/src/spirv-tools/source/opt/scalar_analysis.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2018 Google LLC. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "source/opt/scalar_analysis.h" |
16 | | |
17 | | #include <functional> |
18 | | #include <string> |
19 | | #include <utility> |
20 | | |
21 | | #include "source/opt/ir_context.h" |
22 | | |
23 | | // Transforms a given scalar operation instruction into a DAG representation. |
24 | | // |
25 | | // 1. Take an instruction and traverse its operands until we reach a |
26 | | // constant node or an instruction which we do not know how to compute the |
27 | | // value, such as a load. |
28 | | // |
29 | | // 2. Create a new node for each instruction traversed and build the nodes for |
30 | | // the in operands of that instruction as well. |
31 | | // |
32 | | // 3. Add the operand nodes as children of the first and hash the node. Use the |
33 | | // hash to see if the node is already in the cache. We ensure the children are |
34 | | // always in sorted order so that two nodes with the same children but inserted |
35 | | // in a different order have the same hash and so that the overloaded operator== |
36 | | // will return true. If the node is already in the cache return the cached |
37 | | // version instead. |
38 | | // |
39 | | // 4. The created DAG can then be simplified by |
40 | | // ScalarAnalysis::SimplifyExpression, implemented in |
41 | | // scalar_analysis_simplification.cpp. See that file for further information on |
42 | | // the simplification process. |
43 | | // |
44 | | |
45 | | namespace spvtools { |
46 | | namespace opt { |
47 | | |
48 | | uint32_t SENode::NumberOfNodes = 0; |
49 | | |
50 | | ScalarEvolutionAnalysis::ScalarEvolutionAnalysis(IRContext* context) |
51 | 0 | : context_(context), pretend_equal_{} { |
52 | | // Create and cached the CantComputeNode. |
53 | 0 | cached_cant_compute_ = |
54 | 0 | GetCachedOrAdd(std::unique_ptr<SECantCompute>(new SECantCompute(this))); |
55 | 0 | } |
56 | | |
57 | 0 | SENode* ScalarEvolutionAnalysis::CreateNegation(SENode* operand) { |
58 | | // If operand is can't compute then the whole graph is can't compute. |
59 | 0 | if (operand->IsCantCompute()) return CreateCantComputeNode(); |
60 | | |
61 | 0 | if (operand->GetType() == SENode::Constant) { |
62 | 0 | return CreateConstant(-operand->AsSEConstantNode()->FoldToSingleValue()); |
63 | 0 | } |
64 | 0 | std::unique_ptr<SENode> negation_node{new SENegative(this)}; |
65 | 0 | negation_node->AddChild(operand); |
66 | 0 | return GetCachedOrAdd(std::move(negation_node)); |
67 | 0 | } |
68 | | |
69 | 0 | SENode* ScalarEvolutionAnalysis::CreateConstant(int64_t integer) { |
70 | 0 | return GetCachedOrAdd( |
71 | 0 | std::unique_ptr<SENode>(new SEConstantNode(this, integer))); |
72 | 0 | } |
73 | | |
74 | | SENode* ScalarEvolutionAnalysis::CreateRecurrentExpression( |
75 | 0 | const Loop* loop, SENode* offset, SENode* coefficient) { |
76 | 0 | assert(loop && "Recurrent add expressions must have a valid loop."); |
77 | | |
78 | | // If operands are can't compute then the whole graph is can't compute. |
79 | 0 | if (offset->IsCantCompute() || coefficient->IsCantCompute()) |
80 | 0 | return CreateCantComputeNode(); |
81 | | |
82 | 0 | const Loop* loop_to_use = nullptr; |
83 | 0 | if (pretend_equal_[loop]) { |
84 | 0 | loop_to_use = pretend_equal_[loop]; |
85 | 0 | } else { |
86 | 0 | loop_to_use = loop; |
87 | 0 | } |
88 | |
|
89 | 0 | std::unique_ptr<SERecurrentNode> phi_node{ |
90 | 0 | new SERecurrentNode(this, loop_to_use)}; |
91 | 0 | phi_node->AddOffset(offset); |
92 | 0 | phi_node->AddCoefficient(coefficient); |
93 | |
|
94 | 0 | return GetCachedOrAdd(std::move(phi_node)); |
95 | 0 | } |
96 | | |
97 | | SENode* ScalarEvolutionAnalysis::AnalyzeMultiplyOp( |
98 | 0 | const Instruction* multiply) { |
99 | 0 | assert(multiply->opcode() == spv::Op::OpIMul && |
100 | 0 | "Multiply node did not come from a multiply instruction"); |
101 | 0 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
102 | |
|
103 | 0 | SENode* op1 = |
104 | 0 | AnalyzeInstruction(def_use->GetDef(multiply->GetSingleWordInOperand(0))); |
105 | 0 | SENode* op2 = |
106 | 0 | AnalyzeInstruction(def_use->GetDef(multiply->GetSingleWordInOperand(1))); |
107 | |
|
108 | 0 | return CreateMultiplyNode(op1, op2); |
109 | 0 | } |
110 | | |
111 | | SENode* ScalarEvolutionAnalysis::CreateMultiplyNode(SENode* operand_1, |
112 | 0 | SENode* operand_2) { |
113 | | // If operands are can't compute then the whole graph is can't compute. |
114 | 0 | if (operand_1->IsCantCompute() || operand_2->IsCantCompute()) |
115 | 0 | return CreateCantComputeNode(); |
116 | | |
117 | 0 | if (operand_1->GetType() == SENode::Constant && |
118 | 0 | operand_2->GetType() == SENode::Constant) { |
119 | 0 | return CreateConstant(operand_1->AsSEConstantNode()->FoldToSingleValue() * |
120 | 0 | operand_2->AsSEConstantNode()->FoldToSingleValue()); |
121 | 0 | } |
122 | | |
123 | 0 | std::unique_ptr<SENode> multiply_node{new SEMultiplyNode(this)}; |
124 | |
|
125 | 0 | multiply_node->AddChild(operand_1); |
126 | 0 | multiply_node->AddChild(operand_2); |
127 | |
|
128 | 0 | return GetCachedOrAdd(std::move(multiply_node)); |
129 | 0 | } |
130 | | |
131 | | SENode* ScalarEvolutionAnalysis::CreateSubtraction(SENode* operand_1, |
132 | 0 | SENode* operand_2) { |
133 | | // Fold if both operands are constant. |
134 | 0 | if (operand_1->GetType() == SENode::Constant && |
135 | 0 | operand_2->GetType() == SENode::Constant) { |
136 | 0 | return CreateConstant(operand_1->AsSEConstantNode()->FoldToSingleValue() - |
137 | 0 | operand_2->AsSEConstantNode()->FoldToSingleValue()); |
138 | 0 | } |
139 | | |
140 | 0 | return CreateAddNode(operand_1, CreateNegation(operand_2)); |
141 | 0 | } |
142 | | |
143 | | SENode* ScalarEvolutionAnalysis::CreateAddNode(SENode* operand_1, |
144 | 0 | SENode* operand_2) { |
145 | | // Fold if both operands are constant and the |simplify| flag is true. |
146 | 0 | if (operand_1->GetType() == SENode::Constant && |
147 | 0 | operand_2->GetType() == SENode::Constant) { |
148 | 0 | return CreateConstant(operand_1->AsSEConstantNode()->FoldToSingleValue() + |
149 | 0 | operand_2->AsSEConstantNode()->FoldToSingleValue()); |
150 | 0 | } |
151 | | |
152 | | // If operands are can't compute then the whole graph is can't compute. |
153 | 0 | if (operand_1->IsCantCompute() || operand_2->IsCantCompute()) |
154 | 0 | return CreateCantComputeNode(); |
155 | | |
156 | 0 | std::unique_ptr<SENode> add_node{new SEAddNode(this)}; |
157 | |
|
158 | 0 | add_node->AddChild(operand_1); |
159 | 0 | add_node->AddChild(operand_2); |
160 | |
|
161 | 0 | return GetCachedOrAdd(std::move(add_node)); |
162 | 0 | } |
163 | | |
164 | 0 | SENode* ScalarEvolutionAnalysis::AnalyzeInstruction(const Instruction* inst) { |
165 | 0 | auto itr = recurrent_node_map_.find(inst); |
166 | 0 | if (itr != recurrent_node_map_.end()) return itr->second; |
167 | | |
168 | 0 | SENode* output = nullptr; |
169 | 0 | switch (inst->opcode()) { |
170 | 0 | case spv::Op::OpPhi: { |
171 | 0 | output = AnalyzePhiInstruction(inst); |
172 | 0 | break; |
173 | 0 | } |
174 | 0 | case spv::Op::OpConstant: |
175 | 0 | case spv::Op::OpConstantNull: { |
176 | 0 | output = AnalyzeConstant(inst); |
177 | 0 | break; |
178 | 0 | } |
179 | 0 | case spv::Op::OpISub: |
180 | 0 | case spv::Op::OpIAdd: { |
181 | 0 | output = AnalyzeAddOp(inst); |
182 | 0 | break; |
183 | 0 | } |
184 | 0 | case spv::Op::OpIMul: { |
185 | 0 | output = AnalyzeMultiplyOp(inst); |
186 | 0 | break; |
187 | 0 | } |
188 | 0 | default: { |
189 | 0 | output = CreateValueUnknownNode(inst); |
190 | 0 | break; |
191 | 0 | } |
192 | 0 | } |
193 | | |
194 | 0 | return output; |
195 | 0 | } |
196 | | |
197 | 0 | SENode* ScalarEvolutionAnalysis::AnalyzeConstant(const Instruction* inst) { |
198 | 0 | if (inst->opcode() == spv::Op::OpConstantNull) return CreateConstant(0); |
199 | | |
200 | 0 | assert(inst->opcode() == spv::Op::OpConstant); |
201 | 0 | assert(inst->NumInOperands() == 1); |
202 | 0 | int64_t value = 0; |
203 | | |
204 | | // Look up the instruction in the constant manager. |
205 | 0 | const analysis::Constant* constant = |
206 | 0 | context_->get_constant_mgr()->FindDeclaredConstant(inst->result_id()); |
207 | |
|
208 | 0 | if (!constant) return CreateCantComputeNode(); |
209 | | |
210 | 0 | const analysis::IntConstant* int_constant = constant->AsIntConstant(); |
211 | | |
212 | | // Exit out if it is a 64 bit integer. |
213 | 0 | if (!int_constant || int_constant->words().size() != 1) |
214 | 0 | return CreateCantComputeNode(); |
215 | | |
216 | 0 | if (int_constant->type()->AsInteger()->IsSigned()) { |
217 | 0 | value = int_constant->GetS32BitValue(); |
218 | 0 | } else { |
219 | 0 | value = int_constant->GetU32BitValue(); |
220 | 0 | } |
221 | |
|
222 | 0 | return CreateConstant(value); |
223 | 0 | } |
224 | | |
225 | | // Handles both addition and subtraction. If the |sub| flag is set then the |
226 | | // addition will be op1+(-op2) otherwise op1+op2. |
227 | 0 | SENode* ScalarEvolutionAnalysis::AnalyzeAddOp(const Instruction* inst) { |
228 | 0 | assert((inst->opcode() == spv::Op::OpIAdd || |
229 | 0 | inst->opcode() == spv::Op::OpISub) && |
230 | 0 | "Add node must be created from a OpIAdd or OpISub instruction"); |
231 | | |
232 | 0 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
233 | |
|
234 | 0 | SENode* op1 = |
235 | 0 | AnalyzeInstruction(def_use->GetDef(inst->GetSingleWordInOperand(0))); |
236 | |
|
237 | 0 | SENode* op2 = |
238 | 0 | AnalyzeInstruction(def_use->GetDef(inst->GetSingleWordInOperand(1))); |
239 | | |
240 | | // To handle subtraction we wrap the second operand in a unary negation node. |
241 | 0 | if (inst->opcode() == spv::Op::OpISub) { |
242 | 0 | op2 = CreateNegation(op2); |
243 | 0 | } |
244 | |
|
245 | 0 | return CreateAddNode(op1, op2); |
246 | 0 | } |
247 | | |
248 | 0 | SENode* ScalarEvolutionAnalysis::AnalyzePhiInstruction(const Instruction* phi) { |
249 | | // The phi should only have two incoming value pairs. |
250 | 0 | if (phi->NumInOperands() != 4) { |
251 | 0 | return CreateCantComputeNode(); |
252 | 0 | } |
253 | | |
254 | 0 | analysis::DefUseManager* def_use = context_->get_def_use_mgr(); |
255 | | |
256 | | // Get the basic block this instruction belongs to. |
257 | 0 | BasicBlock* basic_block = |
258 | 0 | context_->get_instr_block(const_cast<Instruction*>(phi)); |
259 | | |
260 | | // And then the function that the basic blocks belongs to. |
261 | 0 | Function* function = basic_block->GetParent(); |
262 | | |
263 | | // Use the function to get the loop descriptor. |
264 | 0 | LoopDescriptor* loop_descriptor = context_->GetLoopDescriptor(function); |
265 | | |
266 | | // We only handle phis in loops at the moment. |
267 | 0 | if (!loop_descriptor) return CreateCantComputeNode(); |
268 | | |
269 | | // Get the innermost loop which this block belongs to. |
270 | 0 | Loop* loop = (*loop_descriptor)[basic_block->id()]; |
271 | | |
272 | | // If the loop doesn't exist or doesn't have a preheader or latch block, exit |
273 | | // out. |
274 | 0 | if (!loop || !loop->GetLatchBlock() || !loop->GetPreHeaderBlock() || |
275 | 0 | loop->GetHeaderBlock() != basic_block) |
276 | 0 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
277 | | |
278 | 0 | const Loop* loop_to_use = nullptr; |
279 | 0 | if (pretend_equal_[loop]) { |
280 | 0 | loop_to_use = pretend_equal_[loop]; |
281 | 0 | } else { |
282 | 0 | loop_to_use = loop; |
283 | 0 | } |
284 | 0 | std::unique_ptr<SERecurrentNode> phi_node{ |
285 | 0 | new SERecurrentNode(this, loop_to_use)}; |
286 | | |
287 | | // We add the node to this map to allow it to be returned before the node is |
288 | | // fully built. This is needed as the subsequent call to AnalyzeInstruction |
289 | | // could lead back to this |phi| instruction so we return the pointer |
290 | | // immediately in AnalyzeInstruction to break the recursion. |
291 | 0 | recurrent_node_map_[phi] = phi_node.get(); |
292 | | |
293 | | // Traverse the operands of the instruction an create new nodes for each one. |
294 | 0 | for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) { |
295 | 0 | uint32_t value_id = phi->GetSingleWordInOperand(i); |
296 | 0 | uint32_t incoming_label_id = phi->GetSingleWordInOperand(i + 1); |
297 | |
|
298 | 0 | Instruction* value_inst = def_use->GetDef(value_id); |
299 | 0 | SENode* value_node = AnalyzeInstruction(value_inst); |
300 | | |
301 | | // If any operand is CantCompute then the whole graph is CantCompute. |
302 | 0 | if (value_node->IsCantCompute()) |
303 | 0 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
304 | | |
305 | | // If the value is coming from the preheader block then the value is the |
306 | | // initial value of the phi. |
307 | 0 | if (incoming_label_id == loop->GetPreHeaderBlock()->id()) { |
308 | 0 | phi_node->AddOffset(value_node); |
309 | 0 | } else if (incoming_label_id == loop->GetLatchBlock()->id()) { |
310 | | // Assumed to be in the form of step + phi. |
311 | 0 | if (value_node->GetType() != SENode::Add) |
312 | 0 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
313 | | |
314 | 0 | SENode* step_node = nullptr; |
315 | 0 | SENode* phi_operand = nullptr; |
316 | 0 | SENode* operand_1 = value_node->GetChild(0); |
317 | 0 | SENode* operand_2 = value_node->GetChild(1); |
318 | | |
319 | | // Find which node is the step term. |
320 | 0 | if (!operand_1->AsSERecurrentNode()) |
321 | 0 | step_node = operand_1; |
322 | 0 | else if (!operand_2->AsSERecurrentNode()) |
323 | 0 | step_node = operand_2; |
324 | | |
325 | | // Find which node is the recurrent expression. |
326 | 0 | if (operand_1->AsSERecurrentNode()) |
327 | 0 | phi_operand = operand_1; |
328 | 0 | else if (operand_2->AsSERecurrentNode()) |
329 | 0 | phi_operand = operand_2; |
330 | | |
331 | | // If it is not in the form step + phi exit out. |
332 | 0 | if (!(step_node && phi_operand)) |
333 | 0 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
334 | | |
335 | | // If the phi operand is not the same phi node exit out. |
336 | 0 | if (phi_operand != phi_node.get()) |
337 | 0 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
338 | | |
339 | 0 | if (!IsLoopInvariant(loop, step_node)) |
340 | 0 | return recurrent_node_map_[phi] = CreateCantComputeNode(); |
341 | | |
342 | 0 | phi_node->AddCoefficient(step_node); |
343 | 0 | } |
344 | 0 | } |
345 | | |
346 | | // Once the node is fully built we update the map with the version from the |
347 | | // cache (if it has already been added to the cache). |
348 | 0 | return recurrent_node_map_[phi] = GetCachedOrAdd(std::move(phi_node)); |
349 | 0 | } |
350 | | |
351 | | SENode* ScalarEvolutionAnalysis::CreateValueUnknownNode( |
352 | 0 | const Instruction* inst) { |
353 | 0 | std::unique_ptr<SEValueUnknown> load_node{ |
354 | 0 | new SEValueUnknown(this, inst->result_id())}; |
355 | 0 | return GetCachedOrAdd(std::move(load_node)); |
356 | 0 | } |
357 | | |
358 | 0 | SENode* ScalarEvolutionAnalysis::CreateCantComputeNode() { |
359 | 0 | return cached_cant_compute_; |
360 | 0 | } |
361 | | |
362 | | // Add the created node into the cache of nodes. If it already exists return it. |
363 | | SENode* ScalarEvolutionAnalysis::GetCachedOrAdd( |
364 | 0 | std::unique_ptr<SENode> prospective_node) { |
365 | 0 | auto itr = node_cache_.find(prospective_node); |
366 | 0 | if (itr != node_cache_.end()) { |
367 | 0 | return (*itr).get(); |
368 | 0 | } |
369 | | |
370 | 0 | SENode* raw_ptr_to_node = prospective_node.get(); |
371 | 0 | node_cache_.insert(std::move(prospective_node)); |
372 | 0 | return raw_ptr_to_node; |
373 | 0 | } |
374 | | |
375 | | bool ScalarEvolutionAnalysis::IsLoopInvariant(const Loop* loop, |
376 | 0 | const SENode* node) const { |
377 | 0 | for (auto itr = node->graph_cbegin(); itr != node->graph_cend(); ++itr) { |
378 | 0 | if (const SERecurrentNode* rec = itr->AsSERecurrentNode()) { |
379 | 0 | const BasicBlock* header = rec->GetLoop()->GetHeaderBlock(); |
380 | | |
381 | | // If the loop which the recurrent expression belongs to is either |loop |
382 | | // or a nested loop inside |loop| then we assume it is variant. |
383 | 0 | if (loop->IsInsideLoop(header)) { |
384 | 0 | return false; |
385 | 0 | } |
386 | 0 | } else if (const SEValueUnknown* unknown = itr->AsSEValueUnknown()) { |
387 | | // If the instruction is inside the loop we conservatively assume it is |
388 | | // loop variant. |
389 | 0 | if (loop->IsInsideLoop(unknown->ResultId())) return false; |
390 | 0 | } |
391 | 0 | } |
392 | | |
393 | 0 | return true; |
394 | 0 | } |
395 | | |
396 | | SENode* ScalarEvolutionAnalysis::GetCoefficientFromRecurrentTerm( |
397 | 0 | SENode* node, const Loop* loop) { |
398 | | // Traverse the DAG to find the recurrent expression belonging to |loop|. |
399 | 0 | for (auto itr = node->graph_begin(); itr != node->graph_end(); ++itr) { |
400 | 0 | SERecurrentNode* rec = itr->AsSERecurrentNode(); |
401 | 0 | if (rec && rec->GetLoop() == loop) { |
402 | 0 | return rec->GetCoefficient(); |
403 | 0 | } |
404 | 0 | } |
405 | 0 | return CreateConstant(0); |
406 | 0 | } |
407 | | |
408 | | SENode* ScalarEvolutionAnalysis::UpdateChildNode(SENode* parent, |
409 | | SENode* old_child, |
410 | 0 | SENode* new_child) { |
411 | | // Only handles add. |
412 | 0 | if (parent->GetType() != SENode::Add) return parent; |
413 | | |
414 | 0 | std::vector<SENode*> new_children; |
415 | 0 | for (SENode* child : *parent) { |
416 | 0 | if (child == old_child) { |
417 | 0 | new_children.push_back(new_child); |
418 | 0 | } else { |
419 | 0 | new_children.push_back(child); |
420 | 0 | } |
421 | 0 | } |
422 | |
|
423 | 0 | std::unique_ptr<SENode> add_node{new SEAddNode(this)}; |
424 | 0 | for (SENode* child : new_children) { |
425 | 0 | add_node->AddChild(child); |
426 | 0 | } |
427 | |
|
428 | 0 | return SimplifyExpression(GetCachedOrAdd(std::move(add_node))); |
429 | 0 | } |
430 | | |
431 | | // Rebuild the |node| eliminating, if it exists, the recurrent term which |
432 | | // belongs to the |loop|. |
433 | | SENode* ScalarEvolutionAnalysis::BuildGraphWithoutRecurrentTerm( |
434 | 0 | SENode* node, const Loop* loop) { |
435 | | // If the node is already a recurrent expression belonging to loop then just |
436 | | // return the offset. |
437 | 0 | SERecurrentNode* recurrent = node->AsSERecurrentNode(); |
438 | 0 | if (recurrent) { |
439 | 0 | if (recurrent->GetLoop() == loop) { |
440 | 0 | return recurrent->GetOffset(); |
441 | 0 | } else { |
442 | 0 | return node; |
443 | 0 | } |
444 | 0 | } |
445 | | |
446 | 0 | std::vector<SENode*> new_children; |
447 | | // Otherwise find the recurrent node in the children of this node. |
448 | 0 | for (auto itr : *node) { |
449 | 0 | recurrent = itr->AsSERecurrentNode(); |
450 | 0 | if (recurrent && recurrent->GetLoop() == loop) { |
451 | 0 | new_children.push_back(recurrent->GetOffset()); |
452 | 0 | } else { |
453 | 0 | new_children.push_back(itr); |
454 | 0 | } |
455 | 0 | } |
456 | |
|
457 | 0 | std::unique_ptr<SENode> add_node{new SEAddNode(this)}; |
458 | 0 | for (SENode* child : new_children) { |
459 | 0 | add_node->AddChild(child); |
460 | 0 | } |
461 | |
|
462 | 0 | return SimplifyExpression(GetCachedOrAdd(std::move(add_node))); |
463 | 0 | } |
464 | | |
465 | | // Return the recurrent term belonging to |loop| if it appears in the graph |
466 | | // starting at |node| or null if it doesn't. |
467 | | SERecurrentNode* ScalarEvolutionAnalysis::GetRecurrentTerm(SENode* node, |
468 | 0 | const Loop* loop) { |
469 | 0 | for (auto itr = node->graph_begin(); itr != node->graph_end(); ++itr) { |
470 | 0 | SERecurrentNode* rec = itr->AsSERecurrentNode(); |
471 | 0 | if (rec && rec->GetLoop() == loop) { |
472 | 0 | return rec; |
473 | 0 | } |
474 | 0 | } |
475 | 0 | return nullptr; |
476 | 0 | } |
477 | 0 | std::string SENode::AsString() const { |
478 | 0 | switch (GetType()) { |
479 | 0 | case Constant: |
480 | 0 | return "Constant"; |
481 | 0 | case RecurrentAddExpr: |
482 | 0 | return "RecurrentAddExpr"; |
483 | 0 | case Add: |
484 | 0 | return "Add"; |
485 | 0 | case Negative: |
486 | 0 | return "Negative"; |
487 | 0 | case Multiply: |
488 | 0 | return "Multiply"; |
489 | 0 | case ValueUnknown: |
490 | 0 | return "Value Unknown"; |
491 | 0 | case CanNotCompute: |
492 | 0 | return "Can not compute"; |
493 | 0 | } |
494 | 0 | return "NULL"; |
495 | 0 | } |
496 | | |
497 | 0 | bool SENode::operator==(const SENode& other) const { |
498 | 0 | if (GetType() != other.GetType()) return false; |
499 | | |
500 | 0 | if (other.GetChildren().size() != children_.size()) return false; |
501 | | |
502 | 0 | const SERecurrentNode* this_as_recurrent = AsSERecurrentNode(); |
503 | | |
504 | | // Check the children are the same, for SERecurrentNodes we need to check the |
505 | | // offset and coefficient manually as the child vector is sorted by ids so the |
506 | | // offset/coefficient information is lost. |
507 | 0 | if (!this_as_recurrent) { |
508 | 0 | for (size_t index = 0; index < children_.size(); ++index) { |
509 | 0 | if (other.GetChildren()[index] != children_[index]) return false; |
510 | 0 | } |
511 | 0 | } else { |
512 | 0 | const SERecurrentNode* other_as_recurrent = other.AsSERecurrentNode(); |
513 | | |
514 | | // We've already checked the types are the same, this should not fail if |
515 | | // this->AsSERecurrentNode() succeeded. |
516 | 0 | assert(other_as_recurrent); |
517 | | |
518 | 0 | if (this_as_recurrent->GetCoefficient() != |
519 | 0 | other_as_recurrent->GetCoefficient()) |
520 | 0 | return false; |
521 | | |
522 | 0 | if (this_as_recurrent->GetOffset() != other_as_recurrent->GetOffset()) |
523 | 0 | return false; |
524 | | |
525 | 0 | if (this_as_recurrent->GetLoop() != other_as_recurrent->GetLoop()) |
526 | 0 | return false; |
527 | 0 | } |
528 | | |
529 | | // If we're dealing with a value unknown node check both nodes were created by |
530 | | // the same instruction. |
531 | 0 | if (GetType() == SENode::ValueUnknown) { |
532 | 0 | if (AsSEValueUnknown()->ResultId() != |
533 | 0 | other.AsSEValueUnknown()->ResultId()) { |
534 | 0 | return false; |
535 | 0 | } |
536 | 0 | } |
537 | | |
538 | 0 | if (AsSEConstantNode()) { |
539 | 0 | if (AsSEConstantNode()->FoldToSingleValue() != |
540 | 0 | other.AsSEConstantNode()->FoldToSingleValue()) |
541 | 0 | return false; |
542 | 0 | } |
543 | | |
544 | 0 | return true; |
545 | 0 | } |
546 | | |
547 | 0 | bool SENode::operator!=(const SENode& other) const { return !(*this == other); } |
548 | | |
549 | | namespace { |
550 | | // Helper functions to insert 32/64 bit values into the 32 bit hash string. This |
551 | | // allows us to add pointers to the string by reinterpreting the pointers as |
552 | | // uintptr_t. PushToString will deduce the type, call sizeof on it and use |
553 | | // that size to call into the correct PushToStringImpl functor depending on |
554 | | // whether it is 32 or 64 bit. |
555 | | |
556 | | template <typename T, size_t size_of_t> |
557 | | struct PushToStringImpl; |
558 | | |
559 | | template <typename T> |
560 | | struct PushToStringImpl<T, 8> { |
561 | 0 | void operator()(T id, std::u32string* str) { |
562 | 0 | str->push_back(static_cast<uint32_t>(id >> 32)); |
563 | 0 | str->push_back(static_cast<uint32_t>(id)); |
564 | 0 | } Unexecuted instantiation: scalar_analysis.cpp:spvtools::opt::(anonymous namespace)::PushToStringImpl<long, 8ul>::operator()(long, std::__1::basic_string<char32_t, std::__1::char_traits<char32_t>, std::__1::allocator<char32_t> >*) Unexecuted instantiation: scalar_analysis.cpp:spvtools::opt::(anonymous namespace)::PushToStringImpl<unsigned long, 8ul>::operator()(unsigned long, std::__1::basic_string<char32_t, std::__1::char_traits<char32_t>, std::__1::allocator<char32_t> >*) |
565 | | }; |
566 | | |
567 | | template <typename T> |
568 | | struct PushToStringImpl<T, 4> { |
569 | 0 | void operator()(T id, std::u32string* str) { |
570 | 0 | str->push_back(static_cast<uint32_t>(id)); |
571 | 0 | } |
572 | | }; |
573 | | |
574 | | template <typename T> |
575 | 0 | void PushToString(T id, std::u32string* str) { |
576 | 0 | PushToStringImpl<T, sizeof(T)>{}(id, str); |
577 | 0 | } Unexecuted instantiation: scalar_analysis.cpp:void spvtools::opt::(anonymous namespace)::PushToString<long>(long, std::__1::basic_string<char32_t, std::__1::char_traits<char32_t>, std::__1::allocator<char32_t> >*) Unexecuted instantiation: scalar_analysis.cpp:void spvtools::opt::(anonymous namespace)::PushToString<unsigned long>(unsigned long, std::__1::basic_string<char32_t, std::__1::char_traits<char32_t>, std::__1::allocator<char32_t> >*) Unexecuted instantiation: scalar_analysis.cpp:void spvtools::opt::(anonymous namespace)::PushToString<unsigned int>(unsigned int, std::__1::basic_string<char32_t, std::__1::char_traits<char32_t>, std::__1::allocator<char32_t> >*) |
578 | | |
579 | | } // namespace |
580 | | |
581 | | // Implements the hashing of SENodes. |
582 | 0 | size_t SENodeHash::operator()(const SENode* node) const { |
583 | | // Concatenate the terms into a string which we can hash. |
584 | 0 | std::u32string hash_string{}; |
585 | | |
586 | | // Hashing the type as a string is safer than hashing the enum as the enum is |
587 | | // very likely to collide with constants. |
588 | 0 | for (char ch : node->AsString()) { |
589 | 0 | hash_string.push_back(static_cast<char32_t>(ch)); |
590 | 0 | } |
591 | | |
592 | | // We just ignore the literal value unless it is a constant. |
593 | 0 | if (node->GetType() == SENode::Constant) |
594 | 0 | PushToString(node->AsSEConstantNode()->FoldToSingleValue(), &hash_string); |
595 | |
|
596 | 0 | const SERecurrentNode* recurrent = node->AsSERecurrentNode(); |
597 | | |
598 | | // If we're dealing with a recurrent expression hash the loop as well so that |
599 | | // nested inductions like i=0,i++ and j=0,j++ correspond to different nodes. |
600 | 0 | if (recurrent) { |
601 | 0 | PushToString(reinterpret_cast<uintptr_t>(recurrent->GetLoop()), |
602 | 0 | &hash_string); |
603 | | |
604 | | // Recurrent expressions can't be hashed using the normal method as the |
605 | | // order of coefficient and offset matters to the hash. |
606 | 0 | PushToString(reinterpret_cast<uintptr_t>(recurrent->GetCoefficient()), |
607 | 0 | &hash_string); |
608 | 0 | PushToString(reinterpret_cast<uintptr_t>(recurrent->GetOffset()), |
609 | 0 | &hash_string); |
610 | |
|
611 | 0 | return std::hash<std::u32string>{}(hash_string); |
612 | 0 | } |
613 | | |
614 | | // Hash the result id of the original instruction which created this node if |
615 | | // it is a value unknown node. |
616 | 0 | if (node->GetType() == SENode::ValueUnknown) { |
617 | 0 | PushToString(node->AsSEValueUnknown()->ResultId(), &hash_string); |
618 | 0 | } |
619 | | |
620 | | // Hash the pointers of the child nodes, each SENode has a unique pointer |
621 | | // associated with it. |
622 | 0 | const std::vector<SENode*>& children = node->GetChildren(); |
623 | 0 | for (const SENode* child : children) { |
624 | 0 | PushToString(reinterpret_cast<uintptr_t>(child), &hash_string); |
625 | 0 | } |
626 | |
|
627 | 0 | return std::hash<std::u32string>{}(hash_string); |
628 | 0 | } |
629 | | |
630 | | // This overload is the actual overload used by the node_cache_ set. |
631 | 0 | size_t SENodeHash::operator()(const std::unique_ptr<SENode>& node) const { |
632 | 0 | return this->operator()(node.get()); |
633 | 0 | } |
634 | | |
635 | 0 | void SENode::DumpDot(std::ostream& out, bool recurse) const { |
636 | 0 | size_t unique_id = std::hash<const SENode*>{}(this); |
637 | 0 | out << unique_id << " [label=\"" << AsString() << " "; |
638 | 0 | if (GetType() == SENode::Constant) { |
639 | 0 | out << "\nwith value: " << this->AsSEConstantNode()->FoldToSingleValue(); |
640 | 0 | } |
641 | 0 | out << "\"]\n"; |
642 | 0 | for (const SENode* child : children_) { |
643 | 0 | size_t child_unique_id = std::hash<const SENode*>{}(child); |
644 | 0 | out << unique_id << " -> " << child_unique_id << " \n"; |
645 | 0 | if (recurse) child->DumpDot(out, true); |
646 | 0 | } |
647 | 0 | } |
648 | | |
649 | | namespace { |
650 | | class IsGreaterThanZero { |
651 | | public: |
652 | 0 | explicit IsGreaterThanZero(IRContext* context) : context_(context) {} |
653 | | |
654 | | // Determine if the value of |node| is always strictly greater than zero if |
655 | | // |or_equal_zero| is false or greater or equal to zero if |or_equal_zero| is |
656 | | // true. It returns true is the evaluation was able to conclude something, in |
657 | | // which case the result is stored in |result|. |
658 | | // The algorithm work by going through all the nodes and determine the |
659 | | // sign of each of them. |
660 | 0 | bool Eval(const SENode* node, bool or_equal_zero, bool* result) { |
661 | 0 | *result = false; |
662 | 0 | switch (Visit(node)) { |
663 | 0 | case Signedness::kPositiveOrNegative: { |
664 | 0 | return false; |
665 | 0 | } |
666 | 0 | case Signedness::kStrictlyNegative: { |
667 | 0 | *result = false; |
668 | 0 | break; |
669 | 0 | } |
670 | 0 | case Signedness::kNegative: { |
671 | 0 | if (!or_equal_zero) { |
672 | 0 | return false; |
673 | 0 | } |
674 | 0 | *result = false; |
675 | 0 | break; |
676 | 0 | } |
677 | 0 | case Signedness::kStrictlyPositive: { |
678 | 0 | *result = true; |
679 | 0 | break; |
680 | 0 | } |
681 | 0 | case Signedness::kPositive: { |
682 | 0 | if (!or_equal_zero) { |
683 | 0 | return false; |
684 | 0 | } |
685 | 0 | *result = true; |
686 | 0 | break; |
687 | 0 | } |
688 | 0 | } |
689 | 0 | return true; |
690 | 0 | } |
691 | | |
692 | | private: |
693 | | enum class Signedness { |
694 | | kPositiveOrNegative, // Yield a value positive or negative. |
695 | | kStrictlyNegative, // Yield a value strictly less than 0. |
696 | | kNegative, // Yield a value less or equal to 0. |
697 | | kStrictlyPositive, // Yield a value strictly greater than 0. |
698 | | kPositive // Yield a value greater or equal to 0. |
699 | | }; |
700 | | |
701 | | // Combine the signedness according to arithmetic rules of a given operator. |
702 | | using Combiner = std::function<Signedness(Signedness, Signedness)>; |
703 | | |
704 | | // Returns a functor to interpret the signedness of 2 expressions as if they |
705 | | // were added. |
706 | 0 | Combiner GetAddCombiner() const { |
707 | 0 | return [](Signedness lhs, Signedness rhs) { |
708 | 0 | switch (lhs) { |
709 | 0 | case Signedness::kPositiveOrNegative: |
710 | 0 | break; |
711 | 0 | case Signedness::kStrictlyNegative: |
712 | 0 | if (rhs == Signedness::kStrictlyNegative || |
713 | 0 | rhs == Signedness::kNegative) |
714 | 0 | return lhs; |
715 | 0 | break; |
716 | 0 | case Signedness::kNegative: { |
717 | 0 | if (rhs == Signedness::kStrictlyNegative) |
718 | 0 | return Signedness::kStrictlyNegative; |
719 | 0 | if (rhs == Signedness::kNegative) return Signedness::kNegative; |
720 | 0 | break; |
721 | 0 | } |
722 | 0 | case Signedness::kStrictlyPositive: { |
723 | 0 | if (rhs == Signedness::kStrictlyPositive || |
724 | 0 | rhs == Signedness::kPositive) { |
725 | 0 | return Signedness::kStrictlyPositive; |
726 | 0 | } |
727 | 0 | break; |
728 | 0 | } |
729 | 0 | case Signedness::kPositive: { |
730 | 0 | if (rhs == Signedness::kStrictlyPositive) |
731 | 0 | return Signedness::kStrictlyPositive; |
732 | 0 | if (rhs == Signedness::kPositive) return Signedness::kPositive; |
733 | 0 | break; |
734 | 0 | } |
735 | 0 | } |
736 | 0 | return Signedness::kPositiveOrNegative; |
737 | 0 | }; |
738 | 0 | } |
739 | | |
740 | | // Returns a functor to interpret the signedness of 2 expressions as if they |
741 | | // were multiplied. |
742 | 0 | Combiner GetMulCombiner() const { |
743 | 0 | return [](Signedness lhs, Signedness rhs) { |
744 | 0 | switch (lhs) { |
745 | 0 | case Signedness::kPositiveOrNegative: |
746 | 0 | break; |
747 | 0 | case Signedness::kStrictlyNegative: { |
748 | 0 | switch (rhs) { |
749 | 0 | case Signedness::kPositiveOrNegative: { |
750 | 0 | break; |
751 | 0 | } |
752 | 0 | case Signedness::kStrictlyNegative: { |
753 | 0 | return Signedness::kStrictlyPositive; |
754 | 0 | } |
755 | 0 | case Signedness::kNegative: { |
756 | 0 | return Signedness::kPositive; |
757 | 0 | } |
758 | 0 | case Signedness::kStrictlyPositive: { |
759 | 0 | return Signedness::kStrictlyNegative; |
760 | 0 | } |
761 | 0 | case Signedness::kPositive: { |
762 | 0 | return Signedness::kNegative; |
763 | 0 | } |
764 | 0 | } |
765 | 0 | break; |
766 | 0 | } |
767 | 0 | case Signedness::kNegative: { |
768 | 0 | switch (rhs) { |
769 | 0 | case Signedness::kPositiveOrNegative: { |
770 | 0 | break; |
771 | 0 | } |
772 | 0 | case Signedness::kStrictlyNegative: |
773 | 0 | case Signedness::kNegative: { |
774 | 0 | return Signedness::kPositive; |
775 | 0 | } |
776 | 0 | case Signedness::kStrictlyPositive: |
777 | 0 | case Signedness::kPositive: { |
778 | 0 | return Signedness::kNegative; |
779 | 0 | } |
780 | 0 | } |
781 | 0 | break; |
782 | 0 | } |
783 | 0 | case Signedness::kStrictlyPositive: { |
784 | 0 | return rhs; |
785 | 0 | } |
786 | 0 | case Signedness::kPositive: { |
787 | 0 | switch (rhs) { |
788 | 0 | case Signedness::kPositiveOrNegative: { |
789 | 0 | break; |
790 | 0 | } |
791 | 0 | case Signedness::kStrictlyNegative: |
792 | 0 | case Signedness::kNegative: { |
793 | 0 | return Signedness::kNegative; |
794 | 0 | } |
795 | 0 | case Signedness::kStrictlyPositive: |
796 | 0 | case Signedness::kPositive: { |
797 | 0 | return Signedness::kPositive; |
798 | 0 | } |
799 | 0 | } |
800 | 0 | break; |
801 | 0 | } |
802 | 0 | } |
803 | 0 | return Signedness::kPositiveOrNegative; |
804 | 0 | }; |
805 | 0 | } |
806 | | |
807 | 0 | Signedness Visit(const SENode* node) { |
808 | 0 | switch (node->GetType()) { |
809 | 0 | case SENode::Constant: |
810 | 0 | return Visit(node->AsSEConstantNode()); |
811 | 0 | break; |
812 | 0 | case SENode::RecurrentAddExpr: |
813 | 0 | return Visit(node->AsSERecurrentNode()); |
814 | 0 | break; |
815 | 0 | case SENode::Negative: |
816 | 0 | return Visit(node->AsSENegative()); |
817 | 0 | break; |
818 | 0 | case SENode::CanNotCompute: |
819 | 0 | return Visit(node->AsSECantCompute()); |
820 | 0 | break; |
821 | 0 | case SENode::ValueUnknown: |
822 | 0 | return Visit(node->AsSEValueUnknown()); |
823 | 0 | break; |
824 | 0 | case SENode::Add: |
825 | 0 | return VisitExpr(node, GetAddCombiner()); |
826 | 0 | break; |
827 | 0 | case SENode::Multiply: |
828 | 0 | return VisitExpr(node, GetMulCombiner()); |
829 | 0 | break; |
830 | 0 | } |
831 | 0 | return Signedness::kPositiveOrNegative; |
832 | 0 | } |
833 | | |
834 | | // Returns the signedness of a constant |node|. |
835 | 0 | Signedness Visit(const SEConstantNode* node) { |
836 | 0 | if (0 == node->FoldToSingleValue()) return Signedness::kPositive; |
837 | 0 | if (0 < node->FoldToSingleValue()) return Signedness::kStrictlyPositive; |
838 | 0 | if (0 > node->FoldToSingleValue()) return Signedness::kStrictlyNegative; |
839 | 0 | return Signedness::kPositiveOrNegative; |
840 | 0 | } |
841 | | |
842 | | // Returns the signedness of an unknown |node| based on its type. |
843 | 0 | Signedness Visit(const SEValueUnknown* node) { |
844 | 0 | Instruction* insn = context_->get_def_use_mgr()->GetDef(node->ResultId()); |
845 | 0 | analysis::Type* type = context_->get_type_mgr()->GetType(insn->type_id()); |
846 | 0 | assert(type && "Can't retrieve a type for the instruction"); |
847 | 0 | analysis::Integer* int_type = type->AsInteger(); |
848 | 0 | assert(type && "Can't retrieve an integer type for the instruction"); |
849 | 0 | return int_type->IsSigned() ? Signedness::kPositiveOrNegative |
850 | 0 | : Signedness::kPositive; |
851 | 0 | } |
852 | | |
853 | | // Returns the signedness of a recurring expression. |
854 | 0 | Signedness Visit(const SERecurrentNode* node) { |
855 | 0 | Signedness coeff_sign = Visit(node->GetCoefficient()); |
856 | | // SERecurrentNode represent an affine expression in the range [0, |
857 | | // loop_bound], so the result cannot be strictly positive or negative. |
858 | 0 | switch (coeff_sign) { |
859 | 0 | default: |
860 | 0 | break; |
861 | 0 | case Signedness::kStrictlyNegative: |
862 | 0 | coeff_sign = Signedness::kNegative; |
863 | 0 | break; |
864 | 0 | case Signedness::kStrictlyPositive: |
865 | 0 | coeff_sign = Signedness::kPositive; |
866 | 0 | break; |
867 | 0 | } |
868 | 0 | return GetAddCombiner()(coeff_sign, Visit(node->GetOffset())); |
869 | 0 | } |
870 | | |
871 | | // Returns the signedness of a negation |node|. |
872 | 0 | Signedness Visit(const SENegative* node) { |
873 | 0 | switch (Visit(*node->begin())) { |
874 | 0 | case Signedness::kPositiveOrNegative: { |
875 | 0 | return Signedness::kPositiveOrNegative; |
876 | 0 | } |
877 | 0 | case Signedness::kStrictlyNegative: { |
878 | 0 | return Signedness::kStrictlyPositive; |
879 | 0 | } |
880 | 0 | case Signedness::kNegative: { |
881 | 0 | return Signedness::kPositive; |
882 | 0 | } |
883 | 0 | case Signedness::kStrictlyPositive: { |
884 | 0 | return Signedness::kStrictlyNegative; |
885 | 0 | } |
886 | 0 | case Signedness::kPositive: { |
887 | 0 | return Signedness::kNegative; |
888 | 0 | } |
889 | 0 | } |
890 | 0 | return Signedness::kPositiveOrNegative; |
891 | 0 | } |
892 | | |
893 | 0 | Signedness Visit(const SECantCompute*) { |
894 | 0 | return Signedness::kPositiveOrNegative; |
895 | 0 | } |
896 | | |
897 | | // Returns the signedness of a binary expression by using the combiner |
898 | | // |reduce|. |
899 | | Signedness VisitExpr( |
900 | | const SENode* node, |
901 | 0 | std::function<Signedness(Signedness, Signedness)> reduce) { |
902 | 0 | Signedness result = Visit(*node->begin()); |
903 | 0 | for (const SENode* operand : make_range(++node->begin(), node->end())) { |
904 | 0 | if (result == Signedness::kPositiveOrNegative) { |
905 | 0 | return Signedness::kPositiveOrNegative; |
906 | 0 | } |
907 | 0 | result = reduce(result, Visit(operand)); |
908 | 0 | } |
909 | 0 | return result; |
910 | 0 | } |
911 | | |
912 | | IRContext* context_; |
913 | | }; |
914 | | } // namespace |
915 | | |
916 | | bool ScalarEvolutionAnalysis::IsAlwaysGreaterThanZero(SENode* node, |
917 | 0 | bool* is_gt_zero) const { |
918 | 0 | return IsGreaterThanZero(context_).Eval(node, false, is_gt_zero); |
919 | 0 | } |
920 | | |
921 | | bool ScalarEvolutionAnalysis::IsAlwaysGreaterOrEqualToZero( |
922 | 0 | SENode* node, bool* is_ge_zero) const { |
923 | 0 | return IsGreaterThanZero(context_).Eval(node, true, is_ge_zero); |
924 | 0 | } |
925 | | |
926 | | namespace { |
927 | | |
928 | | // Remove |node| from the |mul| chain (of the form A * ... * |node| * ... * Z), |
929 | | // if |node| is not in the chain, returns the original chain. |
930 | | SENode* RemoveOneNodeFromMultiplyChain(SEMultiplyNode* mul, |
931 | 0 | const SENode* node) { |
932 | 0 | SENode* lhs = mul->GetChildren()[0]; |
933 | 0 | SENode* rhs = mul->GetChildren()[1]; |
934 | 0 | if (lhs == node) { |
935 | 0 | return rhs; |
936 | 0 | } |
937 | 0 | if (rhs == node) { |
938 | 0 | return lhs; |
939 | 0 | } |
940 | 0 | if (lhs->AsSEMultiplyNode()) { |
941 | 0 | SENode* res = RemoveOneNodeFromMultiplyChain(lhs->AsSEMultiplyNode(), node); |
942 | 0 | if (res != lhs) |
943 | 0 | return mul->GetParentAnalysis()->CreateMultiplyNode(res, rhs); |
944 | 0 | } |
945 | 0 | if (rhs->AsSEMultiplyNode()) { |
946 | 0 | SENode* res = RemoveOneNodeFromMultiplyChain(rhs->AsSEMultiplyNode(), node); |
947 | 0 | if (res != rhs) |
948 | 0 | return mul->GetParentAnalysis()->CreateMultiplyNode(res, rhs); |
949 | 0 | } |
950 | | |
951 | 0 | return mul; |
952 | 0 | } |
953 | | } // namespace |
954 | | |
955 | | std::pair<SExpression, int64_t> SExpression::operator/( |
956 | 0 | SExpression rhs_wrapper) const { |
957 | 0 | SENode* lhs = node_; |
958 | 0 | SENode* rhs = rhs_wrapper.node_; |
959 | | // Check for division by 0. |
960 | 0 | if (rhs->AsSEConstantNode() && |
961 | 0 | !rhs->AsSEConstantNode()->FoldToSingleValue()) { |
962 | 0 | return {scev_->CreateCantComputeNode(), 0}; |
963 | 0 | } |
964 | | |
965 | | // Trivial case. |
966 | 0 | if (lhs->AsSEConstantNode() && rhs->AsSEConstantNode()) { |
967 | 0 | int64_t lhs_value = lhs->AsSEConstantNode()->FoldToSingleValue(); |
968 | 0 | int64_t rhs_value = rhs->AsSEConstantNode()->FoldToSingleValue(); |
969 | 0 | return {scev_->CreateConstant(lhs_value / rhs_value), |
970 | 0 | lhs_value % rhs_value}; |
971 | 0 | } |
972 | | |
973 | | // look for a "c U / U" pattern. |
974 | 0 | if (lhs->AsSEMultiplyNode()) { |
975 | 0 | assert(lhs->GetChildren().size() == 2 && |
976 | 0 | "More than 2 operand for a multiply node."); |
977 | 0 | SENode* res = RemoveOneNodeFromMultiplyChain(lhs->AsSEMultiplyNode(), rhs); |
978 | 0 | if (res != lhs) { |
979 | 0 | return {res, 0}; |
980 | 0 | } |
981 | 0 | } |
982 | | |
983 | 0 | return {scev_->CreateCantComputeNode(), 0}; |
984 | 0 | } |
985 | | |
986 | | } // namespace opt |
987 | | } // namespace spvtools |