/src/spirv-tools/source/opt/struct_packing_pass.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2024 Epic Games, Inc. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "struct_packing_pass.h" |
16 | | |
17 | | #include <algorithm> |
18 | | |
19 | | #include "source/opt/instruction.h" |
20 | | #include "source/opt/ir_context.h" |
21 | | |
22 | | namespace spvtools { |
23 | | namespace opt { |
24 | | |
25 | | /* |
26 | | Std140 packing rules from the original GLSL 140 specification (see |
27 | | https://registry.khronos.org/OpenGL/extensions/ARB/ARB_uniform_buffer_object.txt) |
28 | | |
29 | | When using the "std140" storage layout, structures will be laid out in |
30 | | buffer storage with its members stored in monotonically increasing order |
31 | | based on their location in the declaration. A structure and each |
32 | | structure member have a base offset and a base alignment, from which an |
33 | | aligned offset is computed by rounding the base offset up to a multiple of |
34 | | the base alignment. The base offset of the first member of a structure is |
35 | | taken from the aligned offset of the structure itself. The base offset of |
36 | | all other structure members is derived by taking the offset of the last |
37 | | basic machine unit consumed by the previous member and adding one. Each |
38 | | structure member is stored in memory at its aligned offset. The members |
39 | | of a top-level uniform block are laid out in buffer storage by treating |
40 | | the uniform block as a structure with a base offset of zero. |
41 | | |
42 | | (1) If the member is a scalar consuming <N> basic machine units, the |
43 | | base alignment is <N>. |
44 | | |
45 | | (2) If the member is a two- or four-component vector with components |
46 | | consuming <N> basic machine units, the base alignment is 2<N> or |
47 | | 4<N>, respectively. |
48 | | |
49 | | (3) If the member is a three-component vector with components consuming |
50 | | <N> basic machine units, the base alignment is 4<N>. |
51 | | |
52 | | (4) If the member is an array of scalars or vectors, the base alignment |
53 | | and array stride are set to match the base alignment of a single |
54 | | array element, according to rules (1), (2), and (3), and rounded up |
55 | | to the base alignment of a vec4. The array may have padding at the |
56 | | end; the base offset of the member following the array is rounded up |
57 | | to the next multiple of the base alignment. |
58 | | |
59 | | (5) If the member is a column-major matrix with <C> columns and <R> |
60 | | rows, the matrix is stored identically to an array of <C> column |
61 | | vectors with <R> components each, according to rule (4). |
62 | | |
63 | | (6) If the member is an array of <S> column-major matrices with <C> |
64 | | columns and <R> rows, the matrix is stored identically to a row of |
65 | | <S>*<C> column vectors with <R> components each, according to rule |
66 | | (4). |
67 | | |
68 | | (7) If the member is a row-major matrix with <C> columns and <R> rows, |
69 | | the matrix is stored identically to an array of <R> row vectors |
70 | | with <C> components each, according to rule (4). |
71 | | |
72 | | (8) If the member is an array of <S> row-major matrices with <C> columns |
73 | | and <R> rows, the matrix is stored identically to a row of <S>*<R> |
74 | | row vectors with <C> components each, according to rule (4). |
75 | | |
76 | | (9) If the member is a structure, the base alignment of the structure is |
77 | | <N>, where <N> is the largest base alignment value of any of its |
78 | | members, and rounded up to the base alignment of a vec4. The |
79 | | individual members of this sub-structure are then assigned offsets |
80 | | by applying this set of rules recursively, where the base offset of |
81 | | the first member of the sub-structure is equal to the aligned offset |
82 | | of the structure. The structure may have padding at the end; the |
83 | | base offset of the member following the sub-structure is rounded up |
84 | | to the next multiple of the base alignment of the structure. |
85 | | |
86 | | (10) If the member is an array of <S> structures, the <S> elements of |
87 | | the array are laid out in order, according to rule (9). |
88 | | */ |
89 | | |
90 | 0 | static bool isPackingVec4Padded(StructPackingPass::PackingRules rules) { |
91 | 0 | switch (rules) { |
92 | 0 | case StructPackingPass::PackingRules::Std140: |
93 | 0 | case StructPackingPass::PackingRules::Std140EnhancedLayout: |
94 | 0 | case StructPackingPass::PackingRules::HlslCbuffer: |
95 | 0 | case StructPackingPass::PackingRules::HlslCbufferPackOffset: |
96 | 0 | return true; |
97 | 0 | default: |
98 | 0 | return false; |
99 | 0 | } |
100 | 0 | } |
101 | | |
102 | 0 | static bool isPackingScalar(StructPackingPass::PackingRules rules) { |
103 | 0 | switch (rules) { |
104 | 0 | case StructPackingPass::PackingRules::Scalar: |
105 | 0 | case StructPackingPass::PackingRules::ScalarEnhancedLayout: |
106 | 0 | return true; |
107 | 0 | default: |
108 | 0 | return false; |
109 | 0 | } |
110 | 0 | } |
111 | | |
112 | 0 | static bool isPackingHlsl(StructPackingPass::PackingRules rules) { |
113 | 0 | switch (rules) { |
114 | 0 | case StructPackingPass::PackingRules::HlslCbuffer: |
115 | 0 | case StructPackingPass::PackingRules::HlslCbufferPackOffset: |
116 | 0 | return true; |
117 | 0 | default: |
118 | 0 | return false; |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | 0 | static uint32_t getPackedBaseSize(const analysis::Type& type) { |
123 | 0 | switch (type.kind()) { |
124 | 0 | case analysis::Type::kBool: |
125 | 0 | return 1; |
126 | 0 | case analysis::Type::kInteger: |
127 | 0 | return type.AsInteger()->width() / 8; |
128 | 0 | case analysis::Type::kFloat: |
129 | 0 | return type.AsFloat()->width() / 8; |
130 | 0 | case analysis::Type::kVector: |
131 | 0 | return getPackedBaseSize(*type.AsVector()->element_type()); |
132 | 0 | case analysis::Type::kMatrix: |
133 | 0 | return getPackedBaseSize(*type.AsMatrix()->element_type()); |
134 | 0 | default: |
135 | 0 | break; // we only expect bool, int, float, vec, and mat here |
136 | 0 | } |
137 | 0 | assert(0 && "Unrecognized type to get base size"); |
138 | 0 | return 0; |
139 | 0 | } |
140 | | |
141 | 0 | static uint32_t getScalarElementCount(const analysis::Type& type) { |
142 | 0 | switch (type.kind()) { |
143 | 0 | case analysis::Type::kVector: |
144 | 0 | return type.AsVector()->element_count(); |
145 | 0 | case analysis::Type::kMatrix: |
146 | 0 | return getScalarElementCount(*type.AsMatrix()->element_type()); |
147 | 0 | case analysis::Type::kStruct: |
148 | 0 | assert(0 && "getScalarElementCount() does not recognized struct types"); |
149 | 0 | return 0; |
150 | 0 | default: |
151 | 0 | return 1; |
152 | 0 | } |
153 | 0 | } |
154 | | |
155 | | // Aligns the specified value to a multiple of alignment, whereas the |
156 | | // alignment must be a power-of-two. |
157 | 0 | static uint32_t alignPow2(uint32_t value, uint32_t alignment) { |
158 | 0 | return (value + alignment - 1) & ~(alignment - 1); |
159 | 0 | } |
160 | | |
161 | 0 | void StructPackingPass::buildConstantsMap() { |
162 | 0 | constantsMap_.clear(); |
163 | 0 | for (Instruction* instr : context()->module()->GetConstants()) { |
164 | 0 | constantsMap_[instr->result_id()] = instr; |
165 | 0 | } |
166 | 0 | } |
167 | | |
168 | | uint32_t StructPackingPass::getPackedAlignment( |
169 | 0 | const analysis::Type& type) const { |
170 | 0 | switch (type.kind()) { |
171 | 0 | case analysis::Type::kArray: { |
172 | | // Get alignment of base type and round up to minimum alignment |
173 | 0 | const uint32_t minAlignment = isPackingVec4Padded(packingRules_) ? 16 : 1; |
174 | 0 | return std::max<uint32_t>( |
175 | 0 | minAlignment, getPackedAlignment(*type.AsArray()->element_type())); |
176 | 0 | } |
177 | 0 | case analysis::Type::kStruct: { |
178 | | // Rule 9. Struct alignment is maximum alignmnet of its members |
179 | 0 | uint32_t alignment = 1; |
180 | |
|
181 | 0 | for (const analysis::Type* elementType : |
182 | 0 | type.AsStruct()->element_types()) { |
183 | 0 | alignment = |
184 | 0 | std::max<uint32_t>(alignment, getPackedAlignment(*elementType)); |
185 | 0 | } |
186 | |
|
187 | 0 | if (isPackingVec4Padded(packingRules_)) |
188 | 0 | alignment = std::max<uint32_t>(alignment, 16u); |
189 | |
|
190 | 0 | return alignment; |
191 | 0 | } |
192 | 0 | default: { |
193 | 0 | const uint32_t baseAlignment = getPackedBaseSize(type); |
194 | | |
195 | | // Scalar block layout always uses alignment for the most basic component |
196 | 0 | if (isPackingScalar(packingRules_)) return baseAlignment; |
197 | | |
198 | 0 | if (const analysis::Matrix* matrixType = type.AsMatrix()) { |
199 | | // Rule 5/7 |
200 | 0 | if (isPackingVec4Padded(packingRules_) || |
201 | 0 | matrixType->element_count() == 3) |
202 | 0 | return baseAlignment * 4; |
203 | 0 | else |
204 | 0 | return baseAlignment * matrixType->element_count(); |
205 | 0 | } else if (const analysis::Vector* vectorType = type.AsVector()) { |
206 | | // Rule 1 |
207 | 0 | if (vectorType->element_count() == 1) return baseAlignment; |
208 | | |
209 | | // Rule 2 |
210 | 0 | if (vectorType->element_count() == 2 || |
211 | 0 | vectorType->element_count() == 4) |
212 | 0 | return baseAlignment * vectorType->element_count(); |
213 | | |
214 | | // Rule 3 |
215 | 0 | if (vectorType->element_count() == 3) return baseAlignment * 4; |
216 | 0 | } else { |
217 | | // Rule 1 |
218 | 0 | return baseAlignment; |
219 | 0 | } |
220 | 0 | } |
221 | 0 | } |
222 | 0 | assert(0 && "Unrecognized type to get packed alignment"); |
223 | 0 | return 0; |
224 | 0 | } |
225 | | |
226 | | static uint32_t getPadAlignment(const analysis::Type& type, |
227 | 0 | uint32_t packedAlignment) { |
228 | | // The next member following a struct member is aligned to the base alignment |
229 | | // of a previous struct member. |
230 | 0 | return type.kind() == analysis::Type::kStruct ? packedAlignment : 1; |
231 | 0 | } |
232 | | |
233 | 0 | uint32_t StructPackingPass::getPackedSize(const analysis::Type& type) const { |
234 | 0 | switch (type.kind()) { |
235 | 0 | case analysis::Type::kArray: { |
236 | 0 | if (const analysis::Array* arrayType = type.AsArray()) { |
237 | 0 | uint32_t size = |
238 | 0 | getPackedArrayStride(*arrayType) * getArrayLength(*arrayType); |
239 | | |
240 | | // For arrays of vector and matrices in HLSL, the last element has a |
241 | | // size depending on its vector/matrix size to allow packing other |
242 | | // vectors in the last element. |
243 | 0 | const analysis::Type* arraySubType = arrayType->element_type(); |
244 | 0 | if (isPackingHlsl(packingRules_) && |
245 | 0 | arraySubType->kind() != analysis::Type::kStruct) { |
246 | 0 | size -= (4 - getScalarElementCount(*arraySubType)) * |
247 | 0 | getPackedBaseSize(*arraySubType); |
248 | 0 | } |
249 | 0 | return size; |
250 | 0 | } |
251 | 0 | break; |
252 | 0 | } |
253 | 0 | case analysis::Type::kStruct: { |
254 | 0 | uint32_t size = 0; |
255 | 0 | uint32_t padAlignment = 1; |
256 | 0 | for (const analysis::Type* memberType : |
257 | 0 | type.AsStruct()->element_types()) { |
258 | 0 | const uint32_t packedAlignment = getPackedAlignment(*memberType); |
259 | 0 | const uint32_t alignment = |
260 | 0 | std::max<uint32_t>(packedAlignment, padAlignment); |
261 | 0 | padAlignment = getPadAlignment(*memberType, packedAlignment); |
262 | 0 | size = alignPow2(size, alignment); |
263 | 0 | size += getPackedSize(*memberType); |
264 | 0 | } |
265 | 0 | return size; |
266 | 0 | } |
267 | 0 | default: { |
268 | 0 | const uint32_t baseAlignment = getPackedBaseSize(type); |
269 | 0 | if (isPackingScalar(packingRules_)) { |
270 | 0 | return getScalarElementCount(type) * baseAlignment; |
271 | 0 | } else { |
272 | 0 | uint32_t size = 0; |
273 | 0 | if (const analysis::Matrix* matrixType = type.AsMatrix()) { |
274 | 0 | const analysis::Vector* matrixSubType = |
275 | 0 | matrixType->element_type()->AsVector(); |
276 | 0 | assert(matrixSubType != nullptr && |
277 | 0 | "Matrix sub-type is expected to be a vector type"); |
278 | 0 | if (isPackingVec4Padded(packingRules_) || |
279 | 0 | matrixType->element_count() == 3) |
280 | 0 | size = matrixSubType->element_count() * baseAlignment * 4; |
281 | 0 | else |
282 | 0 | size = matrixSubType->element_count() * baseAlignment * |
283 | 0 | matrixType->element_count(); |
284 | | |
285 | | // For matrices in HLSL, the last element has a size depending on its |
286 | | // vector size to allow packing other vectors in the last element. |
287 | 0 | if (isPackingHlsl(packingRules_)) { |
288 | 0 | size -= (4 - matrixSubType->element_count()) * |
289 | 0 | getPackedBaseSize(*matrixSubType); |
290 | 0 | } |
291 | 0 | } else if (const analysis::Vector* vectorType = type.AsVector()) { |
292 | 0 | size = vectorType->element_count() * baseAlignment; |
293 | 0 | } else { |
294 | 0 | size = baseAlignment; |
295 | 0 | } |
296 | 0 | return size; |
297 | 0 | } |
298 | 0 | } |
299 | 0 | } |
300 | 0 | assert(0 && "Unrecognized type to get packed size"); |
301 | 0 | return 0; |
302 | 0 | } |
303 | | |
304 | | uint32_t StructPackingPass::getPackedArrayStride( |
305 | 0 | const analysis::Array& arrayType) const { |
306 | | // Array stride is equal to aligned size of element type |
307 | 0 | const uint32_t elementSize = getPackedSize(*arrayType.element_type()); |
308 | 0 | const uint32_t alignment = getPackedAlignment(arrayType); |
309 | 0 | return alignPow2(elementSize, alignment); |
310 | 0 | } |
311 | | |
312 | | uint32_t StructPackingPass::getArrayLength( |
313 | 0 | const analysis::Array& arrayType) const { |
314 | 0 | return getConstantInt(arrayType.LengthId()); |
315 | 0 | } |
316 | | |
317 | 0 | uint32_t StructPackingPass::getConstantInt(spv::Id id) const { |
318 | 0 | auto it = constantsMap_.find(id); |
319 | 0 | assert(it != constantsMap_.end() && |
320 | 0 | "Failed to map SPIR-V instruction ID to constant value"); |
321 | 0 | [[maybe_unused]] const analysis::Type* constType = |
322 | 0 | context()->get_type_mgr()->GetType(it->second->type_id()); |
323 | 0 | assert(constType != nullptr && |
324 | 0 | "Failed to map SPIR-V instruction result type to definition"); |
325 | 0 | assert(constType->kind() == analysis::Type::kInteger && |
326 | 0 | "Failed to map SPIR-V instruction result type to integer type"); |
327 | 0 | return it->second->GetOperand(2).words[0]; |
328 | 0 | } |
329 | | |
330 | | StructPackingPass::PackingRules StructPackingPass::ParsePackingRuleFromString( |
331 | 0 | const std::string& s) { |
332 | 0 | if (s == "std140") return PackingRules::Std140; |
333 | 0 | if (s == "std140EnhancedLayout") return PackingRules::Std140EnhancedLayout; |
334 | 0 | if (s == "std430") return PackingRules::Std430; |
335 | 0 | if (s == "std430EnhancedLayout") return PackingRules::Std430EnhancedLayout; |
336 | 0 | if (s == "hlslCbuffer") return PackingRules::HlslCbuffer; |
337 | 0 | if (s == "hlslCbufferPackOffset") return PackingRules::HlslCbufferPackOffset; |
338 | 0 | if (s == "scalar") return PackingRules::Scalar; |
339 | 0 | if (s == "scalarEnhancedLayout") return PackingRules::ScalarEnhancedLayout; |
340 | 0 | return PackingRules::Undefined; |
341 | 0 | } |
342 | | |
343 | | StructPackingPass::StructPackingPass(const char* structToPack, |
344 | | PackingRules rules) |
345 | 0 | : structToPack_{structToPack != nullptr ? structToPack : ""}, |
346 | 0 | packingRules_{rules} {} |
347 | | |
348 | 0 | Pass::Status StructPackingPass::Process() { |
349 | 0 | if (packingRules_ == PackingRules::Undefined) { |
350 | 0 | if (consumer()) { |
351 | 0 | consumer()(SPV_MSG_ERROR, "", {0, 0, 0}, |
352 | 0 | "Cannot pack struct with undefined rule"); |
353 | 0 | } |
354 | 0 | return Status::Failure; |
355 | 0 | } |
356 | | |
357 | | // Build Id-to-instruction map for easier access |
358 | 0 | buildConstantsMap(); |
359 | | |
360 | | // Find structure of interest |
361 | 0 | const uint32_t structIdToPack = findStructIdByName(structToPack_.c_str()); |
362 | |
|
363 | 0 | const Instruction* structDef = |
364 | 0 | context()->get_def_use_mgr()->GetDef(structIdToPack); |
365 | 0 | if (structDef == nullptr || structDef->opcode() != spv::Op::OpTypeStruct) { |
366 | 0 | if (consumer()) { |
367 | 0 | const std::string message = |
368 | 0 | "Failed to find struct with name " + structToPack_; |
369 | 0 | consumer()(SPV_MSG_ERROR, "", {0, 0, 0}, message.c_str()); |
370 | 0 | } |
371 | 0 | return Status::Failure; |
372 | 0 | } |
373 | | |
374 | | // Find all struct member types |
375 | 0 | std::vector<const analysis::Type*> structMemberTypes = |
376 | 0 | findStructMemberTypes(*structDef); |
377 | |
|
378 | 0 | return assignStructMemberOffsets(structIdToPack, structMemberTypes); |
379 | 0 | } |
380 | | |
381 | 0 | uint32_t StructPackingPass::findStructIdByName(const char* structName) const { |
382 | 0 | for (Instruction& instr : context()->module()->debugs2()) { |
383 | 0 | if (instr.opcode() == spv::Op::OpName && |
384 | 0 | instr.GetOperand(1).AsString() == structName) { |
385 | 0 | return instr.GetOperand(0).AsId(); |
386 | 0 | } |
387 | 0 | } |
388 | 0 | return 0; |
389 | 0 | } |
390 | | |
391 | | std::vector<const analysis::Type*> StructPackingPass::findStructMemberTypes( |
392 | 0 | const Instruction& structDef) const { |
393 | | // Found struct type to pack, now collect all types of its members |
394 | 0 | assert(structDef.NumOperands() > 0 && |
395 | 0 | "Number of operands in OpTypeStruct instruction must not be zero"); |
396 | 0 | const uint32_t numMembers = structDef.NumOperands() - 1; |
397 | 0 | std::vector<const analysis::Type*> structMemberTypes; |
398 | 0 | structMemberTypes.resize(numMembers); |
399 | 0 | for (uint32_t i = 0; i < numMembers; ++i) { |
400 | 0 | const spv::Id memberTypeId = structDef.GetOperand(1 + i).AsId(); |
401 | 0 | if (const analysis::Type* memberType = |
402 | 0 | context()->get_type_mgr()->GetType(memberTypeId)) { |
403 | 0 | structMemberTypes[i] = memberType; |
404 | 0 | } |
405 | 0 | } |
406 | 0 | return structMemberTypes; |
407 | 0 | } |
408 | | |
409 | | Pass::Status StructPackingPass::assignStructMemberOffsets( |
410 | | uint32_t structIdToPack, |
411 | 0 | const std::vector<const analysis::Type*>& structMemberTypes) { |
412 | | // Returns true if the specified instruction is a OpMemberDecorate for the |
413 | | // struct we're looking for with an offset decoration |
414 | 0 | auto isMemberOffsetDecoration = |
415 | 0 | [structIdToPack](const Instruction& instr) -> bool { |
416 | 0 | return instr.opcode() == spv::Op::OpMemberDecorate && |
417 | 0 | instr.GetOperand(0).AsId() == structIdToPack && |
418 | 0 | static_cast<spv::Decoration>(instr.GetOperand(2).words[0]) == |
419 | 0 | spv::Decoration::Offset; |
420 | 0 | }; |
421 | |
|
422 | 0 | bool modified = false; |
423 | | |
424 | | // Find and re-assign all member offset decorations |
425 | 0 | for (auto it = context()->module()->annotation_begin(), |
426 | 0 | itEnd = context()->module()->annotation_end(); |
427 | 0 | it != itEnd; ++it) { |
428 | 0 | if (isMemberOffsetDecoration(*it)) { |
429 | | // Found first member decoration with offset, we expect all other |
430 | | // offsets right after the first one |
431 | 0 | uint32_t prevMemberIndex = 0; |
432 | 0 | uint32_t currentOffset = 0; |
433 | 0 | uint32_t padAlignment = 1; |
434 | 0 | do { |
435 | 0 | const uint32_t memberIndex = it->GetOperand(1).words[0]; |
436 | 0 | if (memberIndex < prevMemberIndex) { |
437 | | // Failure: we expect all members to appear in consecutive order |
438 | 0 | return Status::Failure; |
439 | 0 | } |
440 | | |
441 | | // Apply alignment rules to current offset |
442 | 0 | const analysis::Type& memberType = *structMemberTypes[memberIndex]; |
443 | 0 | uint32_t packedAlignment = getPackedAlignment(memberType); |
444 | 0 | uint32_t packedSize = getPackedSize(memberType); |
445 | |
|
446 | 0 | if (isPackingHlsl(packingRules_)) { |
447 | | // If a member crosses vec4 boundaries, alignment is size of vec4 |
448 | 0 | if (currentOffset / 16 != (currentOffset + packedSize - 1) / 16) |
449 | 0 | packedAlignment = std::max<uint32_t>(packedAlignment, 16u); |
450 | 0 | } |
451 | |
|
452 | 0 | const uint32_t alignment = |
453 | 0 | std::max<uint32_t>(packedAlignment, padAlignment); |
454 | 0 | currentOffset = alignPow2(currentOffset, alignment); |
455 | 0 | padAlignment = getPadAlignment(memberType, packedAlignment); |
456 | | |
457 | | // Override packed offset in instruction |
458 | 0 | if (it->GetOperand(3).words[0] < currentOffset) { |
459 | | // Failure: packing resulted in higher offset for member than |
460 | | // previously generated |
461 | 0 | return Status::Failure; |
462 | 0 | } |
463 | | |
464 | 0 | it->GetOperand(3).words[0] = currentOffset; |
465 | 0 | modified = true; |
466 | | |
467 | | // Move to next member |
468 | 0 | ++it; |
469 | 0 | prevMemberIndex = memberIndex; |
470 | 0 | currentOffset += packedSize; |
471 | 0 | } while (it != itEnd && isMemberOffsetDecoration(*it)); |
472 | | |
473 | | // We're done with all decorations for the struct of interest |
474 | 0 | break; |
475 | 0 | } |
476 | 0 | } |
477 | | |
478 | 0 | return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange; |
479 | 0 | } |
480 | | |
481 | | } // namespace opt |
482 | | } // namespace spvtools |