match offsets are unavailable.
1816
    /// assert_eq!(None, empty.get_match());
1817
    /// // And of course, explicit groups are unavailable too.
1818
    /// assert_eq!(None, empty.get_group_by_name("first"));
1819
    /// assert_eq!(None, empty.get_group_by_name("last"));
1820
    ///
1821
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1822
    /// ```
1823
    #[inline]
1824
0
    pub fn group_info(&self) -> &GroupInfo {
1825
0
        self.imp.strat.group_info()
1826
0
    }
1827
1828
    /// Returns the configuration object used to build this `Regex`.
1829
    ///
1830
    /// If no configuration object was explicitly passed, then the
1831
    /// configuration returned represents the default.
1832
    #[inline]
1833
0
    pub fn get_config(&self) -> &Config {
1834
0
        self.imp.info.config()
1835
0
    }
1836
1837
    /// Returns true if this regex has a high chance of being "accelerated."
1838
    ///
1839
    /// The precise meaning of "accelerated" is specifically left unspecified,
1840
    /// but the general meaning is that the search is a high likelihood of
1841
    /// running faster than a character-at-a-time loop inside a standard
1842
    /// regex engine.
1843
    ///
1844
    /// When a regex is accelerated, it is only a *probabilistic* claim. That
1845
    /// is, just because the regex is believed to be accelerated, that doesn't
1846
    /// mean it will definitely execute searches very fast. Similarly, if a
1847
    /// regex is *not* accelerated, that is also a probabilistic claim. That
1848
    /// is, a regex for which `is_accelerated` returns `false` could still run
1849
    /// searches more quickly than a regex for which `is_accelerated` returns
1850
    /// `true`.
1851
    ///
1852
    /// Whether a regex is marked as accelerated or not is dependent on
1853
    /// implementations details that may change in a semver compatible release.
1854
    /// That is, a regex that is accelerated in a `x.y.1` release might not be
1855
    /// accelerated in a `x.y.2` release.
1856
    ///
1857
    /// Basically, the value of acceleration boils down to a hedge: a hodge
1858
    /// podge of internal heuristics combine to make a probabilistic guess
1859
    /// that this regex search may run "fast." The value in knowing this from
1860
    /// a caller's perspective is that it may act as a signal that no further
1861
    /// work should be done to accelerate a search. For example, a grep-like
1862
    /// tool might try to do some extra work extracting literals from a regex
1863
    /// to create its own heuristic acceleration strategies. But it might
1864
    /// choose to defer to this crate's acceleration strategy if one exists.
1865
    /// This routine permits querying whether such a strategy is active for a
1866
    /// particular regex.
1867
    ///
1868
    /// # Example
1869
    ///
1870
    /// ```
1871
    /// use regex_automata::meta::Regex;
1872
    ///
1873
    /// // A simple literal is very likely to be accelerated.
1874
    /// let re = Regex::new(r"foo")?;
1875
    /// assert!(re.is_accelerated());
1876
    ///
1877
    /// // A regex with no literals is likely to not be accelerated.
1878
    /// let re = Regex::new(r"\w")?;
1879
    /// assert!(!re.is_accelerated());
1880
    ///
1881
    /// # Ok::<(), Box<dyn std::error::Error>>(())
1882
    /// ```
1883
    #[inline]
1884
0
    pub fn is_accelerated(&self) -> bool {
1885
0
        self.imp.strat.is_accelerated()
1886
0
    }
1887
1888
    /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1889
    ///
1890
    /// Note that currently, there is no high level configuration for setting
1891
    /// a limit on the specific value returned by this routine. Instead, the
1892
    /// following routines can be used to control heap memory at a bit of a
1893
    /// lower level:
1894
    ///
1895
    /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1896
    /// allowed to be.
1897
    /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1898
    /// allowed to be.
1899
    /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1900
    /// DFA is permitted to allocate to store its transition table.
1901
    /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1902
    /// allowed to be.
1903
    /// * [`Config::dfa_state_limit`] controls the conditions under which the
1904
    /// meta regex engine will even attempt to build a fully compiled DFA.
1905
    #[inline]
1906
0
    pub fn memory_usage(&self) -> usize {
1907
0
        self.imp.strat.memory_usage()
1908
0
    }
1909
}
1910
1911
impl Clone for Regex {
1912
0
    fn clone(&self) -> Regex {
1913
0
        let imp = Arc::clone(&self.imp);
1914
0
        let pool = {
1915
0
            let strat = Arc::clone(&imp.strat);
1916
0
            let create: CachePoolFn = Box::new(move || strat.create_cache());
1917
0
            Pool::new(create)
1918
        };
1919
0
        Regex { imp, pool }
1920
0
    }
1921
}
1922
1923
#[derive(Clone, Debug)]
1924
pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1925
1926
#[derive(Clone, Debug)]
1927
struct RegexInfoI {
1928
    config: Config,
1929
    props: Vec<hir::Properties>,
1930
    props_union: hir::Properties,
1931
}
1932
1933
impl RegexInfo {
1934
0
    fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1935
        // Collect all of the properties from each of the HIRs, and also
1936
        // union them into one big set of properties representing all HIRs
1937
        // as if they were in one big alternation.
1938
0
        let mut props = vec![];
1939
0
        for hir in hirs.iter() {
1940
0
            props.push(hir.properties().clone());
1941
0
        }
1942
0
        let props_union = hir::Properties::union(&props);
1943
1944
0
        RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1945
0
    }
1946
1947
0
    pub(crate) fn config(&self) -> &Config {
1948
0
        &self.0.config
1949
0
    }
1950
1951
0
    pub(crate) fn props(&self) -> &[hir::Properties] {
1952
0
        &self.0.props
1953
0
    }
1954
1955
0
    pub(crate) fn props_union(&self) -> &hir::Properties {
1956
0
        &self.0.props_union
1957
0
    }
1958
1959
0
    pub(crate) fn pattern_len(&self) -> usize {
1960
0
        self.props().len()
1961
0
    }
1962
1963
0
    pub(crate) fn memory_usage(&self) -> usize {
1964
0
        self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
1965
0
            + self.props_union().memory_usage()
1966
0
    }
1967
1968
    /// Returns true when the search is guaranteed to be anchored. That is,
1969
    /// when a match is reported, its offset is guaranteed to correspond to
1970
    /// the start of the search.
1971
    ///
1972
    /// This includes returning true when `input` _isn't_ anchored but the
1973
    /// underlying regex is.
1974
    #[cfg_attr(feature = "perf-inline", inline(always))]
1975
0
    pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1976
0
        input.get_anchored().is_anchored() || self.is_always_anchored_start()
1977
0
    }
1978
1979
    /// Returns true when this regex is always anchored to the start of a
1980
    /// search. And in particular, that regardless of an `Input` configuration,
1981
    /// if any match is reported it must start at `0`.
1982
    #[cfg_attr(feature = "perf-inline", inline(always))]
1983
0
    pub(crate) fn is_always_anchored_start(&self) -> bool {
1984
        use regex_syntax::hir::Look;
1985
0
        self.props_union().look_set_prefix().contains(Look::Start)
1986
0
    }
1987
1988
    /// Returns true when this regex is always anchored to the end of a
1989
    /// search. And in particular, that regardless of an `Input` configuration,
1990
    /// if any match is reported it must end at the end of the haystack.
1991
    #[cfg_attr(feature = "perf-inline", inline(always))]
1992
0
    pub(crate) fn is_always_anchored_end(&self) -> bool {
1993
        use regex_syntax::hir::Look;
1994
0
        self.props_union().look_set_suffix().contains(Look::End)
1995
0
    }
1996
1997
    /// Returns true when the regex's NFA lacks capture states.
1998
    ///
1999
    /// In this case, some regex engines (like the PikeVM) are unable to report
2000
    /// match offsets, while some (like the lazy DFA can). To avoid whether a
2001
    /// match or not is reported based on engine selection, routines that
2002
    /// return match offsets will _always_ report `None` when this is true.
2003
    ///
2004
    /// Yes, this is a weird case and it's a little fucked up. But
2005
    /// `WhichCaptures::None` comes with an appropriate warning.
2006
0
    fn captures_disabled(&self) -> bool {
2007
0
        matches!(self.config().get_which_captures(), WhichCaptures::None)
2008
0
    }
2009
2010
    /// Returns true if and only if it is known that a match is impossible
2011
    /// for the given input. This is useful for short-circuiting and avoiding
2012
    /// running the regex engine if it's known no match can be reported.
2013
    ///
2014
    /// Note that this doesn't necessarily detect every possible case. For
2015
    /// example, when `pattern_len() == 0`, a match is impossible, but that
2016
    /// case is so rare that it's fine to be handled by the regex engine
2017
    /// itself. That is, it's not worth the cost of adding it here in order to
2018
    /// make it a little faster. The reason is that this is called for every
2019
    /// search. so there is some cost to adding checks here. Arguably, some of
2020
    /// the checks that are here already probably shouldn't be here...
2021
    #[cfg_attr(feature = "perf-inline", inline(always))]
2022
0
    fn is_impossible(&self, input: &Input<'_>) -> bool {
2023
        // The underlying regex is anchored, so if we don't start the search
2024
        // at position 0, a match is impossible, because the anchor can only
2025
        // match at position 0.
2026
0
        if input.start() > 0 && self.is_always_anchored_start() {
2027
0
            return true;
2028
0
        }
2029
        // Same idea, but for the end anchor.
2030
0
        if input.end() < input.haystack().len()
2031
0
            && self.is_always_anchored_end()
2032
        {
2033
0
            return true;
2034
0
        }
2035
        // If the haystack is smaller than the minimum length required, then
2036
        // we know there can be no match.
2037
0
        let minlen = match self.props_union().minimum_len() {
2038
0
            None => return false,
2039
0
            Some(minlen) => minlen,
2040
        };
2041
0
        if input.get_span().len() < minlen {
2042
0
            return true;
2043
0
        }
2044
        // Same idea as minimum, but for maximum. This is trickier. We can
2045
        // only apply the maximum when we know the entire span that we're
2046
        // searching *has* to match according to the regex (and possibly the
2047
        // input configuration). If we know there is too much for the regex
2048
        // to match, we can bail early.
2049
        //
2050
        // I don't think we can apply the maximum otherwise unfortunately.
2051
0
        if self.is_anchored_start(input) && self.is_always_anchored_end() {
2052
0
            let maxlen = match self.props_union().maximum_len() {
2053
0
                None => return false,
2054
0
                Some(maxlen) => maxlen,
2055
            };
2056
0
            if input.get_span().len() > maxlen {
2057
0
                return true;
2058
0
            }
2059
0
        }
2060
0
        false
2061
0
    }
2062
}
2063
2064
/// An iterator over all non-overlapping matches.
2065
///
2066
/// The iterator yields a [`Match`] value until no more matches could be found.
2067
///
2068
/// The lifetime parameters are as follows:
2069
///
2070
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2071
/// * `'h` represents the lifetime of the haystack being searched.
2072
///
2073
/// This iterator can be created with the [`Regex::find_iter`] method.
2074
#[derive(Debug)]
2075
pub struct FindMatches<'r, 'h> {
2076
    re: &'r Regex,
2077
    cache: CachePoolGuard<'r>,
2078
    it: iter::Searcher<'h>,
2079
}
2080
2081
impl<'r, 'h> FindMatches<'r, 'h> {
2082
    /// Returns the `Regex` value that created this iterator.
2083
    #[inline]
2084
0
    pub fn regex(&self) -> &'r Regex {
2085
0
        self.re
2086
0
    }
2087
2088
    /// Returns the current `Input` associated with this iterator.
2089
    ///
2090
    /// The `start` position on the given `Input` may change during iteration,
2091
    /// but all other values are guaranteed to remain invariant.
2092
    #[inline]
2093
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2094
0
        self.it.input()
2095
0
    }
2096
}
2097
2098
impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
2099
    type Item = Match;
2100
2101
    #[inline]
2102
0
    fn next(&mut self) -> Option<Match> {
2103
0
        let FindMatches { re, ref mut cache, ref mut it } = *self;
2104
0
        it.advance(|input| Ok(re.search_with(cache, input)))
2105
0
    }
2106
2107
    #[inline]
2108
0
    fn count(self) -> usize {
2109
        // If all we care about is a count of matches, then we only need to
2110
        // find the end position of each match. This can give us a 2x perf
2111
        // boost in some cases, because it avoids needing to do a reverse scan
2112
        // to find the start of a match.
2113
0
        let FindMatches { re, mut cache, it } = self;
2114
        // This does the deref for PoolGuard once instead of every iter.
2115
0
        let cache = &mut *cache;
2116
0
        it.into_half_matches_iter(
2117
0
            |input| Ok(re.search_half_with(cache, input)),
2118
        )
2119
0
        .count()
2120
0
    }
2121
}
2122
2123
impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}
2124
2125
/// An iterator over all non-overlapping leftmost matches with their capturing
2126
/// groups.
2127
///
2128
/// The iterator yields a [`Captures`] value until no more matches could be
2129
/// found.
2130
///
2131
/// The lifetime parameters are as follows:
2132
///
2133
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2134
/// * `'h` represents the lifetime of the haystack being searched.
2135
///
2136
/// This iterator can be created with the [`Regex::captures_iter`] method.
2137
#[derive(Debug)]
2138
pub struct CapturesMatches<'r, 'h> {
2139
    re: &'r Regex,
2140
    cache: CachePoolGuard<'r>,
2141
    caps: Captures,
2142
    it: iter::Searcher<'h>,
2143
}
2144
2145
impl<'r, 'h> CapturesMatches<'r, 'h> {
2146
    /// Returns the `Regex` value that created this iterator.
2147
    #[inline]
2148
0
    pub fn regex(&self) -> &'r Regex {
2149
0
        self.re
2150
0
    }
2151
2152
    /// Returns the current `Input` associated with this iterator.
2153
    ///
2154
    /// The `start` position on the given `Input` may change during iteration,
2155
    /// but all other values are guaranteed to remain invariant.
2156
    #[inline]
2157
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2158
0
        self.it.input()
2159
0
    }
2160
}
2161
2162
impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
2163
    type Item = Captures;
2164
2165
    #[inline]
2166
0
    fn next(&mut self) -> Option<Captures> {
2167
        // Splitting 'self' apart seems necessary to appease borrowck.
2168
0
        let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
2169
0
            *self;
2170
0
        let _ = it.advance(|input| {
2171
0
            re.search_captures_with(cache, input, caps);
2172
0
            Ok(caps.get_match())
2173
0
        });
2174
0
        if caps.is_match() {
2175
0
            Some(caps.clone())
2176
        } else {
2177
0
            None
2178
        }
2179
0
    }
2180
2181
    #[inline]
2182
0
    fn count(self) -> usize {
2183
0
        let CapturesMatches { re, mut cache, it, .. } = self;
2184
        // This does the deref for PoolGuard once instead of every iter.
2185
0
        let cache = &mut *cache;
2186
0
        it.into_half_matches_iter(
2187
0
            |input| Ok(re.search_half_with(cache, input)),
2188
        )
2189
0
        .count()
2190
0
    }
2191
}
2192
2193
impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}
2194
2195
/// Yields all substrings delimited by a regular expression match.
2196
///
2197
/// The spans correspond to the offsets between matches.
2198
///
2199
/// The lifetime parameters are as follows:
2200
///
2201
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2202
/// * `'h` represents the lifetime of the haystack being searched.
2203
///
2204
/// This iterator can be created with the [`Regex::split`] method.
2205
#[derive(Debug)]
2206
pub struct Split<'r, 'h> {
2207
    finder: FindMatches<'r, 'h>,
2208
    last: usize,
2209
}
2210
2211
impl<'r, 'h> Split<'r, 'h> {
2212
    /// Returns the current `Input` associated with this iterator.
2213
    ///
2214
    /// The `start` position on the given `Input` may change during iteration,
2215
    /// but all other values are guaranteed to remain invariant.
2216
    #[inline]
2217
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2218
0
        self.finder.input()
2219
0
    }
2220
}
2221
2222
impl<'r, 'h> Iterator for Split<'r, 'h> {
2223
    type Item = Span;
2224
2225
0
    fn next(&mut self) -> Option<Span> {
2226
0
        match self.finder.next() {
2227
            None => {
2228
0
                let len = self.finder.it.input().haystack().len();
2229
0
                if self.last > len {
2230
0
                    None
2231
                } else {
2232
0
                    let span = Span::from(self.last..len);
2233
0
                    self.last = len + 1; // Next call will return None
2234
0
                    Some(span)
2235
                }
2236
            }
2237
0
            Some(m) => {
2238
0
                let span = Span::from(self.last..m.start());
2239
0
                self.last = m.end();
2240
0
                Some(span)
2241
            }
2242
        }
2243
0
    }
2244
}
2245
2246
impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2247
2248
/// Yields at most `N` spans delimited by a regular expression match.
2249
///
2250
/// The spans correspond to the offsets between matches. The last span will be
2251
/// whatever remains after splitting.
2252
///
2253
/// The lifetime parameters are as follows:
2254
///
2255
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2256
/// * `'h` represents the lifetime of the haystack being searched.
2257
///
2258
/// This iterator can be created with the [`Regex::splitn`] method.
2259
#[derive(Debug)]
2260
pub struct SplitN<'r, 'h> {
2261
    splits: Split<'r, 'h>,
2262
    limit: usize,
2263
}
2264
2265
impl<'r, 'h> SplitN<'r, 'h> {
2266
    /// Returns the current `Input` associated with this iterator.
2267
    ///
2268
    /// The `start` position on the given `Input` may change during iteration,
2269
    /// but all other values are guaranteed to remain invariant.
2270
    #[inline]
2271
0
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
2272
0
        self.splits.input()
2273
0
    }
2274
}
2275
2276
impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2277
    type Item = Span;
2278
2279
0
    fn next(&mut self) -> Option<Span> {
2280
0
        if self.limit == 0 {
2281
0
            return None;
2282
0
        }
2283
2284
0
        self.limit -= 1;
2285
0
        if self.limit > 0 {
2286
0
            return self.splits.next();
2287
0
        }
2288
2289
0
        let len = self.splits.finder.it.input().haystack().len();
2290
0
        if self.splits.last > len {
2291
            // We've already returned all substrings.
2292
0
            None
2293
        } else {
2294
            // self.n == 0, so future calls will return None immediately
2295
0
            Some(Span::from(self.splits.last..len))
2296
        }
2297
0
    }
2298
2299
0
    fn size_hint(&self) -> (usize, Option<usize>) {
2300
0
        (0, Some(self.limit))
2301
0
    }
2302
}
2303
2304
impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2305
2306
/// Represents mutable scratch space used by regex engines during a search.
2307
///
2308
/// Most of the regex engines in this crate require some kind of
2309
/// mutable state in order to execute a search. This mutable state is
2310
/// explicitly separated from the core regex object (such as a
2311
/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2312
/// object can be shared across multiple threads simultaneously without any
2313
/// synchronization. Conversely, a `Cache` must either be duplicated if using
2314
/// the same `Regex` from multiple threads, or else there must be some kind of
2315
/// synchronization that guarantees exclusive access while it's in use by one
2316
/// thread.
2317
///
2318
/// A `Regex` attempts to do this synchronization for you by using a thread
2319
/// pool internally. Its size scales roughly with the number of simultaneous
2320
/// regex searches.
2321
///
2322
/// For cases where one does not want to rely on a `Regex`'s internal thread
2323
/// pool, lower level routines such as [`Regex::search_with`] are provided
2324
/// that permit callers to pass a `Cache` into the search routine explicitly.
2325
///
2326
/// General advice is that the thread pool is often more than good enough.
2327
/// However, it may be possible to observe the effects of its latency,
2328
/// especially when searching many small haystacks from many threads
2329
/// simultaneously.
2330
///
2331
/// Caches can be created from their corresponding `Regex` via
2332
/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2333
/// that created it, or the `Regex` that was most recently used to reset it
2334
/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2335
/// panics or incorrect results.
2336
///
2337
/// # Example
2338
///
2339
/// ```
2340
/// use regex_automata::{meta::Regex, Input, Match};
2341
///
2342
/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2343
/// let mut cache = re.create_cache();
2344
/// let input = Input::new("crazy janey and her mission man");
2345
/// assert_eq!(
2346
///     Some(Match::must(0, 20..31)),
2347
///     re.search_with(&mut cache, &input),
2348
/// );
2349
///
2350
/// # Ok::<(), Box<dyn std::error::Error>>(())
2351
/// ```
2352
#[derive(Debug, Clone)]
2353
pub struct Cache {
2354
    pub(crate) capmatches: Captures,
2355
    pub(crate) pikevm: wrappers::PikeVMCache,
2356
    pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2357
    pub(crate) onepass: wrappers::OnePassCache,
2358
    pub(crate) hybrid: wrappers::HybridCache,
2359
    pub(crate) revhybrid: wrappers::ReverseHybridCache,
2360
}
2361
2362
impl Cache {
2363
    /// Creates a new `Cache` for use with this regex.
2364
    ///
2365
    /// The cache returned should only be used for searches for the given
2366
    /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2367
    /// must call [`Cache::reset`] with that `Regex`.
2368
0
    pub fn new(re: &Regex) -> Cache {
2369
0
        re.create_cache()
2370
0
    }
2371
2372
    /// Reset this cache such that it can be used for searching with the given
2373
    /// `Regex` (and only that `Regex`).
2374
    ///
2375
    /// A cache reset permits potentially reusing memory already allocated in
2376
    /// this cache with a different `Regex`.
2377
    ///
2378
    /// # Example
2379
    ///
2380
    /// This shows how to re-purpose a cache for use with a different `Regex`.
2381
    ///
2382
    /// ```
2383
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2384
    /// use regex_automata::{meta::Regex, Match, Input};
2385
    ///
2386
    /// let re1 = Regex::new(r"\w")?;
2387
    /// let re2 = Regex::new(r"\W")?;
2388
    ///
2389
    /// let mut cache = re1.create_cache();
2390
    /// assert_eq!(
2391
    ///     Some(Match::must(0, 0..2)),
2392
    ///     re1.search_with(&mut cache, &Input::new("Δ")),
2393
    /// );
2394
    ///
2395
    /// // Using 'cache' with re2 is not allowed. It may result in panics or
2396
    /// // incorrect results. In order to re-purpose the cache, we must reset
2397
    /// // it with the Regex we'd like to use it with.
2398
    /// //
2399
    /// // Similarly, after this reset, using the cache with 're1' is also not
2400
    /// // allowed.
2401
    /// cache.reset(&re2);
2402
    /// assert_eq!(
2403
    ///     Some(Match::must(0, 0..3)),
2404
    ///     re2.search_with(&mut cache, &Input::new("☃")),
2405
    /// );
2406
    ///
2407
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2408
    /// ```
2409
0
    pub fn reset(&mut self, re: &Regex) {
2410
0
        re.imp.strat.reset_cache(self)
2411
0
    }
2412
2413
    /// Returns the heap memory usage, in bytes, of this cache.
2414
    ///
2415
    /// This does **not** include the stack size used up by this cache. To
2416
    /// compute that, use `std::mem::size_of::<Cache>()`.
2417
0
    pub fn memory_usage(&self) -> usize {
2418
0
        let mut bytes = 0;
2419
0
        bytes += self.pikevm.memory_usage();
2420
0
        bytes += self.backtrack.memory_usage();
2421
0
        bytes += self.onepass.memory_usage();
2422
0
        bytes += self.hybrid.memory_usage();
2423
0
        bytes += self.revhybrid.memory_usage();
2424
0
        bytes
2425
0
    }
2426
}
2427
2428
/// An object describing the configuration of a `Regex`.
2429
///
2430
/// This configuration only includes options for the
2431
/// non-syntax behavior of a `Regex`, and can be applied via the
2432
/// [`Builder::configure`] method. For configuring the syntax options, see
2433
/// [`util::syntax::Config`](crate::util::syntax::Config).
2434
///
2435
/// # Example: lower the NFA size limit
2436
///
2437
/// In some cases, the default size limit might be too big. The size limit can
2438
/// be lowered, which will prevent large regex patterns from compiling.
2439
///
2440
/// ```
2441
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
2442
/// use regex_automata::meta::Regex;
2443
///
2444
/// let result = Regex::builder()
2445
///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2446
///     // Not even 20KB is enough to build a single large Unicode class!
2447
///     .build(r"\pL");
2448
/// assert!(result.is_err());
2449
///
2450
/// # Ok::<(), Box<dyn std::error::Error>>(())
2451
/// ```
2452
#[derive(Clone, Debug, Default)]
2453
pub struct Config {
2454
    // As with other configuration types in this crate, we put all our knobs
2455
    // in options so that we can distinguish between "default" and "not set."
2456
    // This makes it possible to easily combine multiple configurations
2457
    // without default values overwriting explicitly specified values. See the
2458
    // 'overwrite' method.
2459
    //
2460
    // For docs on the fields below, see the corresponding method setters.
2461
    match_kind: Option<MatchKind>,
2462
    utf8_empty: Option<bool>,
2463
    autopre: Option<bool>,
2464
    pre: Option<Option<Prefilter>>,
2465
    which_captures: Option<WhichCaptures>,
2466
    nfa_size_limit: Option<Option<usize>>,
2467
    onepass_size_limit: Option<Option<usize>>,
2468
    hybrid_cache_capacity: Option<usize>,
2469
    hybrid: Option<bool>,
2470
    dfa: Option<bool>,
2471
    dfa_size_limit: Option<Option<usize>>,
2472
    dfa_state_limit: Option<Option<usize>>,
2473
    onepass: Option<bool>,
2474
    backtrack: Option<bool>,
2475
    byte_classes: Option<bool>,
2476
    line_terminator: Option<u8>,
2477
}
2478
2479
impl Config {
2480
    /// Create a new configuration object for a `Regex`.
2481
0
    pub fn new() -> Config {
2482
0
        Config::default()
2483
0
    }
2484
2485
    /// Set the match semantics for a `Regex`.
2486
    ///
2487
    /// The default value is [`MatchKind::LeftmostFirst`].
2488
    ///
2489
    /// # Example
2490
    ///
2491
    /// ```
2492
    /// use regex_automata::{meta::Regex, Match, MatchKind};
2493
    ///
2494
    /// // By default, leftmost-first semantics are used, which
2495
    /// // disambiguates matches at the same position by selecting
2496
    /// // the one that corresponds earlier in the pattern.
2497
    /// let re = Regex::new("sam|samwise")?;
2498
    /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2499
    ///
2500
    /// // But with 'all' semantics, match priority is ignored
2501
    /// // and all match states are included. When coupled with
2502
    /// // a leftmost search, the search will report the last
2503
    /// // possible match.
2504
    /// let re = Regex::builder()
2505
    ///     .configure(Regex::config().match_kind(MatchKind::All))
2506
    ///     .build("sam|samwise")?;
2507
    /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2508
    /// // Beware that this can lead to skipping matches!
2509
    /// // Usually 'all' is used for anchored reverse searches
2510
    /// // only, or for overlapping searches.
2511
    /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2512
    ///
2513
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2514
    /// ```
2515
0
    pub fn match_kind(self, kind: MatchKind) -> Config {
2516
0
        Config { match_kind: Some(kind), ..self }
2517
0
    }
2518
2519
    /// Toggles whether empty matches are permitted to occur between the code
2520
    /// units of a UTF-8 encoded codepoint.
2521
    ///
2522
    /// This should generally be enabled when search a `&str` or anything that
2523
    /// you otherwise know is valid UTF-8. It should be disabled in all other
2524
    /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2525
    /// then behavior is unspecified.
2526
    ///
2527
    /// By default, this is enabled.
2528
    ///
2529
    /// # Example
2530
    ///
2531
    /// ```
2532
    /// use regex_automata::{meta::Regex, Match};
2533
    ///
2534
    /// let re = Regex::new("")?;
2535
    /// let got: Vec<Match> = re.find_iter("☃").collect();
2536
    /// // Matches only occur at the beginning and end of the snowman.
2537
    /// assert_eq!(got, vec![
2538
    ///     Match::must(0, 0..0),
2539
    ///     Match::must(0, 3..3),
2540
    /// ]);
2541
    ///
2542
    /// let re = Regex::builder()
2543
    ///     .configure(Regex::config().utf8_empty(false))
2544
    ///     .build("")?;
2545
    /// let got: Vec<Match> = re.find_iter("☃").collect();
2546
    /// // Matches now occur at every position!
2547
    /// assert_eq!(got, vec![
2548
    ///     Match::must(0, 0..0),
2549
    ///     Match::must(0, 1..1),
2550
    ///     Match::must(0, 2..2),
2551
    ///     Match::must(0, 3..3),
2552
    /// ]);
2553
    ///
2554
    /// Ok::<(), Box<dyn std::error::Error>>(())
2555
    /// ```
2556
0
    pub fn utf8_empty(self, yes: bool) -> Config {
2557
0
        Config { utf8_empty: Some(yes), ..self }
2558
0
    }
2559
2560
    /// Toggles whether automatic prefilter support is enabled.
2561
    ///
2562
    /// If this is disabled and [`Config::prefilter`] is not set, then the
2563
    /// meta regex engine will not use any prefilters. This can sometimes
2564
    /// be beneficial in cases where you know (or have measured) that the
2565
    /// prefilter leads to overall worse search performance.
2566
    ///
2567
    /// By default, this is enabled.
2568
    ///
2569
    /// # Example
2570
    ///
2571
    /// ```
2572
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2573
    /// use regex_automata::{meta::Regex, Match};
2574
    ///
2575
    /// let re = Regex::builder()
2576
    ///     .configure(Regex::config().auto_prefilter(false))
2577
    ///     .build(r"Bruce \w+")?;
2578
    /// let hay = "Hello Bruce Springsteen!";
2579
    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2580
    ///
2581
    /// Ok::<(), Box<dyn std::error::Error>>(())
2582
    /// ```
2583
0
    pub fn auto_prefilter(self, yes: bool) -> Config {
2584
0
        Config { autopre: Some(yes), ..self }
2585
0
    }
2586
2587
    /// Overrides and sets the prefilter to use inside a `Regex`.
2588
    ///
2589
    /// This permits one to forcefully set a prefilter in cases where the
2590
    /// caller knows better than whatever the automatic prefilter logic is
2591
    /// capable of.
2592
    ///
2593
    /// By default, this is set to `None` and an automatic prefilter will be
2594
    /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2595
    /// enabled, which it is by default.)
2596
    ///
2597
    /// # Example
2598
    ///
2599
    /// This example shows how to set your own prefilter. In the case of a
2600
    /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2601
    /// constructed in a way that it will look for occurrences of `Bruce `.
2602
    /// In most cases, this is the best choice. But in some cases, it may be
2603
    /// the case that running `memchr` on `B` is the best choice. One can
2604
    /// achieve that behavior by overriding the automatic prefilter logic
2605
    /// and providing a prefilter that just matches `B`.
2606
    ///
2607
    /// ```
2608
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2609
    /// use regex_automata::{
2610
    ///     meta::Regex,
2611
    ///     util::prefilter::Prefilter,
2612
    ///     Match, MatchKind,
2613
    /// };
2614
    ///
2615
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2616
    ///     .expect("a prefilter");
2617
    /// let re = Regex::builder()
2618
    ///     .configure(Regex::config().prefilter(Some(pre)))
2619
    ///     .build(r"Bruce \w+")?;
2620
    /// let hay = "Hello Bruce Springsteen!";
2621
    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2622
    ///
2623
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2624
    /// ```
2625
    ///
2626
    /// # Example: incorrect prefilters can lead to incorrect results!
2627
    ///
2628
    /// Be warned that setting an incorrect prefilter can lead to missed
2629
    /// matches. So if you use this option, ensure your prefilter can _never_
2630
    /// report false negatives. (A false positive is, on the other hand, quite
2631
    /// okay and generally unavoidable.)
2632
    ///
2633
    /// ```
2634
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2635
    /// use regex_automata::{
2636
    ///     meta::Regex,
2637
    ///     util::prefilter::Prefilter,
2638
    ///     Match, MatchKind,
2639
    /// };
2640
    ///
2641
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2642
    ///     .expect("a prefilter");
2643
    /// let re = Regex::builder()
2644
    ///     .configure(Regex::config().prefilter(Some(pre)))
2645
    ///     .build(r"Bruce \w+")?;
2646
    /// let hay = "Hello Bruce Springsteen!";
2647
    /// // Oops! No match found, but there should be one!
2648
    /// assert_eq!(None, re.find(hay));
2649
    ///
2650
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2651
    /// ```
2652
0
    pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2653
0
        Config { pre: Some(pre), ..self }
2654
0
    }
2655
2656
    /// Configures what kinds of groups are compiled as "capturing" in the
2657
    /// underlying regex engine.
2658
    ///
2659
    /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2660
    /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2661
    /// overhead of capture states for explicit groups.
2662
    ///
2663
    /// Note that another approach to avoiding the overhead of capture groups
2664
    /// is by using non-capturing groups in the regex pattern. That is,
2665
    /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2666
    /// the concrete syntax but know that you don't need the underlying capture
2667
    /// states. For example, using `WhichCaptures::Implicit` will behave as if
2668
    /// all explicit capturing groups in the pattern were non-capturing.
2669
    ///
2670
    /// Setting this to `WhichCaptures::None` is usually not the right thing to
2671
    /// do. When no capture states are compiled, some regex engines (such as
2672
    /// the `PikeVM`) won't be able to report match offsets. This will manifest
2673
    /// as no match being found. Indeed, in order to enforce consistent
2674
    /// behavior, the meta regex engine will always report `None` for routines
2675
    /// that return match offsets even if one of its regex engines could
2676
    /// service the request. This avoids "match or not" behavior from being
2677
    /// influenced by user input (since user input can influence the selection
2678
    /// of the regex engine).
2679
    ///
2680
    /// # Example
2681
    ///
2682
    /// This example demonstrates how the results of capture groups can change
2683
    /// based on this option. First we show the default (all capture groups in
2684
    /// the pattern are capturing):
2685
    ///
2686
    /// ```
2687
    /// use regex_automata::{meta::Regex, Match, Span};
2688
    ///
2689
    /// let re = Regex::new(r"foo([0-9]+)bar")?;
2690
    /// let hay = "foo123bar";
2691
    ///
2692
    /// let mut caps = re.create_captures();
2693
    /// re.captures(hay, &mut caps);
2694
    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2695
    /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2696
    ///
2697
    /// Ok::<(), Box<dyn std::error::Error>>(())
2698
    /// ```
2699
    ///
2700
    /// And now we show the behavior when we only include implicit capture
2701
    /// groups. In this case, we can only find the overall match span, but the
2702
    /// spans of any other explicit group don't exist because they are treated
2703
    /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2704
    /// there is no real point in using [`Regex::captures`] since it will never
2705
    /// be able to report more information than [`Regex::find`].)
2706
    ///
2707
    /// ```
2708
    /// use regex_automata::{
2709
    ///     meta::Regex,
2710
    ///     nfa::thompson::WhichCaptures,
2711
    ///     Match,
2712
    ///     Span,
2713
    /// };
2714
    ///
2715
    /// let re = Regex::builder()
2716
    ///     .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2717
    ///     .build(r"foo([0-9]+)bar")?;
2718
    /// let hay = "foo123bar";
2719
    ///
2720
    /// let mut caps = re.create_captures();
2721
    /// re.captures(hay, &mut caps);
2722
    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2723
    /// assert_eq!(None, caps.get_group(1));
2724
    ///
2725
    /// Ok::<(), Box<dyn std::error::Error>>(())
2726
    /// ```
2727
    ///
2728
    /// # Example: strange `Regex::find` behavior
2729
    ///
2730
    /// As noted above, when using [`WhichCaptures::None`], this means that
2731
    /// `Regex::is_match` could return `true` while `Regex::find` returns
2732
    /// `None`:
2733
    ///
2734
    /// ```
2735
    /// use regex_automata::{
2736
    ///     meta::Regex,
2737
    ///     nfa::thompson::WhichCaptures,
2738
    ///     Input,
2739
    ///     Match,
2740
    ///     Span,
2741
    /// };
2742
    ///
2743
    /// let re = Regex::builder()
2744
    ///     .configure(Regex::config().which_captures(WhichCaptures::None))
2745
    ///     .build(r"foo([0-9]+)bar")?;
2746
    /// let hay = "foo123bar";
2747
    ///
2748
    /// assert!(re.is_match(hay));
2749
    /// assert_eq!(re.find(hay), None);
2750
    /// assert_eq!(re.search_half(&Input::new(hay)), None);
2751
    ///
2752
    /// Ok::<(), Box<dyn std::error::Error>>(())
2753
    /// ```
2754
0
    pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2755
0
        self.which_captures = Some(which_captures);
2756
0
        self
2757
0
    }
2758
2759
    /// Sets the size limit, in bytes, to enforce on the construction of every
2760
    /// NFA build by the meta regex engine.
2761
    ///
2762
    /// Setting it to `None` disables the limit. This is not recommended if
2763
    /// you're compiling untrusted patterns.
2764
    ///
2765
    /// Note that this limit is applied to _each_ NFA built, and if any of
2766
    /// them exceed the limit, then construction will fail. This limit does
2767
    /// _not_ correspond to the total memory used by all NFAs in the meta regex
2768
    /// engine.
2769
    ///
2770
    /// This defaults to some reasonable number that permits most reasonable
2771
    /// patterns.
2772
    ///
2773
    /// # Example
2774
    ///
2775
    /// ```
2776
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2777
    /// use regex_automata::meta::Regex;
2778
    ///
2779
    /// let result = Regex::builder()
2780
    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2781
    ///     // Not even 20KB is enough to build a single large Unicode class!
2782
    ///     .build(r"\pL");
2783
    /// assert!(result.is_err());
2784
    ///
2785
    /// // But notice that building such a regex with the exact same limit
2786
    /// // can succeed depending on other aspects of the configuration. For
2787
    /// // example, a single *forward* NFA will (at time of writing) fit into
2788
    /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2789
    /// // So if one configures a meta regex such that a reverse NFA is never
2790
    /// // needed and thus never built, then the 20KB limit will be enough for
2791
    /// // a pattern like \pL!
2792
    /// let result = Regex::builder()
2793
    ///     .configure(Regex::config()
2794
    ///         .nfa_size_limit(Some(20 * (1<<10)))
2795
    ///         // The DFAs are the only thing that (currently) need a reverse
2796
    ///         // NFA. So if both are disabled, the meta regex engine will
2797
    ///         // skip building the reverse NFA. Note that this isn't an API
2798
    ///         // guarantee. A future semver compatible version may introduce
2799
    ///         // new use cases for a reverse NFA.
2800
    ///         .hybrid(false)
2801
    ///         .dfa(false)
2802
    ///     )
2803
    ///     // Not even 20KB is enough to build a single large Unicode class!
2804
    ///     .build(r"\pL");
2805
    /// assert!(result.is_ok());
2806
    ///
2807
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2808
    /// ```
2809
0
    pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2810
0
        Config { nfa_size_limit: Some(limit), ..self }
2811
0
    }
2812
2813
    /// Sets the size limit, in bytes, for the one-pass DFA.
2814
    ///
2815
    /// Setting it to `None` disables the limit. Disabling the limit is
2816
    /// strongly discouraged when compiling untrusted patterns. Even if the
2817
    /// patterns are trusted, it still may not be a good idea, since a one-pass
2818
    /// DFA can use a lot of memory. With that said, as the size of a regex
2819
    /// increases, the likelihood of it being one-pass likely decreases.
2820
    ///
2821
    /// This defaults to some reasonable number that permits most reasonable
2822
    /// one-pass patterns.
2823
    ///
2824
    /// # Example
2825
    ///
2826
    /// This shows how to set the one-pass DFA size limit. Note that since
2827
    /// a one-pass DFA is an optional component of the meta regex engine,
2828
    /// this size limit only impacts what is built internally and will never
2829
    /// determine whether a `Regex` itself fails to build.
2830
    ///
2831
    /// ```
2832
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2833
    /// use regex_automata::meta::Regex;
2834
    ///
2835
    /// let result = Regex::builder()
2836
    ///     .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2837
    ///     .build(r"\pL{5}");
2838
    /// assert!(result.is_ok());
2839
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2840
    /// ```
2841
0
    pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2842
0
        Config { onepass_size_limit: Some(limit), ..self }
2843
0
    }
2844
2845
    /// Set the cache capacity, in bytes, for the lazy DFA.
2846
    ///
2847
    /// The cache capacity of the lazy DFA determines approximately how much
2848
    /// heap memory it is allowed to use to store its state transitions. The
2849
    /// state transitions are computed at search time, and if the cache fills
2850
    /// up it, it is cleared. At this point, any previously generated state
2851
    /// transitions are lost and are re-generated if they're needed again.
2852
    ///
2853
    /// This sort of cache filling and clearing works quite well _so long as
2854
    /// cache clearing happens infrequently_. If it happens too often, then the
2855
    /// meta regex engine will stop using the lazy DFA and switch over to a
2856
    /// different regex engine.
2857
    ///
2858
    /// In cases where the cache is cleared too often, it may be possible to
2859
    /// give the cache more space and reduce (or eliminate) how often it is
2860
    /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2861
    /// used at all if its cache capacity isn't big enough.
2862
    ///
2863
    /// The capacity set here is a _limit_ on how much memory is used. The
2864
    /// actual memory used is only allocated as it's needed.
2865
    ///
2866
    /// Determining the right value for this is a little tricky and will likely
2867
    /// required some profiling. Enabling the `logging` feature and setting the
2868
    /// log level to `trace` will also tell you how often the cache is being
2869
    /// cleared.
2870
    ///
2871
    /// # Example
2872
    ///
2873
    /// ```
2874
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2875
    /// use regex_automata::meta::Regex;
2876
    ///
2877
    /// let result = Regex::builder()
2878
    ///     .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2879
    ///     .build(r"\pL{5}");
2880
    /// assert!(result.is_ok());
2881
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2882
    /// ```
2883
0
    pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2884
0
        Config { hybrid_cache_capacity: Some(limit), ..self }
2885
0
    }
2886
2887
    /// Sets the size limit, in bytes, for heap memory used for a fully
2888
    /// compiled DFA.
2889
    ///
2890
    /// **NOTE:** If you increase this, you'll likely also need to increase
2891
    /// [`Config::dfa_state_limit`].
2892
    ///
2893
    /// In contrast to the lazy DFA, building a full DFA requires computing
2894
    /// all of its state transitions up front. This can be a very expensive
2895
    /// process, and runs in worst case `2^n` time and space (where `n` is
2896
    /// proportional to the size of the regex). However, a full DFA unlocks
2897
    /// some additional optimization opportunities.
2898
    ///
2899
    /// Because full DFAs can be so expensive, the default limits for them are
2900
    /// incredibly small. Generally speaking, if your regex is moderately big
2901
    /// or if you're using Unicode features (`\w` is Unicode-aware by default
2902
    /// for example), then you can expect that the meta regex engine won't even
2903
    /// attempt to build a DFA for it.
2904
    ///
2905
    /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2906
    /// meta regex will not use any sort of limits when deciding whether to
2907
    /// build a DFA. This in turn makes construction of a `Regex` take
2908
    /// worst case exponential time and space. Even short patterns can result
2909
    /// in huge space blow ups. So it is strongly recommended to keep some kind
2910
    /// of limit set!
2911
    ///
2912
    /// The default is set to a small number that permits some simple regexes
2913
    /// to get compiled into DFAs in reasonable time.
2914
    ///
2915
    /// # Example
2916
    ///
2917
    /// ```
2918
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2919
    /// use regex_automata::meta::Regex;
2920
    ///
2921
    /// let result = Regex::builder()
2922
    ///     // 100MB is much bigger than the default.
2923
    ///     .configure(Regex::config()
2924
    ///         .dfa_size_limit(Some(100 * (1<<20)))
2925
    ///         // We don't care about size too much here, so just
2926
    ///         // remove the NFA state limit altogether.
2927
    ///         .dfa_state_limit(None))
2928
    ///     .build(r"\pL{5}");
2929
    /// assert!(result.is_ok());
2930
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2931
    /// ```
2932
0
    pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2933
0
        Config { dfa_size_limit: Some(limit), ..self }
2934
0
    }
2935
2936
    /// Sets a limit on the total number of NFA states, beyond which, a full
2937
    /// DFA is not attempted to be compiled.
2938
    ///
2939
    /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2940
    /// where as `Config::dfa_size_limit` is applied by attempting to construct
2941
    /// a DFA, this limit is used to avoid the attempt in the first place. This
2942
    /// is useful to avoid hefty initialization costs associated with building
2943
    /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2944
    ///
2945
    /// By default, this is set to a very small number.
2946
    ///
2947
    /// # Example
2948
    ///
2949
    /// ```
2950
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2951
    /// use regex_automata::meta::Regex;
2952
    ///
2953
    /// let result = Regex::builder()
2954
    ///     .configure(Regex::config()
2955
    ///         // Sometimes the default state limit rejects DFAs even
2956
    ///         // if they would fit in the size limit. Here, we disable
2957
    ///         // the check on the number of NFA states and just rely on
2958
    ///         // the size limit.
2959
    ///         .dfa_state_limit(None))
2960
    ///     .build(r"(?-u)\w{30}");
2961
    /// assert!(result.is_ok());
2962
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2963
    /// ```
2964
0
    pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2965
0
        Config { dfa_state_limit: Some(limit), ..self }
2966
0
    }
2967
2968
    /// Whether to attempt to shrink the size of the alphabet for the regex
2969
    /// pattern or not. When enabled, the alphabet is shrunk into a set of
2970
    /// equivalence classes, where every byte in the same equivalence class
2971
    /// cannot discriminate between a match or non-match.
2972
    ///
2973
    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2974
    /// does not yield any speed advantages. Indeed, disabling it can result
2975
    /// in much higher memory usage. Disabling byte classes is useful for
2976
    /// debugging the actual generated transitions because it lets one see the
2977
    /// transitions defined on actual bytes instead of the equivalence classes.
2978
    ///
2979
    /// This option is enabled by default and should never be disabled unless
2980
    /// one is debugging the meta regex engine's internals.
2981
    ///
2982
    /// # Example
2983
    ///
2984
    /// ```
2985
    /// use regex_automata::{meta::Regex, Match};
2986
    ///
2987
    /// let re = Regex::builder()
2988
    ///     .configure(Regex::config().byte_classes(false))
2989
    ///     .build(r"[a-z]+")?;
2990
    /// let hay = "!!quux!!";
2991
    /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2992
    ///
2993
    /// # Ok::<(), Box<dyn std::error::Error>>(())
2994
    /// ```
2995
0
    pub fn byte_classes(self, yes: bool) -> Config {
2996
0
        Config { byte_classes: Some(yes), ..self }
2997
0
    }
2998
2999
    /// Set the line terminator to be used by the `^` and `$` anchors in
3000
    /// multi-line mode.
3001
    ///
3002
    /// This option has no effect when CRLF mode is enabled. That is,
3003
    /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
3004
    /// `\r` and `\n` as line terminators (and will never match between a `\r`
3005
    /// and a `\n`).
3006
    ///
3007
    /// By default, `\n` is the line terminator.
3008
    ///
3009
    /// **Warning**: This does not change the behavior of `.`. To do that,
3010
    /// you'll need to configure the syntax option
3011
    /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
3012
    /// in addition to this. Otherwise, `.` will continue to match any
3013
    /// character other than `\n`.
3014
    ///
3015
    /// # Example
3016
    ///
3017
    /// ```
3018
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3019
    ///
3020
    /// let re = Regex::builder()
3021
    ///     .syntax(syntax::Config::new().multi_line(true))
3022
    ///     .configure(Regex::config().line_terminator(b'\x00'))
3023
    ///     .build(r"^foo$")?;
3024
    /// let hay = "\x00foo\x00";
3025
    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3026
    ///
3027
    /// # Ok::<(), Box<dyn std::error::Error>>(())
3028
    /// ```
3029
0
    pub fn line_terminator(self, byte: u8) -> Config {
3030
0
        Config { line_terminator: Some(byte), ..self }
3031
0
    }
3032
3033
    /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
3034
    /// be available for use by the meta regex engine.
3035
    ///
3036
    /// Enabling this does not necessarily mean that the lazy DFA will
3037
    /// definitely be used. It just means that it will be _available_ for use
3038
    /// if the meta regex engine thinks it will be useful.
3039
    ///
3040
    /// When the `hybrid` crate feature is enabled, then this is enabled by
3041
    /// default. Otherwise, if the crate feature is disabled, then this is
3042
    /// always disabled, regardless of its setting by the caller.
3043
0
    pub fn hybrid(self, yes: bool) -> Config {
3044
0
        Config { hybrid: Some(yes), ..self }
3045
0
    }
3046
3047
    /// Toggle whether a fully compiled DFA should be available for use by the
3048
    /// meta regex engine.
3049
    ///
3050
    /// Enabling this does not necessarily mean that a DFA will definitely be
3051
    /// used. It just means that it will be _available_ for use if the meta
3052
    /// regex engine thinks it will be useful.
3053
    ///
3054
    /// When the `dfa-build` crate feature is enabled, then this is enabled by
3055
    /// default. Otherwise, if the crate feature is disabled, then this is
3056
    /// always disabled, regardless of its setting by the caller.
3057
0
    pub fn dfa(self, yes: bool) -> Config {
3058
0
        Config { dfa: Some(yes), ..self }
3059
0
    }
3060
3061
    /// Toggle whether a one-pass DFA should be available for use by the meta
3062
    /// regex engine.
3063
    ///
3064
    /// Enabling this does not necessarily mean that a one-pass DFA will
3065
    /// definitely be used. It just means that it will be _available_ for
3066
    /// use if the meta regex engine thinks it will be useful. (Indeed, a
3067
    /// one-pass DFA can only be used when the regex is one-pass. See the
3068
    /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
3069
    ///
3070
    /// When the `dfa-onepass` crate feature is enabled, then this is enabled
3071
    /// by default. Otherwise, if the crate feature is disabled, then this is
3072
    /// always disabled, regardless of its setting by the caller.
3073
0
    pub fn onepass(self, yes: bool) -> Config {
3074
0
        Config { onepass: Some(yes), ..self }
3075
0
    }
3076
3077
    /// Toggle whether a bounded backtracking regex engine should be available
3078
    /// for use by the meta regex engine.
3079
    ///
3080
    /// Enabling this does not necessarily mean that a bounded backtracker will
3081
    /// definitely be used. It just means that it will be _available_ for use
3082
    /// if the meta regex engine thinks it will be useful.
3083
    ///
3084
    /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
3085
    /// by default. Otherwise, if the crate feature is disabled, then this is
3086
    /// always disabled, regardless of its setting by the caller.
3087
0
    pub fn backtrack(self, yes: bool) -> Config {
3088
0
        Config { backtrack: Some(yes), ..self }
3089
0
    }
3090
3091
    /// Returns the match kind on this configuration, as set by
3092
    /// [`Config::match_kind`].
3093
    ///
3094
    /// If it was not explicitly set, then a default value is returned.
3095
0
    pub fn get_match_kind(&self) -> MatchKind {
3096
0
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3097
0
    }
3098
3099
    /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
3100
    /// set by [`Config::utf8_empty`].
3101
    ///
3102
    /// If it was not explicitly set, then a default value is returned.
3103
0
    pub fn get_utf8_empty(&self) -> bool {
3104
0
        self.utf8_empty.unwrap_or(true)
3105
0
    }
3106
3107
    /// Returns whether automatic prefilters are enabled, as set by
3108
    /// [`Config::auto_prefilter`].
3109
    ///
3110
    /// If it was not explicitly set, then a default value is returned.
3111
0
    pub fn get_auto_prefilter(&self) -> bool {
3112
0
        self.autopre.unwrap_or(true)
3113
0
    }
3114
3115
    /// Returns a manually set prefilter, if one was set by
3116
    /// [`Config::prefilter`].
3117
    ///
3118
    /// If it was not explicitly set, then a default value is returned.
3119
0
    pub fn get_prefilter(&self) -> Option<&Prefilter> {
3120
0
        self.pre.as_ref().unwrap_or(&None).as_ref()
3121
0
    }
3122
3123
    /// Returns the capture configuration, as set by
3124
    /// [`Config::which_captures`].
3125
    ///
3126
    /// If it was not explicitly set, then a default value is returned.
3127
0
    pub fn get_which_captures(&self) -> WhichCaptures {
3128
0
        self.which_captures.unwrap_or(WhichCaptures::All)
3129
0
    }
3130
3131
    /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
3132
    ///
3133
    /// If it was not explicitly set, then a default value is returned.
3134
0
    pub fn get_nfa_size_limit(&self) -> Option<usize> {
3135
0
        self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3136
0
    }
3137
3138
    /// Returns one-pass DFA size limit, as set by
3139
    /// [`Config::onepass_size_limit`].
3140
    ///
3141
    /// If it was not explicitly set, then a default value is returned.
3142
0
    pub fn get_onepass_size_limit(&self) -> Option<usize> {
3143
0
        self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3144
0
    }
3145
3146
    /// Returns hybrid NFA/DFA cache capacity, as set by
3147
    /// [`Config::hybrid_cache_capacity`].
3148
    ///
3149
    /// If it was not explicitly set, then a default value is returned.
3150
0
    pub fn get_hybrid_cache_capacity(&self) -> usize {
3151
0
        self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3152
0
    }
3153
3154
    /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3155
    ///
3156
    /// If it was not explicitly set, then a default value is returned.
3157
0
    pub fn get_dfa_size_limit(&self) -> Option<usize> {
3158
        // The default for this is VERY small because building a full DFA is
3159
        // ridiculously costly. But for regexes that are very small, it can be
3160
        // beneficial to use a full DFA. In particular, a full DFA can enable
3161
        // additional optimizations via something called "accelerated" states.
3162
        // Namely, when there's a state with only a few outgoing transitions,
3163
        // we can temporary suspend walking the transition table and use memchr
3164
        // for just those outgoing transitions to skip ahead very quickly.
3165
        //
3166
        // Generally speaking, if Unicode is enabled in your regex and you're
3167
        // using some kind of Unicode feature, then it's going to blow this
3168
        // size limit. Moreover, Unicode tends to defeat the "accelerated"
3169
        // state optimization too, so it's a double whammy.
3170
        //
3171
        // We also use a limit on the number of NFA states to avoid even
3172
        // starting the DFA construction process. Namely, DFA construction
3173
        // itself could make lots of initial allocs proportional to the size
3174
        // of the NFA, and if the NFA is large, it doesn't make sense to pay
3175
        // that cost if we know it's likely to be blown by a large margin.
3176
0
        self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3177
0
    }
3178
3179
    /// Returns DFA size limit in terms of the number of states in the NFA, as
3180
    /// set by [`Config::dfa_state_limit`].
3181
    ///
3182
    /// If it was not explicitly set, then a default value is returned.
3183
0
    pub fn get_dfa_state_limit(&self) -> Option<usize> {
3184
        // Again, as with the size limit, we keep this very small.
3185
0
        self.dfa_state_limit.unwrap_or(Some(30))
3186
0
    }
3187
3188
    /// Returns whether byte classes are enabled, as set by
3189
    /// [`Config::byte_classes`].
3190
    ///
3191
    /// If it was not explicitly set, then a default value is returned.
3192
0
    pub fn get_byte_classes(&self) -> bool {
3193
0
        self.byte_classes.unwrap_or(true)
3194
0
    }
3195
3196
    /// Returns the line terminator for this configuration, as set by
3197
    /// [`Config::line_terminator`].
3198
    ///
3199
    /// If it was not explicitly set, then a default value is returned.
3200
0
    pub fn get_line_terminator(&self) -> u8 {
3201
0
        self.line_terminator.unwrap_or(b'\n')
3202
0
    }
3203
3204
    /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3205
    /// [`Config::hybrid`].
3206
    ///
3207
    /// If it was not explicitly set, then a default value is returned.
3208
0
    pub fn get_hybrid(&self) -> bool {
3209
        #[cfg(feature = "hybrid")]
3210
        {
3211
0
            self.hybrid.unwrap_or(true)
3212
        }
3213
        #[cfg(not(feature = "hybrid"))]
3214
        {
3215
            false
3216
        }
3217
0
    }
3218
3219
    /// Returns whether the DFA regex engine may be used, as set by
3220
    /// [`Config::dfa`].
3221
    ///
3222
    /// If it was not explicitly set, then a default value is returned.
3223
0
    pub fn get_dfa(&self) -> bool {
3224
        #[cfg(feature = "dfa-build")]
3225
        {
3226
            self.dfa.unwrap_or(true)
3227
        }
3228
        #[cfg(not(feature = "dfa-build"))]
3229
        {
3230
0
            false
3231
        }
3232
0
    }
3233
3234
    /// Returns whether the one-pass DFA regex engine may be used, as set by
3235
    /// [`Config::onepass`].
3236
    ///
3237
    /// If it was not explicitly set, then a default value is returned.
3238
0
    pub fn get_onepass(&self) -> bool {
3239
        #[cfg(feature = "dfa-onepass")]
3240
        {
3241
0
            self.onepass.unwrap_or(true)
3242
        }
3243
        #[cfg(not(feature = "dfa-onepass"))]
3244
        {
3245
            false
3246
        }
3247
0
    }
3248
3249
    /// Returns whether the bounded backtracking regex engine may be used, as
3250
    /// set by [`Config::backtrack`].
3251
    ///
3252
    /// If it was not explicitly set, then a default value is returned.
3253
0
    pub fn get_backtrack(&self) -> bool {
3254
        #[cfg(feature = "nfa-backtrack")]
3255
        {
3256
0
            self.backtrack.unwrap_or(true)
3257
        }
3258
        #[cfg(not(feature = "nfa-backtrack"))]
3259
        {
3260
            false
3261
        }
3262
0
    }
3263
3264
    /// Overwrite the default configuration such that the options in `o` are
3265
    /// always used. If an option in `o` is not set, then the corresponding
3266
    /// option in `self` is used. If it's not set in `self` either, then it
3267
    /// remains not set.
3268
0
    pub(crate) fn overwrite(&self, o: Config) -> Config {
3269
        Config {
3270
0
            match_kind: o.match_kind.or(self.match_kind),
3271
0
            utf8_empty: o.utf8_empty.or(self.utf8_empty),
3272
0
            autopre: o.autopre.or(self.autopre),
3273
0
            pre: o.pre.or_else(|| self.pre.clone()),
3274
0
            which_captures: o.which_captures.or(self.which_captures),
3275
0
            nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3276
0
            onepass_size_limit: o
3277
0
                .onepass_size_limit
3278
0
                .or(self.onepass_size_limit),
3279
0
            hybrid_cache_capacity: o
3280
0
                .hybrid_cache_capacity
3281
0
                .or(self.hybrid_cache_capacity),
3282
0
            hybrid: o.hybrid.or(self.hybrid),
3283
0
            dfa: o.dfa.or(self.dfa),
3284
0
            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3285
0
            dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3286
0
            onepass: o.onepass.or(self.onepass),
3287
0
            backtrack: o.backtrack.or(self.backtrack),
3288
0
            byte_classes: o.byte_classes.or(self.byte_classes),
3289
0
            line_terminator: o.line_terminator.or(self.line_terminator),
3290
        }
3291
0
    }
3292
}
3293
3294
/// A builder for configuring and constructing a `Regex`.
3295
///
3296
/// The builder permits configuring two different aspects of a `Regex`:
3297
///
3298
/// * [`Builder::configure`] will set high-level configuration options as
3299
/// described by a [`Config`].
3300
/// * [`Builder::syntax`] will set the syntax level configuration options
3301
/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3302
/// This only applies when building a `Regex` from pattern strings.
3303
///
3304
/// Once configured, the builder can then be used to construct a `Regex` from
3305
/// one of 4 different inputs:
3306
///
3307
/// * [`Builder::build`] creates a regex from a single pattern string.
3308
/// * [`Builder::build_many`] creates a regex from many pattern strings.
3309
/// * [`Builder::build_from_hir`] creates a regex from a
3310
/// [`regex-syntax::Hir`](Hir) expression.
3311
/// * [`Builder::build_many_from_hir`] creates a regex from many
3312
/// [`regex-syntax::Hir`](Hir) expressions.
3313
///
3314
/// The latter two methods in particular provide a way to construct a fully
3315
/// feature regular expression matcher directly from an `Hir` expression
3316
/// without having to first convert it to a string. (This is in contrast to the
3317
/// top-level `regex` crate which intentionally provides no such API in order
3318
/// to avoid making `regex-syntax` a public dependency.)
3319
///
3320
/// As a convenience, this builder may be created via [`Regex::builder`], which
3321
/// may help avoid an extra import.
3322
///
3323
/// # Example: change the line terminator
3324
///
3325
/// This example shows how to enable multi-line mode by default and change the
3326
/// line terminator to the NUL byte:
3327
///
3328
/// ```
3329
/// use regex_automata::{meta::Regex, util::syntax, Match};
3330
///
3331
/// let re = Regex::builder()
3332
///     .syntax(syntax::Config::new().multi_line(true))
3333
///     .configure(Regex::config().line_terminator(b'\x00'))
3334
///     .build(r"^foo$")?;
3335
/// let hay = "\x00foo\x00";
3336
/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3337
///
3338
/// # Ok::<(), Box<dyn std::error::Error>>(())
3339
/// ```
3340
///
3341
/// # Example: disable UTF-8 requirement
3342
///
3343
/// By default, regex patterns are required to match UTF-8. This includes
3344
/// regex patterns that can produce matches of length zero. In the case of an
3345
/// empty match, by default, matches will not appear between the code units of
3346
/// a UTF-8 encoded codepoint.
3347
///
3348
/// However, it can be useful to disable this requirement, particularly if
3349
/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3350
///
3351
/// ```
3352
/// use regex_automata::{meta::Regex, util::syntax, Match};
3353
///
3354
/// let mut builder = Regex::builder();
3355
/// // Disables the requirement that non-empty matches match UTF-8.
3356
/// builder.syntax(syntax::Config::new().utf8(false));
3357
/// // Disables the requirement that empty matches match UTF-8 boundaries.
3358
/// builder.configure(Regex::config().utf8_empty(false));
3359
///
3360
/// // We can match raw bytes via \xZZ syntax, but we need to disable
3361
/// // Unicode mode to do that. We could disable it everywhere, or just
3362
/// // selectively, as shown here.
3363
/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3364
/// let hay = b"\xFFfoo\xFF";
3365
/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3366
///
3367
/// // We can also match between code units.
3368
/// let re = builder.build(r"")?;
3369
/// let hay = "☃";
3370
/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3371
///     Match::must(0, 0..0),
3372
///     Match::must(0, 1..1),
3373
///     Match::must(0, 2..2),
3374
///     Match::must(0, 3..3),
3375
/// ]);
3376
///
3377
/// # Ok::<(), Box<dyn std::error::Error>>(())
3378
/// ```
3379
#[derive(Clone, Debug)]
3380
pub struct Builder {
3381
    config: Config,
3382
    ast: ast::parse::ParserBuilder,
3383
    hir: hir::translate::TranslatorBuilder,
3384
}
3385
3386
impl Builder {
3387
    /// Creates a new builder for configuring and constructing a [`Regex`].
3388
0
    pub fn new() -> Builder {
3389
0
        Builder {
3390
0
            config: Config::default(),
3391
0
            ast: ast::parse::ParserBuilder::new(),
3392
0
            hir: hir::translate::TranslatorBuilder::new(),
3393
0
        }
3394
0
    }
3395
3396
    /// Builds a `Regex` from a single pattern string.
3397
    ///
3398
    /// If there was a problem parsing the pattern or a problem turning it into
3399
    /// a regex matcher, then an error is returned.
3400
    ///
3401
    /// # Example
3402
    ///
3403
    /// This example shows how to configure syntax options.
3404
    ///
3405
    /// ```
3406
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3407
    ///
3408
    /// let re = Regex::builder()
3409
    ///     .syntax(syntax::Config::new().crlf(true).multi_line(true))
3410
    ///     .build(r"^foo$")?;
3411
    /// let hay = "\r\nfoo\r\n";
3412
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3413
    ///
3414
    /// # Ok::<(), Box<dyn std::error::Error>>(())
3415
    /// ```
3416
0
    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3417
0
        self.build_many(&[pattern])
3418
0
    }
3419
3420
    /// Builds a `Regex` from many pattern strings.
3421
    ///
3422
    /// If there was a problem parsing any of the patterns or a problem turning
3423
    /// them into a regex matcher, then an error is returned.
3424
    ///
3425
    /// # Example: finding the pattern that caused an error
3426
    ///
3427
    /// When a syntax error occurs, it is possible to ask which pattern
3428
    /// caused the syntax error.
3429
    ///
3430
    /// ```
3431
    /// use regex_automata::{meta::Regex, PatternID};
3432
    ///
3433
    /// let err = Regex::builder()
3434
    ///     .build_many(&["a", "b", r"\p{Foo}", "c"])
3435
    ///     .unwrap_err();
3436
    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3437
    /// ```
3438
    ///
3439
    /// # Example: zero patterns is valid
3440
    ///
3441
    /// Building a regex with zero patterns results in a regex that never
3442
    /// matches anything. Because this routine is generic, passing an empty
3443
    /// slice usually requires a turbo-fish (or something else to help type
3444
    /// inference).
3445
    ///
3446
    /// ```
3447
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3448
    ///
3449
    /// let re = Regex::builder()
3450
    ///     .build_many::<&str>(&[])?;
3451
    /// assert_eq!(None, re.find(""));
3452
    ///
3453
    /// # Ok::<(), Box<dyn std::error::Error>>(())
3454
    /// ```
3455
0
    pub fn build_many<P: AsRef<str>>(
3456
0
        &self,
3457
0
        patterns: &[P],
3458
0
    ) -> Result<Regex, BuildError> {
3459
        use crate::util::primitives::IteratorIndexExt;
3460
        log! {
3461
            debug!("building meta regex with {} patterns:", patterns.len());
3462
            for (pid, p) in patterns.iter().with_pattern_ids() {
3463
                let p = p.as_ref();
3464
                // We might split a grapheme with this truncation logic, but
3465
                // that's fine. We at least avoid splitting a codepoint.
3466
                let maxoff = p
3467
                    .char_indices()
3468
                    .map(|(i, ch)| i + ch.len_utf8())
3469
                    .take(1000)
3470
                    .last()
3471
                    .unwrap_or(0);
3472
                if maxoff < p.len() {
3473
                    debug!("{pid:?}: {}[... snip ...]", &p[..maxoff]);
3474
                } else {
3475
                    debug!("{pid:?}: {p}");
3476
                }
3477
            }
3478
        }
3479
0
        let (mut asts, mut hirs) = (vec![], vec![]);
3480
0
        for (pid, p) in patterns.iter().with_pattern_ids() {
3481
0
            let ast = self
3482
0
                .ast
3483
0
                .build()
3484
0
                .parse(p.as_ref())
3485
0
                .map_err(|err| BuildError::ast(pid, err))?;
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>::{closure#0}
3486
0
            asts.push(ast);
3487
        }
3488
0
        for ((pid, p), ast) in
3489
0
            patterns.iter().with_pattern_ids().zip(asts.iter())
3490
        {
3491
0
            let hir = self
3492
0
                .hir
3493
0
                .build()
3494
0
                .translate(p.as_ref(), ast)
3495
0
                .map_err(|err| BuildError::hir(pid, err))?;
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>::{closure#1}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>::{closure#1}
3496
0
            hirs.push(hir);
3497
        }
3498
0
        self.build_many_from_hir(&hirs)
3499
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<alloc::string::String>
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many::<&str>
3500
3501
    /// Builds a `Regex` directly from an `Hir` expression.
3502
    ///
3503
    /// This is useful if you needed to parse a pattern string into an `Hir`
3504
    /// for other reasons (such as analysis or transformations). This routine
3505
    /// permits building a `Regex` directly from the `Hir` expression instead
3506
    /// of first converting the `Hir` back to a pattern string.
3507
    ///
3508
    /// When using this method, any options set via [`Builder::syntax`] are
3509
    /// ignored. Namely, the syntax options only apply when parsing a pattern
3510
    /// string, which isn't relevant here.
3511
    ///
3512
    /// If there was a problem building the underlying regex matcher for the
3513
    /// given `Hir`, then an error is returned.
3514
    ///
3515
    /// # Example
3516
    ///
3517
    /// This example shows how one can hand-construct an `Hir` expression and
3518
    /// build a regex from it without doing any parsing at all.
3519
    ///
3520
    /// ```
3521
    /// use {
3522
    ///     regex_automata::{meta::Regex, Match},
3523
    ///     regex_syntax::hir::{Hir, Look},
3524
    /// };
3525
    ///
3526
    /// // (?Rm)^foo$
3527
    /// let hir = Hir::concat(vec![
3528
    ///     Hir::look(Look::StartCRLF),
3529
    ///     Hir::literal("foo".as_bytes()),
3530
    ///     Hir::look(Look::EndCRLF),
3531
    /// ]);
3532
    /// let re = Regex::builder()
3533
    ///     .build_from_hir(&hir)?;
3534
    /// let hay = "\r\nfoo\r\n";
3535
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3536
    ///
3537
    /// Ok::<(), Box<dyn std::error::Error>>(())
3538
    /// ```
3539
0
    pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
3540
0
        self.build_many_from_hir(&[hir])
3541
0
    }
3542
3543
    /// Builds a `Regex` directly from many `Hir` expressions.
3544
    ///
3545
    /// This is useful if you needed to parse pattern strings into `Hir`
3546
    /// expressions for other reasons (such as analysis or transformations).
3547
    /// This routine permits building a `Regex` directly from the `Hir`
3548
    /// expressions instead of first converting the `Hir` expressions back to
3549
    /// pattern strings.
3550
    ///
3551
    /// When using this method, any options set via [`Builder::syntax`] are
3552
    /// ignored. Namely, the syntax options only apply when parsing a pattern
3553
    /// string, which isn't relevant here.
3554
    ///
3555
    /// If there was a problem building the underlying regex matcher for the
3556
    /// given `Hir` expressions, then an error is returned.
3557
    ///
3558
    /// Note that unlike [`Builder::build_many`], this can only fail as a
3559
    /// result of building the underlying matcher. In that case, there is
3560
    /// no single `Hir` expression that can be isolated as a reason for the
3561
    /// failure. So if this routine fails, it's not possible to determine which
3562
    /// `Hir` expression caused the failure.
3563
    ///
3564
    /// # Example
3565
    ///
3566
    /// This example shows how one can hand-construct multiple `Hir`
3567
    /// expressions and build a single regex from them without doing any
3568
    /// parsing at all.
3569
    ///
3570
    /// ```
3571
    /// use {
3572
    ///     regex_automata::{meta::Regex, Match},
3573
    ///     regex_syntax::hir::{Hir, Look},
3574
    /// };
3575
    ///
3576
    /// // (?Rm)^foo$
3577
    /// let hir1 = Hir::concat(vec![
3578
    ///     Hir::look(Look::StartCRLF),
3579
    ///     Hir::literal("foo".as_bytes()),
3580
    ///     Hir::look(Look::EndCRLF),
3581
    /// ]);
3582
    /// // (?Rm)^bar$
3583
    /// let hir2 = Hir::concat(vec![
3584
    ///     Hir::look(Look::StartCRLF),
3585
    ///     Hir::literal("bar".as_bytes()),
3586
    ///     Hir::look(Look::EndCRLF),
3587
    /// ]);
3588
    /// let re = Regex::builder()
3589
    ///     .build_many_from_hir(&[&hir1, &hir2])?;
3590
    /// let hay = "\r\nfoo\r\nbar";
3591
    /// let got: Vec<Match> = re.find_iter(hay).collect();
3592
    /// let expected = vec![
3593
    ///     Match::must(0, 2..5),
3594
    ///     Match::must(1, 7..10),
3595
    /// ];
3596
    /// assert_eq!(expected, got);
3597
    ///
3598
    /// Ok::<(), Box<dyn std::error::Error>>(())
3599
    /// ```
3600
0
    pub fn build_many_from_hir<H: Borrow<Hir>>(
3601
0
        &self,
3602
0
        hirs: &[H],
3603
0
    ) -> Result<Regex, BuildError> {
3604
0
        let config = self.config.clone();
3605
        // We collect the HIRs into a vec so we can write internal routines
3606
        // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3607
        // bloat down..
3608
0
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>::{closure#0}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>::{closure#0}
3609
0
        let info = RegexInfo::new(config, &hirs);
3610
0
        let strat = strategy::new(&info, &hirs)?;
3611
0
        let pool = {
3612
0
            let strat = Arc::clone(&strat);
3613
0
            let create: CachePoolFn = Box::new(move || strat.create_cache());
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>::{closure#1}
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>::{closure#1}
3614
0
            Pool::new(create)
3615
        };
3616
0
        Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3617
0
    }
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<regex_syntax::hir::Hir>
Unexecuted instantiation: <regex_automata::meta::regex::Builder>::build_many_from_hir::<&regex_syntax::hir::Hir>
3618
3619
    /// Configure the behavior of a `Regex`.
3620
    ///
3621
    /// This configuration controls non-syntax options related to the behavior
3622
    /// of a `Regex`. This includes things like whether empty matches can split
3623
    /// a codepoint, prefilters, line terminators and a long list of options
3624
    /// for configuring which regex engines the meta regex engine will be able
3625
    /// to use internally.
3626
    ///
3627
    /// # Example
3628
    ///
3629
    /// This example shows how to disable UTF-8 empty mode. This will permit
3630
    /// empty matches to occur between the UTF-8 encoding of a codepoint.
3631
    ///
3632
    /// ```
3633
    /// use regex_automata::{meta::Regex, Match};
3634
    ///
3635
    /// let re = Regex::new("")?;
3636
    /// let got: Vec<Match> = re.find_iter("☃").collect();
3637
    /// // Matches only occur at the beginning and end of the snowman.
3638
    /// assert_eq!(got, vec![
3639
    ///     Match::must(0, 0..0),
3640
    ///     Match::must(0, 3..3),
3641
    /// ]);
3642
    ///
3643
    /// let re = Regex::builder()
3644
    ///     .configure(Regex::config().utf8_empty(false))
3645
    ///     .build("")?;
3646
    /// let got: Vec<Match> = re.find_iter("☃").collect();
3647
    /// // Matches now occur at every position!
3648
    /// assert_eq!(got, vec![
3649
    ///     Match::must(0, 0..0),
3650
    ///     Match::must(0, 1..1),
3651
    ///     Match::must(0, 2..2),
3652
    ///     Match::must(0, 3..3),
3653
    /// ]);
3654
    ///
3655
    /// Ok::<(), Box<dyn std::error::Error>>(())
3656
    /// ```
3657
0
    pub fn configure(&mut self, config: Config) -> &mut Builder {
3658
0
        self.config = self.config.overwrite(config);
3659
0
        self
3660
0
    }
3661
3662
    /// Configure the syntax options when parsing a pattern string while
3663
    /// building a `Regex`.
3664
    ///
3665
    /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3666
    /// are used. The other build methods accept `Hir` values, which have
3667
    /// already been parsed.
3668
    ///
3669
    /// # Example
3670
    ///
3671
    /// This example shows how to enable case insensitive mode.
3672
    ///
3673
    /// ```
3674
    /// use regex_automata::{meta::Regex, util::syntax, Match};
3675
    ///
3676
    /// let re = Regex::builder()
3677
    ///     .syntax(syntax::Config::new().case_insensitive(true))
3678
    ///     .build(r"δ")?;
3679
    /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3680
    ///
3681
    /// Ok::<(), Box<dyn std::error::Error>>(())
3682
    /// ```
3683
0
    pub fn syntax(
3684
0
        &mut self,
3685
0
        config: crate::util::syntax::Config,
3686
0
    ) -> &mut Builder {
3687
0
        config.apply_ast(&mut self.ast);
3688
0
        config.apply_hir(&mut self.hir);
3689
0
        self
3690
0
    }
3691
}
3692
3693
#[cfg(test)]
3694
mod tests {
3695
    use super::*;
3696
3697
    // I found this in the course of building out the benchmark suite for
3698
    // rebar.
3699
    #[test]
3700
    fn regression_suffix_literal_count() {
3701
        let _ = env_logger::try_init();
3702
3703
        let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3704
        assert_eq!(1, re.find_iter("tingling").count());
3705
    }
3706
}