/rust/registry/src/index.crates.io-1949cf8c6b5b557f/bytes-1.11.0/src/bytes_mut.rs
Line | Count | Source |
1 | | use core::mem::{self, ManuallyDrop, MaybeUninit}; |
2 | | use core::ops::{Deref, DerefMut}; |
3 | | use core::ptr::{self, NonNull}; |
4 | | use core::{cmp, fmt, hash, slice}; |
5 | | |
6 | | use alloc::{ |
7 | | borrow::{Borrow, BorrowMut}, |
8 | | boxed::Box, |
9 | | string::String, |
10 | | vec, |
11 | | vec::Vec, |
12 | | }; |
13 | | |
14 | | use crate::buf::{IntoIter, UninitSlice}; |
15 | | use crate::bytes::Vtable; |
16 | | #[allow(unused)] |
17 | | use crate::loom::sync::atomic::AtomicMut; |
18 | | use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; |
19 | | use crate::{Buf, BufMut, Bytes, TryGetError}; |
20 | | |
21 | | /// A unique reference to a contiguous slice of memory. |
22 | | /// |
23 | | /// `BytesMut` represents a unique view into a potentially shared memory region. |
24 | | /// Given the uniqueness guarantee, owners of `BytesMut` handles are able to |
25 | | /// mutate the memory. |
26 | | /// |
27 | | /// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset |
28 | | /// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the |
29 | | /// same `buf` overlaps with its slice. That guarantee means that a write lock |
30 | | /// is not required. |
31 | | /// |
32 | | /// # Growth |
33 | | /// |
34 | | /// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as |
35 | | /// necessary. However, explicitly reserving the required space up-front before |
36 | | /// a series of inserts will be more efficient. |
37 | | /// |
38 | | /// # Examples |
39 | | /// |
40 | | /// ``` |
41 | | /// use bytes::{BytesMut, BufMut}; |
42 | | /// |
43 | | /// let mut buf = BytesMut::with_capacity(64); |
44 | | /// |
45 | | /// buf.put_u8(b'h'); |
46 | | /// buf.put_u8(b'e'); |
47 | | /// buf.put(&b"llo"[..]); |
48 | | /// |
49 | | /// assert_eq!(&buf[..], b"hello"); |
50 | | /// |
51 | | /// // Freeze the buffer so that it can be shared |
52 | | /// let a = buf.freeze(); |
53 | | /// |
54 | | /// // This does not allocate, instead `b` points to the same memory. |
55 | | /// let b = a.clone(); |
56 | | /// |
57 | | /// assert_eq!(&a[..], b"hello"); |
58 | | /// assert_eq!(&b[..], b"hello"); |
59 | | /// ``` |
60 | | pub struct BytesMut { |
61 | | ptr: NonNull<u8>, |
62 | | len: usize, |
63 | | cap: usize, |
64 | | data: *mut Shared, |
65 | | } |
66 | | |
67 | | // Thread-safe reference-counted container for the shared storage. This mostly |
68 | | // the same as `core::sync::Arc` but without the weak counter. The ref counting |
69 | | // fns are based on the ones found in `std`. |
70 | | // |
71 | | // The main reason to use `Shared` instead of `core::sync::Arc` is that it ends |
72 | | // up making the overall code simpler and easier to reason about. This is due to |
73 | | // some of the logic around setting `Inner::arc` and other ways the `arc` field |
74 | | // is used. Using `Arc` ended up requiring a number of funky transmutes and |
75 | | // other shenanigans to make it work. |
76 | | struct Shared { |
77 | | vec: Vec<u8>, |
78 | | original_capacity_repr: usize, |
79 | | ref_count: AtomicUsize, |
80 | | } |
81 | | |
82 | | // Assert that the alignment of `Shared` is divisible by 2. |
83 | | // This is a necessary invariant since we depend on allocating `Shared` a |
84 | | // shared object to implicitly carry the `KIND_ARC` flag in its pointer. |
85 | | // This flag is set when the LSB is 0. |
86 | | const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2. |
87 | | |
88 | | // Buffer storage strategy flags. |
89 | | const KIND_ARC: usize = 0b0; |
90 | | const KIND_VEC: usize = 0b1; |
91 | | const KIND_MASK: usize = 0b1; |
92 | | |
93 | | // The max original capacity value. Any `Bytes` allocated with a greater initial |
94 | | // capacity will default to this. |
95 | | const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17; |
96 | | // The original capacity algorithm will not take effect unless the originally |
97 | | // allocated capacity was at least 1kb in size. |
98 | | const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10; |
99 | | // The original capacity is stored in powers of 2 starting at 1kb to a max of |
100 | | // 64kb. Representing it as such requires only 3 bits of storage. |
101 | | const ORIGINAL_CAPACITY_MASK: usize = 0b11100; |
102 | | const ORIGINAL_CAPACITY_OFFSET: usize = 2; |
103 | | |
104 | | const VEC_POS_OFFSET: usize = 5; |
105 | | // When the storage is in the `Vec` representation, the pointer can be advanced |
106 | | // at most this value. This is due to the amount of storage available to track |
107 | | // the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY |
108 | | // bits. |
109 | | const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET; |
110 | | const NOT_VEC_POS_MASK: usize = 0b11111; |
111 | | |
112 | | #[cfg(target_pointer_width = "64")] |
113 | | const PTR_WIDTH: usize = 64; |
114 | | #[cfg(target_pointer_width = "32")] |
115 | | const PTR_WIDTH: usize = 32; |
116 | | |
117 | | /* |
118 | | * |
119 | | * ===== BytesMut ===== |
120 | | * |
121 | | */ |
122 | | |
123 | | impl BytesMut { |
124 | | /// Creates a new `BytesMut` with the specified capacity. |
125 | | /// |
126 | | /// The returned `BytesMut` will be able to hold at least `capacity` bytes |
127 | | /// without reallocating. |
128 | | /// |
129 | | /// It is important to note that this function does not specify the length |
130 | | /// of the returned `BytesMut`, but only the capacity. |
131 | | /// |
132 | | /// # Examples |
133 | | /// |
134 | | /// ``` |
135 | | /// use bytes::{BytesMut, BufMut}; |
136 | | /// |
137 | | /// let mut bytes = BytesMut::with_capacity(64); |
138 | | /// |
139 | | /// // `bytes` contains no data, even though there is capacity |
140 | | /// assert_eq!(bytes.len(), 0); |
141 | | /// |
142 | | /// bytes.put(&b"hello world"[..]); |
143 | | /// |
144 | | /// assert_eq!(&bytes[..], b"hello world"); |
145 | | /// ``` |
146 | | #[inline] |
147 | 0 | pub fn with_capacity(capacity: usize) -> BytesMut { |
148 | 0 | BytesMut::from_vec(Vec::with_capacity(capacity)) |
149 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::with_capacity Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::with_capacity |
150 | | |
151 | | /// Creates a new `BytesMut` with default capacity. |
152 | | /// |
153 | | /// Resulting object has length 0 and unspecified capacity. |
154 | | /// This function does not allocate. |
155 | | /// |
156 | | /// # Examples |
157 | | /// |
158 | | /// ``` |
159 | | /// use bytes::{BytesMut, BufMut}; |
160 | | /// |
161 | | /// let mut bytes = BytesMut::new(); |
162 | | /// |
163 | | /// assert_eq!(0, bytes.len()); |
164 | | /// |
165 | | /// bytes.reserve(2); |
166 | | /// bytes.put_slice(b"xy"); |
167 | | /// |
168 | | /// assert_eq!(&b"xy"[..], &bytes[..]); |
169 | | /// ``` |
170 | | #[inline] |
171 | 0 | pub fn new() -> BytesMut { |
172 | 0 | BytesMut::with_capacity(0) |
173 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::new Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::new |
174 | | |
175 | | /// Returns the number of bytes contained in this `BytesMut`. |
176 | | /// |
177 | | /// # Examples |
178 | | /// |
179 | | /// ``` |
180 | | /// use bytes::BytesMut; |
181 | | /// |
182 | | /// let b = BytesMut::from(&b"hello"[..]); |
183 | | /// assert_eq!(b.len(), 5); |
184 | | /// ``` |
185 | | #[inline] |
186 | 0 | pub fn len(&self) -> usize { |
187 | 0 | self.len |
188 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::len Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::len |
189 | | |
190 | | /// Returns true if the `BytesMut` has a length of 0. |
191 | | /// |
192 | | /// # Examples |
193 | | /// |
194 | | /// ``` |
195 | | /// use bytes::BytesMut; |
196 | | /// |
197 | | /// let b = BytesMut::with_capacity(64); |
198 | | /// assert!(b.is_empty()); |
199 | | /// ``` |
200 | | #[inline] |
201 | 0 | pub fn is_empty(&self) -> bool { |
202 | 0 | self.len == 0 |
203 | 0 | } |
204 | | |
205 | | /// Returns the number of bytes the `BytesMut` can hold without reallocating. |
206 | | /// |
207 | | /// # Examples |
208 | | /// |
209 | | /// ``` |
210 | | /// use bytes::BytesMut; |
211 | | /// |
212 | | /// let b = BytesMut::with_capacity(64); |
213 | | /// assert_eq!(b.capacity(), 64); |
214 | | /// ``` |
215 | | #[inline] |
216 | 0 | pub fn capacity(&self) -> usize { |
217 | 0 | self.cap |
218 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::capacity Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::capacity |
219 | | |
220 | | /// Converts `self` into an immutable `Bytes`. |
221 | | /// |
222 | | /// The conversion is zero cost and is used to indicate that the slice |
223 | | /// referenced by the handle will no longer be mutated. Once the conversion |
224 | | /// is done, the handle can be cloned and shared across threads. |
225 | | /// |
226 | | /// # Examples |
227 | | /// |
228 | | /// ```ignore-wasm |
229 | | /// use bytes::{BytesMut, BufMut}; |
230 | | /// use std::thread; |
231 | | /// |
232 | | /// let mut b = BytesMut::with_capacity(64); |
233 | | /// b.put(&b"hello world"[..]); |
234 | | /// let b1 = b.freeze(); |
235 | | /// let b2 = b1.clone(); |
236 | | /// |
237 | | /// let th = thread::spawn(move || { |
238 | | /// assert_eq!(&b1[..], b"hello world"); |
239 | | /// }); |
240 | | /// |
241 | | /// assert_eq!(&b2[..], b"hello world"); |
242 | | /// th.join().unwrap(); |
243 | | /// ``` |
244 | | #[inline] |
245 | 0 | pub fn freeze(self) -> Bytes { |
246 | 0 | let bytes = ManuallyDrop::new(self); |
247 | 0 | if bytes.kind() == KIND_VEC { |
248 | | // Just re-use `Bytes` internal Vec vtable |
249 | | unsafe { |
250 | 0 | let off = bytes.get_vec_pos(); |
251 | 0 | let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off); |
252 | 0 | let mut b: Bytes = vec.into(); |
253 | 0 | b.advance(off); |
254 | 0 | b |
255 | | } |
256 | | } else { |
257 | 0 | debug_assert_eq!(bytes.kind(), KIND_ARC); |
258 | | |
259 | 0 | let ptr = bytes.ptr.as_ptr(); |
260 | 0 | let len = bytes.len; |
261 | 0 | let data = AtomicPtr::new(bytes.data.cast()); |
262 | 0 | unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) } |
263 | | } |
264 | 0 | } |
265 | | |
266 | | /// Creates a new `BytesMut` containing `len` zeros. |
267 | | /// |
268 | | /// The resulting object has a length of `len` and a capacity greater |
269 | | /// than or equal to `len`. The entire length of the object will be filled |
270 | | /// with zeros. |
271 | | /// |
272 | | /// On some platforms or allocators this function may be faster than |
273 | | /// a manual implementation. |
274 | | /// |
275 | | /// # Examples |
276 | | /// |
277 | | /// ``` |
278 | | /// use bytes::BytesMut; |
279 | | /// |
280 | | /// let zeros = BytesMut::zeroed(42); |
281 | | /// |
282 | | /// assert!(zeros.capacity() >= 42); |
283 | | /// assert_eq!(zeros.len(), 42); |
284 | | /// zeros.into_iter().for_each(|x| assert_eq!(x, 0)); |
285 | | /// ``` |
286 | 0 | pub fn zeroed(len: usize) -> BytesMut { |
287 | 0 | BytesMut::from_vec(vec![0; len]) |
288 | 0 | } |
289 | | |
290 | | /// Splits the bytes into two at the given index. |
291 | | /// |
292 | | /// Afterwards `self` contains elements `[0, at)`, and the returned |
293 | | /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the |
294 | | /// memory does not move, that is, the address of `self` does not change, |
295 | | /// and the address of the returned slice is `at` bytes after that. |
296 | | /// |
297 | | /// This is an `O(1)` operation that just increases the reference count |
298 | | /// and sets a few indices. |
299 | | /// |
300 | | /// # Examples |
301 | | /// |
302 | | /// ``` |
303 | | /// use bytes::BytesMut; |
304 | | /// |
305 | | /// let mut a = BytesMut::from(&b"hello world"[..]); |
306 | | /// let mut b = a.split_off(5); |
307 | | /// |
308 | | /// a[0] = b'j'; |
309 | | /// b[0] = b'!'; |
310 | | /// |
311 | | /// assert_eq!(&a[..], b"jello"); |
312 | | /// assert_eq!(&b[..], b"!world"); |
313 | | /// ``` |
314 | | /// |
315 | | /// # Panics |
316 | | /// |
317 | | /// Panics if `at > capacity`. |
318 | | #[must_use = "consider BytesMut::truncate if you don't need the other half"] |
319 | 0 | pub fn split_off(&mut self, at: usize) -> BytesMut { |
320 | 0 | assert!( |
321 | 0 | at <= self.capacity(), |
322 | 0 | "split_off out of bounds: {:?} <= {:?}", |
323 | | at, |
324 | 0 | self.capacity(), |
325 | | ); |
326 | | unsafe { |
327 | 0 | let mut other = self.shallow_clone(); |
328 | | // SAFETY: We've checked that `at` <= `self.capacity()` above. |
329 | 0 | other.advance_unchecked(at); |
330 | 0 | self.cap = at; |
331 | 0 | self.len = cmp::min(self.len, at); |
332 | 0 | other |
333 | | } |
334 | 0 | } |
335 | | |
336 | | /// Removes the bytes from the current view, returning them in a new |
337 | | /// `BytesMut` handle. |
338 | | /// |
339 | | /// Afterwards, `self` will be empty, but will retain any additional |
340 | | /// capacity that it had before the operation. This is identical to |
341 | | /// `self.split_to(self.len())`. |
342 | | /// |
343 | | /// This is an `O(1)` operation that just increases the reference count and |
344 | | /// sets a few indices. |
345 | | /// |
346 | | /// # Examples |
347 | | /// |
348 | | /// ``` |
349 | | /// use bytes::{BytesMut, BufMut}; |
350 | | /// |
351 | | /// let mut buf = BytesMut::with_capacity(1024); |
352 | | /// buf.put(&b"hello world"[..]); |
353 | | /// |
354 | | /// let other = buf.split(); |
355 | | /// |
356 | | /// assert!(buf.is_empty()); |
357 | | /// assert_eq!(1013, buf.capacity()); |
358 | | /// |
359 | | /// assert_eq!(other, b"hello world"[..]); |
360 | | /// ``` |
361 | | #[must_use = "consider BytesMut::clear if you don't need the other half"] |
362 | 0 | pub fn split(&mut self) -> BytesMut { |
363 | 0 | let len = self.len(); |
364 | 0 | self.split_to(len) |
365 | 0 | } |
366 | | |
367 | | /// Splits the buffer into two at the given index. |
368 | | /// |
369 | | /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut` |
370 | | /// contains elements `[0, at)`. |
371 | | /// |
372 | | /// This is an `O(1)` operation that just increases the reference count and |
373 | | /// sets a few indices. |
374 | | /// |
375 | | /// # Examples |
376 | | /// |
377 | | /// ``` |
378 | | /// use bytes::BytesMut; |
379 | | /// |
380 | | /// let mut a = BytesMut::from(&b"hello world"[..]); |
381 | | /// let mut b = a.split_to(5); |
382 | | /// |
383 | | /// a[0] = b'!'; |
384 | | /// b[0] = b'j'; |
385 | | /// |
386 | | /// assert_eq!(&a[..], b"!world"); |
387 | | /// assert_eq!(&b[..], b"jello"); |
388 | | /// ``` |
389 | | /// |
390 | | /// # Panics |
391 | | /// |
392 | | /// Panics if `at > len`. |
393 | | #[must_use = "consider BytesMut::advance if you don't need the other half"] |
394 | 0 | pub fn split_to(&mut self, at: usize) -> BytesMut { |
395 | 0 | assert!( |
396 | 0 | at <= self.len(), |
397 | 0 | "split_to out of bounds: {:?} <= {:?}", |
398 | | at, |
399 | 0 | self.len(), |
400 | | ); |
401 | | |
402 | | unsafe { |
403 | 0 | let mut other = self.shallow_clone(); |
404 | | // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <= |
405 | | // `self.capacity()`. |
406 | 0 | self.advance_unchecked(at); |
407 | 0 | other.cap = at; |
408 | 0 | other.len = at; |
409 | 0 | other |
410 | | } |
411 | 0 | } |
412 | | |
413 | | /// Shortens the buffer, keeping the first `len` bytes and dropping the |
414 | | /// rest. |
415 | | /// |
416 | | /// If `len` is greater than the buffer's current length, this has no |
417 | | /// effect. |
418 | | /// |
419 | | /// Existing underlying capacity is preserved. |
420 | | /// |
421 | | /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the |
422 | | /// excess bytes to be returned instead of dropped. |
423 | | /// |
424 | | /// # Examples |
425 | | /// |
426 | | /// ``` |
427 | | /// use bytes::BytesMut; |
428 | | /// |
429 | | /// let mut buf = BytesMut::from(&b"hello world"[..]); |
430 | | /// buf.truncate(5); |
431 | | /// assert_eq!(buf, b"hello"[..]); |
432 | | /// ``` |
433 | 0 | pub fn truncate(&mut self, len: usize) { |
434 | 0 | if len <= self.len() { |
435 | 0 | // SAFETY: Shrinking the buffer cannot expose uninitialized bytes. |
436 | 0 | unsafe { self.set_len(len) }; |
437 | 0 | } |
438 | 0 | } |
439 | | |
440 | | /// Clears the buffer, removing all data. Existing capacity is preserved. |
441 | | /// |
442 | | /// # Examples |
443 | | /// |
444 | | /// ``` |
445 | | /// use bytes::BytesMut; |
446 | | /// |
447 | | /// let mut buf = BytesMut::from(&b"hello world"[..]); |
448 | | /// buf.clear(); |
449 | | /// assert!(buf.is_empty()); |
450 | | /// ``` |
451 | 0 | pub fn clear(&mut self) { |
452 | | // SAFETY: Setting the length to zero cannot expose uninitialized bytes. |
453 | 0 | unsafe { self.set_len(0) }; |
454 | 0 | } |
455 | | |
456 | | /// Resizes the buffer so that `len` is equal to `new_len`. |
457 | | /// |
458 | | /// If `new_len` is greater than `len`, the buffer is extended by the |
459 | | /// difference with each additional byte set to `value`. If `new_len` is |
460 | | /// less than `len`, the buffer is simply truncated. |
461 | | /// |
462 | | /// # Examples |
463 | | /// |
464 | | /// ``` |
465 | | /// use bytes::BytesMut; |
466 | | /// |
467 | | /// let mut buf = BytesMut::new(); |
468 | | /// |
469 | | /// buf.resize(3, 0x1); |
470 | | /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]); |
471 | | /// |
472 | | /// buf.resize(2, 0x2); |
473 | | /// assert_eq!(&buf[..], &[0x1, 0x1]); |
474 | | /// |
475 | | /// buf.resize(4, 0x3); |
476 | | /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]); |
477 | | /// ``` |
478 | 0 | pub fn resize(&mut self, new_len: usize, value: u8) { |
479 | 0 | let additional = if let Some(additional) = new_len.checked_sub(self.len()) { |
480 | 0 | additional |
481 | | } else { |
482 | 0 | self.truncate(new_len); |
483 | 0 | return; |
484 | | }; |
485 | | |
486 | 0 | if additional == 0 { |
487 | 0 | return; |
488 | 0 | } |
489 | | |
490 | 0 | self.reserve(additional); |
491 | 0 | let dst = self.spare_capacity_mut().as_mut_ptr(); |
492 | | // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've |
493 | | // reserved enough space to write `additional` bytes. |
494 | 0 | unsafe { ptr::write_bytes(dst, value, additional) }; |
495 | | |
496 | | // SAFETY: There are at least `new_len` initialized bytes in the buffer so no |
497 | | // uninitialized bytes are being exposed. |
498 | 0 | unsafe { self.set_len(new_len) }; |
499 | 0 | } |
500 | | |
501 | | /// Sets the length of the buffer. |
502 | | /// |
503 | | /// This will explicitly set the size of the buffer without actually |
504 | | /// modifying the data, so it is up to the caller to ensure that the data |
505 | | /// has been initialized. |
506 | | /// |
507 | | /// # Examples |
508 | | /// |
509 | | /// ``` |
510 | | /// use bytes::BytesMut; |
511 | | /// |
512 | | /// let mut b = BytesMut::from(&b"hello world"[..]); |
513 | | /// |
514 | | /// unsafe { |
515 | | /// b.set_len(5); |
516 | | /// } |
517 | | /// |
518 | | /// assert_eq!(&b[..], b"hello"); |
519 | | /// |
520 | | /// unsafe { |
521 | | /// b.set_len(11); |
522 | | /// } |
523 | | /// |
524 | | /// assert_eq!(&b[..], b"hello world"); |
525 | | /// ``` |
526 | | #[inline] |
527 | 0 | pub unsafe fn set_len(&mut self, len: usize) { |
528 | 0 | debug_assert!(len <= self.cap, "set_len out of bounds"); |
529 | 0 | self.len = len; |
530 | 0 | } |
531 | | |
532 | | /// Reserves capacity for at least `additional` more bytes to be inserted |
533 | | /// into the given `BytesMut`. |
534 | | /// |
535 | | /// More than `additional` bytes may be reserved in order to avoid frequent |
536 | | /// reallocations. A call to `reserve` may result in an allocation. |
537 | | /// |
538 | | /// Before allocating new buffer space, the function will attempt to reclaim |
539 | | /// space in the existing buffer. If the current handle references a view |
540 | | /// into a larger original buffer, and all other handles referencing part |
541 | | /// of the same original buffer have been dropped, then the current view |
542 | | /// can be copied/shifted to the front of the buffer and the handle can take |
543 | | /// ownership of the full buffer, provided that the full buffer is large |
544 | | /// enough to fit the requested additional capacity. |
545 | | /// |
546 | | /// This optimization will only happen if shifting the data from the current |
547 | | /// view to the front of the buffer is not too expensive in terms of the |
548 | | /// (amortized) time required. The precise condition is subject to change; |
549 | | /// as of now, the length of the data being shifted needs to be at least as |
550 | | /// large as the distance that it's shifted by. If the current view is empty |
551 | | /// and the original buffer is large enough to fit the requested additional |
552 | | /// capacity, then reallocations will never happen. |
553 | | /// |
554 | | /// # Examples |
555 | | /// |
556 | | /// In the following example, a new buffer is allocated. |
557 | | /// |
558 | | /// ``` |
559 | | /// use bytes::BytesMut; |
560 | | /// |
561 | | /// let mut buf = BytesMut::from(&b"hello"[..]); |
562 | | /// buf.reserve(64); |
563 | | /// assert!(buf.capacity() >= 69); |
564 | | /// ``` |
565 | | /// |
566 | | /// In the following example, the existing buffer is reclaimed. |
567 | | /// |
568 | | /// ``` |
569 | | /// use bytes::{BytesMut, BufMut}; |
570 | | /// |
571 | | /// let mut buf = BytesMut::with_capacity(128); |
572 | | /// buf.put(&[0; 64][..]); |
573 | | /// |
574 | | /// let ptr = buf.as_ptr(); |
575 | | /// let other = buf.split(); |
576 | | /// |
577 | | /// assert!(buf.is_empty()); |
578 | | /// assert_eq!(buf.capacity(), 64); |
579 | | /// |
580 | | /// drop(other); |
581 | | /// buf.reserve(128); |
582 | | /// |
583 | | /// assert_eq!(buf.capacity(), 128); |
584 | | /// assert_eq!(buf.as_ptr(), ptr); |
585 | | /// ``` |
586 | | /// |
587 | | /// # Panics |
588 | | /// |
589 | | /// Panics if the new capacity overflows `usize`. |
590 | | #[inline] |
591 | 0 | pub fn reserve(&mut self, additional: usize) { |
592 | 0 | let len = self.len(); |
593 | 0 | let rem = self.capacity() - len; |
594 | | |
595 | 0 | if additional <= rem { |
596 | | // The handle can already store at least `additional` more bytes, so |
597 | | // there is no further work needed to be done. |
598 | 0 | return; |
599 | 0 | } |
600 | | |
601 | | // will always succeed |
602 | 0 | let _ = self.reserve_inner(additional, true); |
603 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::reserve Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::reserve |
604 | | |
605 | | // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to |
606 | | // be inline-able. Significantly helps performance. Returns false if it did not succeed. |
607 | 0 | fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool { |
608 | 0 | let len = self.len(); |
609 | 0 | let kind = self.kind(); |
610 | | |
611 | 0 | if kind == KIND_VEC { |
612 | | // If there's enough free space before the start of the buffer, then |
613 | | // just copy the data backwards and reuse the already-allocated |
614 | | // space. |
615 | | // |
616 | | // Otherwise, since backed by a vector, use `Vec::reserve` |
617 | | // |
618 | | // We need to make sure that this optimization does not kill the |
619 | | // amortized runtimes of BytesMut's operations. |
620 | | unsafe { |
621 | 0 | let off = self.get_vec_pos(); |
622 | | |
623 | | // Only reuse space if we can satisfy the requested additional space. |
624 | | // |
625 | | // Also check if the value of `off` suggests that enough bytes |
626 | | // have been read to account for the overhead of shifting all |
627 | | // the data (in an amortized analysis). |
628 | | // Hence the condition `off >= self.len()`. |
629 | | // |
630 | | // This condition also already implies that the buffer is going |
631 | | // to be (at least) half-empty in the end; so we do not break |
632 | | // the (amortized) runtime with future resizes of the underlying |
633 | | // `Vec`. |
634 | | // |
635 | | // [For more details check issue #524, and PR #525.] |
636 | 0 | if self.capacity() - self.len() + off >= additional && off >= self.len() { |
637 | 0 | // There's enough space, and it's not too much overhead: |
638 | 0 | // reuse the space! |
639 | 0 | // |
640 | 0 | // Just move the pointer back to the start after copying |
641 | 0 | // data back. |
642 | 0 | let base_ptr = self.ptr.as_ptr().sub(off); |
643 | 0 | // Since `off >= self.len()`, the two regions don't overlap. |
644 | 0 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len); |
645 | 0 | self.ptr = vptr(base_ptr); |
646 | 0 | self.set_vec_pos(0); |
647 | 0 |
|
648 | 0 | // Length stays constant, but since we moved backwards we |
649 | 0 | // can gain capacity back. |
650 | 0 | self.cap += off; |
651 | 0 | } else { |
652 | 0 | if !allocate { |
653 | 0 | return false; |
654 | 0 | } |
655 | | // Not enough space, or reusing might be too much overhead: |
656 | | // allocate more space! |
657 | 0 | let mut v = |
658 | 0 | ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off)); |
659 | 0 | v.reserve(additional); |
660 | | |
661 | | // Update the info |
662 | 0 | self.ptr = vptr(v.as_mut_ptr().add(off)); |
663 | 0 | self.cap = v.capacity() - off; |
664 | 0 | debug_assert_eq!(self.len, v.len() - off); |
665 | | } |
666 | | |
667 | 0 | return true; |
668 | | } |
669 | 0 | } |
670 | | |
671 | 0 | debug_assert_eq!(kind, KIND_ARC); |
672 | 0 | let shared: *mut Shared = self.data; |
673 | | |
674 | | // Reserving involves abandoning the currently shared buffer and |
675 | | // allocating a new vector with the requested capacity. |
676 | | // |
677 | | // Compute the new capacity |
678 | 0 | let mut new_cap = match len.checked_add(additional) { |
679 | 0 | Some(new_cap) => new_cap, |
680 | 0 | None if !allocate => return false, |
681 | 0 | None => panic!("overflow"), |
682 | | }; |
683 | | |
684 | | unsafe { |
685 | | // First, try to reclaim the buffer. This is possible if the current |
686 | | // handle is the only outstanding handle pointing to the buffer. |
687 | 0 | if (*shared).is_unique() { |
688 | | // This is the only handle to the buffer. It can be reclaimed. |
689 | | // However, before doing the work of copying data, check to make |
690 | | // sure that the vector has enough capacity. |
691 | 0 | let v = &mut (*shared).vec; |
692 | | |
693 | 0 | let v_capacity = v.capacity(); |
694 | 0 | let ptr = v.as_mut_ptr(); |
695 | | |
696 | 0 | let offset = self.ptr.as_ptr().offset_from(ptr) as usize; |
697 | | |
698 | | // Compare the condition in the `kind == KIND_VEC` case above |
699 | | // for more details. |
700 | 0 | if v_capacity >= new_cap + offset { |
701 | 0 | self.cap = new_cap; |
702 | 0 | // no copy is necessary |
703 | 0 | } else if v_capacity >= new_cap && offset >= len { |
704 | 0 | // The capacity is sufficient, and copying is not too much |
705 | 0 | // overhead: reclaim the buffer! |
706 | 0 |
|
707 | 0 | // `offset >= len` means: no overlap |
708 | 0 | ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len); |
709 | 0 |
|
710 | 0 | self.ptr = vptr(ptr); |
711 | 0 | self.cap = v.capacity(); |
712 | 0 | } else { |
713 | 0 | if !allocate { |
714 | 0 | return false; |
715 | 0 | } |
716 | | // calculate offset |
717 | 0 | let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize); |
718 | | |
719 | | // new_cap is calculated in terms of `BytesMut`, not the underlying |
720 | | // `Vec`, so it does not take the offset into account. |
721 | | // |
722 | | // Thus we have to manually add it here. |
723 | 0 | new_cap = new_cap.checked_add(off).expect("overflow"); |
724 | | |
725 | | // The vector capacity is not sufficient. The reserve request is |
726 | | // asking for more than the initial buffer capacity. Allocate more |
727 | | // than requested if `new_cap` is not much bigger than the current |
728 | | // capacity. |
729 | | // |
730 | | // There are some situations, using `reserve_exact` that the |
731 | | // buffer capacity could be below `original_capacity`, so do a |
732 | | // check. |
733 | 0 | let double = v.capacity().checked_shl(1).unwrap_or(new_cap); |
734 | | |
735 | 0 | new_cap = cmp::max(double, new_cap); |
736 | | |
737 | | // No space - allocate more |
738 | | // |
739 | | // The length field of `Shared::vec` is not used by the `BytesMut`; |
740 | | // instead we use the `len` field in the `BytesMut` itself. However, |
741 | | // when calling `reserve`, it doesn't guarantee that data stored in |
742 | | // the unused capacity of the vector is copied over to the new |
743 | | // allocation, so we need to ensure that we don't have any data we |
744 | | // care about in the unused capacity before calling `reserve`. |
745 | 0 | debug_assert!(off + len <= v.capacity()); |
746 | 0 | v.set_len(off + len); |
747 | 0 | v.reserve(new_cap - v.len()); |
748 | | |
749 | | // Update the info |
750 | 0 | self.ptr = vptr(v.as_mut_ptr().add(off)); |
751 | 0 | self.cap = v.capacity() - off; |
752 | | } |
753 | | |
754 | 0 | return true; |
755 | 0 | } |
756 | | } |
757 | 0 | if !allocate { |
758 | 0 | return false; |
759 | 0 | } |
760 | | |
761 | 0 | let original_capacity_repr = unsafe { (*shared).original_capacity_repr }; |
762 | 0 | let original_capacity = original_capacity_from_repr(original_capacity_repr); |
763 | | |
764 | 0 | new_cap = cmp::max(new_cap, original_capacity); |
765 | | |
766 | | // Create a new vector to store the data |
767 | 0 | let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap)); |
768 | | |
769 | | // Copy the bytes |
770 | 0 | v.extend_from_slice(self.as_ref()); |
771 | | |
772 | | // Release the shared handle. This must be done *after* the bytes are |
773 | | // copied. |
774 | 0 | unsafe { release_shared(shared) }; |
775 | | |
776 | | // Update self |
777 | 0 | let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; |
778 | 0 | self.data = invalid_ptr(data); |
779 | 0 | self.ptr = vptr(v.as_mut_ptr()); |
780 | 0 | self.cap = v.capacity(); |
781 | 0 | debug_assert_eq!(self.len, v.len()); |
782 | 0 | true |
783 | 0 | } |
784 | | |
785 | | /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more |
786 | | /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded. |
787 | | /// |
788 | | /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage |
789 | | /// and returns a `bool` indicating whether it was successful in doing so: |
790 | | /// |
791 | | /// `try_reclaim` returns false under these conditions: |
792 | | /// - The spare capacity left is less than `additional` bytes AND |
793 | | /// - The existing allocation cannot be reclaimed cheaply or it was less than |
794 | | /// `additional` bytes in size |
795 | | /// |
796 | | /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding |
797 | | /// references through other `BytesMut`s or `Bytes` which point to the same underlying |
798 | | /// storage. |
799 | | /// |
800 | | /// # Examples |
801 | | /// |
802 | | /// ``` |
803 | | /// use bytes::BytesMut; |
804 | | /// |
805 | | /// let mut buf = BytesMut::with_capacity(64); |
806 | | /// assert_eq!(true, buf.try_reclaim(64)); |
807 | | /// assert_eq!(64, buf.capacity()); |
808 | | /// |
809 | | /// buf.extend_from_slice(b"abcd"); |
810 | | /// let mut split = buf.split(); |
811 | | /// assert_eq!(60, buf.capacity()); |
812 | | /// assert_eq!(4, split.capacity()); |
813 | | /// assert_eq!(false, split.try_reclaim(64)); |
814 | | /// assert_eq!(false, buf.try_reclaim(64)); |
815 | | /// // The split buffer is filled with "abcd" |
816 | | /// assert_eq!(false, split.try_reclaim(4)); |
817 | | /// // buf is empty and has capacity for 60 bytes |
818 | | /// assert_eq!(true, buf.try_reclaim(60)); |
819 | | /// |
820 | | /// drop(buf); |
821 | | /// assert_eq!(false, split.try_reclaim(64)); |
822 | | /// |
823 | | /// split.clear(); |
824 | | /// assert_eq!(4, split.capacity()); |
825 | | /// assert_eq!(true, split.try_reclaim(64)); |
826 | | /// assert_eq!(64, split.capacity()); |
827 | | /// ``` |
828 | | // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined |
829 | | // regardless with Rust 1.78.0 so probably not worth it |
830 | | #[inline] |
831 | | #[must_use = "consider BytesMut::reserve if you need an infallible reservation"] |
832 | 0 | pub fn try_reclaim(&mut self, additional: usize) -> bool { |
833 | 0 | let len = self.len(); |
834 | 0 | let rem = self.capacity() - len; |
835 | | |
836 | 0 | if additional <= rem { |
837 | | // The handle can already store at least `additional` more bytes, so |
838 | | // there is no further work needed to be done. |
839 | 0 | return true; |
840 | 0 | } |
841 | | |
842 | 0 | self.reserve_inner(additional, false) |
843 | 0 | } |
844 | | |
845 | | /// Appends given bytes to this `BytesMut`. |
846 | | /// |
847 | | /// If this `BytesMut` object does not have enough capacity, it is resized |
848 | | /// first. |
849 | | /// |
850 | | /// # Examples |
851 | | /// |
852 | | /// ``` |
853 | | /// use bytes::BytesMut; |
854 | | /// |
855 | | /// let mut buf = BytesMut::with_capacity(0); |
856 | | /// buf.extend_from_slice(b"aaabbb"); |
857 | | /// buf.extend_from_slice(b"cccddd"); |
858 | | /// |
859 | | /// assert_eq!(b"aaabbbcccddd", &buf[..]); |
860 | | /// ``` |
861 | | #[inline] |
862 | 0 | pub fn extend_from_slice(&mut self, extend: &[u8]) { |
863 | 0 | let cnt = extend.len(); |
864 | 0 | self.reserve(cnt); |
865 | | |
866 | | unsafe { |
867 | 0 | let dst = self.spare_capacity_mut(); |
868 | | // Reserved above |
869 | 0 | debug_assert!(dst.len() >= cnt); |
870 | | |
871 | 0 | ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt); |
872 | | } |
873 | | |
874 | 0 | unsafe { |
875 | 0 | self.advance_mut(cnt); |
876 | 0 | } |
877 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::extend_from_slice Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::extend_from_slice |
878 | | |
879 | | /// Absorbs a `BytesMut` that was previously split off. |
880 | | /// |
881 | | /// If the two `BytesMut` objects were previously contiguous and not mutated |
882 | | /// in a way that causes re-allocation i.e., if `other` was created by |
883 | | /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation |
884 | | /// that just decreases a reference count and sets a few indices. |
885 | | /// Otherwise this method degenerates to |
886 | | /// `self.extend_from_slice(other.as_ref())`. |
887 | | /// |
888 | | /// # Examples |
889 | | /// |
890 | | /// ``` |
891 | | /// use bytes::BytesMut; |
892 | | /// |
893 | | /// let mut buf = BytesMut::with_capacity(64); |
894 | | /// buf.extend_from_slice(b"aaabbbcccddd"); |
895 | | /// |
896 | | /// let split = buf.split_off(6); |
897 | | /// assert_eq!(b"aaabbb", &buf[..]); |
898 | | /// assert_eq!(b"cccddd", &split[..]); |
899 | | /// |
900 | | /// buf.unsplit(split); |
901 | | /// assert_eq!(b"aaabbbcccddd", &buf[..]); |
902 | | /// ``` |
903 | 0 | pub fn unsplit(&mut self, other: BytesMut) { |
904 | 0 | if self.is_empty() { |
905 | 0 | *self = other; |
906 | 0 | return; |
907 | 0 | } |
908 | | |
909 | 0 | if let Err(other) = self.try_unsplit(other) { |
910 | 0 | self.extend_from_slice(other.as_ref()); |
911 | 0 | } |
912 | 0 | } |
913 | | |
914 | | // private |
915 | | |
916 | | // For now, use a `Vec` to manage the memory for us, but we may want to |
917 | | // change that in the future to some alternate allocator strategy. |
918 | | // |
919 | | // Thus, we don't expose an easy way to construct from a `Vec` since an |
920 | | // internal change could make a simple pattern (`BytesMut::from(vec)`) |
921 | | // suddenly a lot more expensive. |
922 | | #[inline] |
923 | 0 | pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut { |
924 | 0 | let mut vec = ManuallyDrop::new(vec); |
925 | 0 | let ptr = vptr(vec.as_mut_ptr()); |
926 | 0 | let len = vec.len(); |
927 | 0 | let cap = vec.capacity(); |
928 | | |
929 | 0 | let original_capacity_repr = original_capacity_to_repr(cap); |
930 | 0 | let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; |
931 | | |
932 | 0 | BytesMut { |
933 | 0 | ptr, |
934 | 0 | len, |
935 | 0 | cap, |
936 | 0 | data: invalid_ptr(data), |
937 | 0 | } |
938 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::from_vec Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::from_vec |
939 | | |
940 | | #[inline] |
941 | 0 | fn as_slice(&self) -> &[u8] { |
942 | 0 | unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) } |
943 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::as_slice Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::as_slice |
944 | | |
945 | | #[inline] |
946 | 0 | fn as_slice_mut(&mut self) -> &mut [u8] { |
947 | 0 | unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) } |
948 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::as_slice_mut Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::as_slice_mut |
949 | | |
950 | | /// Advance the buffer without bounds checking. |
951 | | /// |
952 | | /// # SAFETY |
953 | | /// |
954 | | /// The caller must ensure that `count` <= `self.cap`. |
955 | 0 | pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) { |
956 | | // Setting the start to 0 is a no-op, so return early if this is the |
957 | | // case. |
958 | 0 | if count == 0 { |
959 | 0 | return; |
960 | 0 | } |
961 | | |
962 | 0 | debug_assert!(count <= self.cap, "internal: set_start out of bounds"); |
963 | | |
964 | 0 | let kind = self.kind(); |
965 | | |
966 | 0 | if kind == KIND_VEC { |
967 | | // Setting the start when in vec representation is a little more |
968 | | // complicated. First, we have to track how far ahead the |
969 | | // "start" of the byte buffer from the beginning of the vec. We |
970 | | // also have to ensure that we don't exceed the maximum shift. |
971 | 0 | let pos = self.get_vec_pos() + count; |
972 | | |
973 | 0 | if pos <= MAX_VEC_POS { |
974 | 0 | self.set_vec_pos(pos); |
975 | 0 | } else { |
976 | 0 | // The repr must be upgraded to ARC. This will never happen |
977 | 0 | // on 64 bit systems and will only happen on 32 bit systems |
978 | 0 | // when shifting past 134,217,727 bytes. As such, we don't |
979 | 0 | // worry too much about performance here. |
980 | 0 | self.promote_to_shared(/*ref_count = */ 1); |
981 | 0 | } |
982 | 0 | } |
983 | | |
984 | | // Updating the start of the view is setting `ptr` to point to the |
985 | | // new start and updating the `len` field to reflect the new length |
986 | | // of the view. |
987 | 0 | self.ptr = vptr(self.ptr.as_ptr().add(count)); |
988 | 0 | self.len = self.len.saturating_sub(count); |
989 | 0 | self.cap -= count; |
990 | 0 | } |
991 | | |
992 | 0 | fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> { |
993 | 0 | if other.capacity() == 0 { |
994 | 0 | return Ok(()); |
995 | 0 | } |
996 | | |
997 | 0 | let ptr = unsafe { self.ptr.as_ptr().add(self.len) }; |
998 | 0 | if ptr == other.ptr.as_ptr() |
999 | 0 | && self.kind() == KIND_ARC |
1000 | 0 | && other.kind() == KIND_ARC |
1001 | 0 | && self.data == other.data |
1002 | | { |
1003 | | // Contiguous blocks, just combine directly |
1004 | 0 | self.len += other.len; |
1005 | 0 | self.cap += other.cap; |
1006 | 0 | Ok(()) |
1007 | | } else { |
1008 | 0 | Err(other) |
1009 | | } |
1010 | 0 | } |
1011 | | |
1012 | | #[inline] |
1013 | 0 | fn kind(&self) -> usize { |
1014 | 0 | self.data as usize & KIND_MASK |
1015 | 0 | } |
1016 | | |
1017 | 0 | unsafe fn promote_to_shared(&mut self, ref_cnt: usize) { |
1018 | 0 | debug_assert_eq!(self.kind(), KIND_VEC); |
1019 | 0 | debug_assert!(ref_cnt == 1 || ref_cnt == 2); |
1020 | | |
1021 | 0 | let original_capacity_repr = |
1022 | 0 | (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET; |
1023 | | |
1024 | | // The vec offset cannot be concurrently mutated, so there |
1025 | | // should be no danger reading it. |
1026 | 0 | let off = (self.data as usize) >> VEC_POS_OFFSET; |
1027 | | |
1028 | | // First, allocate a new `Shared` instance containing the |
1029 | | // `Vec` fields. It's important to note that `ptr`, `len`, |
1030 | | // and `cap` cannot be mutated without having `&mut self`. |
1031 | | // This means that these fields will not be concurrently |
1032 | | // updated and since the buffer hasn't been promoted to an |
1033 | | // `Arc`, those three fields still are the components of the |
1034 | | // vector. |
1035 | 0 | let shared = Box::new(Shared { |
1036 | 0 | vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off), |
1037 | 0 | original_capacity_repr, |
1038 | 0 | ref_count: AtomicUsize::new(ref_cnt), |
1039 | 0 | }); |
1040 | | |
1041 | 0 | let shared = Box::into_raw(shared); |
1042 | | |
1043 | | // The pointer should be aligned, so this assert should |
1044 | | // always succeed. |
1045 | 0 | debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC); |
1046 | | |
1047 | 0 | self.data = shared; |
1048 | 0 | } |
1049 | | |
1050 | | /// Makes an exact shallow clone of `self`. |
1051 | | /// |
1052 | | /// The kind of `self` doesn't matter, but this is unsafe |
1053 | | /// because the clone will have the same offsets. You must |
1054 | | /// be sure the returned value to the user doesn't allow |
1055 | | /// two views into the same range. |
1056 | | #[inline] |
1057 | 0 | unsafe fn shallow_clone(&mut self) -> BytesMut { |
1058 | 0 | if self.kind() == KIND_ARC { |
1059 | 0 | increment_shared(self.data); |
1060 | 0 | ptr::read(self) |
1061 | | } else { |
1062 | 0 | self.promote_to_shared(/*ref_count = */ 2); |
1063 | 0 | ptr::read(self) |
1064 | | } |
1065 | 0 | } |
1066 | | |
1067 | | #[inline] |
1068 | 0 | unsafe fn get_vec_pos(&self) -> usize { |
1069 | 0 | debug_assert_eq!(self.kind(), KIND_VEC); |
1070 | | |
1071 | 0 | self.data as usize >> VEC_POS_OFFSET |
1072 | 0 | } |
1073 | | |
1074 | | #[inline] |
1075 | 0 | unsafe fn set_vec_pos(&mut self, pos: usize) { |
1076 | 0 | debug_assert_eq!(self.kind(), KIND_VEC); |
1077 | 0 | debug_assert!(pos <= MAX_VEC_POS); |
1078 | | |
1079 | 0 | self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK)); |
1080 | 0 | } |
1081 | | |
1082 | | /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`. |
1083 | | /// |
1084 | | /// The returned slice can be used to fill the buffer with data (e.g. by |
1085 | | /// reading from a file) before marking the data as initialized using the |
1086 | | /// [`set_len`] method. |
1087 | | /// |
1088 | | /// [`set_len`]: BytesMut::set_len |
1089 | | /// |
1090 | | /// # Examples |
1091 | | /// |
1092 | | /// ``` |
1093 | | /// use bytes::BytesMut; |
1094 | | /// |
1095 | | /// // Allocate buffer big enough for 10 bytes. |
1096 | | /// let mut buf = BytesMut::with_capacity(10); |
1097 | | /// |
1098 | | /// // Fill in the first 3 elements. |
1099 | | /// let uninit = buf.spare_capacity_mut(); |
1100 | | /// uninit[0].write(0); |
1101 | | /// uninit[1].write(1); |
1102 | | /// uninit[2].write(2); |
1103 | | /// |
1104 | | /// // Mark the first 3 bytes of the buffer as being initialized. |
1105 | | /// unsafe { |
1106 | | /// buf.set_len(3); |
1107 | | /// } |
1108 | | /// |
1109 | | /// assert_eq!(&buf[..], &[0, 1, 2]); |
1110 | | /// ``` |
1111 | | #[inline] |
1112 | 0 | pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] { |
1113 | 0 | unsafe { |
1114 | 0 | let ptr = self.ptr.as_ptr().add(self.len); |
1115 | 0 | let len = self.cap - self.len; |
1116 | 0 |
|
1117 | 0 | slice::from_raw_parts_mut(ptr.cast(), len) |
1118 | 0 | } |
1119 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::spare_capacity_mut Unexecuted instantiation: <bytes::bytes_mut::BytesMut>::spare_capacity_mut |
1120 | | } |
1121 | | |
1122 | | impl Drop for BytesMut { |
1123 | 0 | fn drop(&mut self) { |
1124 | 0 | let kind = self.kind(); |
1125 | | |
1126 | 0 | if kind == KIND_VEC { |
1127 | 0 | unsafe { |
1128 | 0 | let off = self.get_vec_pos(); |
1129 | 0 |
|
1130 | 0 | // Vector storage, free the vector |
1131 | 0 | let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off); |
1132 | 0 | } |
1133 | 0 | } else if kind == KIND_ARC { |
1134 | 0 | unsafe { release_shared(self.data) }; |
1135 | 0 | } |
1136 | 0 | } |
1137 | | } |
1138 | | |
1139 | | impl Buf for BytesMut { |
1140 | | #[inline] |
1141 | 0 | fn remaining(&self) -> usize { |
1142 | 0 | self.len() |
1143 | 0 | } |
1144 | | |
1145 | | #[inline] |
1146 | 0 | fn chunk(&self) -> &[u8] { |
1147 | 0 | self.as_slice() |
1148 | 0 | } |
1149 | | |
1150 | | #[inline] |
1151 | 0 | fn advance(&mut self, cnt: usize) { |
1152 | 0 | assert!( |
1153 | 0 | cnt <= self.remaining(), |
1154 | 0 | "cannot advance past `remaining`: {:?} <= {:?}", |
1155 | | cnt, |
1156 | 0 | self.remaining(), |
1157 | | ); |
1158 | 0 | unsafe { |
1159 | 0 | // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that |
1160 | 0 | // `self.remaining()` <= `self.cap`. |
1161 | 0 | self.advance_unchecked(cnt); |
1162 | 0 | } |
1163 | 0 | } |
1164 | | |
1165 | 0 | fn copy_to_bytes(&mut self, len: usize) -> Bytes { |
1166 | 0 | self.split_to(len).freeze() |
1167 | 0 | } |
1168 | | } |
1169 | | |
1170 | | unsafe impl BufMut for BytesMut { |
1171 | | #[inline] |
1172 | 0 | fn remaining_mut(&self) -> usize { |
1173 | | // Max allocation size is isize::MAX. |
1174 | 0 | isize::MAX as usize - self.len() |
1175 | 0 | } |
1176 | | |
1177 | | #[inline] |
1178 | 0 | unsafe fn advance_mut(&mut self, cnt: usize) { |
1179 | 0 | let remaining = self.cap - self.len(); |
1180 | 0 | if cnt > remaining { |
1181 | 0 | super::panic_advance(&TryGetError { |
1182 | 0 | requested: cnt, |
1183 | 0 | available: remaining, |
1184 | 0 | }); |
1185 | 0 | } |
1186 | | // Addition won't overflow since it is at most `self.cap`. |
1187 | 0 | self.len = self.len() + cnt; |
1188 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_mut::BufMut>::advance_mut Unexecuted instantiation: <bytes::bytes_mut::BytesMut as bytes::buf::buf_mut::BufMut>::advance_mut |
1189 | | |
1190 | | #[inline] |
1191 | 0 | fn chunk_mut(&mut self) -> &mut UninitSlice { |
1192 | 0 | if self.capacity() == self.len() { |
1193 | 0 | self.reserve(64); |
1194 | 0 | } |
1195 | 0 | self.spare_capacity_mut().into() |
1196 | 0 | } |
1197 | | |
1198 | | // Specialize these methods so they can skip checking `remaining_mut` |
1199 | | // and `advance_mut`. |
1200 | | |
1201 | 0 | fn put<T: Buf>(&mut self, mut src: T) |
1202 | 0 | where |
1203 | 0 | Self: Sized, |
1204 | | { |
1205 | 0 | if !src.has_remaining() { |
1206 | | // prevent calling `copy_to_bytes`->`put`->`copy_to_bytes` infintely when src is empty |
1207 | 0 | return; |
1208 | 0 | } else if self.capacity() == 0 { |
1209 | | // When capacity is zero, try reusing allocation of `src`. |
1210 | 0 | let src_copy = src.copy_to_bytes(src.remaining()); |
1211 | 0 | drop(src); |
1212 | 0 | match src_copy.try_into_mut() { |
1213 | 0 | Ok(bytes_mut) => *self = bytes_mut, |
1214 | 0 | Err(bytes) => self.extend_from_slice(&bytes), |
1215 | | } |
1216 | | } else { |
1217 | | // In case the src isn't contiguous, reserve upfront. |
1218 | 0 | self.reserve(src.remaining()); |
1219 | | |
1220 | 0 | while src.has_remaining() { |
1221 | 0 | let s = src.chunk(); |
1222 | 0 | let l = s.len(); |
1223 | 0 | self.extend_from_slice(s); |
1224 | 0 | src.advance(l); |
1225 | 0 | } |
1226 | | } |
1227 | 0 | } |
1228 | | |
1229 | 0 | fn put_slice(&mut self, src: &[u8]) { |
1230 | 0 | self.extend_from_slice(src); |
1231 | 0 | } |
1232 | | |
1233 | 0 | fn put_bytes(&mut self, val: u8, cnt: usize) { |
1234 | 0 | self.reserve(cnt); |
1235 | | unsafe { |
1236 | 0 | let dst = self.spare_capacity_mut(); |
1237 | | // Reserved above |
1238 | 0 | debug_assert!(dst.len() >= cnt); |
1239 | | |
1240 | 0 | ptr::write_bytes(dst.as_mut_ptr(), val, cnt); |
1241 | | |
1242 | 0 | self.advance_mut(cnt); |
1243 | | } |
1244 | 0 | } |
1245 | | } |
1246 | | |
1247 | | impl AsRef<[u8]> for BytesMut { |
1248 | | #[inline] |
1249 | 0 | fn as_ref(&self) -> &[u8] { |
1250 | 0 | self.as_slice() |
1251 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::convert::AsRef<[u8]>>::as_ref Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::convert::AsRef<[u8]>>::as_ref |
1252 | | } |
1253 | | |
1254 | | impl Deref for BytesMut { |
1255 | | type Target = [u8]; |
1256 | | |
1257 | | #[inline] |
1258 | 0 | fn deref(&self) -> &[u8] { |
1259 | 0 | self.as_ref() |
1260 | 0 | } |
1261 | | } |
1262 | | |
1263 | | impl AsMut<[u8]> for BytesMut { |
1264 | | #[inline] |
1265 | 0 | fn as_mut(&mut self) -> &mut [u8] { |
1266 | 0 | self.as_slice_mut() |
1267 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::convert::AsMut<[u8]>>::as_mut Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::convert::AsMut<[u8]>>::as_mut |
1268 | | } |
1269 | | |
1270 | | impl DerefMut for BytesMut { |
1271 | | #[inline] |
1272 | 0 | fn deref_mut(&mut self) -> &mut [u8] { |
1273 | 0 | self.as_mut() |
1274 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::ops::deref::DerefMut>::deref_mut Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::ops::deref::DerefMut>::deref_mut |
1275 | | } |
1276 | | |
1277 | | impl<'a> From<&'a [u8]> for BytesMut { |
1278 | 0 | fn from(src: &'a [u8]) -> BytesMut { |
1279 | 0 | BytesMut::from_vec(src.to_vec()) |
1280 | 0 | } |
1281 | | } |
1282 | | |
1283 | | impl<'a> From<&'a str> for BytesMut { |
1284 | 0 | fn from(src: &'a str) -> BytesMut { |
1285 | 0 | BytesMut::from(src.as_bytes()) |
1286 | 0 | } |
1287 | | } |
1288 | | |
1289 | | impl From<BytesMut> for Bytes { |
1290 | 0 | fn from(src: BytesMut) -> Bytes { |
1291 | 0 | src.freeze() |
1292 | 0 | } |
1293 | | } |
1294 | | |
1295 | | impl PartialEq for BytesMut { |
1296 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1297 | 0 | self.as_slice() == other.as_slice() |
1298 | 0 | } |
1299 | | } |
1300 | | |
1301 | | impl PartialOrd for BytesMut { |
1302 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1303 | 0 | Some(self.cmp(other)) |
1304 | 0 | } |
1305 | | } |
1306 | | |
1307 | | impl Ord for BytesMut { |
1308 | 0 | fn cmp(&self, other: &BytesMut) -> cmp::Ordering { |
1309 | 0 | self.as_slice().cmp(other.as_slice()) |
1310 | 0 | } |
1311 | | } |
1312 | | |
1313 | | impl Eq for BytesMut {} |
1314 | | |
1315 | | impl Default for BytesMut { |
1316 | | #[inline] |
1317 | 0 | fn default() -> BytesMut { |
1318 | 0 | BytesMut::new() |
1319 | 0 | } |
1320 | | } |
1321 | | |
1322 | | impl hash::Hash for BytesMut { |
1323 | 0 | fn hash<H>(&self, state: &mut H) |
1324 | 0 | where |
1325 | 0 | H: hash::Hasher, |
1326 | | { |
1327 | 0 | let s: &[u8] = self.as_ref(); |
1328 | 0 | s.hash(state); |
1329 | 0 | } |
1330 | | } |
1331 | | |
1332 | | impl Borrow<[u8]> for BytesMut { |
1333 | 0 | fn borrow(&self) -> &[u8] { |
1334 | 0 | self.as_ref() |
1335 | 0 | } |
1336 | | } |
1337 | | |
1338 | | impl BorrowMut<[u8]> for BytesMut { |
1339 | 0 | fn borrow_mut(&mut self) -> &mut [u8] { |
1340 | 0 | self.as_mut() |
1341 | 0 | } |
1342 | | } |
1343 | | |
1344 | | impl fmt::Write for BytesMut { |
1345 | | #[inline] |
1346 | 0 | fn write_str(&mut self, s: &str) -> fmt::Result { |
1347 | 0 | if self.remaining_mut() >= s.len() { |
1348 | 0 | self.put_slice(s.as_bytes()); |
1349 | 0 | Ok(()) |
1350 | | } else { |
1351 | 0 | Err(fmt::Error) |
1352 | | } |
1353 | 0 | } |
1354 | | |
1355 | | #[inline] |
1356 | 0 | fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result { |
1357 | 0 | fmt::write(self, args) |
1358 | 0 | } |
1359 | | } |
1360 | | |
1361 | | impl Clone for BytesMut { |
1362 | 0 | fn clone(&self) -> BytesMut { |
1363 | 0 | BytesMut::from(&self[..]) |
1364 | 0 | } |
1365 | | } |
1366 | | |
1367 | | impl IntoIterator for BytesMut { |
1368 | | type Item = u8; |
1369 | | type IntoIter = IntoIter<BytesMut>; |
1370 | | |
1371 | 0 | fn into_iter(self) -> Self::IntoIter { |
1372 | 0 | IntoIter::new(self) |
1373 | 0 | } |
1374 | | } |
1375 | | |
1376 | | impl<'a> IntoIterator for &'a BytesMut { |
1377 | | type Item = &'a u8; |
1378 | | type IntoIter = core::slice::Iter<'a, u8>; |
1379 | | |
1380 | 0 | fn into_iter(self) -> Self::IntoIter { |
1381 | 0 | self.as_ref().iter() |
1382 | 0 | } |
1383 | | } |
1384 | | |
1385 | | impl Extend<u8> for BytesMut { |
1386 | 0 | fn extend<T>(&mut self, iter: T) |
1387 | 0 | where |
1388 | 0 | T: IntoIterator<Item = u8>, |
1389 | | { |
1390 | 0 | let iter = iter.into_iter(); |
1391 | | |
1392 | 0 | let (lower, _) = iter.size_hint(); |
1393 | 0 | self.reserve(lower); |
1394 | | |
1395 | | // TODO: optimize |
1396 | | // 1. If self.kind() == KIND_VEC, use Vec::extend |
1397 | 0 | for b in iter { |
1398 | 0 | self.put_u8(b); |
1399 | 0 | } |
1400 | 0 | } |
1401 | | } |
1402 | | |
1403 | | impl<'a> Extend<&'a u8> for BytesMut { |
1404 | 0 | fn extend<T>(&mut self, iter: T) |
1405 | 0 | where |
1406 | 0 | T: IntoIterator<Item = &'a u8>, |
1407 | | { |
1408 | 0 | self.extend(iter.into_iter().copied()) |
1409 | 0 | } |
1410 | | } |
1411 | | |
1412 | | impl Extend<Bytes> for BytesMut { |
1413 | 0 | fn extend<T>(&mut self, iter: T) |
1414 | 0 | where |
1415 | 0 | T: IntoIterator<Item = Bytes>, |
1416 | | { |
1417 | 0 | for bytes in iter { |
1418 | 0 | self.extend_from_slice(&bytes) |
1419 | | } |
1420 | 0 | } |
1421 | | } |
1422 | | |
1423 | | impl FromIterator<u8> for BytesMut { |
1424 | 0 | fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { |
1425 | 0 | BytesMut::from_vec(Vec::from_iter(into_iter)) |
1426 | 0 | } |
1427 | | } |
1428 | | |
1429 | | impl<'a> FromIterator<&'a u8> for BytesMut { |
1430 | 0 | fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self { |
1431 | 0 | BytesMut::from_iter(into_iter.into_iter().copied()) |
1432 | 0 | } |
1433 | | } |
1434 | | |
1435 | | /* |
1436 | | * |
1437 | | * ===== Inner ===== |
1438 | | * |
1439 | | */ |
1440 | | |
1441 | 0 | unsafe fn increment_shared(ptr: *mut Shared) { |
1442 | 0 | let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed); |
1443 | | |
1444 | 0 | if old_size > isize::MAX as usize { |
1445 | 0 | crate::abort(); |
1446 | 0 | } |
1447 | 0 | } |
1448 | | |
1449 | 0 | unsafe fn release_shared(ptr: *mut Shared) { |
1450 | | // `Shared` storage... follow the drop steps from Arc. |
1451 | 0 | if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 { |
1452 | 0 | return; |
1453 | 0 | } |
1454 | | |
1455 | | // This fence is needed to prevent reordering of use of the data and |
1456 | | // deletion of the data. Because it is marked `Release`, the decreasing |
1457 | | // of the reference count synchronizes with this `Acquire` fence. This |
1458 | | // means that use of the data happens before decreasing the reference |
1459 | | // count, which happens before this fence, which happens before the |
1460 | | // deletion of the data. |
1461 | | // |
1462 | | // As explained in the [Boost documentation][1], |
1463 | | // |
1464 | | // > It is important to enforce any possible access to the object in one |
1465 | | // > thread (through an existing reference) to *happen before* deleting |
1466 | | // > the object in a different thread. This is achieved by a "release" |
1467 | | // > operation after dropping a reference (any access to the object |
1468 | | // > through this reference must obviously happened before), and an |
1469 | | // > "acquire" operation before deleting the object. |
1470 | | // |
1471 | | // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) |
1472 | | // |
1473 | | // Thread sanitizer does not support atomic fences. Use an atomic load |
1474 | | // instead. |
1475 | 0 | (*ptr).ref_count.load(Ordering::Acquire); |
1476 | | |
1477 | | // Drop the data |
1478 | 0 | drop(Box::from_raw(ptr)); |
1479 | 0 | } |
1480 | | |
1481 | | impl Shared { |
1482 | 0 | fn is_unique(&self) -> bool { |
1483 | | // The goal is to check if the current handle is the only handle |
1484 | | // that currently has access to the buffer. This is done by |
1485 | | // checking if the `ref_count` is currently 1. |
1486 | | // |
1487 | | // The `Acquire` ordering synchronizes with the `Release` as |
1488 | | // part of the `fetch_sub` in `release_shared`. The `fetch_sub` |
1489 | | // operation guarantees that any mutations done in other threads |
1490 | | // are ordered before the `ref_count` is decremented. As such, |
1491 | | // this `Acquire` will guarantee that those mutations are |
1492 | | // visible to the current thread. |
1493 | 0 | self.ref_count.load(Ordering::Acquire) == 1 |
1494 | 0 | } |
1495 | | } |
1496 | | |
1497 | | #[inline] |
1498 | 0 | fn original_capacity_to_repr(cap: usize) -> usize { |
1499 | 0 | let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize); |
1500 | 0 | cmp::min( |
1501 | 0 | width, |
1502 | 0 | MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH, |
1503 | | ) |
1504 | 0 | } Unexecuted instantiation: bytes::bytes_mut::original_capacity_to_repr Unexecuted instantiation: bytes::bytes_mut::original_capacity_to_repr |
1505 | | |
1506 | 0 | fn original_capacity_from_repr(repr: usize) -> usize { |
1507 | 0 | if repr == 0 { |
1508 | 0 | return 0; |
1509 | 0 | } |
1510 | | |
1511 | 0 | 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1)) |
1512 | 0 | } |
1513 | | |
1514 | | #[cfg(test)] |
1515 | | mod tests { |
1516 | | use super::*; |
1517 | | |
1518 | | #[test] |
1519 | | fn test_original_capacity_to_repr() { |
1520 | | assert_eq!(original_capacity_to_repr(0), 0); |
1521 | | |
1522 | | let max_width = 32; |
1523 | | |
1524 | | for width in 1..(max_width + 1) { |
1525 | | let cap = 1 << width - 1; |
1526 | | |
1527 | | let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH { |
1528 | | 0 |
1529 | | } else if width < MAX_ORIGINAL_CAPACITY_WIDTH { |
1530 | | width - MIN_ORIGINAL_CAPACITY_WIDTH |
1531 | | } else { |
1532 | | MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH |
1533 | | }; |
1534 | | |
1535 | | assert_eq!(original_capacity_to_repr(cap), expected); |
1536 | | |
1537 | | if width > 1 { |
1538 | | assert_eq!(original_capacity_to_repr(cap + 1), expected); |
1539 | | } |
1540 | | |
1541 | | // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below |
1542 | | if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 { |
1543 | | assert_eq!(original_capacity_to_repr(cap - 24), expected - 1); |
1544 | | assert_eq!(original_capacity_to_repr(cap + 76), expected); |
1545 | | } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 { |
1546 | | assert_eq!(original_capacity_to_repr(cap - 1), expected - 1); |
1547 | | assert_eq!(original_capacity_to_repr(cap - 48), expected - 1); |
1548 | | } |
1549 | | } |
1550 | | } |
1551 | | |
1552 | | #[test] |
1553 | | fn test_original_capacity_from_repr() { |
1554 | | assert_eq!(0, original_capacity_from_repr(0)); |
1555 | | |
1556 | | let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH; |
1557 | | |
1558 | | assert_eq!(min_cap, original_capacity_from_repr(1)); |
1559 | | assert_eq!(min_cap * 2, original_capacity_from_repr(2)); |
1560 | | assert_eq!(min_cap * 4, original_capacity_from_repr(3)); |
1561 | | assert_eq!(min_cap * 8, original_capacity_from_repr(4)); |
1562 | | assert_eq!(min_cap * 16, original_capacity_from_repr(5)); |
1563 | | assert_eq!(min_cap * 32, original_capacity_from_repr(6)); |
1564 | | assert_eq!(min_cap * 64, original_capacity_from_repr(7)); |
1565 | | } |
1566 | | } |
1567 | | |
1568 | | unsafe impl Send for BytesMut {} |
1569 | | unsafe impl Sync for BytesMut {} |
1570 | | |
1571 | | /* |
1572 | | * |
1573 | | * ===== PartialEq / PartialOrd ===== |
1574 | | * |
1575 | | */ |
1576 | | |
1577 | | impl PartialEq<[u8]> for BytesMut { |
1578 | 0 | fn eq(&self, other: &[u8]) -> bool { |
1579 | 0 | &**self == other |
1580 | 0 | } |
1581 | | } |
1582 | | |
1583 | | impl PartialOrd<[u8]> for BytesMut { |
1584 | 0 | fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { |
1585 | 0 | (**self).partial_cmp(other) |
1586 | 0 | } |
1587 | | } |
1588 | | |
1589 | | impl PartialEq<BytesMut> for [u8] { |
1590 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1591 | 0 | *other == *self |
1592 | 0 | } |
1593 | | } |
1594 | | |
1595 | | impl PartialOrd<BytesMut> for [u8] { |
1596 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1597 | 0 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
1598 | 0 | } |
1599 | | } |
1600 | | |
1601 | | impl PartialEq<str> for BytesMut { |
1602 | 0 | fn eq(&self, other: &str) -> bool { |
1603 | 0 | &**self == other.as_bytes() |
1604 | 0 | } |
1605 | | } |
1606 | | |
1607 | | impl PartialOrd<str> for BytesMut { |
1608 | 0 | fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { |
1609 | 0 | (**self).partial_cmp(other.as_bytes()) |
1610 | 0 | } |
1611 | | } |
1612 | | |
1613 | | impl PartialEq<BytesMut> for str { |
1614 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1615 | 0 | *other == *self |
1616 | 0 | } |
1617 | | } |
1618 | | |
1619 | | impl PartialOrd<BytesMut> for str { |
1620 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1621 | 0 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
1622 | 0 | } |
1623 | | } |
1624 | | |
1625 | | impl PartialEq<Vec<u8>> for BytesMut { |
1626 | 0 | fn eq(&self, other: &Vec<u8>) -> bool { |
1627 | 0 | *self == other[..] |
1628 | 0 | } |
1629 | | } |
1630 | | |
1631 | | impl PartialOrd<Vec<u8>> for BytesMut { |
1632 | 0 | fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { |
1633 | 0 | (**self).partial_cmp(&other[..]) |
1634 | 0 | } |
1635 | | } |
1636 | | |
1637 | | impl PartialEq<BytesMut> for Vec<u8> { |
1638 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1639 | 0 | *other == *self |
1640 | 0 | } |
1641 | | } |
1642 | | |
1643 | | impl PartialOrd<BytesMut> for Vec<u8> { |
1644 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1645 | 0 | other.partial_cmp(self) |
1646 | 0 | } |
1647 | | } |
1648 | | |
1649 | | impl PartialEq<String> for BytesMut { |
1650 | 0 | fn eq(&self, other: &String) -> bool { |
1651 | 0 | *self == other[..] |
1652 | 0 | } |
1653 | | } |
1654 | | |
1655 | | impl PartialOrd<String> for BytesMut { |
1656 | 0 | fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { |
1657 | 0 | (**self).partial_cmp(other.as_bytes()) |
1658 | 0 | } |
1659 | | } |
1660 | | |
1661 | | impl PartialEq<BytesMut> for String { |
1662 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1663 | 0 | *other == *self |
1664 | 0 | } |
1665 | | } |
1666 | | |
1667 | | impl PartialOrd<BytesMut> for String { |
1668 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1669 | 0 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) |
1670 | 0 | } |
1671 | | } |
1672 | | |
1673 | | impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut |
1674 | | where |
1675 | | BytesMut: PartialEq<T>, |
1676 | | { |
1677 | 0 | fn eq(&self, other: &&'a T) -> bool { |
1678 | 0 | *self == **other |
1679 | 0 | } Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::cmp::PartialEq<&[u8]>>::eq Unexecuted instantiation: <bytes::bytes_mut::BytesMut as core::cmp::PartialEq<&str>>::eq |
1680 | | } |
1681 | | |
1682 | | impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut |
1683 | | where |
1684 | | BytesMut: PartialOrd<T>, |
1685 | | { |
1686 | 0 | fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { |
1687 | 0 | self.partial_cmp(*other) |
1688 | 0 | } |
1689 | | } |
1690 | | |
1691 | | impl PartialEq<BytesMut> for &[u8] { |
1692 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1693 | 0 | *other == *self |
1694 | 0 | } |
1695 | | } |
1696 | | |
1697 | | impl PartialOrd<BytesMut> for &[u8] { |
1698 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1699 | 0 | <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) |
1700 | 0 | } |
1701 | | } |
1702 | | |
1703 | | impl PartialEq<BytesMut> for &str { |
1704 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1705 | 0 | *other == *self |
1706 | 0 | } |
1707 | | } |
1708 | | |
1709 | | impl PartialOrd<BytesMut> for &str { |
1710 | 0 | fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { |
1711 | 0 | other.partial_cmp(self) |
1712 | 0 | } |
1713 | | } |
1714 | | |
1715 | | impl PartialEq<BytesMut> for Bytes { |
1716 | 0 | fn eq(&self, other: &BytesMut) -> bool { |
1717 | 0 | other[..] == self[..] |
1718 | 0 | } |
1719 | | } |
1720 | | |
1721 | | impl PartialEq<Bytes> for BytesMut { |
1722 | 0 | fn eq(&self, other: &Bytes) -> bool { |
1723 | 0 | other[..] == self[..] |
1724 | 0 | } |
1725 | | } |
1726 | | |
1727 | | impl From<BytesMut> for Vec<u8> { |
1728 | 0 | fn from(bytes: BytesMut) -> Self { |
1729 | 0 | let kind = bytes.kind(); |
1730 | 0 | let bytes = ManuallyDrop::new(bytes); |
1731 | | |
1732 | 0 | let mut vec = if kind == KIND_VEC { |
1733 | | unsafe { |
1734 | 0 | let off = bytes.get_vec_pos(); |
1735 | 0 | rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off) |
1736 | | } |
1737 | | } else { |
1738 | 0 | let shared = bytes.data; |
1739 | | |
1740 | 0 | if unsafe { (*shared).is_unique() } { |
1741 | 0 | let vec = core::mem::take(unsafe { &mut (*shared).vec }); |
1742 | | |
1743 | 0 | unsafe { release_shared(shared) }; |
1744 | | |
1745 | 0 | vec |
1746 | | } else { |
1747 | 0 | return ManuallyDrop::into_inner(bytes).deref().to_vec(); |
1748 | | } |
1749 | | }; |
1750 | | |
1751 | 0 | let len = bytes.len; |
1752 | | |
1753 | 0 | unsafe { |
1754 | 0 | ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len); |
1755 | 0 | vec.set_len(len); |
1756 | 0 | } |
1757 | | |
1758 | 0 | vec |
1759 | 0 | } |
1760 | | } |
1761 | | |
1762 | | #[inline] |
1763 | 0 | fn vptr(ptr: *mut u8) -> NonNull<u8> { |
1764 | 0 | if cfg!(debug_assertions) { |
1765 | 0 | NonNull::new(ptr).expect("Vec pointer should be non-null") |
1766 | | } else { |
1767 | 0 | unsafe { NonNull::new_unchecked(ptr) } |
1768 | | } |
1769 | 0 | } Unexecuted instantiation: bytes::bytes_mut::vptr Unexecuted instantiation: bytes::bytes_mut::vptr |
1770 | | |
1771 | | /// Returns a dangling pointer with the given address. This is used to store |
1772 | | /// integer data in pointer fields. |
1773 | | /// |
1774 | | /// It is equivalent to `addr as *mut T`, but this fails on miri when strict |
1775 | | /// provenance checking is enabled. |
1776 | | #[inline] |
1777 | 0 | fn invalid_ptr<T>(addr: usize) -> *mut T { |
1778 | 0 | let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr); |
1779 | 0 | debug_assert_eq!(ptr as usize, addr); |
1780 | 0 | ptr.cast::<T>() |
1781 | 0 | } |
1782 | | |
1783 | 0 | unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> { |
1784 | 0 | let ptr = ptr.sub(off); |
1785 | 0 | len += off; |
1786 | 0 | cap += off; |
1787 | | |
1788 | 0 | Vec::from_raw_parts(ptr, len, cap) |
1789 | 0 | } |
1790 | | |
1791 | | // ===== impl SharedVtable ===== |
1792 | | |
1793 | | static SHARED_VTABLE: Vtable = Vtable { |
1794 | | clone: shared_v_clone, |
1795 | | into_vec: shared_v_to_vec, |
1796 | | into_mut: shared_v_to_mut, |
1797 | | is_unique: shared_v_is_unique, |
1798 | | drop: shared_v_drop, |
1799 | | }; |
1800 | | |
1801 | 0 | unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { |
1802 | 0 | let shared = data.load(Ordering::Relaxed) as *mut Shared; |
1803 | 0 | increment_shared(shared); |
1804 | | |
1805 | 0 | let data = AtomicPtr::new(shared as *mut ()); |
1806 | 0 | Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) |
1807 | 0 | } |
1808 | | |
1809 | 0 | unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { |
1810 | 0 | let shared: *mut Shared = data.load(Ordering::Relaxed).cast(); |
1811 | | |
1812 | 0 | if (*shared).is_unique() { |
1813 | 0 | let shared = &mut *shared; |
1814 | | |
1815 | | // Drop shared |
1816 | 0 | let mut vec = core::mem::take(&mut shared.vec); |
1817 | 0 | release_shared(shared); |
1818 | | |
1819 | | // Copy back buffer |
1820 | 0 | ptr::copy(ptr, vec.as_mut_ptr(), len); |
1821 | 0 | vec.set_len(len); |
1822 | | |
1823 | 0 | vec |
1824 | | } else { |
1825 | 0 | let v = slice::from_raw_parts(ptr, len).to_vec(); |
1826 | 0 | release_shared(shared); |
1827 | 0 | v |
1828 | | } |
1829 | 0 | } |
1830 | | |
1831 | 0 | unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut { |
1832 | 0 | let shared: *mut Shared = data.load(Ordering::Relaxed).cast(); |
1833 | | |
1834 | 0 | if (*shared).is_unique() { |
1835 | 0 | let shared = &mut *shared; |
1836 | | |
1837 | | // The capacity is always the original capacity of the buffer |
1838 | | // minus the offset from the start of the buffer |
1839 | 0 | let v = &mut shared.vec; |
1840 | 0 | let v_capacity = v.capacity(); |
1841 | 0 | let v_ptr = v.as_mut_ptr(); |
1842 | 0 | let offset = ptr.offset_from(v_ptr) as usize; |
1843 | 0 | let cap = v_capacity - offset; |
1844 | | |
1845 | 0 | let ptr = vptr(ptr as *mut u8); |
1846 | | |
1847 | 0 | BytesMut { |
1848 | 0 | ptr, |
1849 | 0 | len, |
1850 | 0 | cap, |
1851 | 0 | data: shared, |
1852 | 0 | } |
1853 | | } else { |
1854 | 0 | let v = slice::from_raw_parts(ptr, len).to_vec(); |
1855 | 0 | release_shared(shared); |
1856 | 0 | BytesMut::from_vec(v) |
1857 | | } |
1858 | 0 | } |
1859 | | |
1860 | 0 | unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool { |
1861 | 0 | let shared = data.load(Ordering::Acquire); |
1862 | 0 | let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed); |
1863 | 0 | ref_count == 1 |
1864 | 0 | } |
1865 | | |
1866 | 0 | unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) { |
1867 | 0 | data.with_mut(|shared| { |
1868 | 0 | release_shared(*shared as *mut Shared); |
1869 | 0 | }); |
1870 | 0 | } |
1871 | | |
1872 | | // compile-fails |
1873 | | |
1874 | | /// ```compile_fail |
1875 | | /// use bytes::BytesMut; |
1876 | | /// #[deny(unused_must_use)] |
1877 | | /// { |
1878 | | /// let mut b1 = BytesMut::from("hello world"); |
1879 | | /// b1.split_to(6); |
1880 | | /// } |
1881 | | /// ``` |
1882 | 0 | fn _split_to_must_use() {} |
1883 | | |
1884 | | /// ```compile_fail |
1885 | | /// use bytes::BytesMut; |
1886 | | /// #[deny(unused_must_use)] |
1887 | | /// { |
1888 | | /// let mut b1 = BytesMut::from("hello world"); |
1889 | | /// b1.split_off(6); |
1890 | | /// } |
1891 | | /// ``` |
1892 | 0 | fn _split_off_must_use() {} |
1893 | | |
1894 | | /// ```compile_fail |
1895 | | /// use bytes::BytesMut; |
1896 | | /// #[deny(unused_must_use)] |
1897 | | /// { |
1898 | | /// let mut b1 = BytesMut::from("hello world"); |
1899 | | /// b1.split(); |
1900 | | /// } |
1901 | | /// ``` |
1902 | 0 | fn _split_must_use() {} |
1903 | | |
1904 | | // fuzz tests |
1905 | | #[cfg(all(test, loom))] |
1906 | | mod fuzz { |
1907 | | use loom::sync::Arc; |
1908 | | use loom::thread; |
1909 | | |
1910 | | use super::BytesMut; |
1911 | | use crate::Bytes; |
1912 | | |
1913 | | #[test] |
1914 | | fn bytes_mut_cloning_frozen() { |
1915 | | loom::model(|| { |
1916 | | let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze(); |
1917 | | let addr = a.as_ptr() as usize; |
1918 | | |
1919 | | // test the Bytes::clone is Sync by putting it in an Arc |
1920 | | let a1 = Arc::new(a); |
1921 | | let a2 = a1.clone(); |
1922 | | |
1923 | | let t1 = thread::spawn(move || { |
1924 | | let b: Bytes = (*a1).clone(); |
1925 | | assert_eq!(b.as_ptr() as usize, addr); |
1926 | | }); |
1927 | | |
1928 | | let t2 = thread::spawn(move || { |
1929 | | let b: Bytes = (*a2).clone(); |
1930 | | assert_eq!(b.as_ptr() as usize, addr); |
1931 | | }); |
1932 | | |
1933 | | t1.join().unwrap(); |
1934 | | t2.join().unwrap(); |
1935 | | }); |
1936 | | } |
1937 | | } |