Coverage Report

Created: 2025-06-13 06:49

/src/spirv-tools/source/opt/scalar_analysis_nodes.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2018 Google LLC.
2
//
3
// Licensed under the Apache License, Version 2.0 (the "License");
4
// you may not use this file except in compliance with the License.
5
// You may obtain a copy of the License at
6
//
7
//     http://www.apache.org/licenses/LICENSE-2.0
8
//
9
// Unless required by applicable law or agreed to in writing, software
10
// distributed under the License is distributed on an "AS IS" BASI,
11
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
// See the License for the specific language governing permissions and
13
// limitations under the License.
14
15
#ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
16
#define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
17
18
#include <algorithm>
19
#include <memory>
20
#include <string>
21
#include <vector>
22
23
#include "source/opt/tree_iterator.h"
24
25
namespace spvtools {
26
namespace opt {
27
28
class Loop;
29
class ScalarEvolutionAnalysis;
30
class SEConstantNode;
31
class SERecurrentNode;
32
class SEAddNode;
33
class SEMultiplyNode;
34
class SENegative;
35
class SEValueUnknown;
36
class SECantCompute;
37
38
// Abstract class representing a node in the scalar evolution DAG. Each node
39
// contains a vector of pointers to its children and each subclass of SENode
40
// implements GetType and an As method to allow casting. SENodes can be hashed
41
// using the SENodeHash functor. The vector of children is sorted when a node is
42
// added. This is important as it allows the hash of X+Y to be the same as Y+X.
43
class SENode {
44
 public:
45
  enum SENodeType {
46
    Constant,
47
    RecurrentAddExpr,
48
    Add,
49
    Multiply,
50
    Negative,
51
    ValueUnknown,
52
    CanNotCompute
53
  };
54
55
  using ChildContainerType = std::vector<SENode*>;
56
57
  explicit SENode(ScalarEvolutionAnalysis* parent_analysis)
58
0
      : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {}
59
60
  virtual SENodeType GetType() const = 0;
61
62
0
  virtual ~SENode() {}
63
64
0
  virtual inline void AddChild(SENode* child) {
65
    // If this is a constant node, assert.
66
0
    if (AsSEConstantNode()) {
67
0
      assert(false && "Trying to add a child node to a constant!");
68
0
    }
69
70
    // Find the first point in the vector where |child| is greater than the node
71
    // currently in the vector.
72
0
    auto find_first_less_than = [child](const SENode* node) {
73
0
      return child->unique_id_ <= node->unique_id_;
74
0
    };
75
76
0
    auto position = std::find_if_not(children_.begin(), children_.end(),
77
0
                                     find_first_less_than);
78
    // Children are sorted so the hashing and equality operator will be the same
79
    // for a node with the same children. X+Y should be the same as Y+X.
80
0
    children_.insert(position, child);
81
0
  }
82
83
  // Get the type as an std::string. This is used to represent the node in the
84
  // dot output and is used to hash the type as well.
85
  std::string AsString() const;
86
87
  // Dump the SENode and its immediate children, if |recurse| is true then it
88
  // will recurse through all children to print the DAG starting from this node
89
  // as a root.
90
  void DumpDot(std::ostream& out, bool recurse = false) const;
91
92
  // Checks if two nodes are the same by hashing them.
93
  bool operator==(const SENode& other) const;
94
95
  // Checks if two nodes are not the same by comparing the hashes.
96
  bool operator!=(const SENode& other) const;
97
98
  // Return the child node at |index|.
99
0
  inline SENode* GetChild(size_t index) { return children_[index]; }
100
0
  inline const SENode* GetChild(size_t index) const { return children_[index]; }
101
102
  // Iterator to iterate over the child nodes.
103
  using iterator = ChildContainerType::iterator;
104
  using const_iterator = ChildContainerType::const_iterator;
105
106
  // Iterate over immediate child nodes.
107
0
  iterator begin() { return children_.begin(); }
108
0
  iterator end() { return children_.end(); }
109
110
  // Constant overloads for iterating over immediate child nodes.
111
0
  const_iterator begin() const { return children_.cbegin(); }
112
0
  const_iterator end() const { return children_.cend(); }
113
0
  const_iterator cbegin() { return children_.cbegin(); }
114
0
  const_iterator cend() { return children_.cend(); }
115
116
  // Collect all the recurrent nodes in this SENode
117
0
  std::vector<SERecurrentNode*> CollectRecurrentNodes() {
118
0
    std::vector<SERecurrentNode*> recurrent_nodes{};
119
120
0
    if (auto recurrent_node = AsSERecurrentNode()) {
121
0
      recurrent_nodes.push_back(recurrent_node);
122
0
    }
123
124
0
    for (auto child : GetChildren()) {
125
0
      auto child_recurrent_nodes = child->CollectRecurrentNodes();
126
0
      recurrent_nodes.insert(recurrent_nodes.end(),
127
0
                             child_recurrent_nodes.begin(),
128
0
                             child_recurrent_nodes.end());
129
0
    }
130
131
0
    return recurrent_nodes;
132
0
  }
133
134
  // Collect all the value unknown nodes in this SENode
135
0
  std::vector<SEValueUnknown*> CollectValueUnknownNodes() {
136
0
    std::vector<SEValueUnknown*> value_unknown_nodes{};
137
138
0
    if (auto value_unknown_node = AsSEValueUnknown()) {
139
0
      value_unknown_nodes.push_back(value_unknown_node);
140
0
    }
141
142
0
    for (auto child : GetChildren()) {
143
0
      auto child_value_unknown_nodes = child->CollectValueUnknownNodes();
144
0
      value_unknown_nodes.insert(value_unknown_nodes.end(),
145
0
                                 child_value_unknown_nodes.begin(),
146
0
                                 child_value_unknown_nodes.end());
147
0
    }
148
149
0
    return value_unknown_nodes;
150
0
  }
151
152
  // Iterator to iterate over the entire DAG. Even though we are using the tree
153
  // iterator it should still be safe to iterate over. However, nodes with
154
  // multiple parents will be visited multiple times, unlike in a tree.
155
  using dag_iterator = TreeDFIterator<SENode>;
156
  using const_dag_iterator = TreeDFIterator<const SENode>;
157
158
  // Iterate over all child nodes in the graph.
159
0
  dag_iterator graph_begin() { return dag_iterator(this); }
160
0
  dag_iterator graph_end() { return dag_iterator(); }
161
0
  const_dag_iterator graph_begin() const { return graph_cbegin(); }
162
0
  const_dag_iterator graph_end() const { return graph_cend(); }
163
0
  const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); }
164
0
  const_dag_iterator graph_cend() const { return const_dag_iterator(); }
165
166
  // Return the vector of immediate children.
167
0
  const ChildContainerType& GetChildren() const { return children_; }
168
0
  ChildContainerType& GetChildren() { return children_; }
169
170
  // Return true if this node is a can't compute node.
171
0
  bool IsCantCompute() const { return GetType() == CanNotCompute; }
172
173
// Implements a casting method for each type.
174
// clang-format off
175
#define DeclareCastMethod(target)                  \
176
0
  virtual target* As##target() { return nullptr; } \
Unexecuted instantiation: spvtools::opt::SENode::AsSEConstantNode()
Unexecuted instantiation: spvtools::opt::SENode::AsSERecurrentNode()
Unexecuted instantiation: spvtools::opt::SENode::AsSEAddNode()
Unexecuted instantiation: spvtools::opt::SENode::AsSEMultiplyNode()
Unexecuted instantiation: spvtools::opt::SENode::AsSENegative()
Unexecuted instantiation: spvtools::opt::SENode::AsSEValueUnknown()
Unexecuted instantiation: spvtools::opt::SENode::AsSECantCompute()
177
0
  virtual const target* As##target() const { return nullptr; }
Unexecuted instantiation: spvtools::opt::SENode::AsSEConstantNode() const
Unexecuted instantiation: spvtools::opt::SENode::AsSERecurrentNode() const
Unexecuted instantiation: spvtools::opt::SENode::AsSEAddNode() const
Unexecuted instantiation: spvtools::opt::SENode::AsSEMultiplyNode() const
Unexecuted instantiation: spvtools::opt::SENode::AsSENegative() const
Unexecuted instantiation: spvtools::opt::SENode::AsSEValueUnknown() const
Unexecuted instantiation: spvtools::opt::SENode::AsSECantCompute() const
178
  DeclareCastMethod(SEConstantNode)
179
  DeclareCastMethod(SERecurrentNode)
180
  DeclareCastMethod(SEAddNode)
181
  DeclareCastMethod(SEMultiplyNode)
182
  DeclareCastMethod(SENegative)
183
  DeclareCastMethod(SEValueUnknown)
184
  DeclareCastMethod(SECantCompute)
185
#undef DeclareCastMethod
186
187
  // Get the analysis which has this node in its cache.
188
0
  inline ScalarEvolutionAnalysis* GetParentAnalysis() const {
189
0
    return parent_analysis_;
190
0
  }
191
192
 protected:
193
  ChildContainerType children_;
194
195
  ScalarEvolutionAnalysis* parent_analysis_;
196
197
  // The unique id of this node, assigned on creation by incrementing the static
198
  // node count.
199
  uint32_t unique_id_;
200
201
  // The number of nodes created.
202
  static uint32_t NumberOfNodes;
203
};
204
// clang-format on
205
206
// Function object to handle the hashing of SENodes. Hashing algorithm hashes
207
// the type (as a string), the literal value of any constants, and the child
208
// pointers which are assumed to be unique.
209
struct SENodeHash {
210
  size_t operator()(const std::unique_ptr<SENode>& node) const;
211
  size_t operator()(const SENode* node) const;
212
};
213
214
// A node representing a constant integer.
215
class SEConstantNode : public SENode {
216
 public:
217
  SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value)
218
0
      : SENode(parent_analysis), literal_value_(value) {}
219
220
0
  SENodeType GetType() const final { return Constant; }
221
222
0
  int64_t FoldToSingleValue() const { return literal_value_; }
223
224
0
  SEConstantNode* AsSEConstantNode() override { return this; }
225
0
  const SEConstantNode* AsSEConstantNode() const override { return this; }
226
227
0
  inline void AddChild(SENode*) final {
228
0
    assert(false && "Attempting to add a child to a constant node!");
229
0
  }
230
231
 protected:
232
  int64_t literal_value_;
233
};
234
235
// A node representing a recurrent expression in the code. A recurrent
236
// expression is an expression whose value can be expressed as a linear
237
// expression of the loop iterations. Such as an induction variable. The actual
238
// value of a recurrent expression is coefficent_ * iteration + offset_, hence
239
// an induction variable i=0, i++ becomes a recurrent expression with an offset
240
// of zero and a coefficient of one.
241
class SERecurrentNode : public SENode {
242
 public:
243
  SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop)
244
0
      : SENode(parent_analysis), loop_(loop) {}
245
246
0
  SENodeType GetType() const final { return RecurrentAddExpr; }
247
248
0
  inline void AddCoefficient(SENode* child) {
249
0
    coefficient_ = child;
250
0
    SENode::AddChild(child);
251
0
  }
252
253
0
  inline void AddOffset(SENode* child) {
254
0
    offset_ = child;
255
0
    SENode::AddChild(child);
256
0
  }
257
258
0
  inline const SENode* GetCoefficient() const { return coefficient_; }
259
0
  inline SENode* GetCoefficient() { return coefficient_; }
260
261
0
  inline const SENode* GetOffset() const { return offset_; }
262
0
  inline SENode* GetOffset() { return offset_; }
263
264
  // Return the loop which this recurrent expression is recurring within.
265
0
  const Loop* GetLoop() const { return loop_; }
266
267
0
  SERecurrentNode* AsSERecurrentNode() override { return this; }
268
0
  const SERecurrentNode* AsSERecurrentNode() const override { return this; }
269
270
 private:
271
  SENode* coefficient_;
272
  SENode* offset_;
273
  const Loop* loop_;
274
};
275
276
// A node representing an addition operation between child nodes.
277
class SEAddNode : public SENode {
278
 public:
279
  explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis)
280
0
      : SENode(parent_analysis) {}
281
282
0
  SENodeType GetType() const final { return Add; }
283
284
0
  SEAddNode* AsSEAddNode() override { return this; }
285
0
  const SEAddNode* AsSEAddNode() const override { return this; }
286
};
287
288
// A node representing a multiply operation between child nodes.
289
class SEMultiplyNode : public SENode {
290
 public:
291
  explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis)
292
0
      : SENode(parent_analysis) {}
293
294
0
  SENodeType GetType() const final { return Multiply; }
295
296
0
  SEMultiplyNode* AsSEMultiplyNode() override { return this; }
297
0
  const SEMultiplyNode* AsSEMultiplyNode() const override { return this; }
298
};
299
300
// A node representing a unary negative operation.
301
class SENegative : public SENode {
302
 public:
303
  explicit SENegative(ScalarEvolutionAnalysis* parent_analysis)
304
0
      : SENode(parent_analysis) {}
305
306
0
  SENodeType GetType() const final { return Negative; }
307
308
0
  SENegative* AsSENegative() override { return this; }
309
0
  const SENegative* AsSENegative() const override { return this; }
310
};
311
312
// A node representing a value which we do not know the value of, such as a load
313
// instruction.
314
class SEValueUnknown : public SENode {
315
 public:
316
  // SEValueUnknowns must come from an instruction |unique_id| is the unique id
317
  // of that instruction. This is so we cancompare value unknowns and have a
318
  // unique value unknown for each instruction.
319
  SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id)
320
0
      : SENode(parent_analysis), result_id_(result_id) {}
321
322
0
  SENodeType GetType() const final { return ValueUnknown; }
323
324
0
  SEValueUnknown* AsSEValueUnknown() override { return this; }
325
0
  const SEValueUnknown* AsSEValueUnknown() const override { return this; }
326
327
0
  inline uint32_t ResultId() const { return result_id_; }
328
329
 private:
330
  uint32_t result_id_;
331
};
332
333
// A node which we cannot reason about at all.
334
class SECantCompute : public SENode {
335
 public:
336
  explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis)
337
0
      : SENode(parent_analysis) {}
338
339
0
  SENodeType GetType() const final { return CanNotCompute; }
340
341
0
  SECantCompute* AsSECantCompute() override { return this; }
342
0
  const SECantCompute* AsSECantCompute() const override { return this; }
343
};
344
345
}  // namespace opt
346
}  // namespace spvtools
347
#endif  // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_