Coverage Report

Created: 2025-07-11 06:48

/src/speex/libspeex/lsp.c
Line
Count
Source
1
/*---------------------------------------------------------------------------*\
2
Original copyright
3
  FILE........: lsp.c
4
  AUTHOR......: David Rowe
5
  DATE CREATED: 24/2/93
6
7
Heavily modified by Jean-Marc Valin (c) 2002-2006 (fixed-point,
8
                       optimizations, additional functions, ...)
9
10
   This file contains functions for converting Linear Prediction
11
   Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
12
   LSP coefficients are not in radians format but in the x domain of the
13
   unit circle.
14
15
   Speex License:
16
17
   Redistribution and use in source and binary forms, with or without
18
   modification, are permitted provided that the following conditions
19
   are met:
20
21
   - Redistributions of source code must retain the above copyright
22
   notice, this list of conditions and the following disclaimer.
23
24
   - Redistributions in binary form must reproduce the above copyright
25
   notice, this list of conditions and the following disclaimer in the
26
   documentation and/or other materials provided with the distribution.
27
28
   - Neither the name of the Xiph.org Foundation nor the names of its
29
   contributors may be used to endorse or promote products derived from
30
   this software without specific prior written permission.
31
32
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
35
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
36
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
37
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
38
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
39
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
40
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
41
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
42
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43
*/
44
45
/*---------------------------------------------------------------------------*\
46
47
  Introduction to Line Spectrum Pairs (LSPs)
48
  ------------------------------------------
49
50
  LSPs are used to encode the LPC filter coefficients {ak} for
51
  transmission over the channel.  LSPs have several properties (like
52
  less sensitivity to quantisation noise) that make them superior to
53
  direct quantisation of {ak}.
54
55
  A(z) is a polynomial of order lpcrdr with {ak} as the coefficients.
56
57
  A(z) is transformed to P(z) and Q(z) (using a substitution and some
58
  algebra), to obtain something like:
59
60
    A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)]  (1)
61
62
  As you can imagine A(z) has complex zeros all over the z-plane. P(z)
63
  and Q(z) have the very neat property of only having zeros _on_ the
64
  unit circle.  So to find them we take a test point z=exp(jw) and
65
  evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0
66
  and pi.
67
68
  The zeros (roots) of P(z) also happen to alternate, which is why we
69
  swap coefficients as we find roots.  So the process of finding the
70
  LSP frequencies is basically finding the roots of 5th order
71
  polynomials.
72
73
  The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence
74
  the name Line Spectrum Pairs (LSPs).
75
76
  To convert back to ak we just evaluate (1), "clocking" an impulse
77
  thru it lpcrdr times gives us the impulse response of A(z) which is
78
  {ak}.
79
80
\*---------------------------------------------------------------------------*/
81
82
#ifdef HAVE_CONFIG_H
83
#include "config.h"
84
#endif
85
86
#include <math.h>
87
#include "lsp.h"
88
#include "stack_alloc.h"
89
#include "math_approx.h"
90
91
#ifndef M_PI
92
#define M_PI           3.14159265358979323846  /* pi */
93
#endif
94
95
#ifndef NULL
96
#define NULL 0
97
#endif
98
99
#ifdef FIXED_POINT
100
101
494k
#define FREQ_SCALE 16384
102
103
/*#define ANGLE2X(a) (32768*cos(((a)/8192.)))*/
104
1.66M
#define ANGLE2X(a) (SHL16(spx_cos(a),2))
105
106
/*#define X2ANGLE(x) (acos(.00006103515625*(x))*LSP_SCALING)*/
107
201k
#define X2ANGLE(x) (spx_acos(x))
108
109
#ifdef BFIN_ASM
110
#include "lsp_bfin.h"
111
#endif
112
113
#else
114
115
/*#define C1 0.99940307
116
#define C2 -0.49558072
117
#define C3 0.03679168*/
118
119
#define FREQ_SCALE 1.
120
#define ANGLE2X(a) (spx_cos(a))
121
#define X2ANGLE(x) (acos(x))
122
123
#endif
124
125
#ifndef DISABLE_ENCODER
126
127
/*---------------------------------------------------------------------------*\
128
129
   FUNCTION....: cheb_poly_eva()
130
131
   AUTHOR......: David Rowe
132
   DATE CREATED: 24/2/93
133
134
   This function evaluates a series of Chebyshev polynomials
135
136
\*---------------------------------------------------------------------------*/
137
138
#ifdef FIXED_POINT
139
140
#ifndef OVERRIDE_CHEB_POLY_EVA
141
static inline spx_word32_t cheb_poly_eva(
142
  spx_word16_t *coef, /* P or Q coefs in Q13 format               */
143
  spx_word16_t     x, /* cos of freq (-1.0 to 1.0) in Q14 format  */
144
  int              m, /* LPC order/2                              */
145
  char         *stack
146
)
147
2.88M
{
148
2.88M
    int i;
149
2.88M
    spx_word16_t b0, b1;
150
2.88M
    spx_word32_t sum;
151
152
    /*Prevents overflows*/
153
2.88M
    if (x>16383)
154
21.4k
       x = 16383;
155
2.88M
    if (x<-16383)
156
1.91k
       x = -16383;
157
158
    /* Initialise values */
159
2.88M
    b1=16384;
160
2.88M
    b0=x;
161
162
    /* Evaluate Chebyshev series formulation using an iterative approach  */
163
2.88M
    sum = ADD32(EXTEND32(coef[m]), EXTEND32(MULT16_16_P14(coef[m-1],x)));
164
13.7M
    for(i=2;i<=m;i++)
165
10.9M
    {
166
10.9M
       spx_word16_t tmp=b0;
167
10.9M
       b0 = SUB16(MULT16_16_Q13(x,b0), b1);
168
10.9M
       b1 = tmp;
169
10.9M
       sum = ADD32(sum, EXTEND32(MULT16_16_P14(coef[m-i],b0)));
170
10.9M
    }
171
172
2.88M
    return sum;
173
2.88M
}
174
#endif
175
176
#else
177
178
static float cheb_poly_eva(spx_word32_t *coef, spx_word16_t x, int m, char *stack)
179
{
180
   int k;
181
   float b0, b1, tmp;
182
183
   /* Initial conditions */
184
   b0=0; /* b_(m+1) */
185
   b1=0; /* b_(m+2) */
186
187
   x*=2;
188
189
   /* Calculate the b_(k) */
190
   for(k=m;k>0;k--)
191
   {
192
      tmp=b0;                           /* tmp holds the previous value of b0 */
193
      b0=x*b0-b1+coef[m-k];    /* b0 holds its new value based on b0 and b1 */
194
      b1=tmp;                           /* b1 holds the previous value of b0 */
195
   }
196
197
   return(-b1+.5*x*b0+coef[m]);
198
}
199
#endif
200
201
/*---------------------------------------------------------------------------*\
202
203
    FUNCTION....: lpc_to_lsp()
204
205
    AUTHOR......: David Rowe
206
    DATE CREATED: 24/2/93
207
208
    This function converts LPC coefficients to LSP
209
    coefficients.
210
211
\*---------------------------------------------------------------------------*/
212
213
#ifdef FIXED_POINT
214
2.68M
#define SIGN_CHANGE(a,b) ((((a)^(b))&0x80000000)||(b==0))
215
#else
216
#define SIGN_CHANGE(a,b) (((a)*(b))<0.0)
217
#endif
218
219
220
int lpc_to_lsp (spx_coef_t *a,int lpcrdr,spx_lsp_t *freq,int nb,spx_word16_t delta, char *stack)
221
/*  float *a          lpc coefficients      */
222
/*  int lpcrdr      order of LPC coefficients (10)    */
223
/*  float *freq           LSP frequencies in the x domain         */
224
/*  int nb      number of sub-intervals (4)     */
225
/*  float delta     grid spacing interval (0.02)    */
226
227
228
21.3k
{
229
21.3k
    spx_word16_t temp_xr,xl,xr,xm=0;
230
21.3k
    spx_word32_t psuml,psumr,psumm,temp_psumr/*,temp_qsumr*/;
231
21.3k
    int i,j,m,k;
232
21.3k
    VARDECL(spx_word32_t *Q);                   /* ptrs for memory allocation     */
233
21.3k
    VARDECL(spx_word32_t *P);
234
21.3k
    VARDECL(spx_word16_t *Q16);         /* ptrs for memory allocation     */
235
21.3k
    VARDECL(spx_word16_t *P16);
236
21.3k
    spx_word32_t *px;                 /* ptrs of respective P'(z) & Q'(z) */
237
21.3k
    spx_word32_t *qx;
238
21.3k
    spx_word32_t *p;
239
21.3k
    spx_word32_t *q;
240
21.3k
    spx_word16_t *pt;                 /* ptr used for cheb_poly_eval()
241
        whether P' or Q'      */
242
21.3k
    int roots=0;                /* DR 8/2/94: number of roots found   */
243
21.3k
    m = lpcrdr/2;             /* order of P'(z) & Q'(z) polynomials   */
244
245
    /* Allocate memory space for polynomials */
246
21.3k
    ALLOC(Q, (m+1), spx_word32_t);
247
21.3k
    ALLOC(P, (m+1), spx_word32_t);
248
249
    /* determine P'(z)'s and Q'(z)'s coefficients where
250
      P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
251
252
21.3k
    px = P;                      /* initialise ptrs       */
253
21.3k
    qx = Q;
254
21.3k
    p = px;
255
21.3k
    q = qx;
256
257
21.3k
#ifdef FIXED_POINT
258
21.3k
    *px++ = LPC_SCALING;
259
21.3k
    *qx++ = LPC_SCALING;
260
122k
    for(i=0;i<m;i++){
261
101k
       *px++ = SUB32(ADD32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *p++);
262
101k
       *qx++ = ADD32(SUB32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *q++);
263
101k
    }
264
21.3k
    px = P;
265
21.3k
    qx = Q;
266
122k
    for(i=0;i<m;i++)
267
101k
    {
268
       /*if (fabs(*px)>=32768)
269
          speex_warning_int("px", *px);
270
       if (fabs(*qx)>=32768)
271
       speex_warning_int("qx", *qx);*/
272
101k
       *px = PSHR32(*px,2);
273
101k
       *qx = PSHR32(*qx,2);
274
101k
       px++;
275
101k
       qx++;
276
101k
    }
277
    /* The reason for this lies in the way cheb_poly_eva() is implemented for fixed-point */
278
21.3k
    P[m] = PSHR32(P[m],3);
279
21.3k
    Q[m] = PSHR32(Q[m],3);
280
#else
281
    *px++ = LPC_SCALING;
282
    *qx++ = LPC_SCALING;
283
    for(i=0;i<m;i++){
284
       *px++ = (a[i]+a[lpcrdr-1-i]) - *p++;
285
       *qx++ = (a[i]-a[lpcrdr-1-i]) + *q++;
286
    }
287
    px = P;
288
    qx = Q;
289
    for(i=0;i<m;i++){
290
       *px = 2**px;
291
       *qx = 2**qx;
292
       px++;
293
       qx++;
294
    }
295
#endif
296
297
21.3k
    px = P;               /* re-initialise ptrs       */
298
21.3k
    qx = Q;
299
300
    /* now that we have computed P and Q convert to 16 bits to
301
       speed up cheb_poly_eval */
302
303
21.3k
    ALLOC(P16, m+1, spx_word16_t);
304
21.3k
    ALLOC(Q16, m+1, spx_word16_t);
305
306
144k
    for (i=0;i<m+1;i++)
307
122k
    {
308
122k
       P16[i] = P[i];
309
122k
       Q16[i] = Q[i];
310
122k
    }
311
312
    /* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
313
    Keep alternating between the two polynomials as each zero is found  */
314
315
21.3k
    xr = 0;               /* initialise xr to zero    */
316
21.3k
    xl = FREQ_SCALE;                 /* start at point xl = 1    */
317
318
223k
    for(j=0;j<lpcrdr;j++){
319
202k
  if(j&1)              /* determines whether P' or Q' is eval. */
320
101k
      pt = Q16;
321
101k
  else
322
101k
      pt = P16;
323
324
202k
  psuml = cheb_poly_eva(pt,xl,m,stack); /* evals poly. at xl  */
325
326
473k
  while(xr >= -FREQ_SCALE){
327
472k
           spx_word16_t dd;
328
           /* Modified by JMV to provide smaller steps around x=+-1 */
329
472k
#ifdef FIXED_POINT
330
472k
           dd = MULT16_16_Q15(delta,SUB16(FREQ_SCALE, MULT16_16_Q14(MULT16_16_Q14(xl,xl),14000)));
331
472k
           if (psuml<512 && psuml>-512)
332
91.4k
              dd = PSHR16(dd,1);
333
#else
334
           dd=delta*(1-.9*xl*xl);
335
           if (fabs(psuml)<.2)
336
              dd *= .5;
337
#endif
338
472k
           xr = SUB16(xl, dd);                         /* interval spacing   */
339
472k
      psumr = cheb_poly_eva(pt,xr,m,stack);/* poly(xl-delta_x)  */
340
472k
      temp_psumr = psumr;
341
472k
      temp_xr = xr;
342
343
    /* if no sign change increment xr and re-evaluate poly(xr). Repeat til
344
    sign change.
345
    if a sign change has occurred the interval is bisected and then
346
    checked again for a sign change which determines in which
347
    interval the zero lies in.
348
    If there is no sign change between poly(xm) and poly(xl) set interval
349
    between xm and xr else set interval between xl and xr and repeat till
350
    root is located within the specified limits       */
351
352
472k
      if(SIGN_CHANGE(psumr,psuml))
353
201k
            {
354
201k
    roots++;
355
356
201k
    psumm=psuml;
357
2.41M
    for(k=0;k<=nb;k++){
358
2.21M
#ifdef FIXED_POINT
359
2.21M
        xm = ADD16(PSHR16(xl,1),PSHR16(xr,1));          /* bisect the interval  */
360
#else
361
                    xm = .5*(xl+xr);          /* bisect the interval  */
362
#endif
363
2.21M
        psumm=cheb_poly_eva(pt,xm,m,stack);
364
        /*if(psumm*psuml>0.)*/
365
2.21M
        if(!SIGN_CHANGE(psumm,psuml))
366
1.19M
                    {
367
1.19M
      psuml=psumm;
368
1.19M
      xl=xm;
369
1.19M
        } else {
370
1.02M
      psumr=psumm;
371
1.02M
      xr=xm;
372
1.02M
        }
373
2.21M
    }
374
375
         /* once zero is found, reset initial interval to xr  */
376
201k
         freq[j] = X2ANGLE(xm);
377
201k
         xl = xm;
378
201k
         break;
379
201k
      }
380
270k
      else{
381
270k
    psuml=temp_psumr;
382
270k
    xl=temp_xr;
383
270k
      }
384
472k
  }
385
202k
    }
386
21.3k
    return(roots);
387
21.3k
}
388
389
#endif /* DISABLE_ENCODER */
390
/*---------------------------------------------------------------------------*\
391
392
  FUNCTION....: lsp_to_lpc()
393
394
  AUTHOR......: David Rowe
395
  DATE CREATED: 24/2/93
396
397
        Converts LSP coefficients to LPC coefficients.
398
399
\*---------------------------------------------------------------------------*/
400
401
#ifdef FIXED_POINT
402
403
void lsp_to_lpc(const spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
404
/*  float *freq   array of LSP frequencies in the x domain  */
405
/*  float *ak     array of LPC coefficients       */
406
/*  int lpcrdr    order of LPC coefficients       */
407
174k
{
408
174k
    int i,j;
409
174k
    spx_word32_t xout1,xout2,xin;
410
174k
    spx_word32_t mult, a;
411
174k
    VARDECL(spx_word16_t *freqn);
412
174k
    VARDECL(spx_word32_t **xp);
413
174k
    VARDECL(spx_word32_t *xpmem);
414
174k
    VARDECL(spx_word32_t **xq);
415
174k
    VARDECL(spx_word32_t *xqmem);
416
174k
    int m = lpcrdr>>1;
417
418
    /*
419
420
       Reconstruct P(z) and Q(z) by cascading second order polynomials
421
       in form 1 - 2cos(w)z(-1) + z(-2), where w is the LSP frequency.
422
       In the time domain this is:
423
424
       y(n) = x(n) - 2cos(w)x(n-1) + x(n-2)
425
426
       This is what the ALLOCS below are trying to do:
427
428
         int xp[m+1][lpcrdr+1+2]; // P matrix in QIMP
429
         int xq[m+1][lpcrdr+1+2]; // Q matrix in QIMP
430
431
       These matrices store the output of each stage on each row.  The
432
       final (m-th) row has the output of the final (m-th) cascaded
433
       2nd order filter.  The first row is the impulse input to the
434
       system (not written as it is known).
435
436
       The version below takes advantage of the fact that a lot of the
437
       outputs are zero or known, for example if we put an inpulse
438
       into the first section the "clock" it 10 times only the first 3
439
       outputs samples are non-zero (it's an FIR filter).
440
    */
441
442
174k
    ALLOC(xp, (m+1), spx_word32_t*);
443
174k
    ALLOC(xpmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
444
445
174k
    ALLOC(xq, (m+1), spx_word32_t*);
446
174k
    ALLOC(xqmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
447
448
1.18M
    for(i=0; i<=m; i++) {
449
1.00M
      xp[i] = xpmem + i*(lpcrdr+1+2);
450
1.00M
      xq[i] = xqmem + i*(lpcrdr+1+2);
451
1.00M
    }
452
453
    /* work out 2cos terms in Q14 */
454
455
174k
    ALLOC(freqn, lpcrdr, spx_word16_t);
456
1.84M
    for (i=0;i<lpcrdr;i++)
457
1.66M
       freqn[i] = ANGLE2X(freq[i]);
458
459
1.66M
    #define QIMP  21   /* scaling for impulse */
460
461
174k
    xin = SHL32(EXTEND32(1), (QIMP-1)); /* 0.5 in QIMP format */
462
463
    /* first col and last non-zero values of each row are trivial */
464
465
1.18M
    for(i=0;i<=m;i++) {
466
1.00M
     xp[i][1] = 0;
467
1.00M
     xp[i][2] = xin;
468
1.00M
     xp[i][2+2*i] = xin;
469
1.00M
     xq[i][1] = 0;
470
1.00M
     xq[i][2] = xin;
471
1.00M
     xq[i][2+2*i] = xin;
472
1.00M
    }
473
474
    /* 2nd row (first output row) is trivial */
475
476
174k
    xp[1][3] = -MULT16_32_Q14(freqn[0],xp[0][2]);
477
174k
    xq[1][3] = -MULT16_32_Q14(freqn[1],xq[0][2]);
478
479
174k
    xout1 = xout2 = 0;
480
481
    /* now generate remaining rows */
482
483
833k
    for(i=1;i<m;i++) {
484
485
3.83M
      for(j=1;j<2*(i+1)-1;j++) {
486
3.17M
  mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
487
3.17M
  xp[i+1][j+2] = ADD32(SUB32(xp[i][j+2], mult), xp[i][j]);
488
3.17M
  mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
489
3.17M
  xq[i+1][j+2] = ADD32(SUB32(xq[i][j+2], mult), xq[i][j]);
490
3.17M
      }
491
492
      /* for last col xp[i][j+2] = xq[i][j+2] = 0 */
493
494
658k
      mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
495
658k
      xp[i+1][j+2] = SUB32(xp[i][j], mult);
496
658k
      mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
497
658k
      xq[i+1][j+2] = SUB32(xq[i][j], mult);
498
658k
    }
499
500
    /* process last row to extra a{k} */
501
502
1.84M
    for(j=1;j<=lpcrdr;j++) {
503
1.66M
      int shift = QIMP-13;
504
505
      /* final filter sections */
506
1.66M
      a = PSHR32(xp[m][j+2] + xout1 + xq[m][j+2] - xout2, shift);
507
1.66M
      xout1 = xp[m][j+2];
508
1.66M
      xout2 = xq[m][j+2];
509
510
      /* hard limit ak's to +/- 32767 */
511
512
1.66M
      if (a < -32767) a = -32767;
513
1.66M
      if (a > 32767) a = 32767;
514
1.66M
      ak[j-1] = (short)a;
515
516
1.66M
    }
517
518
174k
}
519
520
#else
521
522
void lsp_to_lpc(const spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
523
/*  float *freq   array of LSP frequencies in the x domain  */
524
/*  float *ak     array of LPC coefficients       */
525
/*  int lpcrdr    order of LPC coefficients       */
526
527
528
{
529
    int i,j;
530
    float xout1,xout2,xin1,xin2;
531
    VARDECL(float *Wp);
532
    float *pw,*n1,*n2,*n3,*n4=NULL;
533
    VARDECL(float *x_freq);
534
    int m = lpcrdr>>1;
535
536
    ALLOC(Wp, 4*m+2, float);
537
    pw = Wp;
538
539
    /* initialise contents of array */
540
541
    for(i=0;i<=4*m+1;i++){        /* set contents of buffer to 0 */
542
  *pw++ = 0.0;
543
    }
544
545
    /* Set pointers up */
546
547
    pw = Wp;
548
    xin1 = 1.0;
549
    xin2 = 1.0;
550
551
    ALLOC(x_freq, lpcrdr, float);
552
    for (i=0;i<lpcrdr;i++)
553
       x_freq[i] = ANGLE2X(freq[i]);
554
555
    /* reconstruct P(z) and Q(z) by  cascading second order
556
      polynomials in form 1 - 2xz(-1) +z(-2), where x is the
557
      LSP coefficient */
558
559
    for(j=0;j<=lpcrdr;j++){
560
       int i2=0;
561
  for(i=0;i<m;i++,i2+=2){
562
      n1 = pw+(i*4);
563
      n2 = n1 + 1;
564
      n3 = n2 + 1;
565
      n4 = n3 + 1;
566
      xout1 = xin1 - 2.f*x_freq[i2] * *n1 + *n2;
567
      xout2 = xin2 - 2.f*x_freq[i2+1] * *n3 + *n4;
568
      *n2 = *n1;
569
      *n4 = *n3;
570
      *n1 = xin1;
571
      *n3 = xin2;
572
      xin1 = xout1;
573
      xin2 = xout2;
574
  }
575
  xout1 = xin1 + *(n4+1);
576
  xout2 = xin2 - *(n4+2);
577
  if (j>0)
578
     ak[j-1] = (xout1 + xout2)*0.5f;
579
  *(n4+1) = xin1;
580
  *(n4+2) = xin2;
581
582
  xin1 = 0.0;
583
  xin2 = 0.0;
584
    }
585
586
}
587
#endif
588
589
590
#ifdef FIXED_POINT
591
592
593
void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *lsp, int len, int subframe, int nb_subframes, spx_word16_t margin)
594
171k
{
595
171k
   int i;
596
171k
   spx_word16_t m = margin;
597
171k
   spx_word16_t m2 = 25736-margin;
598
171k
   spx_word16_t tmp = DIV32_16(SHL32(EXTEND32(1 + subframe),14),nb_subframes);
599
171k
   spx_word16_t tmp2 = 16384-tmp;
600
1.81M
   for (i=0;i<len;i++)
601
1.63M
      lsp[i] = MULT16_16_P14(tmp2,old_lsp[i]) + MULT16_16_P14(tmp,new_lsp[i]);
602
   /* Enforce margin to sure the LSPs are stable*/
603
171k
   if (lsp[0]<m)
604
40
      lsp[0]=m;
605
171k
   if (lsp[len-1]>m2)
606
37
      lsp[len-1]=m2;
607
1.46M
   for (i=1;i<len-1;i++)
608
1.29M
   {
609
1.29M
      if (lsp[i]<lsp[i-1]+m)
610
3.09k
         lsp[i]=lsp[i-1]+m;
611
612
1.29M
      if (lsp[i]>lsp[i+1]-m)
613
3.46k
         lsp[i]= SHR16(lsp[i],1) + SHR16(lsp[i+1]-m,1);
614
1.29M
   }
615
171k
}
616
617
#else
618
619
620
void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *lsp, int len, int subframe, int nb_subframes, spx_word16_t margin)
621
{
622
   int i;
623
   float tmp = (1.0f + subframe)/nb_subframes;
624
   for (i=0;i<len;i++)
625
      lsp[i] = (1-tmp)*old_lsp[i] + tmp*new_lsp[i];
626
   /* Enforce margin to sure the LSPs are stable*/
627
   if (lsp[0]<LSP_SCALING*margin)
628
      lsp[0]=LSP_SCALING*margin;
629
   if (lsp[len-1]>LSP_SCALING*(M_PI-margin))
630
      lsp[len-1]=LSP_SCALING*(M_PI-margin);
631
   for (i=1;i<len-1;i++)
632
   {
633
      if (lsp[i]<lsp[i-1]+LSP_SCALING*margin)
634
         lsp[i]=lsp[i-1]+LSP_SCALING*margin;
635
636
      if (lsp[i]>lsp[i+1]-LSP_SCALING*margin)
637
         lsp[i]= .5f* (lsp[i] + lsp[i+1]-LSP_SCALING*margin);
638
   }
639
}
640
641
#endif