/src/spirv-tools/source/opt/loop_fission.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2018 Google LLC. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "source/opt/loop_fission.h" |
16 | | |
17 | | #include <set> |
18 | | |
19 | | #include "source/opt/register_pressure.h" |
20 | | |
21 | | // Implement loop fission with an optional parameter to split only |
22 | | // if the register pressure in a given loop meets a certain criteria. This is |
23 | | // controlled via the constructors of LoopFissionPass. |
24 | | // |
25 | | // 1 - Build a list of loops to be split, these are top level loops (loops |
26 | | // without child loops themselves) which meet the register pressure criteria, as |
27 | | // determined by the ShouldSplitLoop method of LoopFissionPass. |
28 | | // |
29 | | // 2 - For each loop in the list, group each instruction into a set of related |
30 | | // instructions by traversing each instructions users and operands recursively. |
31 | | // We stop if we encounter an instruction we have seen before or an instruction |
32 | | // which we don't consider relevant (i.e OpLoopMerge). We then group these |
33 | | // groups into two different sets, one for the first loop and one for the |
34 | | // second. |
35 | | // |
36 | | // 3 - We then run CanPerformSplit to check that it would be legal to split a |
37 | | // loop using those two sets. We check that we haven't altered the relative |
38 | | // order load/stores appear in the binary and that we aren't breaking any |
39 | | // dependency between load/stores by splitting them into two loops. We also |
40 | | // check that none of the OpBranch instructions are dependent on a load as we |
41 | | // leave control flow structure intact and move only instructions in the body so |
42 | | // we want to avoid any loads with side affects or aliasing. |
43 | | // |
44 | | // 4 - We then split the loop by calling SplitLoop. This function clones the |
45 | | // loop and attaches it to the preheader and connects the new loops merge block |
46 | | // to the current loop header block. We then use the two sets built in step 2 to |
47 | | // remove instructions from each loop. If an instruction appears in the first |
48 | | // set it is removed from the second loop and vice versa. |
49 | | // |
50 | | // 5 - If the multiple split passes flag is set we check if each of the loops |
51 | | // still meet the register pressure criteria. If they do then we add them to the |
52 | | // list of loops to be split (created in step one) to allow for loops to be |
53 | | // split multiple times. |
54 | | // |
55 | | |
56 | | namespace spvtools { |
57 | | namespace opt { |
58 | | |
59 | | class LoopFissionImpl { |
60 | | public: |
61 | | LoopFissionImpl(IRContext* context, Loop* loop) |
62 | 0 | : context_(context), loop_(loop), load_used_in_condition_(false) {} |
63 | | |
64 | | // Group each instruction in the loop into sets of instructions related by |
65 | | // their usedef chains. An instruction which uses another will appear in the |
66 | | // same set. Then merge those sets into just two sets. Returns false if there |
67 | | // was one or less sets created. |
68 | | bool GroupInstructionsByUseDef(); |
69 | | |
70 | | // Check if the sets built by GroupInstructionsByUseDef violate any data |
71 | | // dependence rules. |
72 | | bool CanPerformSplit(); |
73 | | |
74 | | // Split the loop and return a pointer to the new loop. |
75 | | Loop* SplitLoop(); |
76 | | |
77 | | // Checks if |inst| is safe to move. We can only move instructions which don't |
78 | | // have any side effects and OpLoads and OpStores. |
79 | | bool MovableInstruction(const Instruction& inst) const; |
80 | | |
81 | | private: |
82 | | // Traverse the def use chain of |inst| and add the users and uses of |inst| |
83 | | // which are in the same loop to the |returned_set|. |
84 | | void TraverseUseDef(Instruction* inst, std::set<Instruction*>* returned_set, |
85 | | bool ignore_phi_users = false, bool report_loads = false); |
86 | | |
87 | | // We group the instructions in the block into two different groups, the |
88 | | // instructions to be kept in the original loop and the ones to be cloned into |
89 | | // the new loop. As the cloned loop is attached to the preheader it will be |
90 | | // the first loop and the second loop will be the original. |
91 | | std::set<Instruction*> cloned_loop_instructions_; |
92 | | std::set<Instruction*> original_loop_instructions_; |
93 | | |
94 | | // We need a set of all the instructions to be seen so we can break any |
95 | | // recursion and also so we can ignore certain instructions by preemptively |
96 | | // adding them to this set. |
97 | | std::set<Instruction*> seen_instructions_; |
98 | | |
99 | | // A map of instructions to their relative position in the function. |
100 | | std::map<Instruction*, size_t> instruction_order_; |
101 | | |
102 | | IRContext* context_; |
103 | | |
104 | | Loop* loop_; |
105 | | |
106 | | // This is set to true by TraverseUseDef when traversing the instructions |
107 | | // related to the loop condition and any if conditions should any of those |
108 | | // instructions be a load. |
109 | | bool load_used_in_condition_; |
110 | | }; |
111 | | |
112 | 0 | bool LoopFissionImpl::MovableInstruction(const Instruction& inst) const { |
113 | 0 | return inst.opcode() == spv::Op::OpLoad || |
114 | 0 | inst.opcode() == spv::Op::OpStore || |
115 | 0 | inst.opcode() == spv::Op::OpSelectionMerge || |
116 | 0 | inst.opcode() == spv::Op::OpPhi || inst.IsOpcodeCodeMotionSafe(); |
117 | 0 | } |
118 | | |
119 | | void LoopFissionImpl::TraverseUseDef(Instruction* inst, |
120 | | std::set<Instruction*>* returned_set, |
121 | 0 | bool ignore_phi_users, bool report_loads) { |
122 | 0 | assert(returned_set && "Set to be returned cannot be null."); |
123 | | |
124 | 0 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
125 | 0 | std::set<Instruction*>& inst_set = *returned_set; |
126 | | |
127 | | // We create this functor to traverse the use def chain to build the |
128 | | // grouping of related instructions. The lambda captures the std::function |
129 | | // to allow it to recurse. |
130 | 0 | std::function<void(Instruction*)> traverser_functor; |
131 | 0 | traverser_functor = [this, def_use, &inst_set, &traverser_functor, |
132 | 0 | ignore_phi_users, report_loads](Instruction* user) { |
133 | | // If we've seen the instruction before or it is not inside the loop end the |
134 | | // traversal. |
135 | 0 | if (!user || seen_instructions_.count(user) != 0 || |
136 | 0 | !context_->get_instr_block(user) || |
137 | 0 | !loop_->IsInsideLoop(context_->get_instr_block(user))) { |
138 | 0 | return; |
139 | 0 | } |
140 | | |
141 | | // Don't include labels or loop merge instructions in the instruction sets. |
142 | | // Including them would mean we group instructions related only by using the |
143 | | // same labels (i.e phis). We already preempt the inclusion of |
144 | | // OpSelectionMerge by adding related instructions to the seen_instructions_ |
145 | | // set. |
146 | 0 | if (user->opcode() == spv::Op::OpLoopMerge || |
147 | 0 | user->opcode() == spv::Op::OpLabel) |
148 | 0 | return; |
149 | | |
150 | | // If the |report_loads| flag is set, set the class field |
151 | | // load_used_in_condition_ to false. This is used to check that none of the |
152 | | // condition checks in the loop rely on loads. |
153 | 0 | if (user->opcode() == spv::Op::OpLoad && report_loads) { |
154 | 0 | load_used_in_condition_ = true; |
155 | 0 | } |
156 | | |
157 | | // Add the instruction to the set of instructions already seen, this breaks |
158 | | // recursion and allows us to ignore certain instructions. |
159 | 0 | seen_instructions_.insert(user); |
160 | |
|
161 | 0 | inst_set.insert(user); |
162 | | |
163 | | // Wrapper functor to traverse the operands of each instruction. |
164 | 0 | auto traverse_operand = [&traverser_functor, def_use](const uint32_t* id) { |
165 | 0 | traverser_functor(def_use->GetDef(*id)); |
166 | 0 | }; |
167 | 0 | user->ForEachInOperand(traverse_operand); |
168 | | |
169 | | // For the first traversal we want to ignore the users of the phi. |
170 | 0 | if (ignore_phi_users && user->opcode() == spv::Op::OpPhi) return; |
171 | | |
172 | | // Traverse each user with this lambda. |
173 | 0 | def_use->ForEachUser(user, traverser_functor); |
174 | | |
175 | | // Wrapper functor for the use traversal. |
176 | 0 | auto traverse_use = [&traverser_functor](Instruction* use, uint32_t) { |
177 | 0 | traverser_functor(use); |
178 | 0 | }; |
179 | 0 | def_use->ForEachUse(user, traverse_use); |
180 | |
|
181 | 0 | }; |
182 | | |
183 | | // We start the traversal of the use def graph by invoking the above |
184 | | // lambda with the |inst| parameter. |
185 | 0 | traverser_functor(inst); |
186 | 0 | } |
187 | | |
188 | 0 | bool LoopFissionImpl::GroupInstructionsByUseDef() { |
189 | 0 | std::vector<std::set<Instruction*>> sets{}; |
190 | | |
191 | | // We want to ignore all the instructions stemming from the loop condition |
192 | | // instruction. |
193 | 0 | BasicBlock* condition_block = loop_->FindConditionBlock(); |
194 | |
|
195 | 0 | if (!condition_block) return false; |
196 | 0 | Instruction* condition = &*condition_block->tail(); |
197 | | |
198 | | // We iterate over the blocks via iterating over all the blocks in the |
199 | | // function, we do this so we are iterating in the same order which the blocks |
200 | | // appear in the binary. |
201 | 0 | Function& function = *loop_->GetHeaderBlock()->GetParent(); |
202 | | |
203 | | // Create a temporary set to ignore certain groups of instructions within the |
204 | | // loop. We don't want any instructions related to control flow to be removed |
205 | | // from either loop only instructions within the control flow bodies. |
206 | 0 | std::set<Instruction*> instructions_to_ignore{}; |
207 | 0 | TraverseUseDef(condition, &instructions_to_ignore, true, true); |
208 | | |
209 | | // Traverse control flow instructions to ensure they are added to the |
210 | | // seen_instructions_ set and will be ignored when it it called with actual |
211 | | // sets. |
212 | 0 | for (BasicBlock& block : function) { |
213 | 0 | if (!loop_->IsInsideLoop(block.id())) continue; |
214 | | |
215 | 0 | for (Instruction& inst : block) { |
216 | | // Ignore all instructions related to control flow. |
217 | 0 | if (inst.opcode() == spv::Op::OpSelectionMerge || inst.IsBranch()) { |
218 | 0 | TraverseUseDef(&inst, &instructions_to_ignore, true, true); |
219 | 0 | } |
220 | 0 | } |
221 | 0 | } |
222 | | |
223 | | // Traverse the instructions and generate the sets, automatically ignoring any |
224 | | // instructions in instructions_to_ignore. |
225 | 0 | for (BasicBlock& block : function) { |
226 | 0 | if (!loop_->IsInsideLoop(block.id()) || |
227 | 0 | loop_->GetHeaderBlock()->id() == block.id()) |
228 | 0 | continue; |
229 | | |
230 | 0 | for (Instruction& inst : block) { |
231 | | // Record the order that each load/store is seen. |
232 | 0 | if (inst.opcode() == spv::Op::OpLoad || |
233 | 0 | inst.opcode() == spv::Op::OpStore) { |
234 | 0 | instruction_order_[&inst] = instruction_order_.size(); |
235 | 0 | } |
236 | | |
237 | | // Ignore instructions already seen in a traversal. |
238 | 0 | if (seen_instructions_.count(&inst) != 0) { |
239 | 0 | continue; |
240 | 0 | } |
241 | | |
242 | | // Build the set. |
243 | 0 | std::set<Instruction*> inst_set{}; |
244 | 0 | TraverseUseDef(&inst, &inst_set); |
245 | 0 | if (!inst_set.empty()) sets.push_back(std::move(inst_set)); |
246 | 0 | } |
247 | 0 | } |
248 | | |
249 | | // If we have one or zero sets return false to indicate that due to |
250 | | // insufficient instructions we couldn't split the loop into two groups and |
251 | | // thus the loop can't be split any further. |
252 | 0 | if (sets.size() < 2) { |
253 | 0 | return false; |
254 | 0 | } |
255 | | |
256 | | // Merge the loop sets into two different sets. In CanPerformSplit we will |
257 | | // validate that we don't break the relative ordering of loads/stores by doing |
258 | | // this. |
259 | 0 | for (size_t index = 0; index < sets.size() / 2; ++index) { |
260 | 0 | cloned_loop_instructions_.insert(sets[index].begin(), sets[index].end()); |
261 | 0 | } |
262 | 0 | for (size_t index = sets.size() / 2; index < sets.size(); ++index) { |
263 | 0 | original_loop_instructions_.insert(sets[index].begin(), sets[index].end()); |
264 | 0 | } |
265 | |
|
266 | 0 | return true; |
267 | 0 | } |
268 | | |
269 | 0 | bool LoopFissionImpl::CanPerformSplit() { |
270 | | // Return false if any of the condition instructions in the loop depend on a |
271 | | // load. |
272 | 0 | if (load_used_in_condition_) { |
273 | 0 | return false; |
274 | 0 | } |
275 | | |
276 | | // Build a list of all parent loops of this loop. Loop dependence analysis |
277 | | // needs this structure. |
278 | 0 | std::vector<const Loop*> loops; |
279 | 0 | Loop* parent_loop = loop_; |
280 | 0 | while (parent_loop) { |
281 | 0 | loops.push_back(parent_loop); |
282 | 0 | parent_loop = parent_loop->GetParent(); |
283 | 0 | } |
284 | |
|
285 | 0 | LoopDependenceAnalysis analysis{context_, loops}; |
286 | | |
287 | | // A list of all the stores in the cloned loop. |
288 | 0 | std::vector<Instruction*> set_one_stores{}; |
289 | | |
290 | | // A list of all the loads in the cloned loop. |
291 | 0 | std::vector<Instruction*> set_one_loads{}; |
292 | | |
293 | | // Populate the above lists. |
294 | 0 | for (Instruction* inst : cloned_loop_instructions_) { |
295 | 0 | if (inst->opcode() == spv::Op::OpStore) { |
296 | 0 | set_one_stores.push_back(inst); |
297 | 0 | } else if (inst->opcode() == spv::Op::OpLoad) { |
298 | 0 | set_one_loads.push_back(inst); |
299 | 0 | } |
300 | | |
301 | | // If we find any instruction which we can't move (such as a barrier), |
302 | | // return false. |
303 | 0 | if (!MovableInstruction(*inst)) return false; |
304 | 0 | } |
305 | | |
306 | | // We need to calculate the depth of the loop to create the loop dependency |
307 | | // distance vectors. |
308 | 0 | const size_t loop_depth = loop_->GetDepth(); |
309 | | |
310 | | // Check the dependencies between loads in the cloned loop and stores in the |
311 | | // original and vice versa. |
312 | 0 | for (Instruction* inst : original_loop_instructions_) { |
313 | | // If we find any instruction which we can't move (such as a barrier), |
314 | | // return false. |
315 | 0 | if (!MovableInstruction(*inst)) return false; |
316 | | |
317 | | // Look at the dependency between the loads in the original and stores in |
318 | | // the cloned loops. |
319 | 0 | if (inst->opcode() == spv::Op::OpLoad) { |
320 | 0 | for (Instruction* store : set_one_stores) { |
321 | 0 | DistanceVector vec{loop_depth}; |
322 | | |
323 | | // If the store actually should appear after the load, return false. |
324 | | // This means the store has been placed in the wrong grouping. |
325 | 0 | if (instruction_order_[store] > instruction_order_[inst]) { |
326 | 0 | return false; |
327 | 0 | } |
328 | | // If not independent check the distance vector. |
329 | 0 | if (!analysis.GetDependence(store, inst, &vec)) { |
330 | 0 | for (DistanceEntry& entry : vec.GetEntries()) { |
331 | | // A distance greater than zero means that the store in the cloned |
332 | | // loop has a dependency on the load in the original loop. |
333 | 0 | if (entry.distance > 0) return false; |
334 | 0 | } |
335 | 0 | } |
336 | 0 | } |
337 | 0 | } else if (inst->opcode() == spv::Op::OpStore) { |
338 | 0 | for (Instruction* load : set_one_loads) { |
339 | 0 | DistanceVector vec{loop_depth}; |
340 | | |
341 | | // If the load actually should appear after the store, return false. |
342 | 0 | if (instruction_order_[load] > instruction_order_[inst]) { |
343 | 0 | return false; |
344 | 0 | } |
345 | | |
346 | | // If not independent check the distance vector. |
347 | 0 | if (!analysis.GetDependence(inst, load, &vec)) { |
348 | 0 | for (DistanceEntry& entry : vec.GetEntries()) { |
349 | | // A distance less than zero means the load in the cloned loop is |
350 | | // dependent on the store instruction in the original loop. |
351 | 0 | if (entry.distance < 0) return false; |
352 | 0 | } |
353 | 0 | } |
354 | 0 | } |
355 | 0 | } |
356 | 0 | } |
357 | 0 | return true; |
358 | 0 | } |
359 | | |
360 | 0 | Loop* LoopFissionImpl::SplitLoop() { |
361 | | // Clone the loop. |
362 | 0 | LoopUtils util{context_, loop_}; |
363 | 0 | LoopUtils::LoopCloningResult clone_results; |
364 | 0 | Loop* cloned_loop = util.CloneAndAttachLoopToHeader(&clone_results); |
365 | | |
366 | | // Update the OpLoopMerge in the cloned loop. |
367 | 0 | cloned_loop->UpdateLoopMergeInst(); |
368 | | |
369 | | // Add the loop_ to the module. |
370 | | // TODO(1841): Handle failure to create pre-header. |
371 | 0 | Function::iterator it = |
372 | 0 | util.GetFunction()->FindBlock(loop_->GetOrCreatePreHeaderBlock()->id()); |
373 | 0 | util.GetFunction()->AddBasicBlocks(clone_results.cloned_bb_.begin(), |
374 | 0 | clone_results.cloned_bb_.end(), ++it); |
375 | 0 | loop_->SetPreHeaderBlock(cloned_loop->GetMergeBlock()); |
376 | |
|
377 | 0 | std::vector<Instruction*> instructions_to_kill{}; |
378 | | |
379 | | // Kill all the instructions which should appear in the cloned loop but not in |
380 | | // the original loop. |
381 | 0 | for (uint32_t id : loop_->GetBlocks()) { |
382 | 0 | BasicBlock* block = context_->cfg()->block(id); |
383 | |
|
384 | 0 | for (Instruction& inst : *block) { |
385 | | // If the instruction appears in the cloned loop instruction group, kill |
386 | | // it. |
387 | 0 | if (cloned_loop_instructions_.count(&inst) == 1 && |
388 | 0 | original_loop_instructions_.count(&inst) == 0) { |
389 | 0 | instructions_to_kill.push_back(&inst); |
390 | 0 | if (inst.opcode() == spv::Op::OpPhi) { |
391 | 0 | context_->ReplaceAllUsesWith( |
392 | 0 | inst.result_id(), clone_results.value_map_[inst.result_id()]); |
393 | 0 | } |
394 | 0 | } |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | | // Kill all instructions which should appear in the original loop and not in |
399 | | // the cloned loop. |
400 | 0 | for (uint32_t id : cloned_loop->GetBlocks()) { |
401 | 0 | BasicBlock* block = context_->cfg()->block(id); |
402 | 0 | for (Instruction& inst : *block) { |
403 | 0 | Instruction* old_inst = clone_results.ptr_map_[&inst]; |
404 | | // If the instruction belongs to the original loop instruction group, kill |
405 | | // it. |
406 | 0 | if (cloned_loop_instructions_.count(old_inst) == 0 && |
407 | 0 | original_loop_instructions_.count(old_inst) == 1) { |
408 | 0 | instructions_to_kill.push_back(&inst); |
409 | 0 | } |
410 | 0 | } |
411 | 0 | } |
412 | |
|
413 | 0 | for (Instruction* i : instructions_to_kill) { |
414 | 0 | context_->KillInst(i); |
415 | 0 | } |
416 | |
|
417 | 0 | return cloned_loop; |
418 | 0 | } |
419 | | |
420 | | LoopFissionPass::LoopFissionPass(const size_t register_threshold_to_split, |
421 | | bool split_multiple_times) |
422 | 0 | : split_multiple_times_(split_multiple_times) { |
423 | | // Split if the number of registers in the loop exceeds |
424 | | // |register_threshold_to_split|. |
425 | 0 | split_criteria_ = |
426 | 0 | [register_threshold_to_split]( |
427 | 0 | const RegisterLiveness::RegionRegisterLiveness& liveness) { |
428 | 0 | return liveness.used_registers_ > register_threshold_to_split; |
429 | 0 | }; |
430 | 0 | } |
431 | | |
432 | 0 | LoopFissionPass::LoopFissionPass() : split_multiple_times_(false) { |
433 | | // Split by default. |
434 | 0 | split_criteria_ = [](const RegisterLiveness::RegionRegisterLiveness&) { |
435 | 0 | return true; |
436 | 0 | }; |
437 | 0 | } |
438 | | |
439 | 0 | bool LoopFissionPass::ShouldSplitLoop(const Loop& loop, IRContext* c) { |
440 | 0 | LivenessAnalysis* analysis = c->GetLivenessAnalysis(); |
441 | |
|
442 | 0 | RegisterLiveness::RegionRegisterLiveness liveness{}; |
443 | |
|
444 | 0 | Function* function = loop.GetHeaderBlock()->GetParent(); |
445 | 0 | analysis->Get(function)->ComputeLoopRegisterPressure(loop, &liveness); |
446 | |
|
447 | 0 | return split_criteria_(liveness); |
448 | 0 | } |
449 | | |
450 | 0 | Pass::Status LoopFissionPass::Process() { |
451 | 0 | bool changed = false; |
452 | |
|
453 | 0 | for (Function& f : *context()->module()) { |
454 | | // We collect all the inner most loops in the function and run the loop |
455 | | // splitting util on each. The reason we do this is to allow us to iterate |
456 | | // over each, as creating new loops will invalidate the loop iterator. |
457 | 0 | std::vector<Loop*> inner_most_loops{}; |
458 | 0 | LoopDescriptor& loop_descriptor = *context()->GetLoopDescriptor(&f); |
459 | 0 | for (Loop& loop : loop_descriptor) { |
460 | 0 | if (!loop.HasChildren() && ShouldSplitLoop(loop, context())) { |
461 | 0 | inner_most_loops.push_back(&loop); |
462 | 0 | } |
463 | 0 | } |
464 | | |
465 | | // List of new loops which meet the criteria to be split again. |
466 | 0 | std::vector<Loop*> new_loops_to_split{}; |
467 | |
|
468 | 0 | while (!inner_most_loops.empty()) { |
469 | 0 | for (Loop* loop : inner_most_loops) { |
470 | 0 | LoopFissionImpl impl{context(), loop}; |
471 | | |
472 | | // Group the instructions in the loop into two different sets of related |
473 | | // instructions. If we can't group the instructions into the two sets |
474 | | // then we can't split the loop any further. |
475 | 0 | if (!impl.GroupInstructionsByUseDef()) { |
476 | 0 | continue; |
477 | 0 | } |
478 | | |
479 | 0 | if (impl.CanPerformSplit()) { |
480 | 0 | Loop* second_loop = impl.SplitLoop(); |
481 | 0 | changed = true; |
482 | 0 | context()->InvalidateAnalysesExceptFor( |
483 | 0 | IRContext::kAnalysisLoopAnalysis); |
484 | | |
485 | | // If the newly created loop meets the criteria to be split, split it |
486 | | // again. |
487 | 0 | if (ShouldSplitLoop(*second_loop, context())) |
488 | 0 | new_loops_to_split.push_back(second_loop); |
489 | | |
490 | | // If the original loop (now split) still meets the criteria to be |
491 | | // split, split it again. |
492 | 0 | if (ShouldSplitLoop(*loop, context())) |
493 | 0 | new_loops_to_split.push_back(loop); |
494 | 0 | } |
495 | 0 | } |
496 | | |
497 | | // If the split multiple times flag has been set add the new loops which |
498 | | // meet the splitting criteria into the list of loops to be split on the |
499 | | // next iteration. |
500 | 0 | if (split_multiple_times_) { |
501 | 0 | inner_most_loops = std::move(new_loops_to_split); |
502 | 0 | } else { |
503 | 0 | break; |
504 | 0 | } |
505 | 0 | } |
506 | 0 | } |
507 | |
|
508 | 0 | return changed ? Pass::Status::SuccessWithChange |
509 | 0 | : Pass::Status::SuccessWithoutChange; |
510 | 0 | } |
511 | | |
512 | | } // namespace opt |
513 | | } // namespace spvtools |