Coverage Report

Created: 2025-11-16 06:16

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/speex/libspeex/lsp.c
Line
Count
Source
1
/*---------------------------------------------------------------------------*\
2
Original copyright
3
  FILE........: lsp.c
4
  AUTHOR......: David Rowe
5
  DATE CREATED: 24/2/93
6
7
Heavily modified by Jean-Marc Valin (c) 2002-2006 (fixed-point,
8
                       optimizations, additional functions, ...)
9
10
   This file contains functions for converting Linear Prediction
11
   Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
12
   LSP coefficients are not in radians format but in the x domain of the
13
   unit circle.
14
15
   Speex License:
16
17
   Redistribution and use in source and binary forms, with or without
18
   modification, are permitted provided that the following conditions
19
   are met:
20
21
   - Redistributions of source code must retain the above copyright
22
   notice, this list of conditions and the following disclaimer.
23
24
   - Redistributions in binary form must reproduce the above copyright
25
   notice, this list of conditions and the following disclaimer in the
26
   documentation and/or other materials provided with the distribution.
27
28
   - Neither the name of the Xiph.org Foundation nor the names of its
29
   contributors may be used to endorse or promote products derived from
30
   this software without specific prior written permission.
31
32
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
35
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
36
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
37
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
38
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
39
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
40
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
41
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
42
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43
*/
44
45
/*---------------------------------------------------------------------------*\
46
47
  Introduction to Line Spectrum Pairs (LSPs)
48
  ------------------------------------------
49
50
  LSPs are used to encode the LPC filter coefficients {ak} for
51
  transmission over the channel.  LSPs have several properties (like
52
  less sensitivity to quantisation noise) that make them superior to
53
  direct quantisation of {ak}.
54
55
  A(z) is a polynomial of order lpcrdr with {ak} as the coefficients.
56
57
  A(z) is transformed to P(z) and Q(z) (using a substitution and some
58
  algebra), to obtain something like:
59
60
    A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)]  (1)
61
62
  As you can imagine A(z) has complex zeros all over the z-plane. P(z)
63
  and Q(z) have the very neat property of only having zeros _on_ the
64
  unit circle.  So to find them we take a test point z=exp(jw) and
65
  evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0
66
  and pi.
67
68
  The zeros (roots) of P(z) also happen to alternate, which is why we
69
  swap coefficients as we find roots.  So the process of finding the
70
  LSP frequencies is basically finding the roots of 5th order
71
  polynomials.
72
73
  The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence
74
  the name Line Spectrum Pairs (LSPs).
75
76
  To convert back to ak we just evaluate (1), "clocking" an impulse
77
  thru it lpcrdr times gives us the impulse response of A(z) which is
78
  {ak}.
79
80
\*---------------------------------------------------------------------------*/
81
82
#ifdef HAVE_CONFIG_H
83
#include "config.h"
84
#endif
85
86
#include <math.h>
87
#include "lsp.h"
88
#include "stack_alloc.h"
89
#include "math_approx.h"
90
91
#ifndef M_PI
92
#define M_PI           3.14159265358979323846  /* pi */
93
#endif
94
95
#ifndef NULL
96
#define NULL 0
97
#endif
98
99
#ifdef FIXED_POINT
100
101
550k
#define FREQ_SCALE 16384
102
103
/*#define ANGLE2X(a) (32768*cos(((a)/8192.)))*/
104
1.87M
#define ANGLE2X(a) (SHL16(spx_cos(a),2))
105
106
/*#define X2ANGLE(x) (acos(.00006103515625*(x))*LSP_SCALING)*/
107
226k
#define X2ANGLE(x) (spx_acos(x))
108
109
#ifdef BFIN_ASM
110
#include "lsp_bfin.h"
111
#endif
112
113
#else
114
115
/*#define C1 0.99940307
116
#define C2 -0.49558072
117
#define C3 0.03679168*/
118
119
#define FREQ_SCALE 1.
120
#define ANGLE2X(a) (spx_cos(a))
121
#define X2ANGLE(x) (acos(x))
122
123
#endif
124
125
#ifndef DISABLE_ENCODER
126
127
/*---------------------------------------------------------------------------*\
128
129
   FUNCTION....: cheb_poly_eva()
130
131
   AUTHOR......: David Rowe
132
   DATE CREATED: 24/2/93
133
134
   This function evaluates a series of Chebyshev polynomials
135
136
\*---------------------------------------------------------------------------*/
137
138
#ifdef FIXED_POINT
139
140
#ifndef OVERRIDE_CHEB_POLY_EVA
141
static inline spx_word32_t cheb_poly_eva(
142
  spx_word16_t *coef, /* P or Q coefs in Q13 format               */
143
  spx_word16_t     x, /* cos of freq (-1.0 to 1.0) in Q14 format  */
144
  int              m, /* LPC order/2                              */
145
  char         *stack
146
)
147
3.23M
{
148
3.23M
    int i;
149
3.23M
    spx_word16_t b0, b1;
150
3.23M
    spx_word32_t sum;
151
152
    /*Prevents overflows*/
153
3.23M
    if (x>16383)
154
24.0k
       x = 16383;
155
3.23M
    if (x<-16383)
156
1.66k
       x = -16383;
157
158
    /* Initialise values */
159
3.23M
    b1=16384;
160
3.23M
    b0=x;
161
162
    /* Evaluate Chebyshev series formulation using an iterative approach  */
163
3.23M
    sum = ADD32(EXTEND32(coef[m]), EXTEND32(MULT16_16_P14(coef[m-1],x)));
164
15.4M
    for(i=2;i<=m;i++)
165
12.2M
    {
166
12.2M
       spx_word16_t tmp=b0;
167
12.2M
       b0 = SUB16(MULT16_16_Q13(x,b0), b1);
168
12.2M
       b1 = tmp;
169
12.2M
       sum = ADD32(sum, EXTEND32(MULT16_16_P14(coef[m-i],b0)));
170
12.2M
    }
171
172
3.23M
    return sum;
173
3.23M
}
174
#endif
175
176
#else
177
178
static float cheb_poly_eva(spx_word32_t *coef, spx_word16_t x, int m, char *stack)
179
{
180
   int k;
181
   float b0, b1, tmp;
182
183
   /* Initial conditions */
184
   b0=0; /* b_(m+1) */
185
   b1=0; /* b_(m+2) */
186
187
   x*=2;
188
189
   /* Calculate the b_(k) */
190
   for(k=m;k>0;k--)
191
   {
192
      tmp=b0;                           /* tmp holds the previous value of b0 */
193
      b0=x*b0-b1+coef[m-k];    /* b0 holds its new value based on b0 and b1 */
194
      b1=tmp;                           /* b1 holds the previous value of b0 */
195
   }
196
197
   return(-b1+.5*x*b0+coef[m]);
198
}
199
#endif
200
201
/*---------------------------------------------------------------------------*\
202
203
    FUNCTION....: lpc_to_lsp()
204
205
    AUTHOR......: David Rowe
206
    DATE CREATED: 24/2/93
207
208
    This function converts LPC coefficients to LSP
209
    coefficients.
210
211
\*---------------------------------------------------------------------------*/
212
213
#ifdef FIXED_POINT
214
3.01M
#define SIGN_CHANGE(a,b) ((((a)^(b))&0x80000000)||(b==0))
215
#else
216
#define SIGN_CHANGE(a,b) (((a)*(b))<0.0)
217
#endif
218
219
220
int lpc_to_lsp (spx_coef_t *a,int lpcrdr,spx_lsp_t *freq,int nb,spx_word16_t delta, char *stack)
221
/*  float *a          lpc coefficients      */
222
/*  int lpcrdr      order of LPC coefficients (10)    */
223
/*  float *freq           LSP frequencies in the x domain         */
224
/*  int nb      number of sub-intervals (4)     */
225
/*  float delta     grid spacing interval (0.02)    */
226
227
228
23.9k
{
229
23.9k
    spx_word16_t temp_xr,xl,xr,xm=0;
230
23.9k
    spx_word32_t psuml,psumr,psumm,temp_psumr/*,temp_qsumr*/;
231
23.9k
    int i,j,m,k;
232
23.9k
    VARDECL(spx_word32_t *Q);                   /* ptrs for memory allocation     */
233
23.9k
    VARDECL(spx_word32_t *P);
234
23.9k
    VARDECL(spx_word16_t *Q16);         /* ptrs for memory allocation     */
235
23.9k
    VARDECL(spx_word16_t *P16);
236
23.9k
    spx_word32_t *px;                 /* ptrs of respective P'(z) & Q'(z) */
237
23.9k
    spx_word32_t *qx;
238
23.9k
    spx_word32_t *p;
239
23.9k
    spx_word32_t *q;
240
23.9k
    spx_word16_t *pt;                 /* ptr used for cheb_poly_eval()
241
        whether P' or Q'      */
242
23.9k
    int roots=0;                /* DR 8/2/94: number of roots found   */
243
23.9k
    m = lpcrdr/2;             /* order of P'(z) & Q'(z) polynomials   */
244
245
    /* Allocate memory space for polynomials */
246
23.9k
    ALLOC(Q, (m+1), spx_word32_t);
247
23.9k
    ALLOC(P, (m+1), spx_word32_t);
248
249
    /* determine P'(z)'s and Q'(z)'s coefficients where
250
      P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
251
252
23.9k
    px = P;                      /* initialise ptrs       */
253
23.9k
    qx = Q;
254
23.9k
    p = px;
255
23.9k
    q = qx;
256
257
23.9k
#ifdef FIXED_POINT
258
23.9k
    *px++ = LPC_SCALING;
259
23.9k
    *qx++ = LPC_SCALING;
260
137k
    for(i=0;i<m;i++){
261
113k
       *px++ = SUB32(ADD32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *p++);
262
113k
       *qx++ = ADD32(SUB32(EXTEND32(a[i]),EXTEND32(a[lpcrdr-i-1])), *q++);
263
113k
    }
264
23.9k
    px = P;
265
23.9k
    qx = Q;
266
137k
    for(i=0;i<m;i++)
267
113k
    {
268
       /*if (fabs(*px)>=32768)
269
          speex_warning_int("px", *px);
270
       if (fabs(*qx)>=32768)
271
       speex_warning_int("qx", *qx);*/
272
113k
       *px = PSHR32(*px,2);
273
113k
       *qx = PSHR32(*qx,2);
274
113k
       px++;
275
113k
       qx++;
276
113k
    }
277
    /* The reason for this lies in the way cheb_poly_eva() is implemented for fixed-point */
278
23.9k
    P[m] = PSHR32(P[m],3);
279
23.9k
    Q[m] = PSHR32(Q[m],3);
280
#else
281
    *px++ = LPC_SCALING;
282
    *qx++ = LPC_SCALING;
283
    for(i=0;i<m;i++){
284
       *px++ = (a[i]+a[lpcrdr-1-i]) - *p++;
285
       *qx++ = (a[i]-a[lpcrdr-1-i]) + *q++;
286
    }
287
    px = P;
288
    qx = Q;
289
    for(i=0;i<m;i++){
290
       *px = 2**px;
291
       *qx = 2**qx;
292
       px++;
293
       qx++;
294
    }
295
#endif
296
297
23.9k
    px = P;               /* re-initialise ptrs       */
298
23.9k
    qx = Q;
299
300
    /* now that we have computed P and Q convert to 16 bits to
301
       speed up cheb_poly_eval */
302
303
23.9k
    ALLOC(P16, m+1, spx_word16_t);
304
23.9k
    ALLOC(Q16, m+1, spx_word16_t);
305
306
161k
    for (i=0;i<m+1;i++)
307
137k
    {
308
137k
       P16[i] = P[i];
309
137k
       Q16[i] = Q[i];
310
137k
    }
311
312
    /* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
313
    Keep alternating between the two polynomials as each zero is found  */
314
315
23.9k
    xr = 0;               /* initialise xr to zero    */
316
23.9k
    xl = FREQ_SCALE;                 /* start at point xl = 1    */
317
318
251k
    for(j=0;j<lpcrdr;j++){
319
227k
  if(j&1)              /* determines whether P' or Q' is eval. */
320
113k
      pt = Q16;
321
113k
  else
322
113k
      pt = P16;
323
324
227k
  psuml = cheb_poly_eva(pt,xl,m,stack); /* evals poly. at xl  */
325
326
526k
  while(xr >= -FREQ_SCALE){
327
525k
           spx_word16_t dd;
328
           /* Modified by JMV to provide smaller steps around x=+-1 */
329
525k
#ifdef FIXED_POINT
330
525k
           dd = MULT16_16_Q15(delta,SUB16(FREQ_SCALE, MULT16_16_Q14(MULT16_16_Q14(xl,xl),14000)));
331
525k
           if (psuml<512 && psuml>-512)
332
98.8k
              dd = PSHR16(dd,1);
333
#else
334
           dd=delta*(1-.9*xl*xl);
335
           if (fabs(psuml)<.2)
336
              dd *= .5;
337
#endif
338
525k
           xr = SUB16(xl, dd);                         /* interval spacing   */
339
525k
      psumr = cheb_poly_eva(pt,xr,m,stack);/* poly(xl-delta_x)  */
340
525k
      temp_psumr = psumr;
341
525k
      temp_xr = xr;
342
343
    /* if no sign change increment xr and re-evaluate poly(xr). Repeat til
344
    sign change.
345
    if a sign change has occurred the interval is bisected and then
346
    checked again for a sign change which determines in which
347
    interval the zero lies in.
348
    If there is no sign change between poly(xm) and poly(xl) set interval
349
    between xm and xr else set interval between xl and xr and repeat till
350
    root is located within the specified limits       */
351
352
525k
      if(SIGN_CHANGE(psumr,psuml))
353
226k
            {
354
226k
    roots++;
355
356
226k
    psumm=psuml;
357
2.71M
    for(k=0;k<=nb;k++){
358
2.48M
#ifdef FIXED_POINT
359
2.48M
        xm = ADD16(PSHR16(xl,1),PSHR16(xr,1));          /* bisect the interval  */
360
#else
361
                    xm = .5*(xl+xr);          /* bisect the interval  */
362
#endif
363
2.48M
        psumm=cheb_poly_eva(pt,xm,m,stack);
364
        /*if(psumm*psuml>0.)*/
365
2.48M
        if(!SIGN_CHANGE(psumm,psuml))
366
1.33M
                    {
367
1.33M
      psuml=psumm;
368
1.33M
      xl=xm;
369
1.33M
        } else {
370
1.14M
      psumr=psumm;
371
1.14M
      xr=xm;
372
1.14M
        }
373
2.48M
    }
374
375
         /* once zero is found, reset initial interval to xr  */
376
226k
         freq[j] = X2ANGLE(xm);
377
226k
         xl = xm;
378
226k
         break;
379
226k
      }
380
299k
      else{
381
299k
    psuml=temp_psumr;
382
299k
    xl=temp_xr;
383
299k
      }
384
525k
  }
385
227k
    }
386
23.9k
    return(roots);
387
23.9k
}
388
389
#endif /* DISABLE_ENCODER */
390
/*---------------------------------------------------------------------------*\
391
392
  FUNCTION....: lsp_to_lpc()
393
394
  AUTHOR......: David Rowe
395
  DATE CREATED: 24/2/93
396
397
        Converts LSP coefficients to LPC coefficients.
398
399
\*---------------------------------------------------------------------------*/
400
401
#ifdef FIXED_POINT
402
403
void lsp_to_lpc(const spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
404
/*  float *freq   array of LSP frequencies in the x domain  */
405
/*  float *ak     array of LPC coefficients       */
406
/*  int lpcrdr    order of LPC coefficients       */
407
196k
{
408
196k
    int i,j;
409
196k
    spx_word32_t xout1,xout2,xin;
410
196k
    spx_word32_t mult, a;
411
196k
    VARDECL(spx_word16_t *freqn);
412
196k
    VARDECL(spx_word32_t **xp);
413
196k
    VARDECL(spx_word32_t *xpmem);
414
196k
    VARDECL(spx_word32_t **xq);
415
196k
    VARDECL(spx_word32_t *xqmem);
416
196k
    int m = lpcrdr>>1;
417
418
    /*
419
420
       Reconstruct P(z) and Q(z) by cascading second order polynomials
421
       in form 1 - 2cos(w)z(-1) + z(-2), where w is the LSP frequency.
422
       In the time domain this is:
423
424
       y(n) = x(n) - 2cos(w)x(n-1) + x(n-2)
425
426
       This is what the ALLOCS below are trying to do:
427
428
         int xp[m+1][lpcrdr+1+2]; // P matrix in QIMP
429
         int xq[m+1][lpcrdr+1+2]; // Q matrix in QIMP
430
431
       These matrices store the output of each stage on each row.  The
432
       final (m-th) row has the output of the final (m-th) cascaded
433
       2nd order filter.  The first row is the impulse input to the
434
       system (not written as it is known).
435
436
       The version below takes advantage of the fact that a lot of the
437
       outputs are zero or known, for example if we put an inpulse
438
       into the first section the "clock" it 10 times only the first 3
439
       outputs samples are non-zero (it's an FIR filter).
440
    */
441
442
196k
    ALLOC(xp, (m+1), spx_word32_t*);
443
196k
    ALLOC(xpmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
444
445
196k
    ALLOC(xq, (m+1), spx_word32_t*);
446
196k
    ALLOC(xqmem, (m+1)*(lpcrdr+1+2), spx_word32_t);
447
448
1.33M
    for(i=0; i<=m; i++) {
449
1.13M
      xp[i] = xpmem + i*(lpcrdr+1+2);
450
1.13M
      xq[i] = xqmem + i*(lpcrdr+1+2);
451
1.13M
    }
452
453
    /* work out 2cos terms in Q14 */
454
455
196k
    ALLOC(freqn, lpcrdr, spx_word16_t);
456
2.07M
    for (i=0;i<lpcrdr;i++)
457
1.87M
       freqn[i] = ANGLE2X(freq[i]);
458
459
1.87M
    #define QIMP  21   /* scaling for impulse */
460
461
196k
    xin = SHL32(EXTEND32(1), (QIMP-1)); /* 0.5 in QIMP format */
462
463
    /* first col and last non-zero values of each row are trivial */
464
465
1.33M
    for(i=0;i<=m;i++) {
466
1.13M
     xp[i][1] = 0;
467
1.13M
     xp[i][2] = xin;
468
1.13M
     xp[i][2+2*i] = xin;
469
1.13M
     xq[i][1] = 0;
470
1.13M
     xq[i][2] = xin;
471
1.13M
     xq[i][2+2*i] = xin;
472
1.13M
    }
473
474
    /* 2nd row (first output row) is trivial */
475
476
196k
    xp[1][3] = -MULT16_32_Q14(freqn[0],xp[0][2]);
477
196k
    xq[1][3] = -MULT16_32_Q14(freqn[1],xq[0][2]);
478
479
196k
    xout1 = xout2 = 0;
480
481
    /* now generate remaining rows */
482
483
937k
    for(i=1;i<m;i++) {
484
485
4.31M
      for(j=1;j<2*(i+1)-1;j++) {
486
3.57M
  mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
487
3.57M
  xp[i+1][j+2] = ADD32(SUB32(xp[i][j+2], mult), xp[i][j]);
488
3.57M
  mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
489
3.57M
  xq[i+1][j+2] = ADD32(SUB32(xq[i][j+2], mult), xq[i][j]);
490
3.57M
      }
491
492
      /* for last col xp[i][j+2] = xq[i][j+2] = 0 */
493
494
741k
      mult = MULT16_32_Q14(freqn[2*i],xp[i][j+1]);
495
741k
      xp[i+1][j+2] = SUB32(xp[i][j], mult);
496
741k
      mult = MULT16_32_Q14(freqn[2*i+1],xq[i][j+1]);
497
741k
      xq[i+1][j+2] = SUB32(xq[i][j], mult);
498
741k
    }
499
500
    /* process last row to extra a{k} */
501
502
2.07M
    for(j=1;j<=lpcrdr;j++) {
503
1.87M
      int shift = QIMP-13;
504
505
      /* final filter sections */
506
1.87M
      a = PSHR32(xp[m][j+2] + xout1 + xq[m][j+2] - xout2, shift);
507
1.87M
      xout1 = xp[m][j+2];
508
1.87M
      xout2 = xq[m][j+2];
509
510
      /* hard limit ak's to +/- 32767 */
511
512
1.87M
      if (a < -32767) a = -32767;
513
1.87M
      if (a > 32767) a = 32767;
514
1.87M
      ak[j-1] = (short)a;
515
516
1.87M
    }
517
518
196k
}
519
520
#else
521
522
void lsp_to_lpc(const spx_lsp_t *freq,spx_coef_t *ak,int lpcrdr, char *stack)
523
/*  float *freq   array of LSP frequencies in the x domain  */
524
/*  float *ak     array of LPC coefficients       */
525
/*  int lpcrdr    order of LPC coefficients       */
526
527
528
{
529
    int i,j;
530
    float xout1,xout2,xin1,xin2;
531
    VARDECL(float *Wp);
532
    float *pw,*n1,*n2,*n3,*n4=NULL;
533
    VARDECL(float *x_freq);
534
    int m = lpcrdr>>1;
535
536
    ALLOC(Wp, 4*m+2, float);
537
    pw = Wp;
538
539
    /* initialise contents of array */
540
541
    for(i=0;i<=4*m+1;i++){        /* set contents of buffer to 0 */
542
  *pw++ = 0.0;
543
    }
544
545
    /* Set pointers up */
546
547
    pw = Wp;
548
    xin1 = 1.0;
549
    xin2 = 1.0;
550
551
    ALLOC(x_freq, lpcrdr, float);
552
    for (i=0;i<lpcrdr;i++)
553
       x_freq[i] = ANGLE2X(freq[i]);
554
555
    /* reconstruct P(z) and Q(z) by  cascading second order
556
      polynomials in form 1 - 2xz(-1) +z(-2), where x is the
557
      LSP coefficient */
558
559
    for(j=0;j<=lpcrdr;j++){
560
       int i2=0;
561
  for(i=0;i<m;i++,i2+=2){
562
      n1 = pw+(i*4);
563
      n2 = n1 + 1;
564
      n3 = n2 + 1;
565
      n4 = n3 + 1;
566
      xout1 = xin1 - 2.f*x_freq[i2] * *n1 + *n2;
567
      xout2 = xin2 - 2.f*x_freq[i2+1] * *n3 + *n4;
568
      *n2 = *n1;
569
      *n4 = *n3;
570
      *n1 = xin1;
571
      *n3 = xin2;
572
      xin1 = xout1;
573
      xin2 = xout2;
574
  }
575
  xout1 = xin1 + *(n4+1);
576
  xout2 = xin2 - *(n4+2);
577
  if (j>0)
578
     ak[j-1] = (xout1 + xout2)*0.5f;
579
  *(n4+1) = xin1;
580
  *(n4+2) = xin2;
581
582
  xin1 = 0.0;
583
  xin2 = 0.0;
584
    }
585
586
}
587
#endif
588
589
590
#ifdef FIXED_POINT
591
592
593
void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *lsp, int len, int subframe, int nb_subframes, spx_word16_t margin)
594
193k
{
595
193k
   int i;
596
193k
   spx_word16_t m = margin;
597
193k
   spx_word16_t m2 = 25736-margin;
598
193k
   spx_word16_t tmp = DIV32_16(SHL32(EXTEND32(1 + subframe),14),nb_subframes);
599
193k
   spx_word16_t tmp2 = 16384-tmp;
600
2.03M
   for (i=0;i<len;i++)
601
1.84M
      lsp[i] = MULT16_16_P14(tmp2,old_lsp[i]) + MULT16_16_P14(tmp,new_lsp[i]);
602
   /* Enforce margin to sure the LSPs are stable*/
603
193k
   if (lsp[0]<m)
604
50
      lsp[0]=m;
605
193k
   if (lsp[len-1]>m2)
606
35
      lsp[len-1]=m2;
607
1.65M
   for (i=1;i<len-1;i++)
608
1.45M
   {
609
1.45M
      if (lsp[i]<lsp[i-1]+m)
610
3.14k
         lsp[i]=lsp[i-1]+m;
611
612
1.45M
      if (lsp[i]>lsp[i+1]-m)
613
3.53k
         lsp[i]= SHR16(lsp[i],1) + SHR16(lsp[i+1]-m,1);
614
1.45M
   }
615
193k
}
616
617
#else
618
619
620
void lsp_interpolate(spx_lsp_t *old_lsp, spx_lsp_t *new_lsp, spx_lsp_t *lsp, int len, int subframe, int nb_subframes, spx_word16_t margin)
621
{
622
   int i;
623
   float tmp = (1.0f + subframe)/nb_subframes;
624
   for (i=0;i<len;i++)
625
      lsp[i] = (1-tmp)*old_lsp[i] + tmp*new_lsp[i];
626
   /* Enforce margin to sure the LSPs are stable*/
627
   if (lsp[0]<LSP_SCALING*margin)
628
      lsp[0]=LSP_SCALING*margin;
629
   if (lsp[len-1]>LSP_SCALING*(M_PI-margin))
630
      lsp[len-1]=LSP_SCALING*(M_PI-margin);
631
   for (i=1;i<len-1;i++)
632
   {
633
      if (lsp[i]<lsp[i-1]+LSP_SCALING*margin)
634
         lsp[i]=lsp[i-1]+LSP_SCALING*margin;
635
636
      if (lsp[i]>lsp[i+1]-LSP_SCALING*margin)
637
         lsp[i]= .5f* (lsp[i] + lsp[i+1]-LSP_SCALING*margin);
638
   }
639
}
640
641
#endif