1# dialects/sqlite/base.py
2# Copyright (C) 2005-2025 the SQLAlchemy authors and contributors
3# <see AUTHORS file>
4#
5# This module is part of SQLAlchemy and is released under
6# the MIT License: https://www.opensource.org/licenses/mit-license.php
7# mypy: ignore-errors
8
9
10r'''
11.. dialect:: sqlite
12 :name: SQLite
13 :normal_support: 3.12+
14 :best_effort: 3.7.16+
15
16.. _sqlite_datetime:
17
18Date and Time Types
19-------------------
20
21SQLite does not have built-in DATE, TIME, or DATETIME types, and pysqlite does
22not provide out of the box functionality for translating values between Python
23`datetime` objects and a SQLite-supported format. SQLAlchemy's own
24:class:`~sqlalchemy.types.DateTime` and related types provide date formatting
25and parsing functionality when SQLite is used. The implementation classes are
26:class:`_sqlite.DATETIME`, :class:`_sqlite.DATE` and :class:`_sqlite.TIME`.
27These types represent dates and times as ISO formatted strings, which also
28nicely support ordering. There's no reliance on typical "libc" internals for
29these functions so historical dates are fully supported.
30
31Ensuring Text affinity
32^^^^^^^^^^^^^^^^^^^^^^
33
34The DDL rendered for these types is the standard ``DATE``, ``TIME``
35and ``DATETIME`` indicators. However, custom storage formats can also be
36applied to these types. When the
37storage format is detected as containing no alpha characters, the DDL for
38these types is rendered as ``DATE_CHAR``, ``TIME_CHAR``, and ``DATETIME_CHAR``,
39so that the column continues to have textual affinity.
40
41.. seealso::
42
43 `Type Affinity <https://www.sqlite.org/datatype3.html#affinity>`_ -
44 in the SQLite documentation
45
46.. _sqlite_autoincrement:
47
48SQLite Auto Incrementing Behavior
49----------------------------------
50
51Background on SQLite's autoincrement is at: https://sqlite.org/autoinc.html
52
53Key concepts:
54
55* SQLite has an implicit "auto increment" feature that takes place for any
56 non-composite primary-key column that is specifically created using
57 "INTEGER PRIMARY KEY" for the type + primary key.
58
59* SQLite also has an explicit "AUTOINCREMENT" keyword, that is **not**
60 equivalent to the implicit autoincrement feature; this keyword is not
61 recommended for general use. SQLAlchemy does not render this keyword
62 unless a special SQLite-specific directive is used (see below). However,
63 it still requires that the column's type is named "INTEGER".
64
65Using the AUTOINCREMENT Keyword
66^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
67
68To specifically render the AUTOINCREMENT keyword on the primary key column
69when rendering DDL, add the flag ``sqlite_autoincrement=True`` to the Table
70construct::
71
72 Table(
73 "sometable",
74 metadata,
75 Column("id", Integer, primary_key=True),
76 sqlite_autoincrement=True,
77 )
78
79Allowing autoincrement behavior SQLAlchemy types other than Integer/INTEGER
80^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
81
82SQLite's typing model is based on naming conventions. Among other things, this
83means that any type name which contains the substring ``"INT"`` will be
84determined to be of "integer affinity". A type named ``"BIGINT"``,
85``"SPECIAL_INT"`` or even ``"XYZINTQPR"``, will be considered by SQLite to be
86of "integer" affinity. However, **the SQLite autoincrement feature, whether
87implicitly or explicitly enabled, requires that the name of the column's type
88is exactly the string "INTEGER"**. Therefore, if an application uses a type
89like :class:`.BigInteger` for a primary key, on SQLite this type will need to
90be rendered as the name ``"INTEGER"`` when emitting the initial ``CREATE
91TABLE`` statement in order for the autoincrement behavior to be available.
92
93One approach to achieve this is to use :class:`.Integer` on SQLite
94only using :meth:`.TypeEngine.with_variant`::
95
96 table = Table(
97 "my_table",
98 metadata,
99 Column(
100 "id",
101 BigInteger().with_variant(Integer, "sqlite"),
102 primary_key=True,
103 ),
104 )
105
106Another is to use a subclass of :class:`.BigInteger` that overrides its DDL
107name to be ``INTEGER`` when compiled against SQLite::
108
109 from sqlalchemy import BigInteger
110 from sqlalchemy.ext.compiler import compiles
111
112
113 class SLBigInteger(BigInteger):
114 pass
115
116
117 @compiles(SLBigInteger, "sqlite")
118 def bi_c(element, compiler, **kw):
119 return "INTEGER"
120
121
122 @compiles(SLBigInteger)
123 def bi_c(element, compiler, **kw):
124 return compiler.visit_BIGINT(element, **kw)
125
126
127 table = Table(
128 "my_table", metadata, Column("id", SLBigInteger(), primary_key=True)
129 )
130
131.. seealso::
132
133 :meth:`.TypeEngine.with_variant`
134
135 :ref:`sqlalchemy.ext.compiler_toplevel`
136
137 `Datatypes In SQLite Version 3 <https://sqlite.org/datatype3.html>`_
138
139.. _sqlite_transactions:
140
141Transactions with SQLite and the sqlite3 driver
142-----------------------------------------------
143
144As a file-based database, SQLite's approach to transactions differs from
145traditional databases in many ways. Additionally, the ``sqlite3`` driver
146standard with Python (as well as the async version ``aiosqlite`` which builds
147on top of it) has several quirks, workarounds, and API features in the
148area of transaction control, all of which generally need to be addressed when
149constructing a SQLAlchemy application that uses SQLite.
150
151Legacy Transaction Mode with the sqlite3 driver
152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
153
154The most important aspect of transaction handling with the sqlite3 driver is
155that it defaults (which will continue through Python 3.15 before being
156removed in Python 3.16) to legacy transactional behavior which does
157not strictly follow :pep:`249`. The way in which the driver diverges from the
158PEP is that it does not "begin" a transaction automatically as dictated by
159:pep:`249` except in the case of DML statements, e.g. INSERT, UPDATE, and
160DELETE. Normally, :pep:`249` dictates that a BEGIN must be emitted upon
161the first SQL statement of any kind, so that all subsequent operations will
162be established within a transaction until ``connection.commit()`` has been
163called. The ``sqlite3`` driver, in an effort to be easier to use in
164highly concurrent environments, skips this step for DQL (e.g. SELECT) statements,
165and also skips it for DDL (e.g. CREATE TABLE etc.) statements for more legacy
166reasons. Statements such as SAVEPOINT are also skipped.
167
168In modern versions of the ``sqlite3`` driver as of Python 3.12, this legacy
169mode of operation is referred to as
170`"legacy transaction control" <https://docs.python.org/3/library/sqlite3.html#sqlite3-transaction-control-isolation-level>`_, and is in
171effect by default due to the ``Connection.autocommit`` parameter being set to
172the constant ``sqlite3.LEGACY_TRANSACTION_CONTROL``. Prior to Python 3.12,
173the ``Connection.autocommit`` attribute did not exist.
174
175The implications of legacy transaction mode include:
176
177* **Incorrect support for transactional DDL** - statements like CREATE TABLE, ALTER TABLE,
178 CREATE INDEX etc. will not automatically BEGIN a transaction if one were not
179 started already, leading to the changes by each statement being
180 "autocommitted" immediately unless BEGIN were otherwise emitted first. Very
181 old (pre Python 3.6) versions of SQLite would also force a COMMIT for these
182 operations even if a transaction were present, however this is no longer the
183 case.
184* **SERIALIZABLE behavior not fully functional** - SQLite's transaction isolation
185 behavior is normally consistent with SERIALIZABLE isolation, as it is a file-
186 based system that locks the database file entirely for write operations,
187 preventing COMMIT until all reader transactions (and associated file locks)
188 have completed. However, sqlite3's legacy transaction mode fails to emit BEGIN for SELECT
189 statements, which causes these SELECT statements to no longer be "repeatable",
190 failing one of the consistency guarantees of SERIALIZABLE.
191* **Incorrect behavior for SAVEPOINT** - as the SAVEPOINT statement does not
192 imply a BEGIN, a new SAVEPOINT emitted before a BEGIN will function on its
193 own but fails to participate in the enclosing transaction, meaning a ROLLBACK
194 of the transaction will not rollback elements that were part of a released
195 savepoint.
196
197Legacy transaction mode first existed in order to faciliate working around
198SQLite's file locks. Because SQLite relies upon whole-file locks, it is easy to
199get "database is locked" errors, particularly when newer features like "write
200ahead logging" are disabled. This is a key reason why ``sqlite3``'s legacy
201transaction mode is still the default mode of operation; disabling it will
202produce behavior that is more susceptible to locked database errors. However
203note that **legacy transaction mode will no longer be the default** in a future
204Python version (3.16 as of this writing).
205
206.. _sqlite_enabling_transactions:
207
208Enabling Non-Legacy SQLite Transactional Modes with the sqlite3 or aiosqlite driver
209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
210
211Current SQLAlchemy support allows either for setting the
212``.Connection.autocommit`` attribute, most directly by using a
213:func:`._sa.create_engine` parameter, or if on an older version of Python where
214the attribute is not available, using event hooks to control the behavior of
215BEGIN.
216
217* **Enabling modern sqlite3 transaction control via the autocommit connect parameter** (Python 3.12 and above)
218
219 To use SQLite in the mode described at `Transaction control via the autocommit attribute <https://docs.python.org/3/library/sqlite3.html#transaction-control-via-the-autocommit-attribute>`_,
220 the most straightforward approach is to set the attribute to its recommended value
221 of ``False`` at the connect level using :paramref:`_sa.create_engine.connect_args``::
222
223 from sqlalchemy import create_engine
224
225 engine = create_engine(
226 "sqlite:///myfile.db", connect_args={"autocommit": False}
227 )
228
229 This parameter is also passed through when using the aiosqlite driver::
230
231 from sqlalchemy.ext.asyncio import create_async_engine
232
233 engine = create_async_engine(
234 "sqlite+aiosqlite:///myfile.db", connect_args={"autocommit": False}
235 )
236
237 The parameter can also be set at the attribute level using the :meth:`.PoolEvents.connect`
238 event hook, however this will only work for sqlite3, as aiosqlite does not yet expose this
239 attribute on its ``Connection`` object::
240
241 from sqlalchemy import create_engine, event
242
243 engine = create_engine("sqlite:///myfile.db")
244
245
246 @event.listens_for(engine, "connect")
247 def do_connect(dbapi_connection, connection_record):
248 # enable autocommit=False mode
249 dbapi_connection.autocommit = False
250
251* **Using SQLAlchemy to emit BEGIN in lieu of SQLite's transaction control** (all Python versions, sqlite3 and aiosqlite)
252
253 For older versions of ``sqlite3`` or for cross-compatiblity with older and
254 newer versions, SQLAlchemy can also take over the job of transaction control.
255 This is achieved by using the :meth:`.ConnectionEvents.begin` hook
256 to emit the "BEGIN" command directly, while also disabling SQLite's control
257 of this command using the :meth:`.PoolEvents.connect` event hook to set the
258 ``Connection.isolation_level`` attribute to ``None``::
259
260
261 from sqlalchemy import create_engine, event
262
263 engine = create_engine("sqlite:///myfile.db")
264
265
266 @event.listens_for(engine, "connect")
267 def do_connect(dbapi_connection, connection_record):
268 # disable sqlite3's emitting of the BEGIN statement entirely.
269 dbapi_connection.isolation_level = None
270
271
272 @event.listens_for(engine, "begin")
273 def do_begin(conn):
274 # emit our own BEGIN. sqlite3 still emits COMMIT/ROLLBACK correctly
275 conn.exec_driver_sql("BEGIN")
276
277 When using the asyncio variant ``aiosqlite``, refer to ``engine.sync_engine``
278 as in the example below::
279
280 from sqlalchemy import create_engine, event
281 from sqlalchemy.ext.asyncio import create_async_engine
282
283 engine = create_async_engine("sqlite+aiosqlite:///myfile.db")
284
285
286 @event.listens_for(engine.sync_engine, "connect")
287 def do_connect(dbapi_connection, connection_record):
288 # disable aiosqlite's emitting of the BEGIN statement entirely.
289 dbapi_connection.isolation_level = None
290
291
292 @event.listens_for(engine.sync_engine, "begin")
293 def do_begin(conn):
294 # emit our own BEGIN. aiosqlite still emits COMMIT/ROLLBACK correctly
295 conn.exec_driver_sql("BEGIN")
296
297.. _sqlite_isolation_level:
298
299Using SQLAlchemy's Driver Level AUTOCOMMIT Feature with SQLite
300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
301
302SQLAlchemy has a comprehensive database isolation feature with optional
303autocommit support that is introduced in the section :ref:`dbapi_autocommit`.
304
305For the ``sqlite3`` and ``aiosqlite`` drivers, SQLAlchemy only includes
306built-in support for "AUTOCOMMIT". Note that this mode is currently incompatible
307with the non-legacy isolation mode hooks documented in the previous
308section at :ref:`sqlite_enabling_transactions`.
309
310To use the ``sqlite3`` driver with SQLAlchemy driver-level autocommit,
311create an engine setting the :paramref:`_sa.create_engine.isolation_level`
312parameter to "AUTOCOMMIT"::
313
314 eng = create_engine("sqlite:///myfile.db", isolation_level="AUTOCOMMIT")
315
316When using the above mode, any event hooks that set the sqlite3 ``Connection.autocommit``
317parameter away from its default of ``sqlite3.LEGACY_TRANSACTION_CONTROL``
318as well as hooks that emit ``BEGIN`` should be disabled.
319
320Additional Reading for SQLite / sqlite3 transaction control
321^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
322
323Links with important information on SQLite, the sqlite3 driver,
324as well as long historical conversations on how things got to their current state:
325
326* `Isolation in SQLite <https://www.sqlite.org/isolation.html>`_ - on the SQLite website
327* `Transaction control <https://docs.python.org/3/library/sqlite3.html#transaction-control>`_ - describes the sqlite3 autocommit attribute as well
328 as the legacy isolation_level attribute.
329* `sqlite3 SELECT does not BEGIN a transaction, but should according to spec <https://github.com/python/cpython/issues/54133>`_ - imported Python standard library issue on github
330* `sqlite3 module breaks transactions and potentially corrupts data <https://github.com/python/cpython/issues/54949>`_ - imported Python standard library issue on github
331
332
333INSERT/UPDATE/DELETE...RETURNING
334---------------------------------
335
336The SQLite dialect supports SQLite 3.35's ``INSERT|UPDATE|DELETE..RETURNING``
337syntax. ``INSERT..RETURNING`` may be used
338automatically in some cases in order to fetch newly generated identifiers in
339place of the traditional approach of using ``cursor.lastrowid``, however
340``cursor.lastrowid`` is currently still preferred for simple single-statement
341cases for its better performance.
342
343To specify an explicit ``RETURNING`` clause, use the
344:meth:`._UpdateBase.returning` method on a per-statement basis::
345
346 # INSERT..RETURNING
347 result = connection.execute(
348 table.insert().values(name="foo").returning(table.c.col1, table.c.col2)
349 )
350 print(result.all())
351
352 # UPDATE..RETURNING
353 result = connection.execute(
354 table.update()
355 .where(table.c.name == "foo")
356 .values(name="bar")
357 .returning(table.c.col1, table.c.col2)
358 )
359 print(result.all())
360
361 # DELETE..RETURNING
362 result = connection.execute(
363 table.delete()
364 .where(table.c.name == "foo")
365 .returning(table.c.col1, table.c.col2)
366 )
367 print(result.all())
368
369.. versionadded:: 2.0 Added support for SQLite RETURNING
370
371
372.. _sqlite_foreign_keys:
373
374Foreign Key Support
375-------------------
376
377SQLite supports FOREIGN KEY syntax when emitting CREATE statements for tables,
378however by default these constraints have no effect on the operation of the
379table.
380
381Constraint checking on SQLite has three prerequisites:
382
383* At least version 3.6.19 of SQLite must be in use
384* The SQLite library must be compiled *without* the SQLITE_OMIT_FOREIGN_KEY
385 or SQLITE_OMIT_TRIGGER symbols enabled.
386* The ``PRAGMA foreign_keys = ON`` statement must be emitted on all
387 connections before use -- including the initial call to
388 :meth:`sqlalchemy.schema.MetaData.create_all`.
389
390SQLAlchemy allows for the ``PRAGMA`` statement to be emitted automatically for
391new connections through the usage of events::
392
393 from sqlalchemy.engine import Engine
394 from sqlalchemy import event
395
396
397 @event.listens_for(Engine, "connect")
398 def set_sqlite_pragma(dbapi_connection, connection_record):
399 cursor = dbapi_connection.cursor()
400 cursor.execute("PRAGMA foreign_keys=ON")
401 cursor.close()
402
403.. warning::
404
405 When SQLite foreign keys are enabled, it is **not possible**
406 to emit CREATE or DROP statements for tables that contain
407 mutually-dependent foreign key constraints;
408 to emit the DDL for these tables requires that ALTER TABLE be used to
409 create or drop these constraints separately, for which SQLite has
410 no support.
411
412.. seealso::
413
414 `SQLite Foreign Key Support <https://www.sqlite.org/foreignkeys.html>`_
415 - on the SQLite web site.
416
417 :ref:`event_toplevel` - SQLAlchemy event API.
418
419 :ref:`use_alter` - more information on SQLAlchemy's facilities for handling
420 mutually-dependent foreign key constraints.
421
422.. _sqlite_on_conflict_ddl:
423
424ON CONFLICT support for constraints
425-----------------------------------
426
427.. seealso:: This section describes the :term:`DDL` version of "ON CONFLICT" for
428 SQLite, which occurs within a CREATE TABLE statement. For "ON CONFLICT" as
429 applied to an INSERT statement, see :ref:`sqlite_on_conflict_insert`.
430
431SQLite supports a non-standard DDL clause known as ON CONFLICT which can be applied
432to primary key, unique, check, and not null constraints. In DDL, it is
433rendered either within the "CONSTRAINT" clause or within the column definition
434itself depending on the location of the target constraint. To render this
435clause within DDL, the extension parameter ``sqlite_on_conflict`` can be
436specified with a string conflict resolution algorithm within the
437:class:`.PrimaryKeyConstraint`, :class:`.UniqueConstraint`,
438:class:`.CheckConstraint` objects. Within the :class:`_schema.Column` object,
439there
440are individual parameters ``sqlite_on_conflict_not_null``,
441``sqlite_on_conflict_primary_key``, ``sqlite_on_conflict_unique`` which each
442correspond to the three types of relevant constraint types that can be
443indicated from a :class:`_schema.Column` object.
444
445.. seealso::
446
447 `ON CONFLICT <https://www.sqlite.org/lang_conflict.html>`_ - in the SQLite
448 documentation
449
450The ``sqlite_on_conflict`` parameters accept a string argument which is just
451the resolution name to be chosen, which on SQLite can be one of ROLLBACK,
452ABORT, FAIL, IGNORE, and REPLACE. For example, to add a UNIQUE constraint
453that specifies the IGNORE algorithm::
454
455 some_table = Table(
456 "some_table",
457 metadata,
458 Column("id", Integer, primary_key=True),
459 Column("data", Integer),
460 UniqueConstraint("id", "data", sqlite_on_conflict="IGNORE"),
461 )
462
463The above renders CREATE TABLE DDL as:
464
465.. sourcecode:: sql
466
467 CREATE TABLE some_table (
468 id INTEGER NOT NULL,
469 data INTEGER,
470 PRIMARY KEY (id),
471 UNIQUE (id, data) ON CONFLICT IGNORE
472 )
473
474
475When using the :paramref:`_schema.Column.unique`
476flag to add a UNIQUE constraint
477to a single column, the ``sqlite_on_conflict_unique`` parameter can
478be added to the :class:`_schema.Column` as well, which will be added to the
479UNIQUE constraint in the DDL::
480
481 some_table = Table(
482 "some_table",
483 metadata,
484 Column("id", Integer, primary_key=True),
485 Column(
486 "data", Integer, unique=True, sqlite_on_conflict_unique="IGNORE"
487 ),
488 )
489
490rendering:
491
492.. sourcecode:: sql
493
494 CREATE TABLE some_table (
495 id INTEGER NOT NULL,
496 data INTEGER,
497 PRIMARY KEY (id),
498 UNIQUE (data) ON CONFLICT IGNORE
499 )
500
501To apply the FAIL algorithm for a NOT NULL constraint,
502``sqlite_on_conflict_not_null`` is used::
503
504 some_table = Table(
505 "some_table",
506 metadata,
507 Column("id", Integer, primary_key=True),
508 Column(
509 "data", Integer, nullable=False, sqlite_on_conflict_not_null="FAIL"
510 ),
511 )
512
513this renders the column inline ON CONFLICT phrase:
514
515.. sourcecode:: sql
516
517 CREATE TABLE some_table (
518 id INTEGER NOT NULL,
519 data INTEGER NOT NULL ON CONFLICT FAIL,
520 PRIMARY KEY (id)
521 )
522
523
524Similarly, for an inline primary key, use ``sqlite_on_conflict_primary_key``::
525
526 some_table = Table(
527 "some_table",
528 metadata,
529 Column(
530 "id",
531 Integer,
532 primary_key=True,
533 sqlite_on_conflict_primary_key="FAIL",
534 ),
535 )
536
537SQLAlchemy renders the PRIMARY KEY constraint separately, so the conflict
538resolution algorithm is applied to the constraint itself:
539
540.. sourcecode:: sql
541
542 CREATE TABLE some_table (
543 id INTEGER NOT NULL,
544 PRIMARY KEY (id) ON CONFLICT FAIL
545 )
546
547.. _sqlite_on_conflict_insert:
548
549INSERT...ON CONFLICT (Upsert)
550-----------------------------
551
552.. seealso:: This section describes the :term:`DML` version of "ON CONFLICT" for
553 SQLite, which occurs within an INSERT statement. For "ON CONFLICT" as
554 applied to a CREATE TABLE statement, see :ref:`sqlite_on_conflict_ddl`.
555
556From version 3.24.0 onwards, SQLite supports "upserts" (update or insert)
557of rows into a table via the ``ON CONFLICT`` clause of the ``INSERT``
558statement. A candidate row will only be inserted if that row does not violate
559any unique or primary key constraints. In the case of a unique constraint violation, a
560secondary action can occur which can be either "DO UPDATE", indicating that
561the data in the target row should be updated, or "DO NOTHING", which indicates
562to silently skip this row.
563
564Conflicts are determined using columns that are part of existing unique
565constraints and indexes. These constraints are identified by stating the
566columns and conditions that comprise the indexes.
567
568SQLAlchemy provides ``ON CONFLICT`` support via the SQLite-specific
569:func:`_sqlite.insert()` function, which provides
570the generative methods :meth:`_sqlite.Insert.on_conflict_do_update`
571and :meth:`_sqlite.Insert.on_conflict_do_nothing`:
572
573.. sourcecode:: pycon+sql
574
575 >>> from sqlalchemy.dialects.sqlite import insert
576
577 >>> insert_stmt = insert(my_table).values(
578 ... id="some_existing_id", data="inserted value"
579 ... )
580
581 >>> do_update_stmt = insert_stmt.on_conflict_do_update(
582 ... index_elements=["id"], set_=dict(data="updated value")
583 ... )
584
585 >>> print(do_update_stmt)
586 {printsql}INSERT INTO my_table (id, data) VALUES (?, ?)
587 ON CONFLICT (id) DO UPDATE SET data = ?{stop}
588
589 >>> do_nothing_stmt = insert_stmt.on_conflict_do_nothing(index_elements=["id"])
590
591 >>> print(do_nothing_stmt)
592 {printsql}INSERT INTO my_table (id, data) VALUES (?, ?)
593 ON CONFLICT (id) DO NOTHING
594
595.. versionadded:: 1.4
596
597.. seealso::
598
599 `Upsert
600 <https://sqlite.org/lang_UPSERT.html>`_
601 - in the SQLite documentation.
602
603
604Specifying the Target
605^^^^^^^^^^^^^^^^^^^^^
606
607Both methods supply the "target" of the conflict using column inference:
608
609* The :paramref:`_sqlite.Insert.on_conflict_do_update.index_elements` argument
610 specifies a sequence containing string column names, :class:`_schema.Column`
611 objects, and/or SQL expression elements, which would identify a unique index
612 or unique constraint.
613
614* When using :paramref:`_sqlite.Insert.on_conflict_do_update.index_elements`
615 to infer an index, a partial index can be inferred by also specifying the
616 :paramref:`_sqlite.Insert.on_conflict_do_update.index_where` parameter:
617
618 .. sourcecode:: pycon+sql
619
620 >>> stmt = insert(my_table).values(user_email="a@b.com", data="inserted data")
621
622 >>> do_update_stmt = stmt.on_conflict_do_update(
623 ... index_elements=[my_table.c.user_email],
624 ... index_where=my_table.c.user_email.like("%@gmail.com"),
625 ... set_=dict(data=stmt.excluded.data),
626 ... )
627
628 >>> print(do_update_stmt)
629 {printsql}INSERT INTO my_table (data, user_email) VALUES (?, ?)
630 ON CONFLICT (user_email)
631 WHERE user_email LIKE '%@gmail.com'
632 DO UPDATE SET data = excluded.data
633
634The SET Clause
635^^^^^^^^^^^^^^^
636
637``ON CONFLICT...DO UPDATE`` is used to perform an update of the already
638existing row, using any combination of new values as well as values
639from the proposed insertion. These values are specified using the
640:paramref:`_sqlite.Insert.on_conflict_do_update.set_` parameter. This
641parameter accepts a dictionary which consists of direct values
642for UPDATE:
643
644.. sourcecode:: pycon+sql
645
646 >>> stmt = insert(my_table).values(id="some_id", data="inserted value")
647
648 >>> do_update_stmt = stmt.on_conflict_do_update(
649 ... index_elements=["id"], set_=dict(data="updated value")
650 ... )
651
652 >>> print(do_update_stmt)
653 {printsql}INSERT INTO my_table (id, data) VALUES (?, ?)
654 ON CONFLICT (id) DO UPDATE SET data = ?
655
656.. warning::
657
658 The :meth:`_sqlite.Insert.on_conflict_do_update` method does **not** take
659 into account Python-side default UPDATE values or generation functions,
660 e.g. those specified using :paramref:`_schema.Column.onupdate`. These
661 values will not be exercised for an ON CONFLICT style of UPDATE, unless
662 they are manually specified in the
663 :paramref:`_sqlite.Insert.on_conflict_do_update.set_` dictionary.
664
665Updating using the Excluded INSERT Values
666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
667
668In order to refer to the proposed insertion row, the special alias
669:attr:`~.sqlite.Insert.excluded` is available as an attribute on
670the :class:`_sqlite.Insert` object; this object creates an "excluded." prefix
671on a column, that informs the DO UPDATE to update the row with the value that
672would have been inserted had the constraint not failed:
673
674.. sourcecode:: pycon+sql
675
676 >>> stmt = insert(my_table).values(
677 ... id="some_id", data="inserted value", author="jlh"
678 ... )
679
680 >>> do_update_stmt = stmt.on_conflict_do_update(
681 ... index_elements=["id"],
682 ... set_=dict(data="updated value", author=stmt.excluded.author),
683 ... )
684
685 >>> print(do_update_stmt)
686 {printsql}INSERT INTO my_table (id, data, author) VALUES (?, ?, ?)
687 ON CONFLICT (id) DO UPDATE SET data = ?, author = excluded.author
688
689Additional WHERE Criteria
690^^^^^^^^^^^^^^^^^^^^^^^^^
691
692The :meth:`_sqlite.Insert.on_conflict_do_update` method also accepts
693a WHERE clause using the :paramref:`_sqlite.Insert.on_conflict_do_update.where`
694parameter, which will limit those rows which receive an UPDATE:
695
696.. sourcecode:: pycon+sql
697
698 >>> stmt = insert(my_table).values(
699 ... id="some_id", data="inserted value", author="jlh"
700 ... )
701
702 >>> on_update_stmt = stmt.on_conflict_do_update(
703 ... index_elements=["id"],
704 ... set_=dict(data="updated value", author=stmt.excluded.author),
705 ... where=(my_table.c.status == 2),
706 ... )
707 >>> print(on_update_stmt)
708 {printsql}INSERT INTO my_table (id, data, author) VALUES (?, ?, ?)
709 ON CONFLICT (id) DO UPDATE SET data = ?, author = excluded.author
710 WHERE my_table.status = ?
711
712
713Skipping Rows with DO NOTHING
714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
715
716``ON CONFLICT`` may be used to skip inserting a row entirely
717if any conflict with a unique constraint occurs; below this is illustrated
718using the :meth:`_sqlite.Insert.on_conflict_do_nothing` method:
719
720.. sourcecode:: pycon+sql
721
722 >>> stmt = insert(my_table).values(id="some_id", data="inserted value")
723 >>> stmt = stmt.on_conflict_do_nothing(index_elements=["id"])
724 >>> print(stmt)
725 {printsql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT (id) DO NOTHING
726
727
728If ``DO NOTHING`` is used without specifying any columns or constraint,
729it has the effect of skipping the INSERT for any unique violation which
730occurs:
731
732.. sourcecode:: pycon+sql
733
734 >>> stmt = insert(my_table).values(id="some_id", data="inserted value")
735 >>> stmt = stmt.on_conflict_do_nothing()
736 >>> print(stmt)
737 {printsql}INSERT INTO my_table (id, data) VALUES (?, ?) ON CONFLICT DO NOTHING
738
739.. _sqlite_type_reflection:
740
741Type Reflection
742---------------
743
744SQLite types are unlike those of most other database backends, in that
745the string name of the type usually does not correspond to a "type" in a
746one-to-one fashion. Instead, SQLite links per-column typing behavior
747to one of five so-called "type affinities" based on a string matching
748pattern for the type.
749
750SQLAlchemy's reflection process, when inspecting types, uses a simple
751lookup table to link the keywords returned to provided SQLAlchemy types.
752This lookup table is present within the SQLite dialect as it is for all
753other dialects. However, the SQLite dialect has a different "fallback"
754routine for when a particular type name is not located in the lookup map;
755it instead implements the SQLite "type affinity" scheme located at
756https://www.sqlite.org/datatype3.html section 2.1.
757
758The provided typemap will make direct associations from an exact string
759name match for the following types:
760
761:class:`_types.BIGINT`, :class:`_types.BLOB`,
762:class:`_types.BOOLEAN`, :class:`_types.BOOLEAN`,
763:class:`_types.CHAR`, :class:`_types.DATE`,
764:class:`_types.DATETIME`, :class:`_types.FLOAT`,
765:class:`_types.DECIMAL`, :class:`_types.FLOAT`,
766:class:`_types.INTEGER`, :class:`_types.INTEGER`,
767:class:`_types.NUMERIC`, :class:`_types.REAL`,
768:class:`_types.SMALLINT`, :class:`_types.TEXT`,
769:class:`_types.TIME`, :class:`_types.TIMESTAMP`,
770:class:`_types.VARCHAR`, :class:`_types.NVARCHAR`,
771:class:`_types.NCHAR`
772
773When a type name does not match one of the above types, the "type affinity"
774lookup is used instead:
775
776* :class:`_types.INTEGER` is returned if the type name includes the
777 string ``INT``
778* :class:`_types.TEXT` is returned if the type name includes the
779 string ``CHAR``, ``CLOB`` or ``TEXT``
780* :class:`_types.NullType` is returned if the type name includes the
781 string ``BLOB``
782* :class:`_types.REAL` is returned if the type name includes the string
783 ``REAL``, ``FLOA`` or ``DOUB``.
784* Otherwise, the :class:`_types.NUMERIC` type is used.
785
786.. _sqlite_partial_index:
787
788Partial Indexes
789---------------
790
791A partial index, e.g. one which uses a WHERE clause, can be specified
792with the DDL system using the argument ``sqlite_where``::
793
794 tbl = Table("testtbl", m, Column("data", Integer))
795 idx = Index(
796 "test_idx1",
797 tbl.c.data,
798 sqlite_where=and_(tbl.c.data > 5, tbl.c.data < 10),
799 )
800
801The index will be rendered at create time as:
802
803.. sourcecode:: sql
804
805 CREATE INDEX test_idx1 ON testtbl (data)
806 WHERE data > 5 AND data < 10
807
808.. _sqlite_dotted_column_names:
809
810Dotted Column Names
811-------------------
812
813Using table or column names that explicitly have periods in them is
814**not recommended**. While this is generally a bad idea for relational
815databases in general, as the dot is a syntactically significant character,
816the SQLite driver up until version **3.10.0** of SQLite has a bug which
817requires that SQLAlchemy filter out these dots in result sets.
818
819The bug, entirely outside of SQLAlchemy, can be illustrated thusly::
820
821 import sqlite3
822
823 assert sqlite3.sqlite_version_info < (
824 3,
825 10,
826 0,
827 ), "bug is fixed in this version"
828
829 conn = sqlite3.connect(":memory:")
830 cursor = conn.cursor()
831
832 cursor.execute("create table x (a integer, b integer)")
833 cursor.execute("insert into x (a, b) values (1, 1)")
834 cursor.execute("insert into x (a, b) values (2, 2)")
835
836 cursor.execute("select x.a, x.b from x")
837 assert [c[0] for c in cursor.description] == ["a", "b"]
838
839 cursor.execute(
840 """
841 select x.a, x.b from x where a=1
842 union
843 select x.a, x.b from x where a=2
844 """
845 )
846 assert [c[0] for c in cursor.description] == ["a", "b"], [
847 c[0] for c in cursor.description
848 ]
849
850The second assertion fails:
851
852.. sourcecode:: text
853
854 Traceback (most recent call last):
855 File "test.py", line 19, in <module>
856 [c[0] for c in cursor.description]
857 AssertionError: ['x.a', 'x.b']
858
859Where above, the driver incorrectly reports the names of the columns
860including the name of the table, which is entirely inconsistent vs.
861when the UNION is not present.
862
863SQLAlchemy relies upon column names being predictable in how they match
864to the original statement, so the SQLAlchemy dialect has no choice but
865to filter these out::
866
867
868 from sqlalchemy import create_engine
869
870 eng = create_engine("sqlite://")
871 conn = eng.connect()
872
873 conn.exec_driver_sql("create table x (a integer, b integer)")
874 conn.exec_driver_sql("insert into x (a, b) values (1, 1)")
875 conn.exec_driver_sql("insert into x (a, b) values (2, 2)")
876
877 result = conn.exec_driver_sql("select x.a, x.b from x")
878 assert result.keys() == ["a", "b"]
879
880 result = conn.exec_driver_sql(
881 """
882 select x.a, x.b from x where a=1
883 union
884 select x.a, x.b from x where a=2
885 """
886 )
887 assert result.keys() == ["a", "b"]
888
889Note that above, even though SQLAlchemy filters out the dots, *both
890names are still addressable*::
891
892 >>> row = result.first()
893 >>> row["a"]
894 1
895 >>> row["x.a"]
896 1
897 >>> row["b"]
898 1
899 >>> row["x.b"]
900 1
901
902Therefore, the workaround applied by SQLAlchemy only impacts
903:meth:`_engine.CursorResult.keys` and :meth:`.Row.keys()` in the public API. In
904the very specific case where an application is forced to use column names that
905contain dots, and the functionality of :meth:`_engine.CursorResult.keys` and
906:meth:`.Row.keys()` is required to return these dotted names unmodified,
907the ``sqlite_raw_colnames`` execution option may be provided, either on a
908per-:class:`_engine.Connection` basis::
909
910 result = conn.execution_options(sqlite_raw_colnames=True).exec_driver_sql(
911 """
912 select x.a, x.b from x where a=1
913 union
914 select x.a, x.b from x where a=2
915 """
916 )
917 assert result.keys() == ["x.a", "x.b"]
918
919or on a per-:class:`_engine.Engine` basis::
920
921 engine = create_engine(
922 "sqlite://", execution_options={"sqlite_raw_colnames": True}
923 )
924
925When using the per-:class:`_engine.Engine` execution option, note that
926**Core and ORM queries that use UNION may not function properly**.
927
928SQLite-specific table options
929-----------------------------
930
931One option for CREATE TABLE is supported directly by the SQLite
932dialect in conjunction with the :class:`_schema.Table` construct:
933
934* ``WITHOUT ROWID``::
935
936 Table("some_table", metadata, ..., sqlite_with_rowid=False)
937
938*
939 ``STRICT``::
940
941 Table("some_table", metadata, ..., sqlite_strict=True)
942
943 .. versionadded:: 2.0.37
944
945.. seealso::
946
947 `SQLite CREATE TABLE options
948 <https://www.sqlite.org/lang_createtable.html>`_
949
950.. _sqlite_include_internal:
951
952Reflecting internal schema tables
953----------------------------------
954
955Reflection methods that return lists of tables will omit so-called
956"SQLite internal schema object" names, which are considered by SQLite
957as any object name that is prefixed with ``sqlite_``. An example of
958such an object is the ``sqlite_sequence`` table that's generated when
959the ``AUTOINCREMENT`` column parameter is used. In order to return
960these objects, the parameter ``sqlite_include_internal=True`` may be
961passed to methods such as :meth:`_schema.MetaData.reflect` or
962:meth:`.Inspector.get_table_names`.
963
964.. versionadded:: 2.0 Added the ``sqlite_include_internal=True`` parameter.
965 Previously, these tables were not ignored by SQLAlchemy reflection
966 methods.
967
968.. note::
969
970 The ``sqlite_include_internal`` parameter does not refer to the
971 "system" tables that are present in schemas such as ``sqlite_master``.
972
973.. seealso::
974
975 `SQLite Internal Schema Objects <https://www.sqlite.org/fileformat2.html#intschema>`_ - in the SQLite
976 documentation.
977
978''' # noqa
979from __future__ import annotations
980
981import datetime
982import numbers
983import re
984from typing import Optional
985
986from .json import JSON
987from .json import JSONIndexType
988from .json import JSONPathType
989from ... import exc
990from ... import schema as sa_schema
991from ... import sql
992from ... import text
993from ... import types as sqltypes
994from ... import util
995from ...engine import default
996from ...engine import processors
997from ...engine import reflection
998from ...engine.reflection import ReflectionDefaults
999from ...sql import coercions
1000from ...sql import compiler
1001from ...sql import elements
1002from ...sql import roles
1003from ...sql import schema
1004from ...types import BLOB # noqa
1005from ...types import BOOLEAN # noqa
1006from ...types import CHAR # noqa
1007from ...types import DECIMAL # noqa
1008from ...types import FLOAT # noqa
1009from ...types import INTEGER # noqa
1010from ...types import NUMERIC # noqa
1011from ...types import REAL # noqa
1012from ...types import SMALLINT # noqa
1013from ...types import TEXT # noqa
1014from ...types import TIMESTAMP # noqa
1015from ...types import VARCHAR # noqa
1016
1017
1018class _SQliteJson(JSON):
1019 def result_processor(self, dialect, coltype):
1020 default_processor = super().result_processor(dialect, coltype)
1021
1022 def process(value):
1023 try:
1024 return default_processor(value)
1025 except TypeError:
1026 if isinstance(value, numbers.Number):
1027 return value
1028 else:
1029 raise
1030
1031 return process
1032
1033
1034class _DateTimeMixin:
1035 _reg = None
1036 _storage_format = None
1037
1038 def __init__(self, storage_format=None, regexp=None, **kw):
1039 super().__init__(**kw)
1040 if regexp is not None:
1041 self._reg = re.compile(regexp)
1042 if storage_format is not None:
1043 self._storage_format = storage_format
1044
1045 @property
1046 def format_is_text_affinity(self):
1047 """return True if the storage format will automatically imply
1048 a TEXT affinity.
1049
1050 If the storage format contains no non-numeric characters,
1051 it will imply a NUMERIC storage format on SQLite; in this case,
1052 the type will generate its DDL as DATE_CHAR, DATETIME_CHAR,
1053 TIME_CHAR.
1054
1055 """
1056 spec = self._storage_format % {
1057 "year": 0,
1058 "month": 0,
1059 "day": 0,
1060 "hour": 0,
1061 "minute": 0,
1062 "second": 0,
1063 "microsecond": 0,
1064 }
1065 return bool(re.search(r"[^0-9]", spec))
1066
1067 def adapt(self, cls, **kw):
1068 if issubclass(cls, _DateTimeMixin):
1069 if self._storage_format:
1070 kw["storage_format"] = self._storage_format
1071 if self._reg:
1072 kw["regexp"] = self._reg
1073 return super().adapt(cls, **kw)
1074
1075 def literal_processor(self, dialect):
1076 bp = self.bind_processor(dialect)
1077
1078 def process(value):
1079 return "'%s'" % bp(value)
1080
1081 return process
1082
1083
1084class DATETIME(_DateTimeMixin, sqltypes.DateTime):
1085 r"""Represent a Python datetime object in SQLite using a string.
1086
1087 The default string storage format is::
1088
1089 "%(year)04d-%(month)02d-%(day)02d %(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d"
1090
1091 e.g.:
1092
1093 .. sourcecode:: text
1094
1095 2021-03-15 12:05:57.105542
1096
1097 The incoming storage format is by default parsed using the
1098 Python ``datetime.fromisoformat()`` function.
1099
1100 .. versionchanged:: 2.0 ``datetime.fromisoformat()`` is used for default
1101 datetime string parsing.
1102
1103 The storage format can be customized to some degree using the
1104 ``storage_format`` and ``regexp`` parameters, such as::
1105
1106 import re
1107 from sqlalchemy.dialects.sqlite import DATETIME
1108
1109 dt = DATETIME(
1110 storage_format=(
1111 "%(year)04d/%(month)02d/%(day)02d %(hour)02d:%(minute)02d:%(second)02d"
1112 ),
1113 regexp=r"(\d+)/(\d+)/(\d+) (\d+)-(\d+)-(\d+)",
1114 )
1115
1116 :param truncate_microseconds: when ``True`` microseconds will be truncated
1117 from the datetime. Can't be specified together with ``storage_format``
1118 or ``regexp``.
1119
1120 :param storage_format: format string which will be applied to the dict
1121 with keys year, month, day, hour, minute, second, and microsecond.
1122
1123 :param regexp: regular expression which will be applied to incoming result
1124 rows, replacing the use of ``datetime.fromisoformat()`` to parse incoming
1125 strings. If the regexp contains named groups, the resulting match dict is
1126 applied to the Python datetime() constructor as keyword arguments.
1127 Otherwise, if positional groups are used, the datetime() constructor
1128 is called with positional arguments via
1129 ``*map(int, match_obj.groups(0))``.
1130
1131 """ # noqa
1132
1133 _storage_format = (
1134 "%(year)04d-%(month)02d-%(day)02d "
1135 "%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d"
1136 )
1137
1138 def __init__(self, *args, **kwargs):
1139 truncate_microseconds = kwargs.pop("truncate_microseconds", False)
1140 super().__init__(*args, **kwargs)
1141 if truncate_microseconds:
1142 assert "storage_format" not in kwargs, (
1143 "You can specify only "
1144 "one of truncate_microseconds or storage_format."
1145 )
1146 assert "regexp" not in kwargs, (
1147 "You can specify only one of "
1148 "truncate_microseconds or regexp."
1149 )
1150 self._storage_format = (
1151 "%(year)04d-%(month)02d-%(day)02d "
1152 "%(hour)02d:%(minute)02d:%(second)02d"
1153 )
1154
1155 def bind_processor(self, dialect):
1156 datetime_datetime = datetime.datetime
1157 datetime_date = datetime.date
1158 format_ = self._storage_format
1159
1160 def process(value):
1161 if value is None:
1162 return None
1163 elif isinstance(value, datetime_datetime):
1164 return format_ % {
1165 "year": value.year,
1166 "month": value.month,
1167 "day": value.day,
1168 "hour": value.hour,
1169 "minute": value.minute,
1170 "second": value.second,
1171 "microsecond": value.microsecond,
1172 }
1173 elif isinstance(value, datetime_date):
1174 return format_ % {
1175 "year": value.year,
1176 "month": value.month,
1177 "day": value.day,
1178 "hour": 0,
1179 "minute": 0,
1180 "second": 0,
1181 "microsecond": 0,
1182 }
1183 else:
1184 raise TypeError(
1185 "SQLite DateTime type only accepts Python "
1186 "datetime and date objects as input."
1187 )
1188
1189 return process
1190
1191 def result_processor(self, dialect, coltype):
1192 if self._reg:
1193 return processors.str_to_datetime_processor_factory(
1194 self._reg, datetime.datetime
1195 )
1196 else:
1197 return processors.str_to_datetime
1198
1199
1200class DATE(_DateTimeMixin, sqltypes.Date):
1201 r"""Represent a Python date object in SQLite using a string.
1202
1203 The default string storage format is::
1204
1205 "%(year)04d-%(month)02d-%(day)02d"
1206
1207 e.g.:
1208
1209 .. sourcecode:: text
1210
1211 2011-03-15
1212
1213 The incoming storage format is by default parsed using the
1214 Python ``date.fromisoformat()`` function.
1215
1216 .. versionchanged:: 2.0 ``date.fromisoformat()`` is used for default
1217 date string parsing.
1218
1219
1220 The storage format can be customized to some degree using the
1221 ``storage_format`` and ``regexp`` parameters, such as::
1222
1223 import re
1224 from sqlalchemy.dialects.sqlite import DATE
1225
1226 d = DATE(
1227 storage_format="%(month)02d/%(day)02d/%(year)04d",
1228 regexp=re.compile("(?P<month>\d+)/(?P<day>\d+)/(?P<year>\d+)"),
1229 )
1230
1231 :param storage_format: format string which will be applied to the
1232 dict with keys year, month, and day.
1233
1234 :param regexp: regular expression which will be applied to
1235 incoming result rows, replacing the use of ``date.fromisoformat()`` to
1236 parse incoming strings. If the regexp contains named groups, the resulting
1237 match dict is applied to the Python date() constructor as keyword
1238 arguments. Otherwise, if positional groups are used, the date()
1239 constructor is called with positional arguments via
1240 ``*map(int, match_obj.groups(0))``.
1241
1242 """
1243
1244 _storage_format = "%(year)04d-%(month)02d-%(day)02d"
1245
1246 def bind_processor(self, dialect):
1247 datetime_date = datetime.date
1248 format_ = self._storage_format
1249
1250 def process(value):
1251 if value is None:
1252 return None
1253 elif isinstance(value, datetime_date):
1254 return format_ % {
1255 "year": value.year,
1256 "month": value.month,
1257 "day": value.day,
1258 }
1259 else:
1260 raise TypeError(
1261 "SQLite Date type only accepts Python "
1262 "date objects as input."
1263 )
1264
1265 return process
1266
1267 def result_processor(self, dialect, coltype):
1268 if self._reg:
1269 return processors.str_to_datetime_processor_factory(
1270 self._reg, datetime.date
1271 )
1272 else:
1273 return processors.str_to_date
1274
1275
1276class TIME(_DateTimeMixin, sqltypes.Time):
1277 r"""Represent a Python time object in SQLite using a string.
1278
1279 The default string storage format is::
1280
1281 "%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d"
1282
1283 e.g.:
1284
1285 .. sourcecode:: text
1286
1287 12:05:57.10558
1288
1289 The incoming storage format is by default parsed using the
1290 Python ``time.fromisoformat()`` function.
1291
1292 .. versionchanged:: 2.0 ``time.fromisoformat()`` is used for default
1293 time string parsing.
1294
1295 The storage format can be customized to some degree using the
1296 ``storage_format`` and ``regexp`` parameters, such as::
1297
1298 import re
1299 from sqlalchemy.dialects.sqlite import TIME
1300
1301 t = TIME(
1302 storage_format="%(hour)02d-%(minute)02d-%(second)02d-%(microsecond)06d",
1303 regexp=re.compile("(\d+)-(\d+)-(\d+)-(?:-(\d+))?"),
1304 )
1305
1306 :param truncate_microseconds: when ``True`` microseconds will be truncated
1307 from the time. Can't be specified together with ``storage_format``
1308 or ``regexp``.
1309
1310 :param storage_format: format string which will be applied to the dict
1311 with keys hour, minute, second, and microsecond.
1312
1313 :param regexp: regular expression which will be applied to incoming result
1314 rows, replacing the use of ``datetime.fromisoformat()`` to parse incoming
1315 strings. If the regexp contains named groups, the resulting match dict is
1316 applied to the Python time() constructor as keyword arguments. Otherwise,
1317 if positional groups are used, the time() constructor is called with
1318 positional arguments via ``*map(int, match_obj.groups(0))``.
1319
1320 """
1321
1322 _storage_format = "%(hour)02d:%(minute)02d:%(second)02d.%(microsecond)06d"
1323
1324 def __init__(self, *args, **kwargs):
1325 truncate_microseconds = kwargs.pop("truncate_microseconds", False)
1326 super().__init__(*args, **kwargs)
1327 if truncate_microseconds:
1328 assert "storage_format" not in kwargs, (
1329 "You can specify only "
1330 "one of truncate_microseconds or storage_format."
1331 )
1332 assert "regexp" not in kwargs, (
1333 "You can specify only one of "
1334 "truncate_microseconds or regexp."
1335 )
1336 self._storage_format = "%(hour)02d:%(minute)02d:%(second)02d"
1337
1338 def bind_processor(self, dialect):
1339 datetime_time = datetime.time
1340 format_ = self._storage_format
1341
1342 def process(value):
1343 if value is None:
1344 return None
1345 elif isinstance(value, datetime_time):
1346 return format_ % {
1347 "hour": value.hour,
1348 "minute": value.minute,
1349 "second": value.second,
1350 "microsecond": value.microsecond,
1351 }
1352 else:
1353 raise TypeError(
1354 "SQLite Time type only accepts Python "
1355 "time objects as input."
1356 )
1357
1358 return process
1359
1360 def result_processor(self, dialect, coltype):
1361 if self._reg:
1362 return processors.str_to_datetime_processor_factory(
1363 self._reg, datetime.time
1364 )
1365 else:
1366 return processors.str_to_time
1367
1368
1369colspecs = {
1370 sqltypes.Date: DATE,
1371 sqltypes.DateTime: DATETIME,
1372 sqltypes.JSON: _SQliteJson,
1373 sqltypes.JSON.JSONIndexType: JSONIndexType,
1374 sqltypes.JSON.JSONPathType: JSONPathType,
1375 sqltypes.Time: TIME,
1376}
1377
1378ischema_names = {
1379 "BIGINT": sqltypes.BIGINT,
1380 "BLOB": sqltypes.BLOB,
1381 "BOOL": sqltypes.BOOLEAN,
1382 "BOOLEAN": sqltypes.BOOLEAN,
1383 "CHAR": sqltypes.CHAR,
1384 "DATE": sqltypes.DATE,
1385 "DATE_CHAR": sqltypes.DATE,
1386 "DATETIME": sqltypes.DATETIME,
1387 "DATETIME_CHAR": sqltypes.DATETIME,
1388 "DOUBLE": sqltypes.DOUBLE,
1389 "DECIMAL": sqltypes.DECIMAL,
1390 "FLOAT": sqltypes.FLOAT,
1391 "INT": sqltypes.INTEGER,
1392 "INTEGER": sqltypes.INTEGER,
1393 "JSON": JSON,
1394 "NUMERIC": sqltypes.NUMERIC,
1395 "REAL": sqltypes.REAL,
1396 "SMALLINT": sqltypes.SMALLINT,
1397 "TEXT": sqltypes.TEXT,
1398 "TIME": sqltypes.TIME,
1399 "TIME_CHAR": sqltypes.TIME,
1400 "TIMESTAMP": sqltypes.TIMESTAMP,
1401 "VARCHAR": sqltypes.VARCHAR,
1402 "NVARCHAR": sqltypes.NVARCHAR,
1403 "NCHAR": sqltypes.NCHAR,
1404}
1405
1406
1407class SQLiteCompiler(compiler.SQLCompiler):
1408 extract_map = util.update_copy(
1409 compiler.SQLCompiler.extract_map,
1410 {
1411 "month": "%m",
1412 "day": "%d",
1413 "year": "%Y",
1414 "second": "%S",
1415 "hour": "%H",
1416 "doy": "%j",
1417 "minute": "%M",
1418 "epoch": "%s",
1419 "dow": "%w",
1420 "week": "%W",
1421 },
1422 )
1423
1424 def visit_truediv_binary(self, binary, operator, **kw):
1425 return (
1426 self.process(binary.left, **kw)
1427 + " / "
1428 + "(%s + 0.0)" % self.process(binary.right, **kw)
1429 )
1430
1431 def visit_now_func(self, fn, **kw):
1432 return "CURRENT_TIMESTAMP"
1433
1434 def visit_localtimestamp_func(self, func, **kw):
1435 return "DATETIME(CURRENT_TIMESTAMP, 'localtime')"
1436
1437 def visit_true(self, expr, **kw):
1438 return "1"
1439
1440 def visit_false(self, expr, **kw):
1441 return "0"
1442
1443 def visit_char_length_func(self, fn, **kw):
1444 return "length%s" % self.function_argspec(fn)
1445
1446 def visit_aggregate_strings_func(self, fn, **kw):
1447 return "group_concat%s" % self.function_argspec(fn)
1448
1449 def visit_cast(self, cast, **kwargs):
1450 if self.dialect.supports_cast:
1451 return super().visit_cast(cast, **kwargs)
1452 else:
1453 return self.process(cast.clause, **kwargs)
1454
1455 def visit_extract(self, extract, **kw):
1456 try:
1457 return "CAST(STRFTIME('%s', %s) AS INTEGER)" % (
1458 self.extract_map[extract.field],
1459 self.process(extract.expr, **kw),
1460 )
1461 except KeyError as err:
1462 raise exc.CompileError(
1463 "%s is not a valid extract argument." % extract.field
1464 ) from err
1465
1466 def returning_clause(
1467 self,
1468 stmt,
1469 returning_cols,
1470 *,
1471 populate_result_map,
1472 **kw,
1473 ):
1474 kw["include_table"] = False
1475 return super().returning_clause(
1476 stmt, returning_cols, populate_result_map=populate_result_map, **kw
1477 )
1478
1479 def limit_clause(self, select, **kw):
1480 text = ""
1481 if select._limit_clause is not None:
1482 text += "\n LIMIT " + self.process(select._limit_clause, **kw)
1483 if select._offset_clause is not None:
1484 if select._limit_clause is None:
1485 text += "\n LIMIT " + self.process(sql.literal(-1))
1486 text += " OFFSET " + self.process(select._offset_clause, **kw)
1487 else:
1488 text += " OFFSET " + self.process(sql.literal(0), **kw)
1489 return text
1490
1491 def for_update_clause(self, select, **kw):
1492 # sqlite has no "FOR UPDATE" AFAICT
1493 return ""
1494
1495 def update_from_clause(
1496 self, update_stmt, from_table, extra_froms, from_hints, **kw
1497 ):
1498 kw["asfrom"] = True
1499 return "FROM " + ", ".join(
1500 t._compiler_dispatch(self, fromhints=from_hints, **kw)
1501 for t in extra_froms
1502 )
1503
1504 def visit_is_distinct_from_binary(self, binary, operator, **kw):
1505 return "%s IS NOT %s" % (
1506 self.process(binary.left),
1507 self.process(binary.right),
1508 )
1509
1510 def visit_is_not_distinct_from_binary(self, binary, operator, **kw):
1511 return "%s IS %s" % (
1512 self.process(binary.left),
1513 self.process(binary.right),
1514 )
1515
1516 def visit_json_getitem_op_binary(self, binary, operator, **kw):
1517 if binary.type._type_affinity is sqltypes.JSON:
1518 expr = "JSON_QUOTE(JSON_EXTRACT(%s, %s))"
1519 else:
1520 expr = "JSON_EXTRACT(%s, %s)"
1521
1522 return expr % (
1523 self.process(binary.left, **kw),
1524 self.process(binary.right, **kw),
1525 )
1526
1527 def visit_json_path_getitem_op_binary(self, binary, operator, **kw):
1528 if binary.type._type_affinity is sqltypes.JSON:
1529 expr = "JSON_QUOTE(JSON_EXTRACT(%s, %s))"
1530 else:
1531 expr = "JSON_EXTRACT(%s, %s)"
1532
1533 return expr % (
1534 self.process(binary.left, **kw),
1535 self.process(binary.right, **kw),
1536 )
1537
1538 def visit_empty_set_op_expr(self, type_, expand_op, **kw):
1539 # slightly old SQLite versions don't seem to be able to handle
1540 # the empty set impl
1541 return self.visit_empty_set_expr(type_)
1542
1543 def visit_empty_set_expr(self, element_types, **kw):
1544 return "SELECT %s FROM (SELECT %s) WHERE 1!=1" % (
1545 ", ".join("1" for type_ in element_types or [INTEGER()]),
1546 ", ".join("1" for type_ in element_types or [INTEGER()]),
1547 )
1548
1549 def visit_regexp_match_op_binary(self, binary, operator, **kw):
1550 return self._generate_generic_binary(binary, " REGEXP ", **kw)
1551
1552 def visit_not_regexp_match_op_binary(self, binary, operator, **kw):
1553 return self._generate_generic_binary(binary, " NOT REGEXP ", **kw)
1554
1555 def _on_conflict_target(self, clause, **kw):
1556 if clause.inferred_target_elements is not None:
1557 target_text = "(%s)" % ", ".join(
1558 (
1559 self.preparer.quote(c)
1560 if isinstance(c, str)
1561 else self.process(c, include_table=False, use_schema=False)
1562 )
1563 for c in clause.inferred_target_elements
1564 )
1565 if clause.inferred_target_whereclause is not None:
1566 target_text += " WHERE %s" % self.process(
1567 clause.inferred_target_whereclause,
1568 include_table=False,
1569 use_schema=False,
1570 literal_execute=True,
1571 )
1572
1573 else:
1574 target_text = ""
1575
1576 return target_text
1577
1578 def visit_on_conflict_do_nothing(self, on_conflict, **kw):
1579 target_text = self._on_conflict_target(on_conflict, **kw)
1580
1581 if target_text:
1582 return "ON CONFLICT %s DO NOTHING" % target_text
1583 else:
1584 return "ON CONFLICT DO NOTHING"
1585
1586 def visit_on_conflict_do_update(self, on_conflict, **kw):
1587 clause = on_conflict
1588
1589 target_text = self._on_conflict_target(on_conflict, **kw)
1590
1591 action_set_ops = []
1592
1593 set_parameters = dict(clause.update_values_to_set)
1594 # create a list of column assignment clauses as tuples
1595
1596 insert_statement = self.stack[-1]["selectable"]
1597 cols = insert_statement.table.c
1598 for c in cols:
1599 col_key = c.key
1600
1601 if col_key in set_parameters:
1602 value = set_parameters.pop(col_key)
1603 elif c in set_parameters:
1604 value = set_parameters.pop(c)
1605 else:
1606 continue
1607
1608 if (
1609 isinstance(value, elements.BindParameter)
1610 and value.type._isnull
1611 ):
1612 value = value._with_binary_element_type(c.type)
1613 value_text = self.process(value.self_group(), use_schema=False)
1614
1615 key_text = self.preparer.quote(c.name)
1616 action_set_ops.append("%s = %s" % (key_text, value_text))
1617
1618 # check for names that don't match columns
1619 if set_parameters:
1620 util.warn(
1621 "Additional column names not matching "
1622 "any column keys in table '%s': %s"
1623 % (
1624 self.current_executable.table.name,
1625 (", ".join("'%s'" % c for c in set_parameters)),
1626 )
1627 )
1628 for k, v in set_parameters.items():
1629 key_text = (
1630 self.preparer.quote(k)
1631 if isinstance(k, str)
1632 else self.process(k, use_schema=False)
1633 )
1634 value_text = self.process(
1635 coercions.expect(roles.ExpressionElementRole, v),
1636 use_schema=False,
1637 )
1638 action_set_ops.append("%s = %s" % (key_text, value_text))
1639
1640 action_text = ", ".join(action_set_ops)
1641 if clause.update_whereclause is not None:
1642 action_text += " WHERE %s" % self.process(
1643 clause.update_whereclause, include_table=True, use_schema=False
1644 )
1645
1646 return "ON CONFLICT %s DO UPDATE SET %s" % (target_text, action_text)
1647
1648 def visit_bitwise_xor_op_binary(self, binary, operator, **kw):
1649 # sqlite has no xor. Use "a XOR b" = "(a | b) - (a & b)".
1650 kw["eager_grouping"] = True
1651 or_ = self._generate_generic_binary(binary, " | ", **kw)
1652 and_ = self._generate_generic_binary(binary, " & ", **kw)
1653 return f"({or_} - {and_})"
1654
1655
1656class SQLiteDDLCompiler(compiler.DDLCompiler):
1657 def get_column_specification(self, column, **kwargs):
1658 coltype = self.dialect.type_compiler_instance.process(
1659 column.type, type_expression=column
1660 )
1661 colspec = self.preparer.format_column(column) + " " + coltype
1662 default = self.get_column_default_string(column)
1663 if default is not None:
1664
1665 if not re.match(r"""^\s*[\'\"\(]""", default) and re.match(
1666 r".*\W.*", default
1667 ):
1668 colspec += f" DEFAULT ({default})"
1669 else:
1670 colspec += f" DEFAULT {default}"
1671
1672 if not column.nullable:
1673 colspec += " NOT NULL"
1674
1675 on_conflict_clause = column.dialect_options["sqlite"][
1676 "on_conflict_not_null"
1677 ]
1678 if on_conflict_clause is not None:
1679 colspec += " ON CONFLICT " + on_conflict_clause
1680
1681 if column.primary_key:
1682 if (
1683 column.autoincrement is True
1684 and len(column.table.primary_key.columns) != 1
1685 ):
1686 raise exc.CompileError(
1687 "SQLite does not support autoincrement for "
1688 "composite primary keys"
1689 )
1690
1691 if (
1692 column.table.dialect_options["sqlite"]["autoincrement"]
1693 and len(column.table.primary_key.columns) == 1
1694 and issubclass(column.type._type_affinity, sqltypes.Integer)
1695 and not column.foreign_keys
1696 ):
1697 colspec += " PRIMARY KEY"
1698
1699 on_conflict_clause = column.dialect_options["sqlite"][
1700 "on_conflict_primary_key"
1701 ]
1702 if on_conflict_clause is not None:
1703 colspec += " ON CONFLICT " + on_conflict_clause
1704
1705 colspec += " AUTOINCREMENT"
1706
1707 if column.computed is not None:
1708 colspec += " " + self.process(column.computed)
1709
1710 return colspec
1711
1712 def visit_primary_key_constraint(self, constraint, **kw):
1713 # for columns with sqlite_autoincrement=True,
1714 # the PRIMARY KEY constraint can only be inline
1715 # with the column itself.
1716 if len(constraint.columns) == 1:
1717 c = list(constraint)[0]
1718 if (
1719 c.primary_key
1720 and c.table.dialect_options["sqlite"]["autoincrement"]
1721 and issubclass(c.type._type_affinity, sqltypes.Integer)
1722 and not c.foreign_keys
1723 ):
1724 return None
1725
1726 text = super().visit_primary_key_constraint(constraint)
1727
1728 on_conflict_clause = constraint.dialect_options["sqlite"][
1729 "on_conflict"
1730 ]
1731 if on_conflict_clause is None and len(constraint.columns) == 1:
1732 on_conflict_clause = list(constraint)[0].dialect_options["sqlite"][
1733 "on_conflict_primary_key"
1734 ]
1735
1736 if on_conflict_clause is not None:
1737 text += " ON CONFLICT " + on_conflict_clause
1738
1739 return text
1740
1741 def visit_unique_constraint(self, constraint, **kw):
1742 text = super().visit_unique_constraint(constraint)
1743
1744 on_conflict_clause = constraint.dialect_options["sqlite"][
1745 "on_conflict"
1746 ]
1747 if on_conflict_clause is None and len(constraint.columns) == 1:
1748 col1 = list(constraint)[0]
1749 if isinstance(col1, schema.SchemaItem):
1750 on_conflict_clause = list(constraint)[0].dialect_options[
1751 "sqlite"
1752 ]["on_conflict_unique"]
1753
1754 if on_conflict_clause is not None:
1755 text += " ON CONFLICT " + on_conflict_clause
1756
1757 return text
1758
1759 def visit_check_constraint(self, constraint, **kw):
1760 text = super().visit_check_constraint(constraint)
1761
1762 on_conflict_clause = constraint.dialect_options["sqlite"][
1763 "on_conflict"
1764 ]
1765
1766 if on_conflict_clause is not None:
1767 text += " ON CONFLICT " + on_conflict_clause
1768
1769 return text
1770
1771 def visit_column_check_constraint(self, constraint, **kw):
1772 text = super().visit_column_check_constraint(constraint)
1773
1774 if constraint.dialect_options["sqlite"]["on_conflict"] is not None:
1775 raise exc.CompileError(
1776 "SQLite does not support on conflict clause for "
1777 "column check constraint"
1778 )
1779
1780 return text
1781
1782 def visit_foreign_key_constraint(self, constraint, **kw):
1783 local_table = constraint.elements[0].parent.table
1784 remote_table = constraint.elements[0].column.table
1785
1786 if local_table.schema != remote_table.schema:
1787 return None
1788 else:
1789 return super().visit_foreign_key_constraint(constraint)
1790
1791 def define_constraint_remote_table(self, constraint, table, preparer):
1792 """Format the remote table clause of a CREATE CONSTRAINT clause."""
1793
1794 return preparer.format_table(table, use_schema=False)
1795
1796 def visit_create_index(
1797 self, create, include_schema=False, include_table_schema=True, **kw
1798 ):
1799 index = create.element
1800 self._verify_index_table(index)
1801 preparer = self.preparer
1802 text = "CREATE "
1803 if index.unique:
1804 text += "UNIQUE "
1805
1806 text += "INDEX "
1807
1808 if create.if_not_exists:
1809 text += "IF NOT EXISTS "
1810
1811 text += "%s ON %s (%s)" % (
1812 self._prepared_index_name(index, include_schema=True),
1813 preparer.format_table(index.table, use_schema=False),
1814 ", ".join(
1815 self.sql_compiler.process(
1816 expr, include_table=False, literal_binds=True
1817 )
1818 for expr in index.expressions
1819 ),
1820 )
1821
1822 whereclause = index.dialect_options["sqlite"]["where"]
1823 if whereclause is not None:
1824 where_compiled = self.sql_compiler.process(
1825 whereclause, include_table=False, literal_binds=True
1826 )
1827 text += " WHERE " + where_compiled
1828
1829 return text
1830
1831 def post_create_table(self, table):
1832 table_options = []
1833
1834 if not table.dialect_options["sqlite"]["with_rowid"]:
1835 table_options.append("WITHOUT ROWID")
1836
1837 if table.dialect_options["sqlite"]["strict"]:
1838 table_options.append("STRICT")
1839
1840 if table_options:
1841 return "\n " + ",\n ".join(table_options)
1842 else:
1843 return ""
1844
1845
1846class SQLiteTypeCompiler(compiler.GenericTypeCompiler):
1847 def visit_large_binary(self, type_, **kw):
1848 return self.visit_BLOB(type_)
1849
1850 def visit_DATETIME(self, type_, **kw):
1851 if (
1852 not isinstance(type_, _DateTimeMixin)
1853 or type_.format_is_text_affinity
1854 ):
1855 return super().visit_DATETIME(type_)
1856 else:
1857 return "DATETIME_CHAR"
1858
1859 def visit_DATE(self, type_, **kw):
1860 if (
1861 not isinstance(type_, _DateTimeMixin)
1862 or type_.format_is_text_affinity
1863 ):
1864 return super().visit_DATE(type_)
1865 else:
1866 return "DATE_CHAR"
1867
1868 def visit_TIME(self, type_, **kw):
1869 if (
1870 not isinstance(type_, _DateTimeMixin)
1871 or type_.format_is_text_affinity
1872 ):
1873 return super().visit_TIME(type_)
1874 else:
1875 return "TIME_CHAR"
1876
1877 def visit_JSON(self, type_, **kw):
1878 # note this name provides NUMERIC affinity, not TEXT.
1879 # should not be an issue unless the JSON value consists of a single
1880 # numeric value. JSONTEXT can be used if this case is required.
1881 return "JSON"
1882
1883
1884class SQLiteIdentifierPreparer(compiler.IdentifierPreparer):
1885 reserved_words = {
1886 "add",
1887 "after",
1888 "all",
1889 "alter",
1890 "analyze",
1891 "and",
1892 "as",
1893 "asc",
1894 "attach",
1895 "autoincrement",
1896 "before",
1897 "begin",
1898 "between",
1899 "by",
1900 "cascade",
1901 "case",
1902 "cast",
1903 "check",
1904 "collate",
1905 "column",
1906 "commit",
1907 "conflict",
1908 "constraint",
1909 "create",
1910 "cross",
1911 "current_date",
1912 "current_time",
1913 "current_timestamp",
1914 "database",
1915 "default",
1916 "deferrable",
1917 "deferred",
1918 "delete",
1919 "desc",
1920 "detach",
1921 "distinct",
1922 "drop",
1923 "each",
1924 "else",
1925 "end",
1926 "escape",
1927 "except",
1928 "exclusive",
1929 "exists",
1930 "explain",
1931 "false",
1932 "fail",
1933 "for",
1934 "foreign",
1935 "from",
1936 "full",
1937 "glob",
1938 "group",
1939 "having",
1940 "if",
1941 "ignore",
1942 "immediate",
1943 "in",
1944 "index",
1945 "indexed",
1946 "initially",
1947 "inner",
1948 "insert",
1949 "instead",
1950 "intersect",
1951 "into",
1952 "is",
1953 "isnull",
1954 "join",
1955 "key",
1956 "left",
1957 "like",
1958 "limit",
1959 "match",
1960 "natural",
1961 "not",
1962 "notnull",
1963 "null",
1964 "of",
1965 "offset",
1966 "on",
1967 "or",
1968 "order",
1969 "outer",
1970 "plan",
1971 "pragma",
1972 "primary",
1973 "query",
1974 "raise",
1975 "references",
1976 "reindex",
1977 "rename",
1978 "replace",
1979 "restrict",
1980 "right",
1981 "rollback",
1982 "row",
1983 "select",
1984 "set",
1985 "table",
1986 "temp",
1987 "temporary",
1988 "then",
1989 "to",
1990 "transaction",
1991 "trigger",
1992 "true",
1993 "union",
1994 "unique",
1995 "update",
1996 "using",
1997 "vacuum",
1998 "values",
1999 "view",
2000 "virtual",
2001 "when",
2002 "where",
2003 }
2004
2005
2006class SQLiteExecutionContext(default.DefaultExecutionContext):
2007 @util.memoized_property
2008 def _preserve_raw_colnames(self):
2009 return (
2010 not self.dialect._broken_dotted_colnames
2011 or self.execution_options.get("sqlite_raw_colnames", False)
2012 )
2013
2014 def _translate_colname(self, colname):
2015 # TODO: detect SQLite version 3.10.0 or greater;
2016 # see [ticket:3633]
2017
2018 # adjust for dotted column names. SQLite
2019 # in the case of UNION may store col names as
2020 # "tablename.colname", or if using an attached database,
2021 # "database.tablename.colname", in cursor.description
2022 if not self._preserve_raw_colnames and "." in colname:
2023 return colname.split(".")[-1], colname
2024 else:
2025 return colname, None
2026
2027
2028class SQLiteDialect(default.DefaultDialect):
2029 name = "sqlite"
2030 supports_alter = False
2031
2032 # SQlite supports "DEFAULT VALUES" but *does not* support
2033 # "VALUES (DEFAULT)"
2034 supports_default_values = True
2035 supports_default_metavalue = False
2036
2037 # sqlite issue:
2038 # https://github.com/python/cpython/issues/93421
2039 # note this parameter is no longer used by the ORM or default dialect
2040 # see #9414
2041 supports_sane_rowcount_returning = False
2042
2043 supports_empty_insert = False
2044 supports_cast = True
2045 supports_multivalues_insert = True
2046 use_insertmanyvalues = True
2047 tuple_in_values = True
2048 supports_statement_cache = True
2049 insert_null_pk_still_autoincrements = True
2050 insert_returning = True
2051 update_returning = True
2052 update_returning_multifrom = True
2053 delete_returning = True
2054 update_returning_multifrom = True
2055
2056 supports_default_metavalue = True
2057 """dialect supports INSERT... VALUES (DEFAULT) syntax"""
2058
2059 default_metavalue_token = "NULL"
2060 """for INSERT... VALUES (DEFAULT) syntax, the token to put in the
2061 parenthesis."""
2062
2063 default_paramstyle = "qmark"
2064 execution_ctx_cls = SQLiteExecutionContext
2065 statement_compiler = SQLiteCompiler
2066 ddl_compiler = SQLiteDDLCompiler
2067 type_compiler_cls = SQLiteTypeCompiler
2068 preparer = SQLiteIdentifierPreparer
2069 ischema_names = ischema_names
2070 colspecs = colspecs
2071
2072 construct_arguments = [
2073 (
2074 sa_schema.Table,
2075 {
2076 "autoincrement": False,
2077 "with_rowid": True,
2078 "strict": False,
2079 },
2080 ),
2081 (sa_schema.Index, {"where": None}),
2082 (
2083 sa_schema.Column,
2084 {
2085 "on_conflict_primary_key": None,
2086 "on_conflict_not_null": None,
2087 "on_conflict_unique": None,
2088 },
2089 ),
2090 (sa_schema.Constraint, {"on_conflict": None}),
2091 ]
2092
2093 _broken_fk_pragma_quotes = False
2094 _broken_dotted_colnames = False
2095
2096 def __init__(
2097 self,
2098 native_datetime=False,
2099 json_serializer=None,
2100 json_deserializer=None,
2101 **kwargs,
2102 ):
2103 default.DefaultDialect.__init__(self, **kwargs)
2104
2105 self._json_serializer = json_serializer
2106 self._json_deserializer = json_deserializer
2107
2108 # this flag used by pysqlite dialect, and perhaps others in the
2109 # future, to indicate the driver is handling date/timestamp
2110 # conversions (and perhaps datetime/time as well on some hypothetical
2111 # driver ?)
2112 self.native_datetime = native_datetime
2113
2114 if self.dbapi is not None:
2115 if self.dbapi.sqlite_version_info < (3, 7, 16):
2116 util.warn(
2117 "SQLite version %s is older than 3.7.16, and will not "
2118 "support right nested joins, as are sometimes used in "
2119 "more complex ORM scenarios. SQLAlchemy 1.4 and above "
2120 "no longer tries to rewrite these joins."
2121 % (self.dbapi.sqlite_version_info,)
2122 )
2123
2124 # NOTE: python 3.7 on fedora for me has SQLite 3.34.1. These
2125 # version checks are getting very stale.
2126 self._broken_dotted_colnames = self.dbapi.sqlite_version_info < (
2127 3,
2128 10,
2129 0,
2130 )
2131 self.supports_default_values = self.dbapi.sqlite_version_info >= (
2132 3,
2133 3,
2134 8,
2135 )
2136 self.supports_cast = self.dbapi.sqlite_version_info >= (3, 2, 3)
2137 self.supports_multivalues_insert = (
2138 # https://www.sqlite.org/releaselog/3_7_11.html
2139 self.dbapi.sqlite_version_info
2140 >= (3, 7, 11)
2141 )
2142 # see https://www.sqlalchemy.org/trac/ticket/2568
2143 # as well as https://www.sqlite.org/src/info/600482d161
2144 self._broken_fk_pragma_quotes = self.dbapi.sqlite_version_info < (
2145 3,
2146 6,
2147 14,
2148 )
2149
2150 if self.dbapi.sqlite_version_info < (3, 35) or util.pypy:
2151 self.update_returning = self.delete_returning = (
2152 self.insert_returning
2153 ) = False
2154
2155 if self.dbapi.sqlite_version_info < (3, 32, 0):
2156 # https://www.sqlite.org/limits.html
2157 self.insertmanyvalues_max_parameters = 999
2158
2159 _isolation_lookup = util.immutabledict(
2160 {"READ UNCOMMITTED": 1, "SERIALIZABLE": 0}
2161 )
2162
2163 def get_isolation_level_values(self, dbapi_connection):
2164 return list(self._isolation_lookup)
2165
2166 def set_isolation_level(self, dbapi_connection, level):
2167 isolation_level = self._isolation_lookup[level]
2168
2169 cursor = dbapi_connection.cursor()
2170 cursor.execute(f"PRAGMA read_uncommitted = {isolation_level}")
2171 cursor.close()
2172
2173 def get_isolation_level(self, dbapi_connection):
2174 cursor = dbapi_connection.cursor()
2175 cursor.execute("PRAGMA read_uncommitted")
2176 res = cursor.fetchone()
2177 if res:
2178 value = res[0]
2179 else:
2180 # https://www.sqlite.org/changes.html#version_3_3_3
2181 # "Optional READ UNCOMMITTED isolation (instead of the
2182 # default isolation level of SERIALIZABLE) and
2183 # table level locking when database connections
2184 # share a common cache.""
2185 # pre-SQLite 3.3.0 default to 0
2186 value = 0
2187 cursor.close()
2188 if value == 0:
2189 return "SERIALIZABLE"
2190 elif value == 1:
2191 return "READ UNCOMMITTED"
2192 else:
2193 assert False, "Unknown isolation level %s" % value
2194
2195 @reflection.cache
2196 def get_schema_names(self, connection, **kw):
2197 s = "PRAGMA database_list"
2198 dl = connection.exec_driver_sql(s)
2199
2200 return [db[1] for db in dl if db[1] != "temp"]
2201
2202 def _format_schema(self, schema, table_name):
2203 if schema is not None:
2204 qschema = self.identifier_preparer.quote_identifier(schema)
2205 name = f"{qschema}.{table_name}"
2206 else:
2207 name = table_name
2208 return name
2209
2210 def _sqlite_main_query(
2211 self,
2212 table: str,
2213 type_: str,
2214 schema: Optional[str],
2215 sqlite_include_internal: bool,
2216 ):
2217 main = self._format_schema(schema, table)
2218 if not sqlite_include_internal:
2219 filter_table = " AND name NOT LIKE 'sqlite~_%' ESCAPE '~'"
2220 else:
2221 filter_table = ""
2222 query = (
2223 f"SELECT name FROM {main} "
2224 f"WHERE type='{type_}'{filter_table} "
2225 "ORDER BY name"
2226 )
2227 return query
2228
2229 @reflection.cache
2230 def get_table_names(
2231 self, connection, schema=None, sqlite_include_internal=False, **kw
2232 ):
2233 query = self._sqlite_main_query(
2234 "sqlite_master", "table", schema, sqlite_include_internal
2235 )
2236 names = connection.exec_driver_sql(query).scalars().all()
2237 return names
2238
2239 @reflection.cache
2240 def get_temp_table_names(
2241 self, connection, sqlite_include_internal=False, **kw
2242 ):
2243 query = self._sqlite_main_query(
2244 "sqlite_temp_master", "table", None, sqlite_include_internal
2245 )
2246 names = connection.exec_driver_sql(query).scalars().all()
2247 return names
2248
2249 @reflection.cache
2250 def get_temp_view_names(
2251 self, connection, sqlite_include_internal=False, **kw
2252 ):
2253 query = self._sqlite_main_query(
2254 "sqlite_temp_master", "view", None, sqlite_include_internal
2255 )
2256 names = connection.exec_driver_sql(query).scalars().all()
2257 return names
2258
2259 @reflection.cache
2260 def has_table(self, connection, table_name, schema=None, **kw):
2261 self._ensure_has_table_connection(connection)
2262
2263 if schema is not None and schema not in self.get_schema_names(
2264 connection, **kw
2265 ):
2266 return False
2267
2268 info = self._get_table_pragma(
2269 connection, "table_info", table_name, schema=schema
2270 )
2271 return bool(info)
2272
2273 def _get_default_schema_name(self, connection):
2274 return "main"
2275
2276 @reflection.cache
2277 def get_view_names(
2278 self, connection, schema=None, sqlite_include_internal=False, **kw
2279 ):
2280 query = self._sqlite_main_query(
2281 "sqlite_master", "view", schema, sqlite_include_internal
2282 )
2283 names = connection.exec_driver_sql(query).scalars().all()
2284 return names
2285
2286 @reflection.cache
2287 def get_view_definition(self, connection, view_name, schema=None, **kw):
2288 if schema is not None:
2289 qschema = self.identifier_preparer.quote_identifier(schema)
2290 master = f"{qschema}.sqlite_master"
2291 s = ("SELECT sql FROM %s WHERE name = ? AND type='view'") % (
2292 master,
2293 )
2294 rs = connection.exec_driver_sql(s, (view_name,))
2295 else:
2296 try:
2297 s = (
2298 "SELECT sql FROM "
2299 " (SELECT * FROM sqlite_master UNION ALL "
2300 " SELECT * FROM sqlite_temp_master) "
2301 "WHERE name = ? "
2302 "AND type='view'"
2303 )
2304 rs = connection.exec_driver_sql(s, (view_name,))
2305 except exc.DBAPIError:
2306 s = (
2307 "SELECT sql FROM sqlite_master WHERE name = ? "
2308 "AND type='view'"
2309 )
2310 rs = connection.exec_driver_sql(s, (view_name,))
2311
2312 result = rs.fetchall()
2313 if result:
2314 return result[0].sql
2315 else:
2316 raise exc.NoSuchTableError(
2317 f"{schema}.{view_name}" if schema else view_name
2318 )
2319
2320 @reflection.cache
2321 def get_columns(self, connection, table_name, schema=None, **kw):
2322 pragma = "table_info"
2323 # computed columns are threaded as hidden, they require table_xinfo
2324 if self.server_version_info >= (3, 31):
2325 pragma = "table_xinfo"
2326 info = self._get_table_pragma(
2327 connection, pragma, table_name, schema=schema
2328 )
2329 columns = []
2330 tablesql = None
2331 for row in info:
2332 name = row[1]
2333 type_ = row[2].upper()
2334 nullable = not row[3]
2335 default = row[4]
2336 primary_key = row[5]
2337 hidden = row[6] if pragma == "table_xinfo" else 0
2338
2339 # hidden has value 0 for normal columns, 1 for hidden columns,
2340 # 2 for computed virtual columns and 3 for computed stored columns
2341 # https://www.sqlite.org/src/info/069351b85f9a706f60d3e98fbc8aaf40c374356b967c0464aede30ead3d9d18b
2342 if hidden == 1:
2343 continue
2344
2345 generated = bool(hidden)
2346 persisted = hidden == 3
2347
2348 if tablesql is None and generated:
2349 tablesql = self._get_table_sql(
2350 connection, table_name, schema, **kw
2351 )
2352 # remove create table
2353 match = re.match(
2354 r"create table .*?\((.*)\)$",
2355 tablesql.strip(),
2356 re.DOTALL | re.IGNORECASE,
2357 )
2358 assert match, f"create table not found in {tablesql}"
2359 tablesql = match.group(1).strip()
2360
2361 columns.append(
2362 self._get_column_info(
2363 name,
2364 type_,
2365 nullable,
2366 default,
2367 primary_key,
2368 generated,
2369 persisted,
2370 tablesql,
2371 )
2372 )
2373 if columns:
2374 return columns
2375 elif not self.has_table(connection, table_name, schema):
2376 raise exc.NoSuchTableError(
2377 f"{schema}.{table_name}" if schema else table_name
2378 )
2379 else:
2380 return ReflectionDefaults.columns()
2381
2382 def _get_column_info(
2383 self,
2384 name,
2385 type_,
2386 nullable,
2387 default,
2388 primary_key,
2389 generated,
2390 persisted,
2391 tablesql,
2392 ):
2393 if generated:
2394 # the type of a column "cc INTEGER GENERATED ALWAYS AS (1 + 42)"
2395 # somehow is "INTEGER GENERATED ALWAYS"
2396 type_ = re.sub("generated", "", type_, flags=re.IGNORECASE)
2397 type_ = re.sub("always", "", type_, flags=re.IGNORECASE).strip()
2398
2399 coltype = self._resolve_type_affinity(type_)
2400
2401 if default is not None:
2402 default = str(default)
2403
2404 colspec = {
2405 "name": name,
2406 "type": coltype,
2407 "nullable": nullable,
2408 "default": default,
2409 "primary_key": primary_key,
2410 }
2411 if generated:
2412 sqltext = ""
2413 if tablesql:
2414 pattern = (
2415 r"[^,]*\s+GENERATED\s+ALWAYS\s+AS"
2416 r"\s+\((.*)\)\s*(?:virtual|stored)?"
2417 )
2418 match = re.search(
2419 re.escape(name) + pattern, tablesql, re.IGNORECASE
2420 )
2421 if match:
2422 sqltext = match.group(1)
2423 colspec["computed"] = {"sqltext": sqltext, "persisted": persisted}
2424 return colspec
2425
2426 def _resolve_type_affinity(self, type_):
2427 """Return a data type from a reflected column, using affinity rules.
2428
2429 SQLite's goal for universal compatibility introduces some complexity
2430 during reflection, as a column's defined type might not actually be a
2431 type that SQLite understands - or indeed, my not be defined *at all*.
2432 Internally, SQLite handles this with a 'data type affinity' for each
2433 column definition, mapping to one of 'TEXT', 'NUMERIC', 'INTEGER',
2434 'REAL', or 'NONE' (raw bits). The algorithm that determines this is
2435 listed in https://www.sqlite.org/datatype3.html section 2.1.
2436
2437 This method allows SQLAlchemy to support that algorithm, while still
2438 providing access to smarter reflection utilities by recognizing
2439 column definitions that SQLite only supports through affinity (like
2440 DATE and DOUBLE).
2441
2442 """
2443 match = re.match(r"([\w ]+)(\(.*?\))?", type_)
2444 if match:
2445 coltype = match.group(1)
2446 args = match.group(2)
2447 else:
2448 coltype = ""
2449 args = ""
2450
2451 if coltype in self.ischema_names:
2452 coltype = self.ischema_names[coltype]
2453 elif "INT" in coltype:
2454 coltype = sqltypes.INTEGER
2455 elif "CHAR" in coltype or "CLOB" in coltype or "TEXT" in coltype:
2456 coltype = sqltypes.TEXT
2457 elif "BLOB" in coltype or not coltype:
2458 coltype = sqltypes.NullType
2459 elif "REAL" in coltype or "FLOA" in coltype or "DOUB" in coltype:
2460 coltype = sqltypes.REAL
2461 else:
2462 coltype = sqltypes.NUMERIC
2463
2464 if args is not None:
2465 args = re.findall(r"(\d+)", args)
2466 try:
2467 coltype = coltype(*[int(a) for a in args])
2468 except TypeError:
2469 util.warn(
2470 "Could not instantiate type %s with "
2471 "reflected arguments %s; using no arguments."
2472 % (coltype, args)
2473 )
2474 coltype = coltype()
2475 else:
2476 coltype = coltype()
2477
2478 return coltype
2479
2480 @reflection.cache
2481 def get_pk_constraint(self, connection, table_name, schema=None, **kw):
2482 constraint_name = None
2483 table_data = self._get_table_sql(connection, table_name, schema=schema)
2484 if table_data:
2485 PK_PATTERN = r"CONSTRAINT (\w+) PRIMARY KEY"
2486 result = re.search(PK_PATTERN, table_data, re.I)
2487 constraint_name = result.group(1) if result else None
2488
2489 cols = self.get_columns(connection, table_name, schema, **kw)
2490 # consider only pk columns. This also avoids sorting the cached
2491 # value returned by get_columns
2492 cols = [col for col in cols if col.get("primary_key", 0) > 0]
2493 cols.sort(key=lambda col: col.get("primary_key"))
2494 pkeys = [col["name"] for col in cols]
2495
2496 if pkeys:
2497 return {"constrained_columns": pkeys, "name": constraint_name}
2498 else:
2499 return ReflectionDefaults.pk_constraint()
2500
2501 @reflection.cache
2502 def get_foreign_keys(self, connection, table_name, schema=None, **kw):
2503 # sqlite makes this *extremely difficult*.
2504 # First, use the pragma to get the actual FKs.
2505 pragma_fks = self._get_table_pragma(
2506 connection, "foreign_key_list", table_name, schema=schema
2507 )
2508
2509 fks = {}
2510
2511 for row in pragma_fks:
2512 (numerical_id, rtbl, lcol, rcol) = (row[0], row[2], row[3], row[4])
2513
2514 if not rcol:
2515 # no referred column, which means it was not named in the
2516 # original DDL. The referred columns of the foreign key
2517 # constraint are therefore the primary key of the referred
2518 # table.
2519 try:
2520 referred_pk = self.get_pk_constraint(
2521 connection, rtbl, schema=schema, **kw
2522 )
2523 referred_columns = referred_pk["constrained_columns"]
2524 except exc.NoSuchTableError:
2525 # ignore not existing parents
2526 referred_columns = []
2527 else:
2528 # note we use this list only if this is the first column
2529 # in the constraint. for subsequent columns we ignore the
2530 # list and append "rcol" if present.
2531 referred_columns = []
2532
2533 if self._broken_fk_pragma_quotes:
2534 rtbl = re.sub(r"^[\"\[`\']|[\"\]`\']$", "", rtbl)
2535
2536 if numerical_id in fks:
2537 fk = fks[numerical_id]
2538 else:
2539 fk = fks[numerical_id] = {
2540 "name": None,
2541 "constrained_columns": [],
2542 "referred_schema": schema,
2543 "referred_table": rtbl,
2544 "referred_columns": referred_columns,
2545 "options": {},
2546 }
2547 fks[numerical_id] = fk
2548
2549 fk["constrained_columns"].append(lcol)
2550
2551 if rcol:
2552 fk["referred_columns"].append(rcol)
2553
2554 def fk_sig(constrained_columns, referred_table, referred_columns):
2555 return (
2556 tuple(constrained_columns)
2557 + (referred_table,)
2558 + tuple(referred_columns)
2559 )
2560
2561 # then, parse the actual SQL and attempt to find DDL that matches
2562 # the names as well. SQLite saves the DDL in whatever format
2563 # it was typed in as, so need to be liberal here.
2564
2565 keys_by_signature = {
2566 fk_sig(
2567 fk["constrained_columns"],
2568 fk["referred_table"],
2569 fk["referred_columns"],
2570 ): fk
2571 for fk in fks.values()
2572 }
2573
2574 table_data = self._get_table_sql(connection, table_name, schema=schema)
2575
2576 def parse_fks():
2577 if table_data is None:
2578 # system tables, etc.
2579 return
2580
2581 # note that we already have the FKs from PRAGMA above. This whole
2582 # regexp thing is trying to locate additional detail about the
2583 # FKs, namely the name of the constraint and other options.
2584 # so parsing the columns is really about matching it up to what
2585 # we already have.
2586 FK_PATTERN = (
2587 r"(?:CONSTRAINT (\w+) +)?"
2588 r"FOREIGN KEY *\( *(.+?) *\) +"
2589 r'REFERENCES +(?:(?:"(.+?)")|([a-z0-9_]+)) *\( *((?:(?:"[^"]+"|[a-z0-9_]+) *(?:, *)?)+)\) *' # noqa: E501
2590 r"((?:ON (?:DELETE|UPDATE) "
2591 r"(?:SET NULL|SET DEFAULT|CASCADE|RESTRICT|NO ACTION) *)*)"
2592 r"((?:NOT +)?DEFERRABLE)?"
2593 r"(?: +INITIALLY +(DEFERRED|IMMEDIATE))?"
2594 )
2595 for match in re.finditer(FK_PATTERN, table_data, re.I):
2596 (
2597 constraint_name,
2598 constrained_columns,
2599 referred_quoted_name,
2600 referred_name,
2601 referred_columns,
2602 onupdatedelete,
2603 deferrable,
2604 initially,
2605 ) = match.group(1, 2, 3, 4, 5, 6, 7, 8)
2606 constrained_columns = list(
2607 self._find_cols_in_sig(constrained_columns)
2608 )
2609 if not referred_columns:
2610 referred_columns = constrained_columns
2611 else:
2612 referred_columns = list(
2613 self._find_cols_in_sig(referred_columns)
2614 )
2615 referred_name = referred_quoted_name or referred_name
2616 options = {}
2617
2618 for token in re.split(r" *\bON\b *", onupdatedelete.upper()):
2619 if token.startswith("DELETE"):
2620 ondelete = token[6:].strip()
2621 if ondelete and ondelete != "NO ACTION":
2622 options["ondelete"] = ondelete
2623 elif token.startswith("UPDATE"):
2624 onupdate = token[6:].strip()
2625 if onupdate and onupdate != "NO ACTION":
2626 options["onupdate"] = onupdate
2627
2628 if deferrable:
2629 options["deferrable"] = "NOT" not in deferrable.upper()
2630 if initially:
2631 options["initially"] = initially.upper()
2632
2633 yield (
2634 constraint_name,
2635 constrained_columns,
2636 referred_name,
2637 referred_columns,
2638 options,
2639 )
2640
2641 fkeys = []
2642
2643 for (
2644 constraint_name,
2645 constrained_columns,
2646 referred_name,
2647 referred_columns,
2648 options,
2649 ) in parse_fks():
2650 sig = fk_sig(constrained_columns, referred_name, referred_columns)
2651 if sig not in keys_by_signature:
2652 util.warn(
2653 "WARNING: SQL-parsed foreign key constraint "
2654 "'%s' could not be located in PRAGMA "
2655 "foreign_keys for table %s" % (sig, table_name)
2656 )
2657 continue
2658 key = keys_by_signature.pop(sig)
2659 key["name"] = constraint_name
2660 key["options"] = options
2661 fkeys.append(key)
2662 # assume the remainders are the unnamed, inline constraints, just
2663 # use them as is as it's extremely difficult to parse inline
2664 # constraints
2665 fkeys.extend(keys_by_signature.values())
2666 if fkeys:
2667 return fkeys
2668 else:
2669 return ReflectionDefaults.foreign_keys()
2670
2671 def _find_cols_in_sig(self, sig):
2672 for match in re.finditer(r'(?:"(.+?)")|([a-z0-9_]+)', sig, re.I):
2673 yield match.group(1) or match.group(2)
2674
2675 @reflection.cache
2676 def get_unique_constraints(
2677 self, connection, table_name, schema=None, **kw
2678 ):
2679 auto_index_by_sig = {}
2680 for idx in self.get_indexes(
2681 connection,
2682 table_name,
2683 schema=schema,
2684 include_auto_indexes=True,
2685 **kw,
2686 ):
2687 if not idx["name"].startswith("sqlite_autoindex"):
2688 continue
2689 sig = tuple(idx["column_names"])
2690 auto_index_by_sig[sig] = idx
2691
2692 table_data = self._get_table_sql(
2693 connection, table_name, schema=schema, **kw
2694 )
2695 unique_constraints = []
2696
2697 def parse_uqs():
2698 if table_data is None:
2699 return
2700 UNIQUE_PATTERN = r'(?:CONSTRAINT "?(.+?)"? +)?UNIQUE *\((.+?)\)'
2701 INLINE_UNIQUE_PATTERN = (
2702 r'(?:(".+?")|(?:[\[`])?([a-z0-9_]+)(?:[\]`])?)[\t ]'
2703 r"+[a-z0-9_ ]+?[\t ]+UNIQUE"
2704 )
2705
2706 for match in re.finditer(UNIQUE_PATTERN, table_data, re.I):
2707 name, cols = match.group(1, 2)
2708 yield name, list(self._find_cols_in_sig(cols))
2709
2710 # we need to match inlines as well, as we seek to differentiate
2711 # a UNIQUE constraint from a UNIQUE INDEX, even though these
2712 # are kind of the same thing :)
2713 for match in re.finditer(INLINE_UNIQUE_PATTERN, table_data, re.I):
2714 cols = list(
2715 self._find_cols_in_sig(match.group(1) or match.group(2))
2716 )
2717 yield None, cols
2718
2719 for name, cols in parse_uqs():
2720 sig = tuple(cols)
2721 if sig in auto_index_by_sig:
2722 auto_index_by_sig.pop(sig)
2723 parsed_constraint = {"name": name, "column_names": cols}
2724 unique_constraints.append(parsed_constraint)
2725 # NOTE: auto_index_by_sig might not be empty here,
2726 # the PRIMARY KEY may have an entry.
2727 if unique_constraints:
2728 return unique_constraints
2729 else:
2730 return ReflectionDefaults.unique_constraints()
2731
2732 @reflection.cache
2733 def get_check_constraints(self, connection, table_name, schema=None, **kw):
2734 table_data = self._get_table_sql(
2735 connection, table_name, schema=schema, **kw
2736 )
2737
2738 # NOTE NOTE NOTE
2739 # DO NOT CHANGE THIS REGULAR EXPRESSION. There is no known way
2740 # to parse CHECK constraints that contain newlines themselves using
2741 # regular expressions, and the approach here relies upon each
2742 # individual
2743 # CHECK constraint being on a single line by itself. This
2744 # necessarily makes assumptions as to how the CREATE TABLE
2745 # was emitted. A more comprehensive DDL parsing solution would be
2746 # needed to improve upon the current situation. See #11840 for
2747 # background
2748 CHECK_PATTERN = r"(?:CONSTRAINT (.+) +)?CHECK *\( *(.+) *\),? *"
2749 cks = []
2750
2751 for match in re.finditer(CHECK_PATTERN, table_data or "", re.I):
2752
2753 name = match.group(1)
2754
2755 if name:
2756 name = re.sub(r'^"|"$', "", name)
2757
2758 cks.append({"sqltext": match.group(2), "name": name})
2759 cks.sort(key=lambda d: d["name"] or "~") # sort None as last
2760 if cks:
2761 return cks
2762 else:
2763 return ReflectionDefaults.check_constraints()
2764
2765 @reflection.cache
2766 def get_indexes(self, connection, table_name, schema=None, **kw):
2767 pragma_indexes = self._get_table_pragma(
2768 connection, "index_list", table_name, schema=schema
2769 )
2770 indexes = []
2771
2772 # regular expression to extract the filter predicate of a partial
2773 # index. this could fail to extract the predicate correctly on
2774 # indexes created like
2775 # CREATE INDEX i ON t (col || ') where') WHERE col <> ''
2776 # but as this function does not support expression-based indexes
2777 # this case does not occur.
2778 partial_pred_re = re.compile(r"\)\s+where\s+(.+)", re.IGNORECASE)
2779
2780 if schema:
2781 schema_expr = "%s." % self.identifier_preparer.quote_identifier(
2782 schema
2783 )
2784 else:
2785 schema_expr = ""
2786
2787 include_auto_indexes = kw.pop("include_auto_indexes", False)
2788 for row in pragma_indexes:
2789 # ignore implicit primary key index.
2790 # https://www.mail-archive.com/sqlite-users@sqlite.org/msg30517.html
2791 if not include_auto_indexes and row[1].startswith(
2792 "sqlite_autoindex"
2793 ):
2794 continue
2795 indexes.append(
2796 dict(
2797 name=row[1],
2798 column_names=[],
2799 unique=row[2],
2800 dialect_options={},
2801 )
2802 )
2803
2804 # check partial indexes
2805 if len(row) >= 5 and row[4]:
2806 s = (
2807 "SELECT sql FROM %(schema)ssqlite_master "
2808 "WHERE name = ? "
2809 "AND type = 'index'" % {"schema": schema_expr}
2810 )
2811 rs = connection.exec_driver_sql(s, (row[1],))
2812 index_sql = rs.scalar()
2813 predicate_match = partial_pred_re.search(index_sql)
2814 if predicate_match is None:
2815 # unless the regex is broken this case shouldn't happen
2816 # because we know this is a partial index, so the
2817 # definition sql should match the regex
2818 util.warn(
2819 "Failed to look up filter predicate of "
2820 "partial index %s" % row[1]
2821 )
2822 else:
2823 predicate = predicate_match.group(1)
2824 indexes[-1]["dialect_options"]["sqlite_where"] = text(
2825 predicate
2826 )
2827
2828 # loop thru unique indexes to get the column names.
2829 for idx in list(indexes):
2830 pragma_index = self._get_table_pragma(
2831 connection, "index_info", idx["name"], schema=schema
2832 )
2833
2834 for row in pragma_index:
2835 if row[2] is None:
2836 util.warn(
2837 "Skipped unsupported reflection of "
2838 "expression-based index %s" % idx["name"]
2839 )
2840 indexes.remove(idx)
2841 break
2842 else:
2843 idx["column_names"].append(row[2])
2844
2845 indexes.sort(key=lambda d: d["name"] or "~") # sort None as last
2846 if indexes:
2847 return indexes
2848 elif not self.has_table(connection, table_name, schema):
2849 raise exc.NoSuchTableError(
2850 f"{schema}.{table_name}" if schema else table_name
2851 )
2852 else:
2853 return ReflectionDefaults.indexes()
2854
2855 def _is_sys_table(self, table_name):
2856 return table_name in {
2857 "sqlite_schema",
2858 "sqlite_master",
2859 "sqlite_temp_schema",
2860 "sqlite_temp_master",
2861 }
2862
2863 @reflection.cache
2864 def _get_table_sql(self, connection, table_name, schema=None, **kw):
2865 if schema:
2866 schema_expr = "%s." % (
2867 self.identifier_preparer.quote_identifier(schema)
2868 )
2869 else:
2870 schema_expr = ""
2871 try:
2872 s = (
2873 "SELECT sql FROM "
2874 " (SELECT * FROM %(schema)ssqlite_master UNION ALL "
2875 " SELECT * FROM %(schema)ssqlite_temp_master) "
2876 "WHERE name = ? "
2877 "AND type in ('table', 'view')" % {"schema": schema_expr}
2878 )
2879 rs = connection.exec_driver_sql(s, (table_name,))
2880 except exc.DBAPIError:
2881 s = (
2882 "SELECT sql FROM %(schema)ssqlite_master "
2883 "WHERE name = ? "
2884 "AND type in ('table', 'view')" % {"schema": schema_expr}
2885 )
2886 rs = connection.exec_driver_sql(s, (table_name,))
2887 value = rs.scalar()
2888 if value is None and not self._is_sys_table(table_name):
2889 raise exc.NoSuchTableError(f"{schema_expr}{table_name}")
2890 return value
2891
2892 def _get_table_pragma(self, connection, pragma, table_name, schema=None):
2893 quote = self.identifier_preparer.quote_identifier
2894 if schema is not None:
2895 statements = [f"PRAGMA {quote(schema)}."]
2896 else:
2897 # because PRAGMA looks in all attached databases if no schema
2898 # given, need to specify "main" schema, however since we want
2899 # 'temp' tables in the same namespace as 'main', need to run
2900 # the PRAGMA twice
2901 statements = ["PRAGMA main.", "PRAGMA temp."]
2902
2903 qtable = quote(table_name)
2904 for statement in statements:
2905 statement = f"{statement}{pragma}({qtable})"
2906 cursor = connection.exec_driver_sql(statement)
2907 if not cursor._soft_closed:
2908 # work around SQLite issue whereby cursor.description
2909 # is blank when PRAGMA returns no rows:
2910 # https://www.sqlite.org/cvstrac/tktview?tn=1884
2911 result = cursor.fetchall()
2912 else:
2913 result = []
2914 if result:
2915 return result
2916 else:
2917 return []