/src/spirv-tools/source/opt/scalar_analysis_simplification.cpp
Line | Count | Source |
1 | | // Copyright (c) 2018 Google LLC. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include <functional> |
16 | | #include <map> |
17 | | #include <memory> |
18 | | #include <set> |
19 | | #include <utility> |
20 | | #include <vector> |
21 | | |
22 | | #include "source/opt/scalar_analysis.h" |
23 | | |
24 | | // Simplifies scalar analysis DAGs. |
25 | | // |
26 | | // 1. Given a node passed to SimplifyExpression we first simplify the graph by |
27 | | // calling SimplifyPolynomial. This groups like nodes following basic arithmetic |
28 | | // rules, so multiple adds of the same load instruction could be grouped into a |
29 | | // single multiply of that instruction. SimplifyPolynomial will traverse the DAG |
30 | | // and build up an accumulator buffer for each class of instruction it finds. |
31 | | // For example take the loop: |
32 | | // for (i=0, i<N; i++) { i+B+23+4+B+C; } |
33 | | // In this example the expression "i+B+23+4+B+C" has four classes of |
34 | | // instruction, induction variable i, the two value unknowns B and C, and the |
35 | | // constants. The accumulator buffer is then used to rebuild the graph using |
36 | | // the accumulation of each type. This example would then be folded into |
37 | | // i+2*B+C+27. |
38 | | // |
39 | | // This new graph contains a single add node (or if only one type found then |
40 | | // just that node) with each of the like terms (or multiplication node) as a |
41 | | // child. |
42 | | // |
43 | | // 2. FoldRecurrentAddExpressions is then called on this new DAG. This will take |
44 | | // RecurrentAddExpressions which are with respect to the same loop and fold them |
45 | | // into a single new RecurrentAddExpression with respect to that same loop. An |
46 | | // expression can have multiple RecurrentAddExpression's with respect to |
47 | | // different loops in the case of nested loops. These expressions cannot be |
48 | | // folded further. For example: |
49 | | // |
50 | | // for (i=0; i<N;i++) for(j=0,k=1; j<N;++j,++k) |
51 | | // |
52 | | // The 'j' and 'k' are RecurrentAddExpression with respect to the second loop |
53 | | // and 'i' to the first. If 'j' and 'k' are used in an expression together then |
54 | | // they will be folded into a new RecurrentAddExpression with respect to the |
55 | | // second loop in that expression. |
56 | | // |
57 | | // |
58 | | // 3. If the DAG now only contains a single RecurrentAddExpression we can now |
59 | | // perform a final optimization SimplifyRecurrentAddExpression. This will |
60 | | // transform the entire DAG into a RecurrentAddExpression. Additions to the |
61 | | // RecurrentAddExpression are added to the offset field and multiplications to |
62 | | // the coefficient. |
63 | | // |
64 | | |
65 | | namespace spvtools { |
66 | | namespace opt { |
67 | | |
68 | | // Implementation of the functions which are used to simplify the graph. Graphs |
69 | | // of unknowns, multiplies, additions, and constants can be turned into a linear |
70 | | // add node with each term as a child. For instance a large graph built from, X |
71 | | // + X*2 + Y - Y*3 + 4 - 1, would become a single add expression with the |
72 | | // children X*3, -Y*2, and the constant 3. Graphs containing a recurrent |
73 | | // expression will be simplified to represent the entire graph around a single |
74 | | // recurrent expression. So for an induction variable (i=0, i++) if you add 1 to |
75 | | // i in an expression we can rewrite the graph of that expression to be a single |
76 | | // recurrent expression of (i=1,i++). |
77 | | class SENodeSimplifyImpl { |
78 | | public: |
79 | | SENodeSimplifyImpl(ScalarEvolutionAnalysis* analysis, |
80 | | SENode* node_to_simplify) |
81 | 0 | : analysis_(*analysis), |
82 | 0 | node_(node_to_simplify), |
83 | 0 | constant_accumulator_(0) {} |
84 | | |
85 | | // Return the result of the simplification. |
86 | | SENode* Simplify(); |
87 | | |
88 | | private: |
89 | | // Recursively descend through the graph to build up the accumulator objects |
90 | | // which are used to flatten the graph. |child| is the node currently being |
91 | | // traversed and the |negation| flag is used to signify that this operation |
92 | | // was preceded by a unary negative operation and as such the result should be |
93 | | // negated. |
94 | | void GatherAccumulatorsFromChildNodes(SENode* new_node, SENode* child, |
95 | | bool negation); |
96 | | |
97 | | // Given a |multiply| node add to the accumulators for the term type within |
98 | | // the |multiply| expression. Will return true if the accumulators could be |
99 | | // calculated successfully. If the |multiply| is in any form other than |
100 | | // unknown*constant then we return false. |negation| signifies that the |
101 | | // operation was preceded by a unary negative. |
102 | | bool AccumulatorsFromMultiply(SENode* multiply, bool negation); |
103 | | |
104 | | SERecurrentNode* UpdateCoefficient(SERecurrentNode* recurrent, |
105 | | int64_t coefficient_update) const; |
106 | | |
107 | | // If the graph contains a recurrent expression, ie, an expression with the |
108 | | // loop iterations as a term in the expression, then the whole expression |
109 | | // can be rewritten to be a recurrent expression. |
110 | | SENode* SimplifyRecurrentAddExpression(SERecurrentNode* node); |
111 | | |
112 | | // Simplify the whole graph by linking like terms together in a single flat |
113 | | // add node. So X*2 + Y -Y + 3 +6 would become X*2 + 9. Where X and Y are a |
114 | | // ValueUnknown node (i.e, a load) or a recurrent expression. |
115 | | SENode* SimplifyPolynomial(); |
116 | | |
117 | | // Each recurrent expression is an expression with respect to a specific loop. |
118 | | // If we have two different recurrent terms with respect to the same loop in a |
119 | | // single expression then we can fold those terms into a single new term. |
120 | | // For instance: |
121 | | // |
122 | | // induction i = 0, i++ |
123 | | // temp = i*10 |
124 | | // array[i+temp] |
125 | | // |
126 | | // We can fold the i + temp into a single expression. Rec(0,1) + Rec(0,10) can |
127 | | // become Rec(0,11). |
128 | | SENode* FoldRecurrentAddExpressions(SENode*); |
129 | | |
130 | | // We can eliminate recurrent expressions which have a coefficient of zero by |
131 | | // replacing them with their offset value. We are able to do this because a |
132 | | // recurrent expression represents the equation coefficient*iterations + |
133 | | // offset. |
134 | | SENode* EliminateZeroCoefficientRecurrents(SENode* node); |
135 | | |
136 | | // A reference the analysis which requested the simplification. |
137 | | ScalarEvolutionAnalysis& analysis_; |
138 | | |
139 | | // The node being simplified. |
140 | | SENode* node_; |
141 | | |
142 | | // An accumulator of the net result of all the constant operations performed |
143 | | // in a graph. |
144 | | int64_t constant_accumulator_; |
145 | | |
146 | | // An accumulator for each of the non constant terms in the graph. |
147 | | std::map<SENode*, int64_t> accumulators_; |
148 | | }; |
149 | | |
150 | | // From a |multiply| build up the accumulator objects. |
151 | | bool SENodeSimplifyImpl::AccumulatorsFromMultiply(SENode* multiply, |
152 | 0 | bool negation) { |
153 | 0 | if (multiply->GetChildren().size() != 2 || |
154 | 0 | multiply->GetType() != SENode::Multiply) |
155 | 0 | return false; |
156 | | |
157 | 0 | SENode* operand_1 = multiply->GetChild(0); |
158 | 0 | SENode* operand_2 = multiply->GetChild(1); |
159 | |
|
160 | 0 | SENode* value_unknown = nullptr; |
161 | 0 | SENode* constant = nullptr; |
162 | | |
163 | | // Work out which operand is the unknown value. |
164 | 0 | if (operand_1->GetType() == SENode::ValueUnknown || |
165 | 0 | operand_1->GetType() == SENode::RecurrentAddExpr) |
166 | 0 | value_unknown = operand_1; |
167 | 0 | else if (operand_2->GetType() == SENode::ValueUnknown || |
168 | 0 | operand_2->GetType() == SENode::RecurrentAddExpr) |
169 | 0 | value_unknown = operand_2; |
170 | | |
171 | | // Work out which operand is the constant coefficient. |
172 | 0 | if (operand_1->GetType() == SENode::Constant) |
173 | 0 | constant = operand_1; |
174 | 0 | else if (operand_2->GetType() == SENode::Constant) |
175 | 0 | constant = operand_2; |
176 | | |
177 | | // If the expression is not a variable multiplied by a constant coefficient, |
178 | | // exit out. |
179 | 0 | if (!(value_unknown && constant)) { |
180 | 0 | return false; |
181 | 0 | } |
182 | | |
183 | 0 | int64_t sign = negation ? -1 : 1; |
184 | |
|
185 | 0 | auto iterator = accumulators_.find(value_unknown); |
186 | 0 | int64_t new_value = constant->AsSEConstantNode()->FoldToSingleValue() * sign; |
187 | | // Add the result of the multiplication to the accumulators. |
188 | 0 | if (iterator != accumulators_.end()) { |
189 | 0 | (*iterator).second += new_value; |
190 | 0 | } else { |
191 | 0 | accumulators_.insert({value_unknown, new_value}); |
192 | 0 | } |
193 | |
|
194 | 0 | return true; |
195 | 0 | } |
196 | | |
197 | 0 | SENode* SENodeSimplifyImpl::Simplify() { |
198 | | // We only handle graphs with an addition, multiplication, or negation, at the |
199 | | // root. |
200 | 0 | if (node_->GetType() != SENode::Add && node_->GetType() != SENode::Multiply && |
201 | 0 | node_->GetType() != SENode::Negative) |
202 | 0 | return node_; |
203 | | |
204 | 0 | SENode* simplified_polynomial = SimplifyPolynomial(); |
205 | |
|
206 | 0 | SERecurrentNode* recurrent_expr = nullptr; |
207 | 0 | node_ = simplified_polynomial; |
208 | | |
209 | | // Fold recurrent expressions which are with respect to the same loop into a |
210 | | // single recurrent expression. |
211 | 0 | simplified_polynomial = FoldRecurrentAddExpressions(simplified_polynomial); |
212 | |
|
213 | 0 | simplified_polynomial = |
214 | 0 | EliminateZeroCoefficientRecurrents(simplified_polynomial); |
215 | | |
216 | | // Traverse the immediate children of the new node to find the recurrent |
217 | | // expression. If there is more than one there is nothing further we can do. |
218 | 0 | for (SENode* child : simplified_polynomial->GetChildren()) { |
219 | 0 | if (child->GetType() == SENode::RecurrentAddExpr) { |
220 | 0 | recurrent_expr = child->AsSERecurrentNode(); |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | | // We need to count the number of unique recurrent expressions in the DAG to |
225 | | // ensure there is only one. |
226 | 0 | for (auto child_iterator = simplified_polynomial->graph_begin(); |
227 | 0 | child_iterator != simplified_polynomial->graph_end(); ++child_iterator) { |
228 | 0 | if (child_iterator->GetType() == SENode::RecurrentAddExpr && |
229 | 0 | recurrent_expr != child_iterator->AsSERecurrentNode()) { |
230 | 0 | return simplified_polynomial; |
231 | 0 | } |
232 | 0 | } |
233 | | |
234 | 0 | if (recurrent_expr) { |
235 | 0 | return SimplifyRecurrentAddExpression(recurrent_expr); |
236 | 0 | } |
237 | | |
238 | 0 | return simplified_polynomial; |
239 | 0 | } |
240 | | |
241 | | // Traverse the graph to build up the accumulator objects. |
242 | | void SENodeSimplifyImpl::GatherAccumulatorsFromChildNodes(SENode* new_node, |
243 | | SENode* child, |
244 | 0 | bool negation) { |
245 | 0 | int32_t sign = negation ? -1 : 1; |
246 | |
|
247 | 0 | if (child->GetType() == SENode::Constant) { |
248 | | // Collect all the constants and add them together. |
249 | 0 | constant_accumulator_ += |
250 | 0 | child->AsSEConstantNode()->FoldToSingleValue() * sign; |
251 | |
|
252 | 0 | } else if (child->GetType() == SENode::ValueUnknown || |
253 | 0 | child->GetType() == SENode::RecurrentAddExpr) { |
254 | | // To rebuild the graph of X+X+X*2 into 4*X we count the occurrences of X |
255 | | // and create a new node of count*X after. X can either be a ValueUnknown or |
256 | | // a RecurrentAddExpr. The count for each X is stored in the accumulators_ |
257 | | // map. |
258 | |
|
259 | 0 | auto iterator = accumulators_.find(child); |
260 | | // If we've encountered this term before add to the accumulator for it. |
261 | 0 | if (iterator == accumulators_.end()) |
262 | 0 | accumulators_.insert({child, sign}); |
263 | 0 | else |
264 | 0 | iterator->second += sign; |
265 | |
|
266 | 0 | } else if (child->GetType() == SENode::Multiply) { |
267 | 0 | if (!AccumulatorsFromMultiply(child, negation)) { |
268 | 0 | new_node->AddChild(child); |
269 | 0 | } |
270 | |
|
271 | 0 | } else if (child->GetType() == SENode::Add) { |
272 | 0 | for (SENode* next_child : *child) { |
273 | 0 | GatherAccumulatorsFromChildNodes(new_node, next_child, negation); |
274 | 0 | } |
275 | |
|
276 | 0 | } else if (child->GetType() == SENode::Negative) { |
277 | 0 | SENode* negated_node = child->GetChild(0); |
278 | 0 | GatherAccumulatorsFromChildNodes(new_node, negated_node, !negation); |
279 | 0 | } else { |
280 | | // If we can't work out how to fold the expression just add it back into |
281 | | // the graph. |
282 | 0 | new_node->AddChild(child); |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | | SERecurrentNode* SENodeSimplifyImpl::UpdateCoefficient( |
287 | 0 | SERecurrentNode* recurrent, int64_t coefficient_update) const { |
288 | 0 | std::unique_ptr<SERecurrentNode> new_recurrent_node{new SERecurrentNode( |
289 | 0 | recurrent->GetParentAnalysis(), recurrent->GetLoop())}; |
290 | |
|
291 | 0 | SENode* new_coefficient = analysis_.CreateMultiplyNode( |
292 | 0 | recurrent->GetCoefficient(), |
293 | 0 | analysis_.CreateConstant(coefficient_update)); |
294 | | |
295 | | // See if the node can be simplified. |
296 | 0 | SENode* simplified = analysis_.SimplifyExpression(new_coefficient); |
297 | 0 | if (simplified->GetType() != SENode::CanNotCompute) |
298 | 0 | new_coefficient = simplified; |
299 | |
|
300 | 0 | if (coefficient_update < 0) { |
301 | 0 | new_recurrent_node->AddOffset( |
302 | 0 | analysis_.CreateNegation(recurrent->GetOffset())); |
303 | 0 | } else { |
304 | 0 | new_recurrent_node->AddOffset(recurrent->GetOffset()); |
305 | 0 | } |
306 | |
|
307 | 0 | new_recurrent_node->AddCoefficient(new_coefficient); |
308 | |
|
309 | 0 | return analysis_.GetCachedOrAdd(std::move(new_recurrent_node)) |
310 | 0 | ->AsSERecurrentNode(); |
311 | 0 | } |
312 | | |
313 | | // Simplify all the terms in the polynomial function. |
314 | 0 | SENode* SENodeSimplifyImpl::SimplifyPolynomial() { |
315 | 0 | std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; |
316 | | |
317 | | // Traverse the graph and gather the accumulators from it. |
318 | 0 | GatherAccumulatorsFromChildNodes(new_add.get(), node_, false); |
319 | | |
320 | | // Fold all the constants into a single constant node. |
321 | 0 | if (constant_accumulator_ != 0) { |
322 | 0 | new_add->AddChild(analysis_.CreateConstant(constant_accumulator_)); |
323 | 0 | } |
324 | |
|
325 | 0 | for (auto& pair : accumulators_) { |
326 | 0 | SENode* term = pair.first; |
327 | 0 | int64_t count = pair.second; |
328 | | |
329 | | // We can eliminate the term completely. |
330 | 0 | if (count == 0) continue; |
331 | | |
332 | 0 | if (count == 1) { |
333 | 0 | new_add->AddChild(term); |
334 | 0 | } else if (count == -1 && term->GetType() != SENode::RecurrentAddExpr) { |
335 | | // If the count is -1 we can just add a negative version of that node, |
336 | | // unless it is a recurrent expression as we would rather the negative |
337 | | // goes on the recurrent expressions children. This makes it easier to |
338 | | // work with in other places. |
339 | 0 | new_add->AddChild(analysis_.CreateNegation(term)); |
340 | 0 | } else { |
341 | | // Output value unknown terms as count*term and output recurrent |
342 | | // expression terms as rec(offset, coefficient + count) offset and |
343 | | // coefficient are the same as in the original expression. |
344 | 0 | if (term->GetType() == SENode::ValueUnknown) { |
345 | 0 | SENode* count_as_constant = analysis_.CreateConstant(count); |
346 | 0 | new_add->AddChild( |
347 | 0 | analysis_.CreateMultiplyNode(count_as_constant, term)); |
348 | 0 | } else { |
349 | 0 | assert(term->GetType() == SENode::RecurrentAddExpr && |
350 | 0 | "We only handle value unknowns or recurrent expressions"); |
351 | | |
352 | | // Create a new recurrent expression by adding the count to the |
353 | | // coefficient of the old one. |
354 | 0 | new_add->AddChild(UpdateCoefficient(term->AsSERecurrentNode(), count)); |
355 | 0 | } |
356 | 0 | } |
357 | 0 | } |
358 | | |
359 | | // If there is only one term in the addition left just return that term. |
360 | 0 | if (new_add->GetChildren().size() == 1) { |
361 | 0 | return new_add->GetChild(0); |
362 | 0 | } |
363 | | |
364 | | // If there are no terms left in the addition just return 0. |
365 | 0 | if (new_add->GetChildren().size() == 0) { |
366 | 0 | return analysis_.CreateConstant(0); |
367 | 0 | } |
368 | | |
369 | 0 | return analysis_.GetCachedOrAdd(std::move(new_add)); |
370 | 0 | } |
371 | | |
372 | 0 | SENode* SENodeSimplifyImpl::FoldRecurrentAddExpressions(SENode* root) { |
373 | 0 | std::unique_ptr<SEAddNode> new_node{new SEAddNode(&analysis_)}; |
374 | | |
375 | | // A mapping of loops to the list of recurrent expressions which are with |
376 | | // respect to those loops. |
377 | 0 | std::map<const Loop*, std::vector<std::pair<SERecurrentNode*, bool>>> |
378 | 0 | loops_to_recurrent{}; |
379 | |
|
380 | 0 | bool has_multiple_same_loop_recurrent_terms = false; |
381 | |
|
382 | 0 | for (SENode* child : *root) { |
383 | 0 | bool negation = false; |
384 | |
|
385 | 0 | if (child->GetType() == SENode::Negative) { |
386 | 0 | child = child->GetChild(0); |
387 | 0 | negation = true; |
388 | 0 | } |
389 | |
|
390 | 0 | if (child->GetType() == SENode::RecurrentAddExpr) { |
391 | 0 | const Loop* loop = child->AsSERecurrentNode()->GetLoop(); |
392 | |
|
393 | 0 | SERecurrentNode* rec = child->AsSERecurrentNode(); |
394 | 0 | if (loops_to_recurrent.find(loop) == loops_to_recurrent.end()) { |
395 | 0 | loops_to_recurrent[loop] = {std::make_pair(rec, negation)}; |
396 | 0 | } else { |
397 | 0 | loops_to_recurrent[loop].push_back(std::make_pair(rec, negation)); |
398 | 0 | has_multiple_same_loop_recurrent_terms = true; |
399 | 0 | } |
400 | 0 | } else { |
401 | 0 | new_node->AddChild(child); |
402 | 0 | } |
403 | 0 | } |
404 | |
|
405 | 0 | if (!has_multiple_same_loop_recurrent_terms) return root; |
406 | | |
407 | 0 | for (auto pair : loops_to_recurrent) { |
408 | 0 | std::vector<std::pair<SERecurrentNode*, bool>>& recurrent_expressions = |
409 | 0 | pair.second; |
410 | 0 | const Loop* loop = pair.first; |
411 | |
|
412 | 0 | std::unique_ptr<SENode> new_coefficient{new SEAddNode(&analysis_)}; |
413 | 0 | std::unique_ptr<SENode> new_offset{new SEAddNode(&analysis_)}; |
414 | |
|
415 | 0 | for (auto node_pair : recurrent_expressions) { |
416 | 0 | SERecurrentNode* node = node_pair.first; |
417 | 0 | bool negative = node_pair.second; |
418 | |
|
419 | 0 | if (!negative) { |
420 | 0 | new_coefficient->AddChild(node->GetCoefficient()); |
421 | 0 | new_offset->AddChild(node->GetOffset()); |
422 | 0 | } else { |
423 | 0 | new_coefficient->AddChild( |
424 | 0 | analysis_.CreateNegation(node->GetCoefficient())); |
425 | 0 | new_offset->AddChild(analysis_.CreateNegation(node->GetOffset())); |
426 | 0 | } |
427 | 0 | } |
428 | |
|
429 | 0 | std::unique_ptr<SERecurrentNode> new_recurrent{ |
430 | 0 | new SERecurrentNode(&analysis_, loop)}; |
431 | |
|
432 | 0 | SENode* new_coefficient_simplified = |
433 | 0 | analysis_.SimplifyExpression(new_coefficient.get()); |
434 | |
|
435 | 0 | SENode* new_offset_simplified = |
436 | 0 | analysis_.SimplifyExpression(new_offset.get()); |
437 | |
|
438 | 0 | if (new_coefficient_simplified->GetType() == SENode::Constant && |
439 | 0 | new_coefficient_simplified->AsSEConstantNode()->FoldToSingleValue() == |
440 | 0 | 0) { |
441 | 0 | return new_offset_simplified; |
442 | 0 | } |
443 | | |
444 | 0 | new_recurrent->AddCoefficient(new_coefficient_simplified); |
445 | 0 | new_recurrent->AddOffset(new_offset_simplified); |
446 | |
|
447 | 0 | new_node->AddChild(analysis_.GetCachedOrAdd(std::move(new_recurrent))); |
448 | 0 | } |
449 | | |
450 | | // If we only have one child in the add just return that. |
451 | 0 | if (new_node->GetChildren().size() == 1) { |
452 | 0 | return new_node->GetChild(0); |
453 | 0 | } |
454 | | |
455 | 0 | return analysis_.GetCachedOrAdd(std::move(new_node)); |
456 | 0 | } |
457 | | |
458 | 0 | SENode* SENodeSimplifyImpl::EliminateZeroCoefficientRecurrents(SENode* node) { |
459 | 0 | if (node->GetType() != SENode::Add) return node; |
460 | | |
461 | 0 | bool has_change = false; |
462 | |
|
463 | 0 | std::vector<SENode*> new_children{}; |
464 | 0 | for (SENode* child : *node) { |
465 | 0 | if (child->GetType() == SENode::RecurrentAddExpr) { |
466 | 0 | SENode* coefficient = child->AsSERecurrentNode()->GetCoefficient(); |
467 | | // If coefficient is zero then we can eliminate the recurrent expression |
468 | | // entirely and just return the offset as the recurrent expression is |
469 | | // representing the equation coefficient*iterations + offset. |
470 | 0 | if (coefficient->GetType() == SENode::Constant && |
471 | 0 | coefficient->AsSEConstantNode()->FoldToSingleValue() == 0) { |
472 | 0 | new_children.push_back(child->AsSERecurrentNode()->GetOffset()); |
473 | 0 | has_change = true; |
474 | 0 | } else { |
475 | 0 | new_children.push_back(child); |
476 | 0 | } |
477 | 0 | } else { |
478 | 0 | new_children.push_back(child); |
479 | 0 | } |
480 | 0 | } |
481 | |
|
482 | 0 | if (!has_change) return node; |
483 | | |
484 | 0 | std::unique_ptr<SENode> new_add{new SEAddNode(node_->GetParentAnalysis())}; |
485 | |
|
486 | 0 | for (SENode* child : new_children) { |
487 | 0 | new_add->AddChild(child); |
488 | 0 | } |
489 | |
|
490 | 0 | return analysis_.GetCachedOrAdd(std::move(new_add)); |
491 | 0 | } |
492 | | |
493 | | SENode* SENodeSimplifyImpl::SimplifyRecurrentAddExpression( |
494 | 0 | SERecurrentNode* recurrent_expr) { |
495 | 0 | const std::vector<SENode*>& children = node_->GetChildren(); |
496 | |
|
497 | 0 | std::unique_ptr<SERecurrentNode> recurrent_node{new SERecurrentNode( |
498 | 0 | recurrent_expr->GetParentAnalysis(), recurrent_expr->GetLoop())}; |
499 | | |
500 | | // Create and simplify the new offset node. |
501 | 0 | std::unique_ptr<SENode> new_offset{ |
502 | 0 | new SEAddNode(recurrent_expr->GetParentAnalysis())}; |
503 | 0 | new_offset->AddChild(recurrent_expr->GetOffset()); |
504 | |
|
505 | 0 | for (SENode* child : children) { |
506 | 0 | if (child->GetType() != SENode::RecurrentAddExpr) { |
507 | 0 | new_offset->AddChild(child); |
508 | 0 | } |
509 | 0 | } |
510 | | |
511 | | // Simplify the new offset. |
512 | 0 | SENode* simplified_child = analysis_.SimplifyExpression(new_offset.get()); |
513 | | |
514 | | // If the child can be simplified, add the simplified form otherwise, add it |
515 | | // via the usual caching mechanism. |
516 | 0 | if (simplified_child->GetType() != SENode::CanNotCompute) { |
517 | 0 | recurrent_node->AddOffset(simplified_child); |
518 | 0 | } else { |
519 | 0 | recurrent_expr->AddOffset(analysis_.GetCachedOrAdd(std::move(new_offset))); |
520 | 0 | } |
521 | |
|
522 | 0 | recurrent_node->AddCoefficient(recurrent_expr->GetCoefficient()); |
523 | |
|
524 | 0 | return analysis_.GetCachedOrAdd(std::move(recurrent_node)); |
525 | 0 | } |
526 | | |
527 | | /* |
528 | | * Scalar Analysis simplification public methods. |
529 | | */ |
530 | | |
531 | 0 | SENode* ScalarEvolutionAnalysis::SimplifyExpression(SENode* node) { |
532 | 0 | SENodeSimplifyImpl impl{this, node}; |
533 | |
|
534 | 0 | return impl.Simplify(); |
535 | 0 | } |
536 | | |
537 | | } // namespace opt |
538 | | } // namespace spvtools |