Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.11/site-packages/sqlalchemy/sql/functions.py: 56%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

527 statements  

1# sql/functions.py 

2# Copyright (C) 2005-2025 the SQLAlchemy authors and contributors 

3# <see AUTHORS file> 

4# 

5# This module is part of SQLAlchemy and is released under 

6# the MIT License: https://www.opensource.org/licenses/mit-license.php 

7 

8"""SQL function API, factories, and built-in functions.""" 

9 

10from __future__ import annotations 

11 

12import datetime 

13import decimal 

14from typing import Any 

15from typing import cast 

16from typing import Dict 

17from typing import List 

18from typing import Mapping 

19from typing import Optional 

20from typing import overload 

21from typing import Sequence 

22from typing import Tuple 

23from typing import Type 

24from typing import TYPE_CHECKING 

25from typing import TypeVar 

26from typing import Union 

27 

28from . import annotation 

29from . import coercions 

30from . import operators 

31from . import roles 

32from . import schema 

33from . import sqltypes 

34from . import type_api 

35from . import util as sqlutil 

36from ._typing import is_table_value_type 

37from .base import _entity_namespace 

38from .base import ColumnCollection 

39from .base import Executable 

40from .base import Generative 

41from .base import HasMemoized 

42from .elements import _type_from_args 

43from .elements import BinaryExpression 

44from .elements import BindParameter 

45from .elements import Cast 

46from .elements import ClauseList 

47from .elements import ColumnElement 

48from .elements import Extract 

49from .elements import FunctionFilter 

50from .elements import Grouping 

51from .elements import literal_column 

52from .elements import NamedColumn 

53from .elements import Over 

54from .elements import WithinGroup 

55from .selectable import FromClause 

56from .selectable import Select 

57from .selectable import TableValuedAlias 

58from .sqltypes import TableValueType 

59from .type_api import TypeEngine 

60from .visitors import InternalTraversal 

61from .. import util 

62 

63 

64if TYPE_CHECKING: 

65 from ._typing import _ByArgument 

66 from ._typing import _ColumnExpressionArgument 

67 from ._typing import _ColumnExpressionOrLiteralArgument 

68 from ._typing import _ColumnExpressionOrStrLabelArgument 

69 from ._typing import _StarOrOne 

70 from ._typing import _TypeEngineArgument 

71 from .base import _EntityNamespace 

72 from .elements import ClauseElement 

73 from .elements import KeyedColumnElement 

74 from .elements import TableValuedColumn 

75 from .operators import OperatorType 

76 from ..engine.base import Connection 

77 from ..engine.cursor import CursorResult 

78 from ..engine.interfaces import _CoreMultiExecuteParams 

79 from ..engine.interfaces import CoreExecuteOptionsParameter 

80 from ..util.typing import Self 

81 

82_T = TypeVar("_T", bound=Any) 

83_S = TypeVar("_S", bound=Any) 

84 

85_registry: util.defaultdict[str, Dict[str, Type[Function[Any]]]] = ( 

86 util.defaultdict(dict) 

87) 

88 

89 

90def register_function( 

91 identifier: str, fn: Type[Function[Any]], package: str = "_default" 

92) -> None: 

93 """Associate a callable with a particular func. name. 

94 

95 This is normally called by GenericFunction, but is also 

96 available by itself so that a non-Function construct 

97 can be associated with the :data:`.func` accessor (i.e. 

98 CAST, EXTRACT). 

99 

100 """ 

101 reg = _registry[package] 

102 

103 identifier = str(identifier).lower() 

104 

105 # Check if a function with the same identifier is registered. 

106 if identifier in reg: 

107 util.warn( 

108 "The GenericFunction '{}' is already registered and " 

109 "is going to be overridden.".format(identifier) 

110 ) 

111 reg[identifier] = fn 

112 

113 

114class FunctionElement(Executable, ColumnElement[_T], FromClause, Generative): 

115 """Base for SQL function-oriented constructs. 

116 

117 This is a `generic type <https://peps.python.org/pep-0484/#generics>`_, 

118 meaning that type checkers and IDEs can be instructed on the types to 

119 expect in a :class:`_engine.Result` for this function. See 

120 :class:`.GenericFunction` for an example of how this is done. 

121 

122 .. seealso:: 

123 

124 :ref:`tutorial_functions` - in the :ref:`unified_tutorial` 

125 

126 :class:`.Function` - named SQL function. 

127 

128 :data:`.func` - namespace which produces registered or ad-hoc 

129 :class:`.Function` instances. 

130 

131 :class:`.GenericFunction` - allows creation of registered function 

132 types. 

133 

134 """ 

135 

136 _traverse_internals = [ 

137 ("clause_expr", InternalTraversal.dp_clauseelement), 

138 ("_with_ordinality", InternalTraversal.dp_boolean), 

139 ("_table_value_type", InternalTraversal.dp_has_cache_key), 

140 ] 

141 

142 packagenames: Tuple[str, ...] = () 

143 

144 _has_args = False 

145 _with_ordinality = False 

146 _table_value_type: Optional[TableValueType] = None 

147 

148 # some attributes that are defined between both ColumnElement and 

149 # FromClause are set to Any here to avoid typing errors 

150 primary_key: Any 

151 _is_clone_of: Any 

152 

153 clause_expr: Grouping[Any] 

154 

155 def __init__( 

156 self, *clauses: _ColumnExpressionOrLiteralArgument[Any] 

157 ) -> None: 

158 r"""Construct a :class:`.FunctionElement`. 

159 

160 :param \*clauses: list of column expressions that form the arguments 

161 of the SQL function call. 

162 

163 :param \**kwargs: additional kwargs are typically consumed by 

164 subclasses. 

165 

166 .. seealso:: 

167 

168 :data:`.func` 

169 

170 :class:`.Function` 

171 

172 """ 

173 args: Sequence[_ColumnExpressionArgument[Any]] = [ 

174 coercions.expect( 

175 roles.ExpressionElementRole, 

176 c, 

177 name=getattr(self, "name", None), 

178 apply_propagate_attrs=self, 

179 ) 

180 for c in clauses 

181 ] 

182 self._has_args = self._has_args or bool(args) 

183 self.clause_expr = Grouping( 

184 ClauseList(operator=operators.comma_op, group_contents=True, *args) 

185 ) 

186 

187 _non_anon_label = None 

188 

189 @property 

190 def _proxy_key(self) -> Any: 

191 return super()._proxy_key or getattr(self, "name", None) 

192 

193 def _execute_on_connection( 

194 self, 

195 connection: Connection, 

196 distilled_params: _CoreMultiExecuteParams, 

197 execution_options: CoreExecuteOptionsParameter, 

198 ) -> CursorResult[Any]: 

199 return connection._execute_function( 

200 self, distilled_params, execution_options 

201 ) 

202 

203 def scalar_table_valued( 

204 self, name: str, type_: Optional[_TypeEngineArgument[_T]] = None 

205 ) -> ScalarFunctionColumn[_T]: 

206 """Return a column expression that's against this 

207 :class:`_functions.FunctionElement` as a scalar 

208 table-valued expression. 

209 

210 The returned expression is similar to that returned by a single column 

211 accessed off of a :meth:`_functions.FunctionElement.table_valued` 

212 construct, except no FROM clause is generated; the function is rendered 

213 in the similar way as a scalar subquery. 

214 

215 E.g.: 

216 

217 .. sourcecode:: pycon+sql 

218 

219 >>> from sqlalchemy import func, select 

220 >>> fn = func.jsonb_each("{'k', 'v'}").scalar_table_valued("key") 

221 >>> print(select(fn)) 

222 {printsql}SELECT (jsonb_each(:jsonb_each_1)).key 

223 

224 .. versionadded:: 1.4.0b2 

225 

226 .. seealso:: 

227 

228 :meth:`_functions.FunctionElement.table_valued` 

229 

230 :meth:`_functions.FunctionElement.alias` 

231 

232 :meth:`_functions.FunctionElement.column_valued` 

233 

234 """ # noqa: E501 

235 

236 return ScalarFunctionColumn(self, name, type_) 

237 

238 def table_valued( 

239 self, *expr: _ColumnExpressionOrStrLabelArgument[Any], **kw: Any 

240 ) -> TableValuedAlias: 

241 r"""Return a :class:`_sql.TableValuedAlias` representation of this 

242 :class:`_functions.FunctionElement` with table-valued expressions added. 

243 

244 e.g.: 

245 

246 .. sourcecode:: pycon+sql 

247 

248 >>> fn = func.generate_series(1, 5).table_valued( 

249 ... "value", "start", "stop", "step" 

250 ... ) 

251 

252 >>> print(select(fn)) 

253 {printsql}SELECT anon_1.value, anon_1.start, anon_1.stop, anon_1.step 

254 FROM generate_series(:generate_series_1, :generate_series_2) AS anon_1{stop} 

255 

256 >>> print(select(fn.c.value, fn.c.stop).where(fn.c.value > 2)) 

257 {printsql}SELECT anon_1.value, anon_1.stop 

258 FROM generate_series(:generate_series_1, :generate_series_2) AS anon_1 

259 WHERE anon_1.value > :value_1{stop} 

260 

261 A WITH ORDINALITY expression may be generated by passing the keyword 

262 argument "with_ordinality": 

263 

264 .. sourcecode:: pycon+sql 

265 

266 >>> fn = func.generate_series(4, 1, -1).table_valued( 

267 ... "gen", with_ordinality="ordinality" 

268 ... ) 

269 >>> print(select(fn)) 

270 {printsql}SELECT anon_1.gen, anon_1.ordinality 

271 FROM generate_series(:generate_series_1, :generate_series_2, :generate_series_3) WITH ORDINALITY AS anon_1 

272 

273 :param \*expr: A series of string column names that will be added to the 

274 ``.c`` collection of the resulting :class:`_sql.TableValuedAlias` 

275 construct as columns. :func:`_sql.column` objects with or without 

276 datatypes may also be used. 

277 

278 :param name: optional name to assign to the alias name that's generated. 

279 If omitted, a unique anonymizing name is used. 

280 

281 :param with_ordinality: string name that when present results in the 

282 ``WITH ORDINALITY`` clause being added to the alias, and the given 

283 string name will be added as a column to the .c collection 

284 of the resulting :class:`_sql.TableValuedAlias`. 

285 

286 :param joins_implicitly: when True, the table valued function may be 

287 used in the FROM clause without any explicit JOIN to other tables 

288 in the SQL query, and no "cartesian product" warning will be generated. 

289 May be useful for SQL functions such as ``func.json_each()``. 

290 

291 .. versionadded:: 1.4.33 

292 

293 .. versionadded:: 1.4.0b2 

294 

295 

296 .. seealso:: 

297 

298 :ref:`tutorial_functions_table_valued` - in the :ref:`unified_tutorial` 

299 

300 :ref:`postgresql_table_valued` - in the :ref:`postgresql_toplevel` documentation 

301 

302 :meth:`_functions.FunctionElement.scalar_table_valued` - variant of 

303 :meth:`_functions.FunctionElement.table_valued` which delivers the 

304 complete table valued expression as a scalar column expression 

305 

306 :meth:`_functions.FunctionElement.column_valued` 

307 

308 :meth:`_sql.TableValuedAlias.render_derived` - renders the alias 

309 using a derived column clause, e.g. ``AS name(col1, col2, ...)`` 

310 

311 """ # noqa: 501 

312 

313 new_func = self._generate() 

314 

315 with_ordinality = kw.pop("with_ordinality", None) 

316 joins_implicitly = kw.pop("joins_implicitly", None) 

317 name = kw.pop("name", None) 

318 

319 if with_ordinality: 

320 expr += (with_ordinality,) 

321 new_func._with_ordinality = True 

322 

323 new_func.type = new_func._table_value_type = TableValueType(*expr) 

324 

325 return new_func.alias(name=name, joins_implicitly=joins_implicitly) 

326 

327 def column_valued( 

328 self, name: Optional[str] = None, joins_implicitly: bool = False 

329 ) -> TableValuedColumn[_T]: 

330 """Return this :class:`_functions.FunctionElement` as a column expression that 

331 selects from itself as a FROM clause. 

332 

333 E.g.: 

334 

335 .. sourcecode:: pycon+sql 

336 

337 >>> from sqlalchemy import select, func 

338 >>> gs = func.generate_series(1, 5, -1).column_valued() 

339 >>> print(select(gs)) 

340 {printsql}SELECT anon_1 

341 FROM generate_series(:generate_series_1, :generate_series_2, :generate_series_3) AS anon_1 

342 

343 This is shorthand for:: 

344 

345 gs = func.generate_series(1, 5, -1).alias().column 

346 

347 :param name: optional name to assign to the alias name that's generated. 

348 If omitted, a unique anonymizing name is used. 

349 

350 :param joins_implicitly: when True, the "table" portion of the column 

351 valued function may be a member of the FROM clause without any 

352 explicit JOIN to other tables in the SQL query, and no "cartesian 

353 product" warning will be generated. May be useful for SQL functions 

354 such as ``func.json_array_elements()``. 

355 

356 .. versionadded:: 1.4.46 

357 

358 .. seealso:: 

359 

360 :ref:`tutorial_functions_column_valued` - in the :ref:`unified_tutorial` 

361 

362 :ref:`postgresql_column_valued` - in the :ref:`postgresql_toplevel` documentation 

363 

364 :meth:`_functions.FunctionElement.table_valued` 

365 

366 """ # noqa: 501 

367 

368 return self.alias(name=name, joins_implicitly=joins_implicitly).column 

369 

370 @util.ro_non_memoized_property 

371 def columns(self) -> ColumnCollection[str, KeyedColumnElement[Any]]: # type: ignore[override] # noqa: E501 

372 r"""The set of columns exported by this :class:`.FunctionElement`. 

373 

374 This is a placeholder collection that allows the function to be 

375 placed in the FROM clause of a statement: 

376 

377 .. sourcecode:: pycon+sql 

378 

379 >>> from sqlalchemy import column, select, func 

380 >>> stmt = select(column("x"), column("y")).select_from(func.myfunction()) 

381 >>> print(stmt) 

382 {printsql}SELECT x, y FROM myfunction() 

383 

384 The above form is a legacy feature that is now superseded by the 

385 fully capable :meth:`_functions.FunctionElement.table_valued` 

386 method; see that method for details. 

387 

388 .. seealso:: 

389 

390 :meth:`_functions.FunctionElement.table_valued` - generates table-valued 

391 SQL function expressions. 

392 

393 """ # noqa: E501 

394 return self.c 

395 

396 @util.ro_memoized_property 

397 def c(self) -> ColumnCollection[str, KeyedColumnElement[Any]]: # type: ignore[override] # noqa: E501 

398 """synonym for :attr:`.FunctionElement.columns`.""" 

399 

400 return ColumnCollection( 

401 columns=[(col.key, col) for col in self._all_selected_columns] 

402 ) 

403 

404 @property 

405 def _all_selected_columns(self) -> Sequence[KeyedColumnElement[Any]]: 

406 if is_table_value_type(self.type): 

407 # TODO: this might not be fully accurate 

408 cols = cast( 

409 "Sequence[KeyedColumnElement[Any]]", self.type._elements 

410 ) 

411 else: 

412 cols = [self.label(None)] 

413 

414 return cols 

415 

416 @property 

417 def exported_columns( # type: ignore[override] 

418 self, 

419 ) -> ColumnCollection[str, KeyedColumnElement[Any]]: 

420 return self.columns 

421 

422 @HasMemoized.memoized_attribute 

423 def clauses(self) -> ClauseList: 

424 """Return the underlying :class:`.ClauseList` which contains 

425 the arguments for this :class:`.FunctionElement`. 

426 

427 """ 

428 return cast(ClauseList, self.clause_expr.element) 

429 

430 def over( 

431 self, 

432 *, 

433 partition_by: Optional[_ByArgument] = None, 

434 order_by: Optional[_ByArgument] = None, 

435 rows: Optional[Tuple[Optional[int], Optional[int]]] = None, 

436 range_: Optional[Tuple[Optional[int], Optional[int]]] = None, 

437 groups: Optional[Tuple[Optional[int], Optional[int]]] = None, 

438 ) -> Over[_T]: 

439 """Produce an OVER clause against this function. 

440 

441 Used against aggregate or so-called "window" functions, 

442 for database backends that support window functions. 

443 

444 The expression:: 

445 

446 func.row_number().over(order_by="x") 

447 

448 is shorthand for:: 

449 

450 from sqlalchemy import over 

451 

452 over(func.row_number(), order_by="x") 

453 

454 See :func:`_expression.over` for a full description. 

455 

456 .. seealso:: 

457 

458 :func:`_expression.over` 

459 

460 :ref:`tutorial_window_functions` - in the :ref:`unified_tutorial` 

461 

462 """ 

463 return Over( 

464 self, 

465 partition_by=partition_by, 

466 order_by=order_by, 

467 rows=rows, 

468 range_=range_, 

469 groups=groups, 

470 ) 

471 

472 def within_group( 

473 self, *order_by: _ColumnExpressionArgument[Any] 

474 ) -> WithinGroup[_T]: 

475 """Produce a WITHIN GROUP (ORDER BY expr) clause against this function. 

476 

477 Used against so-called "ordered set aggregate" and "hypothetical 

478 set aggregate" functions, including :class:`.percentile_cont`, 

479 :class:`.rank`, :class:`.dense_rank`, etc. 

480 

481 See :func:`_expression.within_group` for a full description. 

482 

483 .. seealso:: 

484 

485 :ref:`tutorial_functions_within_group` - 

486 in the :ref:`unified_tutorial` 

487 

488 

489 """ 

490 return WithinGroup(self, *order_by) 

491 

492 @overload 

493 def filter(self) -> Self: ... 

494 

495 @overload 

496 def filter( 

497 self, 

498 __criterion0: _ColumnExpressionArgument[bool], 

499 *criterion: _ColumnExpressionArgument[bool], 

500 ) -> FunctionFilter[_T]: ... 

501 

502 def filter( 

503 self, *criterion: _ColumnExpressionArgument[bool] 

504 ) -> Union[Self, FunctionFilter[_T]]: 

505 """Produce a FILTER clause against this function. 

506 

507 Used against aggregate and window functions, 

508 for database backends that support the "FILTER" clause. 

509 

510 The expression:: 

511 

512 func.count(1).filter(True) 

513 

514 is shorthand for:: 

515 

516 from sqlalchemy import funcfilter 

517 

518 funcfilter(func.count(1), True) 

519 

520 .. seealso:: 

521 

522 :ref:`tutorial_functions_within_group` - 

523 in the :ref:`unified_tutorial` 

524 

525 :class:`.FunctionFilter` 

526 

527 :func:`.funcfilter` 

528 

529 

530 """ 

531 if not criterion: 

532 return self 

533 return FunctionFilter(self, *criterion) 

534 

535 def as_comparison( 

536 self, left_index: int, right_index: int 

537 ) -> FunctionAsBinary: 

538 """Interpret this expression as a boolean comparison between two 

539 values. 

540 

541 This method is used for an ORM use case described at 

542 :ref:`relationship_custom_operator_sql_function`. 

543 

544 A hypothetical SQL function "is_equal()" which compares to values 

545 for equality would be written in the Core expression language as:: 

546 

547 expr = func.is_equal("a", "b") 

548 

549 If "is_equal()" above is comparing "a" and "b" for equality, the 

550 :meth:`.FunctionElement.as_comparison` method would be invoked as:: 

551 

552 expr = func.is_equal("a", "b").as_comparison(1, 2) 

553 

554 Where above, the integer value "1" refers to the first argument of the 

555 "is_equal()" function and the integer value "2" refers to the second. 

556 

557 This would create a :class:`.BinaryExpression` that is equivalent to:: 

558 

559 BinaryExpression("a", "b", operator=op.eq) 

560 

561 However, at the SQL level it would still render as 

562 "is_equal('a', 'b')". 

563 

564 The ORM, when it loads a related object or collection, needs to be able 

565 to manipulate the "left" and "right" sides of the ON clause of a JOIN 

566 expression. The purpose of this method is to provide a SQL function 

567 construct that can also supply this information to the ORM, when used 

568 with the :paramref:`_orm.relationship.primaryjoin` parameter. The 

569 return value is a containment object called :class:`.FunctionAsBinary`. 

570 

571 An ORM example is as follows:: 

572 

573 class Venue(Base): 

574 __tablename__ = "venue" 

575 id = Column(Integer, primary_key=True) 

576 name = Column(String) 

577 

578 descendants = relationship( 

579 "Venue", 

580 primaryjoin=func.instr( 

581 remote(foreign(name)), name + "/" 

582 ).as_comparison(1, 2) 

583 == 1, 

584 viewonly=True, 

585 order_by=name, 

586 ) 

587 

588 Above, the "Venue" class can load descendant "Venue" objects by 

589 determining if the name of the parent Venue is contained within the 

590 start of the hypothetical descendant value's name, e.g. "parent1" would 

591 match up to "parent1/child1", but not to "parent2/child1". 

592 

593 Possible use cases include the "materialized path" example given above, 

594 as well as making use of special SQL functions such as geometric 

595 functions to create join conditions. 

596 

597 :param left_index: the integer 1-based index of the function argument 

598 that serves as the "left" side of the expression. 

599 :param right_index: the integer 1-based index of the function argument 

600 that serves as the "right" side of the expression. 

601 

602 .. versionadded:: 1.3 

603 

604 .. seealso:: 

605 

606 :ref:`relationship_custom_operator_sql_function` - 

607 example use within the ORM 

608 

609 """ 

610 return FunctionAsBinary(self, left_index, right_index) 

611 

612 @property 

613 def _from_objects(self) -> Any: 

614 return self.clauses._from_objects 

615 

616 def within_group_type( 

617 self, within_group: WithinGroup[_S] 

618 ) -> Optional[TypeEngine[_S]]: 

619 """For types that define their return type as based on the criteria 

620 within a WITHIN GROUP (ORDER BY) expression, called by the 

621 :class:`.WithinGroup` construct. 

622 

623 Returns None by default, in which case the function's normal ``.type`` 

624 is used. 

625 

626 """ 

627 

628 return None 

629 

630 def alias( 

631 self, name: Optional[str] = None, joins_implicitly: bool = False 

632 ) -> TableValuedAlias: 

633 r"""Produce a :class:`_expression.Alias` construct against this 

634 :class:`.FunctionElement`. 

635 

636 .. tip:: 

637 

638 The :meth:`_functions.FunctionElement.alias` method is part of the 

639 mechanism by which "table valued" SQL functions are created. 

640 However, most use cases are covered by higher level methods on 

641 :class:`_functions.FunctionElement` including 

642 :meth:`_functions.FunctionElement.table_valued`, and 

643 :meth:`_functions.FunctionElement.column_valued`. 

644 

645 This construct wraps the function in a named alias which 

646 is suitable for the FROM clause, in the style accepted for example 

647 by PostgreSQL. A column expression is also provided using the 

648 special ``.column`` attribute, which may 

649 be used to refer to the output of the function as a scalar value 

650 in the columns or where clause, for a backend such as PostgreSQL. 

651 

652 For a full table-valued expression, use the 

653 :meth:`_functions.FunctionElement.table_valued` method first to 

654 establish named columns. 

655 

656 e.g.: 

657 

658 .. sourcecode:: pycon+sql 

659 

660 >>> from sqlalchemy import func, select, column 

661 >>> data_view = func.unnest([1, 2, 3]).alias("data_view") 

662 >>> print(select(data_view.column)) 

663 {printsql}SELECT data_view 

664 FROM unnest(:unnest_1) AS data_view 

665 

666 The :meth:`_functions.FunctionElement.column_valued` method provides 

667 a shortcut for the above pattern: 

668 

669 .. sourcecode:: pycon+sql 

670 

671 >>> data_view = func.unnest([1, 2, 3]).column_valued("data_view") 

672 >>> print(select(data_view)) 

673 {printsql}SELECT data_view 

674 FROM unnest(:unnest_1) AS data_view 

675 

676 .. versionadded:: 1.4.0b2 Added the ``.column`` accessor 

677 

678 :param name: alias name, will be rendered as ``AS <name>`` in the 

679 FROM clause 

680 

681 :param joins_implicitly: when True, the table valued function may be 

682 used in the FROM clause without any explicit JOIN to other tables 

683 in the SQL query, and no "cartesian product" warning will be 

684 generated. May be useful for SQL functions such as 

685 ``func.json_each()``. 

686 

687 .. versionadded:: 1.4.33 

688 

689 .. seealso:: 

690 

691 :ref:`tutorial_functions_table_valued` - 

692 in the :ref:`unified_tutorial` 

693 

694 :meth:`_functions.FunctionElement.table_valued` 

695 

696 :meth:`_functions.FunctionElement.scalar_table_valued` 

697 

698 :meth:`_functions.FunctionElement.column_valued` 

699 

700 

701 """ 

702 

703 return TableValuedAlias._construct( 

704 self, 

705 name=name, 

706 table_value_type=self.type, 

707 joins_implicitly=joins_implicitly, 

708 ) 

709 

710 def select(self) -> Select[Tuple[_T]]: 

711 """Produce a :func:`_expression.select` construct 

712 against this :class:`.FunctionElement`. 

713 

714 This is shorthand for:: 

715 

716 s = select(function_element) 

717 

718 """ 

719 s: Select[Any] = Select(self) 

720 if self._execution_options: 

721 s = s.execution_options(**self._execution_options) 

722 return s 

723 

724 def _bind_param( 

725 self, 

726 operator: OperatorType, 

727 obj: Any, 

728 type_: Optional[TypeEngine[_T]] = None, 

729 expanding: bool = False, 

730 **kw: Any, 

731 ) -> BindParameter[_T]: 

732 return BindParameter( 

733 None, 

734 obj, 

735 _compared_to_operator=operator, 

736 _compared_to_type=self.type, 

737 unique=True, 

738 type_=type_, 

739 expanding=expanding, 

740 **kw, 

741 ) 

742 

743 def self_group(self, against: Optional[OperatorType] = None) -> ClauseElement: # type: ignore[override] # noqa E501 

744 # for the moment, we are parenthesizing all array-returning 

745 # expressions against getitem. This may need to be made 

746 # more portable if in the future we support other DBs 

747 # besides postgresql. 

748 if against in (operators.getitem, operators.json_getitem_op): 

749 return Grouping(self) 

750 else: 

751 return super().self_group(against=against) 

752 

753 @property 

754 def entity_namespace(self) -> _EntityNamespace: 

755 """overrides FromClause.entity_namespace as functions are generally 

756 column expressions and not FromClauses. 

757 

758 """ 

759 # ideally functions would not be fromclauses but we failed to make 

760 # this adjustment in 1.4 

761 return _entity_namespace(self.clause_expr) 

762 

763 

764class FunctionAsBinary(BinaryExpression[Any]): 

765 _traverse_internals = [ 

766 ("sql_function", InternalTraversal.dp_clauseelement), 

767 ("left_index", InternalTraversal.dp_plain_obj), 

768 ("right_index", InternalTraversal.dp_plain_obj), 

769 ("modifiers", InternalTraversal.dp_plain_dict), 

770 ] 

771 

772 sql_function: FunctionElement[Any] 

773 left_index: int 

774 right_index: int 

775 

776 def _gen_cache_key(self, anon_map: Any, bindparams: Any) -> Any: 

777 return ColumnElement._gen_cache_key(self, anon_map, bindparams) 

778 

779 def __init__( 

780 self, fn: FunctionElement[Any], left_index: int, right_index: int 

781 ) -> None: 

782 self.sql_function = fn 

783 self.left_index = left_index 

784 self.right_index = right_index 

785 

786 self.operator = operators.function_as_comparison_op 

787 self.type = sqltypes.BOOLEANTYPE 

788 self.negate = None 

789 self._is_implicitly_boolean = True 

790 self.modifiers = util.immutabledict({}) 

791 

792 @property 

793 def left_expr(self) -> ColumnElement[Any]: 

794 return self.sql_function.clauses.clauses[self.left_index - 1] 

795 

796 @left_expr.setter 

797 def left_expr(self, value: ColumnElement[Any]) -> None: 

798 self.sql_function.clauses.clauses[self.left_index - 1] = value 

799 

800 @property 

801 def right_expr(self) -> ColumnElement[Any]: 

802 return self.sql_function.clauses.clauses[self.right_index - 1] 

803 

804 @right_expr.setter 

805 def right_expr(self, value: ColumnElement[Any]) -> None: 

806 self.sql_function.clauses.clauses[self.right_index - 1] = value 

807 

808 if not TYPE_CHECKING: 

809 # mypy can't accommodate @property to replace an instance 

810 # variable 

811 

812 left = left_expr 

813 right = right_expr 

814 

815 

816class ScalarFunctionColumn(NamedColumn[_T]): 

817 __visit_name__ = "scalar_function_column" 

818 

819 _traverse_internals = [ 

820 ("name", InternalTraversal.dp_anon_name), 

821 ("type", InternalTraversal.dp_type), 

822 ("fn", InternalTraversal.dp_clauseelement), 

823 ] 

824 

825 is_literal = False 

826 table = None 

827 

828 def __init__( 

829 self, 

830 fn: FunctionElement[_T], 

831 name: str, 

832 type_: Optional[_TypeEngineArgument[_T]] = None, 

833 ) -> None: 

834 self.fn = fn 

835 self.name = name 

836 

837 # if type is None, we get NULLTYPE, which is our _T. But I don't 

838 # know how to get the overloads to express that correctly 

839 self.type = type_api.to_instance(type_) # type: ignore 

840 

841 

842class _FunctionGenerator: 

843 """Generate SQL function expressions. 

844 

845 :data:`.func` is a special object instance which generates SQL 

846 functions based on name-based attributes, e.g.: 

847 

848 .. sourcecode:: pycon+sql 

849 

850 >>> print(func.count(1)) 

851 {printsql}count(:param_1) 

852 

853 The returned object is an instance of :class:`.Function`, and is a 

854 column-oriented SQL element like any other, and is used in that way: 

855 

856 .. sourcecode:: pycon+sql 

857 

858 >>> print(select(func.count(table.c.id))) 

859 {printsql}SELECT count(sometable.id) FROM sometable 

860 

861 Any name can be given to :data:`.func`. If the function name is unknown to 

862 SQLAlchemy, it will be rendered exactly as is. For common SQL functions 

863 which SQLAlchemy is aware of, the name may be interpreted as a *generic 

864 function* which will be compiled appropriately to the target database: 

865 

866 .. sourcecode:: pycon+sql 

867 

868 >>> print(func.current_timestamp()) 

869 {printsql}CURRENT_TIMESTAMP 

870 

871 To call functions which are present in dot-separated packages, 

872 specify them in the same manner: 

873 

874 .. sourcecode:: pycon+sql 

875 

876 >>> print(func.stats.yield_curve(5, 10)) 

877 {printsql}stats.yield_curve(:yield_curve_1, :yield_curve_2) 

878 

879 SQLAlchemy can be made aware of the return type of functions to enable 

880 type-specific lexical and result-based behavior. For example, to ensure 

881 that a string-based function returns a Unicode value and is similarly 

882 treated as a string in expressions, specify 

883 :class:`~sqlalchemy.types.Unicode` as the type: 

884 

885 .. sourcecode:: pycon+sql 

886 

887 >>> print( 

888 ... func.my_string("hi", type_=Unicode) 

889 ... + " " 

890 ... + func.my_string("there", type_=Unicode) 

891 ... ) 

892 {printsql}my_string(:my_string_1) || :my_string_2 || my_string(:my_string_3) 

893 

894 The object returned by a :data:`.func` call is usually an instance of 

895 :class:`.Function`. 

896 This object meets the "column" interface, including comparison and labeling 

897 functions. The object can also be passed the :meth:`~.Connectable.execute` 

898 method of a :class:`_engine.Connection` or :class:`_engine.Engine`, 

899 where it will be 

900 wrapped inside of a SELECT statement first:: 

901 

902 print(connection.execute(func.current_timestamp()).scalar()) 

903 

904 In a few exception cases, the :data:`.func` accessor 

905 will redirect a name to a built-in expression such as :func:`.cast` 

906 or :func:`.extract`, as these names have well-known meaning 

907 but are not exactly the same as "functions" from a SQLAlchemy 

908 perspective. 

909 

910 Functions which are interpreted as "generic" functions know how to 

911 calculate their return type automatically. For a listing of known generic 

912 functions, see :ref:`generic_functions`. 

913 

914 .. note:: 

915 

916 The :data:`.func` construct has only limited support for calling 

917 standalone "stored procedures", especially those with special 

918 parameterization concerns. 

919 

920 See the section :ref:`stored_procedures` for details on how to use 

921 the DBAPI-level ``callproc()`` method for fully traditional stored 

922 procedures. 

923 

924 .. seealso:: 

925 

926 :ref:`tutorial_functions` - in the :ref:`unified_tutorial` 

927 

928 :class:`.Function` 

929 

930 """ # noqa 

931 

932 def __init__(self, **opts: Any) -> None: 

933 self.__names: List[str] = [] 

934 self.opts = opts 

935 

936 def __getattr__(self, name: str) -> _FunctionGenerator: 

937 # passthru __ attributes; fixes pydoc 

938 if name.startswith("__"): 

939 try: 

940 return self.__dict__[name] # type: ignore 

941 except KeyError: 

942 raise AttributeError(name) 

943 

944 elif name.endswith("_"): 

945 name = name[0:-1] 

946 f = _FunctionGenerator(**self.opts) 

947 f.__names = list(self.__names) + [name] 

948 return f 

949 

950 @overload 

951 def __call__( 

952 self, *c: Any, type_: _TypeEngineArgument[_T], **kwargs: Any 

953 ) -> Function[_T]: ... 

954 

955 @overload 

956 def __call__(self, *c: Any, **kwargs: Any) -> Function[Any]: ... 

957 

958 def __call__(self, *c: Any, **kwargs: Any) -> Function[Any]: 

959 o = self.opts.copy() 

960 o.update(kwargs) 

961 

962 tokens = len(self.__names) 

963 

964 if tokens == 2: 

965 package, fname = self.__names 

966 elif tokens == 1: 

967 package, fname = "_default", self.__names[0] 

968 else: 

969 package = None 

970 

971 if package is not None: 

972 func = _registry[package].get(fname.lower()) 

973 if func is not None: 

974 return func(*c, **o) 

975 

976 return Function( 

977 self.__names[-1], packagenames=tuple(self.__names[0:-1]), *c, **o 

978 ) 

979 

980 if TYPE_CHECKING: 

981 # START GENERATED FUNCTION ACCESSORS 

982 

983 # code within this block is **programmatically, 

984 # statically generated** by tools/generate_sql_functions.py 

985 

986 @property 

987 def aggregate_strings(self) -> Type[aggregate_strings]: ... 

988 

989 @property 

990 def ansifunction(self) -> Type[AnsiFunction[Any]]: ... 

991 

992 # set ColumnElement[_T] as a separate overload, to appease 

993 # mypy which seems to not want to accept _T from 

994 # _ColumnExpressionArgument. Seems somewhat related to the covariant 

995 # _HasClauseElement as of mypy 1.15 

996 

997 @overload 

998 def array_agg( 

999 self, 

1000 col: ColumnElement[_T], 

1001 *args: _ColumnExpressionOrLiteralArgument[Any], 

1002 **kwargs: Any, 

1003 ) -> array_agg[_T]: ... 

1004 

1005 @overload 

1006 def array_agg( 

1007 self, 

1008 col: _ColumnExpressionArgument[_T], 

1009 *args: _ColumnExpressionOrLiteralArgument[Any], 

1010 **kwargs: Any, 

1011 ) -> array_agg[_T]: ... 

1012 

1013 @overload 

1014 def array_agg( 

1015 self, 

1016 col: _T, 

1017 *args: _ColumnExpressionOrLiteralArgument[Any], 

1018 **kwargs: Any, 

1019 ) -> array_agg[_T]: ... 

1020 

1021 def array_agg( 

1022 self, 

1023 col: _ColumnExpressionOrLiteralArgument[_T], 

1024 *args: _ColumnExpressionOrLiteralArgument[Any], 

1025 **kwargs: Any, 

1026 ) -> array_agg[_T]: ... 

1027 

1028 @property 

1029 def cast(self) -> Type[Cast[Any]]: ... 

1030 

1031 @property 

1032 def char_length(self) -> Type[char_length]: ... 

1033 

1034 # set ColumnElement[_T] as a separate overload, to appease 

1035 # mypy which seems to not want to accept _T from 

1036 # _ColumnExpressionArgument. Seems somewhat related to the covariant 

1037 # _HasClauseElement as of mypy 1.15 

1038 

1039 @overload 

1040 def coalesce( 

1041 self, 

1042 col: ColumnElement[_T], 

1043 *args: _ColumnExpressionOrLiteralArgument[Any], 

1044 **kwargs: Any, 

1045 ) -> coalesce[_T]: ... 

1046 

1047 @overload 

1048 def coalesce( 

1049 self, 

1050 col: _ColumnExpressionArgument[_T], 

1051 *args: _ColumnExpressionOrLiteralArgument[Any], 

1052 **kwargs: Any, 

1053 ) -> coalesce[_T]: ... 

1054 

1055 @overload 

1056 def coalesce( 

1057 self, 

1058 col: _T, 

1059 *args: _ColumnExpressionOrLiteralArgument[Any], 

1060 **kwargs: Any, 

1061 ) -> coalesce[_T]: ... 

1062 

1063 def coalesce( 

1064 self, 

1065 col: _ColumnExpressionOrLiteralArgument[_T], 

1066 *args: _ColumnExpressionOrLiteralArgument[Any], 

1067 **kwargs: Any, 

1068 ) -> coalesce[_T]: ... 

1069 

1070 @property 

1071 def concat(self) -> Type[concat]: ... 

1072 

1073 @property 

1074 def count(self) -> Type[count]: ... 

1075 

1076 @property 

1077 def cube(self) -> Type[cube[Any]]: ... 

1078 

1079 @property 

1080 def cume_dist(self) -> Type[cume_dist]: ... 

1081 

1082 @property 

1083 def current_date(self) -> Type[current_date]: ... 

1084 

1085 @property 

1086 def current_time(self) -> Type[current_time]: ... 

1087 

1088 @property 

1089 def current_timestamp(self) -> Type[current_timestamp]: ... 

1090 

1091 @property 

1092 def current_user(self) -> Type[current_user]: ... 

1093 

1094 @property 

1095 def dense_rank(self) -> Type[dense_rank]: ... 

1096 

1097 @property 

1098 def extract(self) -> Type[Extract]: ... 

1099 

1100 @property 

1101 def grouping_sets(self) -> Type[grouping_sets[Any]]: ... 

1102 

1103 @property 

1104 def localtime(self) -> Type[localtime]: ... 

1105 

1106 @property 

1107 def localtimestamp(self) -> Type[localtimestamp]: ... 

1108 

1109 # set ColumnElement[_T] as a separate overload, to appease 

1110 # mypy which seems to not want to accept _T from 

1111 # _ColumnExpressionArgument. Seems somewhat related to the covariant 

1112 # _HasClauseElement as of mypy 1.15 

1113 

1114 @overload 

1115 def max( # noqa: A001 

1116 self, 

1117 col: ColumnElement[_T], 

1118 *args: _ColumnExpressionOrLiteralArgument[Any], 

1119 **kwargs: Any, 

1120 ) -> max[_T]: ... 

1121 

1122 @overload 

1123 def max( # noqa: A001 

1124 self, 

1125 col: _ColumnExpressionArgument[_T], 

1126 *args: _ColumnExpressionOrLiteralArgument[Any], 

1127 **kwargs: Any, 

1128 ) -> max[_T]: ... 

1129 

1130 @overload 

1131 def max( # noqa: A001 

1132 self, 

1133 col: _T, 

1134 *args: _ColumnExpressionOrLiteralArgument[Any], 

1135 **kwargs: Any, 

1136 ) -> max[_T]: ... 

1137 

1138 def max( # noqa: A001 

1139 self, 

1140 col: _ColumnExpressionOrLiteralArgument[_T], 

1141 *args: _ColumnExpressionOrLiteralArgument[Any], 

1142 **kwargs: Any, 

1143 ) -> max[_T]: ... 

1144 

1145 # set ColumnElement[_T] as a separate overload, to appease 

1146 # mypy which seems to not want to accept _T from 

1147 # _ColumnExpressionArgument. Seems somewhat related to the covariant 

1148 # _HasClauseElement as of mypy 1.15 

1149 

1150 @overload 

1151 def min( # noqa: A001 

1152 self, 

1153 col: ColumnElement[_T], 

1154 *args: _ColumnExpressionOrLiteralArgument[Any], 

1155 **kwargs: Any, 

1156 ) -> min[_T]: ... 

1157 

1158 @overload 

1159 def min( # noqa: A001 

1160 self, 

1161 col: _ColumnExpressionArgument[_T], 

1162 *args: _ColumnExpressionOrLiteralArgument[Any], 

1163 **kwargs: Any, 

1164 ) -> min[_T]: ... 

1165 

1166 @overload 

1167 def min( # noqa: A001 

1168 self, 

1169 col: _T, 

1170 *args: _ColumnExpressionOrLiteralArgument[Any], 

1171 **kwargs: Any, 

1172 ) -> min[_T]: ... 

1173 

1174 def min( # noqa: A001 

1175 self, 

1176 col: _ColumnExpressionOrLiteralArgument[_T], 

1177 *args: _ColumnExpressionOrLiteralArgument[Any], 

1178 **kwargs: Any, 

1179 ) -> min[_T]: ... 

1180 

1181 @property 

1182 def mode(self) -> Type[mode[Any]]: ... 

1183 

1184 @property 

1185 def next_value(self) -> Type[next_value]: ... 

1186 

1187 @property 

1188 def now(self) -> Type[now]: ... 

1189 

1190 @property 

1191 def orderedsetagg(self) -> Type[OrderedSetAgg[Any]]: ... 

1192 

1193 @property 

1194 def percent_rank(self) -> Type[percent_rank]: ... 

1195 

1196 @property 

1197 def percentile_cont(self) -> Type[percentile_cont[Any]]: ... 

1198 

1199 @property 

1200 def percentile_disc(self) -> Type[percentile_disc[Any]]: ... 

1201 

1202 @property 

1203 def random(self) -> Type[random]: ... 

1204 

1205 @property 

1206 def rank(self) -> Type[rank]: ... 

1207 

1208 @property 

1209 def rollup(self) -> Type[rollup[Any]]: ... 

1210 

1211 @property 

1212 def session_user(self) -> Type[session_user]: ... 

1213 

1214 # set ColumnElement[_T] as a separate overload, to appease 

1215 # mypy which seems to not want to accept _T from 

1216 # _ColumnExpressionArgument. Seems somewhat related to the covariant 

1217 # _HasClauseElement as of mypy 1.15 

1218 

1219 @overload 

1220 def sum( # noqa: A001 

1221 self, 

1222 col: ColumnElement[_T], 

1223 *args: _ColumnExpressionOrLiteralArgument[Any], 

1224 **kwargs: Any, 

1225 ) -> sum[_T]: ... 

1226 

1227 @overload 

1228 def sum( # noqa: A001 

1229 self, 

1230 col: _ColumnExpressionArgument[_T], 

1231 *args: _ColumnExpressionOrLiteralArgument[Any], 

1232 **kwargs: Any, 

1233 ) -> sum[_T]: ... 

1234 

1235 @overload 

1236 def sum( # noqa: A001 

1237 self, 

1238 col: _T, 

1239 *args: _ColumnExpressionOrLiteralArgument[Any], 

1240 **kwargs: Any, 

1241 ) -> sum[_T]: ... 

1242 

1243 def sum( # noqa: A001 

1244 self, 

1245 col: _ColumnExpressionOrLiteralArgument[_T], 

1246 *args: _ColumnExpressionOrLiteralArgument[Any], 

1247 **kwargs: Any, 

1248 ) -> sum[_T]: ... 

1249 

1250 @property 

1251 def sysdate(self) -> Type[sysdate]: ... 

1252 

1253 @property 

1254 def user(self) -> Type[user]: ... 

1255 

1256 # END GENERATED FUNCTION ACCESSORS 

1257 

1258 

1259func = _FunctionGenerator() 

1260func.__doc__ = _FunctionGenerator.__doc__ 

1261 

1262modifier = _FunctionGenerator(group=False) 

1263 

1264 

1265class Function(FunctionElement[_T]): 

1266 r"""Describe a named SQL function. 

1267 

1268 The :class:`.Function` object is typically generated from the 

1269 :data:`.func` generation object. 

1270 

1271 

1272 :param \*clauses: list of column expressions that form the arguments 

1273 of the SQL function call. 

1274 

1275 :param type\_: optional :class:`.TypeEngine` datatype object that will be 

1276 used as the return value of the column expression generated by this 

1277 function call. 

1278 

1279 :param packagenames: a string which indicates package prefix names 

1280 to be prepended to the function name when the SQL is generated. 

1281 The :data:`.func` generator creates these when it is called using 

1282 dotted format, e.g.:: 

1283 

1284 func.mypackage.some_function(col1, col2) 

1285 

1286 .. seealso:: 

1287 

1288 :ref:`tutorial_functions` - in the :ref:`unified_tutorial` 

1289 

1290 :data:`.func` - namespace which produces registered or ad-hoc 

1291 :class:`.Function` instances. 

1292 

1293 :class:`.GenericFunction` - allows creation of registered function 

1294 types. 

1295 

1296 """ 

1297 

1298 __visit_name__ = "function" 

1299 

1300 _traverse_internals = FunctionElement._traverse_internals + [ 

1301 ("packagenames", InternalTraversal.dp_plain_obj), 

1302 ("name", InternalTraversal.dp_string), 

1303 ("type", InternalTraversal.dp_type), 

1304 ] 

1305 

1306 name: str 

1307 

1308 identifier: str 

1309 

1310 type: TypeEngine[_T] 

1311 """A :class:`_types.TypeEngine` object which refers to the SQL return 

1312 type represented by this SQL function. 

1313 

1314 This datatype may be configured when generating a 

1315 :class:`_functions.Function` object by passing the 

1316 :paramref:`_functions.Function.type_` parameter, e.g.:: 

1317 

1318 >>> select(func.lower("some VALUE", type_=String)) 

1319 

1320 The small number of built-in classes of :class:`_functions.Function` come 

1321 with a built-in datatype that's appropriate to the class of function and 

1322 its arguments. For functions that aren't known, the type defaults to the 

1323 "null type". 

1324 

1325 """ 

1326 

1327 @overload 

1328 def __init__( 

1329 self, 

1330 name: str, 

1331 *clauses: _ColumnExpressionOrLiteralArgument[_T], 

1332 type_: None = ..., 

1333 packagenames: Optional[Tuple[str, ...]] = ..., 

1334 ) -> None: ... 

1335 

1336 @overload 

1337 def __init__( 

1338 self, 

1339 name: str, 

1340 *clauses: _ColumnExpressionOrLiteralArgument[Any], 

1341 type_: _TypeEngineArgument[_T] = ..., 

1342 packagenames: Optional[Tuple[str, ...]] = ..., 

1343 ) -> None: ... 

1344 

1345 def __init__( 

1346 self, 

1347 name: str, 

1348 *clauses: _ColumnExpressionOrLiteralArgument[Any], 

1349 type_: Optional[_TypeEngineArgument[_T]] = None, 

1350 packagenames: Optional[Tuple[str, ...]] = None, 

1351 ) -> None: 

1352 """Construct a :class:`.Function`. 

1353 

1354 The :data:`.func` construct is normally used to construct 

1355 new :class:`.Function` instances. 

1356 

1357 """ 

1358 self.packagenames = packagenames or () 

1359 self.name = name 

1360 

1361 # if type is None, we get NULLTYPE, which is our _T. But I don't 

1362 # know how to get the overloads to express that correctly 

1363 self.type = type_api.to_instance(type_) # type: ignore 

1364 

1365 FunctionElement.__init__(self, *clauses) 

1366 

1367 def _bind_param( 

1368 self, 

1369 operator: OperatorType, 

1370 obj: Any, 

1371 type_: Optional[TypeEngine[_T]] = None, 

1372 expanding: bool = False, 

1373 **kw: Any, 

1374 ) -> BindParameter[_T]: 

1375 return BindParameter( 

1376 self.name, 

1377 obj, 

1378 _compared_to_operator=operator, 

1379 _compared_to_type=self.type, 

1380 type_=type_, 

1381 unique=True, 

1382 expanding=expanding, 

1383 **kw, 

1384 ) 

1385 

1386 

1387class GenericFunction(Function[_T]): 

1388 """Define a 'generic' function. 

1389 

1390 A generic function is a pre-established :class:`.Function` 

1391 class that is instantiated automatically when called 

1392 by name from the :data:`.func` attribute. Note that 

1393 calling any name from :data:`.func` has the effect that 

1394 a new :class:`.Function` instance is created automatically, 

1395 given that name. The primary use case for defining 

1396 a :class:`.GenericFunction` class is so that a function 

1397 of a particular name may be given a fixed return type. 

1398 It can also include custom argument parsing schemes as well 

1399 as additional methods. 

1400 

1401 Subclasses of :class:`.GenericFunction` are automatically 

1402 registered under the name of the class. For 

1403 example, a user-defined function ``as_utc()`` would 

1404 be available immediately:: 

1405 

1406 from sqlalchemy.sql.functions import GenericFunction 

1407 from sqlalchemy.types import DateTime 

1408 

1409 

1410 class as_utc(GenericFunction): 

1411 type = DateTime() 

1412 inherit_cache = True 

1413 

1414 

1415 print(select(func.as_utc())) 

1416 

1417 User-defined generic functions can be organized into 

1418 packages by specifying the "package" attribute when defining 

1419 :class:`.GenericFunction`. Third party libraries 

1420 containing many functions may want to use this in order 

1421 to avoid name conflicts with other systems. For example, 

1422 if our ``as_utc()`` function were part of a package 

1423 "time":: 

1424 

1425 class as_utc(GenericFunction): 

1426 type = DateTime() 

1427 package = "time" 

1428 inherit_cache = True 

1429 

1430 The above function would be available from :data:`.func` 

1431 using the package name ``time``:: 

1432 

1433 print(select(func.time.as_utc())) 

1434 

1435 A final option is to allow the function to be accessed 

1436 from one name in :data:`.func` but to render as a different name. 

1437 The ``identifier`` attribute will override the name used to 

1438 access the function as loaded from :data:`.func`, but will retain 

1439 the usage of ``name`` as the rendered name:: 

1440 

1441 class GeoBuffer(GenericFunction): 

1442 type = Geometry() 

1443 package = "geo" 

1444 name = "ST_Buffer" 

1445 identifier = "buffer" 

1446 inherit_cache = True 

1447 

1448 The above function will render as follows: 

1449 

1450 .. sourcecode:: pycon+sql 

1451 

1452 >>> print(func.geo.buffer()) 

1453 {printsql}ST_Buffer() 

1454 

1455 The name will be rendered as is, however without quoting unless the name 

1456 contains special characters that require quoting. To force quoting 

1457 on or off for the name, use the :class:`.sqlalchemy.sql.quoted_name` 

1458 construct:: 

1459 

1460 from sqlalchemy.sql import quoted_name 

1461 

1462 

1463 class GeoBuffer(GenericFunction): 

1464 type = Geometry() 

1465 package = "geo" 

1466 name = quoted_name("ST_Buffer", True) 

1467 identifier = "buffer" 

1468 inherit_cache = True 

1469 

1470 The above function will render as: 

1471 

1472 .. sourcecode:: pycon+sql 

1473 

1474 >>> print(func.geo.buffer()) 

1475 {printsql}"ST_Buffer"() 

1476 

1477 Type parameters for this class as a 

1478 `generic type <https://peps.python.org/pep-0484/#generics>`_ can be passed 

1479 and should match the type seen in a :class:`_engine.Result`. For example:: 

1480 

1481 class as_utc(GenericFunction[datetime.datetime]): 

1482 type = DateTime() 

1483 inherit_cache = True 

1484 

1485 The above indicates that the following expression returns a ``datetime`` 

1486 object:: 

1487 

1488 connection.scalar(select(func.as_utc())) 

1489 

1490 .. versionadded:: 1.3.13 The :class:`.quoted_name` construct is now 

1491 recognized for quoting when used with the "name" attribute of the 

1492 object, so that quoting can be forced on or off for the function 

1493 name. 

1494 

1495 

1496 """ 

1497 

1498 coerce_arguments = True 

1499 inherit_cache = True 

1500 

1501 _register: bool 

1502 

1503 name = "GenericFunction" 

1504 

1505 def __init_subclass__(cls) -> None: 

1506 if annotation.Annotated not in cls.__mro__: 

1507 cls._register_generic_function(cls.__name__, cls.__dict__) 

1508 super().__init_subclass__() 

1509 

1510 @classmethod 

1511 def _register_generic_function( 

1512 cls, clsname: str, clsdict: Mapping[str, Any] 

1513 ) -> None: 

1514 cls.name = name = clsdict.get("name", clsname) 

1515 cls.identifier = identifier = clsdict.get("identifier", name) 

1516 package = clsdict.get("package", "_default") 

1517 # legacy 

1518 if "__return_type__" in clsdict: 

1519 cls.type = clsdict["__return_type__"] 

1520 

1521 # Check _register attribute status 

1522 cls._register = getattr(cls, "_register", True) 

1523 

1524 # Register the function if required 

1525 if cls._register: 

1526 register_function(identifier, cls, package) 

1527 else: 

1528 # Set _register to True to register child classes by default 

1529 cls._register = True 

1530 

1531 def __init__( 

1532 self, *args: _ColumnExpressionOrLiteralArgument[Any], **kwargs: Any 

1533 ) -> None: 

1534 parsed_args = kwargs.pop("_parsed_args", None) 

1535 if parsed_args is None: 

1536 parsed_args = [ 

1537 coercions.expect( 

1538 roles.ExpressionElementRole, 

1539 c, 

1540 name=self.name, 

1541 apply_propagate_attrs=self, 

1542 ) 

1543 for c in args 

1544 ] 

1545 self._has_args = self._has_args or bool(parsed_args) 

1546 self.packagenames = () 

1547 

1548 self.clause_expr = Grouping( 

1549 ClauseList( 

1550 operator=operators.comma_op, group_contents=True, *parsed_args 

1551 ) 

1552 ) 

1553 

1554 self.type = type_api.to_instance( # type: ignore 

1555 kwargs.pop("type_", None) or getattr(self, "type", None) 

1556 ) 

1557 

1558 

1559register_function("cast", Cast) # type: ignore 

1560register_function("extract", Extract) # type: ignore 

1561 

1562 

1563class next_value(GenericFunction[int]): 

1564 """Represent the 'next value', given a :class:`.Sequence` 

1565 as its single argument. 

1566 

1567 Compiles into the appropriate function on each backend, 

1568 or will raise NotImplementedError if used on a backend 

1569 that does not provide support for sequences. 

1570 

1571 """ 

1572 

1573 type = sqltypes.Integer() 

1574 name = "next_value" 

1575 

1576 _traverse_internals = [ 

1577 ("sequence", InternalTraversal.dp_named_ddl_element) 

1578 ] 

1579 

1580 def __init__(self, seq: schema.Sequence, **kw: Any) -> None: 

1581 assert isinstance( 

1582 seq, schema.Sequence 

1583 ), "next_value() accepts a Sequence object as input." 

1584 self.sequence = seq 

1585 self.type = sqltypes.to_instance( # type: ignore 

1586 seq.data_type or getattr(self, "type", None) 

1587 ) 

1588 

1589 def compare(self, other: Any, **kw: Any) -> bool: 

1590 return ( 

1591 isinstance(other, next_value) 

1592 and self.sequence.name == other.sequence.name 

1593 ) 

1594 

1595 @property 

1596 def _from_objects(self) -> Any: 

1597 return [] 

1598 

1599 

1600class AnsiFunction(GenericFunction[_T]): 

1601 """Define a function in "ansi" format, which doesn't render parenthesis.""" 

1602 

1603 inherit_cache = True 

1604 

1605 def __init__( 

1606 self, *args: _ColumnExpressionArgument[Any], **kwargs: Any 

1607 ) -> None: 

1608 GenericFunction.__init__(self, *args, **kwargs) 

1609 

1610 

1611class ReturnTypeFromArgs(GenericFunction[_T]): 

1612 """Define a function whose return type is bound to the type of its 

1613 arguments. 

1614 """ 

1615 

1616 inherit_cache = True 

1617 

1618 # set ColumnElement[_T] as a separate overload, to appease 

1619 # mypy which seems to not want to accept _T from 

1620 # _ColumnExpressionArgument. Seems somewhat related to the covariant 

1621 # _HasClauseElement as of mypy 1.15 

1622 

1623 @overload 

1624 def __init__( 

1625 self, 

1626 col: ColumnElement[_T], 

1627 *args: _ColumnExpressionOrLiteralArgument[Any], 

1628 **kwargs: Any, 

1629 ) -> None: ... 

1630 

1631 @overload 

1632 def __init__( 

1633 self, 

1634 col: _ColumnExpressionArgument[_T], 

1635 *args: _ColumnExpressionOrLiteralArgument[Any], 

1636 **kwargs: Any, 

1637 ) -> None: ... 

1638 

1639 @overload 

1640 def __init__( 

1641 self, 

1642 col: _T, 

1643 *args: _ColumnExpressionOrLiteralArgument[Any], 

1644 **kwargs: Any, 

1645 ) -> None: ... 

1646 

1647 def __init__( 

1648 self, *args: _ColumnExpressionOrLiteralArgument[_T], **kwargs: Any 

1649 ) -> None: 

1650 fn_args: Sequence[ColumnElement[Any]] = [ 

1651 coercions.expect( 

1652 roles.ExpressionElementRole, 

1653 c, 

1654 name=self.name, 

1655 apply_propagate_attrs=self, 

1656 ) 

1657 for c in args 

1658 ] 

1659 kwargs.setdefault("type_", _type_from_args(fn_args)) 

1660 kwargs["_parsed_args"] = fn_args 

1661 super().__init__(*fn_args, **kwargs) 

1662 

1663 

1664class coalesce(ReturnTypeFromArgs[_T]): 

1665 _has_args = True 

1666 inherit_cache = True 

1667 

1668 

1669class max(ReturnTypeFromArgs[_T]): # noqa: A001 

1670 """The SQL MAX() aggregate function.""" 

1671 

1672 inherit_cache = True 

1673 

1674 

1675class min(ReturnTypeFromArgs[_T]): # noqa: A001 

1676 """The SQL MIN() aggregate function.""" 

1677 

1678 inherit_cache = True 

1679 

1680 

1681class sum(ReturnTypeFromArgs[_T]): # noqa: A001 

1682 """The SQL SUM() aggregate function.""" 

1683 

1684 inherit_cache = True 

1685 

1686 

1687class now(GenericFunction[datetime.datetime]): 

1688 """The SQL now() datetime function. 

1689 

1690 SQLAlchemy dialects will usually render this particular function 

1691 in a backend-specific way, such as rendering it as ``CURRENT_TIMESTAMP``. 

1692 

1693 """ 

1694 

1695 type = sqltypes.DateTime() 

1696 inherit_cache = True 

1697 

1698 

1699class concat(GenericFunction[str]): 

1700 """The SQL CONCAT() function, which concatenates strings. 

1701 

1702 E.g.: 

1703 

1704 .. sourcecode:: pycon+sql 

1705 

1706 >>> print(select(func.concat("a", "b"))) 

1707 {printsql}SELECT concat(:concat_2, :concat_3) AS concat_1 

1708 

1709 String concatenation in SQLAlchemy is more commonly available using the 

1710 Python ``+`` operator with string datatypes, which will render a 

1711 backend-specific concatenation operator, such as : 

1712 

1713 .. sourcecode:: pycon+sql 

1714 

1715 >>> print(select(literal("a") + "b")) 

1716 {printsql}SELECT :param_1 || :param_2 AS anon_1 

1717 

1718 

1719 """ 

1720 

1721 type = sqltypes.String() 

1722 inherit_cache = True 

1723 

1724 

1725class char_length(GenericFunction[int]): 

1726 """The CHAR_LENGTH() SQL function.""" 

1727 

1728 type = sqltypes.Integer() 

1729 inherit_cache = True 

1730 

1731 def __init__(self, arg: _ColumnExpressionArgument[str], **kw: Any) -> None: 

1732 # slight hack to limit to just one positional argument 

1733 # not sure why this one function has this special treatment 

1734 super().__init__(arg, **kw) 

1735 

1736 

1737class random(GenericFunction[float]): 

1738 """The RANDOM() SQL function.""" 

1739 

1740 _has_args = True 

1741 inherit_cache = True 

1742 

1743 

1744class count(GenericFunction[int]): 

1745 r"""The ANSI COUNT aggregate function. With no arguments, 

1746 emits COUNT \*. 

1747 

1748 E.g.:: 

1749 

1750 from sqlalchemy import func 

1751 from sqlalchemy import select 

1752 from sqlalchemy import table, column 

1753 

1754 my_table = table("some_table", column("id")) 

1755 

1756 stmt = select(func.count()).select_from(my_table) 

1757 

1758 Executing ``stmt`` would emit: 

1759 

1760 .. sourcecode:: sql 

1761 

1762 SELECT count(*) AS count_1 

1763 FROM some_table 

1764 

1765 

1766 """ 

1767 

1768 type = sqltypes.Integer() 

1769 inherit_cache = True 

1770 

1771 def __init__( 

1772 self, 

1773 expression: Union[ 

1774 _ColumnExpressionArgument[Any], _StarOrOne, None 

1775 ] = None, 

1776 **kwargs: Any, 

1777 ) -> None: 

1778 if expression is None: 

1779 expression = literal_column("*") 

1780 super().__init__(expression, **kwargs) 

1781 

1782 

1783class current_date(AnsiFunction[datetime.date]): 

1784 """The CURRENT_DATE() SQL function.""" 

1785 

1786 type = sqltypes.Date() 

1787 inherit_cache = True 

1788 

1789 

1790class current_time(AnsiFunction[datetime.time]): 

1791 """The CURRENT_TIME() SQL function.""" 

1792 

1793 type = sqltypes.Time() 

1794 inherit_cache = True 

1795 

1796 

1797class current_timestamp(AnsiFunction[datetime.datetime]): 

1798 """The CURRENT_TIMESTAMP() SQL function.""" 

1799 

1800 type = sqltypes.DateTime() 

1801 inherit_cache = True 

1802 

1803 

1804class current_user(AnsiFunction[str]): 

1805 """The CURRENT_USER() SQL function.""" 

1806 

1807 type = sqltypes.String() 

1808 inherit_cache = True 

1809 

1810 

1811class localtime(AnsiFunction[datetime.datetime]): 

1812 """The localtime() SQL function.""" 

1813 

1814 type = sqltypes.DateTime() 

1815 inherit_cache = True 

1816 

1817 

1818class localtimestamp(AnsiFunction[datetime.datetime]): 

1819 """The localtimestamp() SQL function.""" 

1820 

1821 type = sqltypes.DateTime() 

1822 inherit_cache = True 

1823 

1824 

1825class session_user(AnsiFunction[str]): 

1826 """The SESSION_USER() SQL function.""" 

1827 

1828 type = sqltypes.String() 

1829 inherit_cache = True 

1830 

1831 

1832class sysdate(AnsiFunction[datetime.datetime]): 

1833 """The SYSDATE() SQL function.""" 

1834 

1835 type = sqltypes.DateTime() 

1836 inherit_cache = True 

1837 

1838 

1839class user(AnsiFunction[str]): 

1840 """The USER() SQL function.""" 

1841 

1842 type = sqltypes.String() 

1843 inherit_cache = True 

1844 

1845 

1846class array_agg(ReturnTypeFromArgs[Sequence[_T]]): 

1847 """Support for the ARRAY_AGG function. 

1848 

1849 The ``func.array_agg(expr)`` construct returns an expression of 

1850 type :class:`_types.ARRAY`. 

1851 

1852 e.g.:: 

1853 

1854 stmt = select(func.array_agg(table.c.values)[2:5]) 

1855 

1856 .. seealso:: 

1857 

1858 :func:`_postgresql.array_agg` - PostgreSQL-specific version that 

1859 returns :class:`_postgresql.ARRAY`, which has PG-specific operators 

1860 added. 

1861 

1862 """ 

1863 

1864 inherit_cache = True 

1865 

1866 def __init__( 

1867 self, *args: _ColumnExpressionArgument[Any], **kwargs: Any 

1868 ) -> None: 

1869 fn_args: Sequence[ColumnElement[Any]] = [ 

1870 coercions.expect( 

1871 roles.ExpressionElementRole, c, apply_propagate_attrs=self 

1872 ) 

1873 for c in args 

1874 ] 

1875 

1876 default_array_type = kwargs.pop("_default_array_type", sqltypes.ARRAY) 

1877 if "type_" not in kwargs: 

1878 type_from_args = _type_from_args(fn_args) 

1879 if isinstance(type_from_args, sqltypes.ARRAY): 

1880 kwargs["type_"] = type_from_args 

1881 else: 

1882 kwargs["type_"] = default_array_type( 

1883 type_from_args, dimensions=1 

1884 ) 

1885 kwargs["_parsed_args"] = fn_args 

1886 super().__init__(*fn_args, **kwargs) 

1887 

1888 

1889class OrderedSetAgg(GenericFunction[_T]): 

1890 """Define a function where the return type is based on the sort 

1891 expression type as defined by the expression passed to the 

1892 :meth:`.FunctionElement.within_group` method.""" 

1893 

1894 array_for_multi_clause = False 

1895 inherit_cache = True 

1896 

1897 def within_group_type( 

1898 self, within_group: WithinGroup[Any] 

1899 ) -> TypeEngine[Any]: 

1900 func_clauses = cast(ClauseList, self.clause_expr.element) 

1901 order_by: Sequence[ColumnElement[Any]] = sqlutil.unwrap_order_by( 

1902 within_group.order_by 

1903 ) 

1904 if self.array_for_multi_clause and len(func_clauses.clauses) > 1: 

1905 return sqltypes.ARRAY(order_by[0].type) 

1906 else: 

1907 return order_by[0].type 

1908 

1909 

1910class mode(OrderedSetAgg[_T]): 

1911 """Implement the ``mode`` ordered-set aggregate function. 

1912 

1913 This function must be used with the :meth:`.FunctionElement.within_group` 

1914 modifier to supply a sort expression to operate upon. 

1915 

1916 The return type of this function is the same as the sort expression. 

1917 

1918 """ 

1919 

1920 inherit_cache = True 

1921 

1922 

1923class percentile_cont(OrderedSetAgg[_T]): 

1924 """Implement the ``percentile_cont`` ordered-set aggregate function. 

1925 

1926 This function must be used with the :meth:`.FunctionElement.within_group` 

1927 modifier to supply a sort expression to operate upon. 

1928 

1929 The return type of this function is the same as the sort expression, 

1930 or if the arguments are an array, an :class:`_types.ARRAY` of the sort 

1931 expression's type. 

1932 

1933 """ 

1934 

1935 array_for_multi_clause = True 

1936 inherit_cache = True 

1937 

1938 

1939class percentile_disc(OrderedSetAgg[_T]): 

1940 """Implement the ``percentile_disc`` ordered-set aggregate function. 

1941 

1942 This function must be used with the :meth:`.FunctionElement.within_group` 

1943 modifier to supply a sort expression to operate upon. 

1944 

1945 The return type of this function is the same as the sort expression, 

1946 or if the arguments are an array, an :class:`_types.ARRAY` of the sort 

1947 expression's type. 

1948 

1949 """ 

1950 

1951 array_for_multi_clause = True 

1952 inherit_cache = True 

1953 

1954 

1955class rank(GenericFunction[int]): 

1956 """Implement the ``rank`` hypothetical-set aggregate function. 

1957 

1958 This function must be used with the :meth:`.FunctionElement.within_group` 

1959 modifier to supply a sort expression to operate upon. 

1960 

1961 The return type of this function is :class:`.Integer`. 

1962 

1963 """ 

1964 

1965 type = sqltypes.Integer() 

1966 inherit_cache = True 

1967 

1968 

1969class dense_rank(GenericFunction[int]): 

1970 """Implement the ``dense_rank`` hypothetical-set aggregate function. 

1971 

1972 This function must be used with the :meth:`.FunctionElement.within_group` 

1973 modifier to supply a sort expression to operate upon. 

1974 

1975 The return type of this function is :class:`.Integer`. 

1976 

1977 """ 

1978 

1979 type = sqltypes.Integer() 

1980 inherit_cache = True 

1981 

1982 

1983class percent_rank(GenericFunction[decimal.Decimal]): 

1984 """Implement the ``percent_rank`` hypothetical-set aggregate function. 

1985 

1986 This function must be used with the :meth:`.FunctionElement.within_group` 

1987 modifier to supply a sort expression to operate upon. 

1988 

1989 The return type of this function is :class:`.Numeric`. 

1990 

1991 """ 

1992 

1993 type: sqltypes.Numeric[decimal.Decimal] = sqltypes.Numeric() 

1994 inherit_cache = True 

1995 

1996 

1997class cume_dist(GenericFunction[decimal.Decimal]): 

1998 """Implement the ``cume_dist`` hypothetical-set aggregate function. 

1999 

2000 This function must be used with the :meth:`.FunctionElement.within_group` 

2001 modifier to supply a sort expression to operate upon. 

2002 

2003 The return type of this function is :class:`.Numeric`. 

2004 

2005 """ 

2006 

2007 type: sqltypes.Numeric[decimal.Decimal] = sqltypes.Numeric() 

2008 inherit_cache = True 

2009 

2010 

2011class cube(GenericFunction[_T]): 

2012 r"""Implement the ``CUBE`` grouping operation. 

2013 

2014 This function is used as part of the GROUP BY of a statement, 

2015 e.g. :meth:`_expression.Select.group_by`:: 

2016 

2017 stmt = select( 

2018 func.sum(table.c.value), table.c.col_1, table.c.col_2 

2019 ).group_by(func.cube(table.c.col_1, table.c.col_2)) 

2020 

2021 .. versionadded:: 1.2 

2022 

2023 """ 

2024 

2025 _has_args = True 

2026 inherit_cache = True 

2027 

2028 

2029class rollup(GenericFunction[_T]): 

2030 r"""Implement the ``ROLLUP`` grouping operation. 

2031 

2032 This function is used as part of the GROUP BY of a statement, 

2033 e.g. :meth:`_expression.Select.group_by`:: 

2034 

2035 stmt = select( 

2036 func.sum(table.c.value), table.c.col_1, table.c.col_2 

2037 ).group_by(func.rollup(table.c.col_1, table.c.col_2)) 

2038 

2039 .. versionadded:: 1.2 

2040 

2041 """ 

2042 

2043 _has_args = True 

2044 inherit_cache = True 

2045 

2046 

2047class grouping_sets(GenericFunction[_T]): 

2048 r"""Implement the ``GROUPING SETS`` grouping operation. 

2049 

2050 This function is used as part of the GROUP BY of a statement, 

2051 e.g. :meth:`_expression.Select.group_by`:: 

2052 

2053 stmt = select( 

2054 func.sum(table.c.value), table.c.col_1, table.c.col_2 

2055 ).group_by(func.grouping_sets(table.c.col_1, table.c.col_2)) 

2056 

2057 In order to group by multiple sets, use the :func:`.tuple_` construct:: 

2058 

2059 from sqlalchemy import tuple_ 

2060 

2061 stmt = select( 

2062 func.sum(table.c.value), table.c.col_1, table.c.col_2, table.c.col_3 

2063 ).group_by( 

2064 func.grouping_sets( 

2065 tuple_(table.c.col_1, table.c.col_2), 

2066 tuple_(table.c.value, table.c.col_3), 

2067 ) 

2068 ) 

2069 

2070 .. versionadded:: 1.2 

2071 

2072 """ # noqa: E501 

2073 

2074 _has_args = True 

2075 inherit_cache = True 

2076 

2077 

2078class aggregate_strings(GenericFunction[str]): 

2079 """Implement a generic string aggregation function. 

2080 

2081 This function will concatenate non-null values into a string and 

2082 separate the values by a delimiter. 

2083 

2084 This function is compiled on a per-backend basis, into functions 

2085 such as ``group_concat()``, ``string_agg()``, or ``LISTAGG()``. 

2086 

2087 e.g. Example usage with delimiter '.':: 

2088 

2089 stmt = select(func.aggregate_strings(table.c.str_col, ".")) 

2090 

2091 The return type of this function is :class:`.String`. 

2092 

2093 .. versionadded: 2.0.21 

2094 

2095 """ 

2096 

2097 type = sqltypes.String() 

2098 _has_args = True 

2099 inherit_cache = True 

2100 

2101 def __init__( 

2102 self, clause: _ColumnExpressionArgument[Any], separator: str 

2103 ) -> None: 

2104 super().__init__(clause, separator)