/rust/registry/src/github.com-1ecc6299db9ec823/num-rational-0.2.4/src/lib.rs
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
2 | | // file at the top-level directory of this distribution and at |
3 | | // http://rust-lang.org/COPYRIGHT. |
4 | | // |
5 | | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | | // option. This file may not be copied, modified, or distributed |
9 | | // except according to those terms. |
10 | | |
11 | | //! Rational numbers |
12 | | //! |
13 | | //! ## Compatibility |
14 | | //! |
15 | | //! The `num-rational` crate is tested for rustc 1.15 and greater. |
16 | | |
17 | | #![doc(html_root_url = "https://docs.rs/num-rational/0.2")] |
18 | | #![no_std] |
19 | | |
20 | | #[cfg(feature = "bigint")] |
21 | | extern crate num_bigint as bigint; |
22 | | #[cfg(feature = "serde")] |
23 | | extern crate serde; |
24 | | |
25 | | extern crate num_integer as integer; |
26 | | extern crate num_traits as traits; |
27 | | |
28 | | #[cfg(feature = "std")] |
29 | | #[cfg_attr(test, macro_use)] |
30 | | extern crate std; |
31 | | |
32 | | use core::cmp; |
33 | | use core::fmt; |
34 | | use core::hash::{Hash, Hasher}; |
35 | | use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; |
36 | | use core::str::FromStr; |
37 | | #[cfg(feature = "std")] |
38 | | use std::error::Error; |
39 | | |
40 | | #[cfg(feature = "bigint")] |
41 | | use bigint::{BigInt, BigUint, Sign}; |
42 | | |
43 | | use integer::Integer; |
44 | | use traits::float::FloatCore; |
45 | | use traits::{ |
46 | | Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Inv, Num, NumCast, One, |
47 | | Pow, Signed, Zero, |
48 | | }; |
49 | | |
50 | | /// Represents the ratio between two numbers. |
51 | 0 | #[derive(Copy, Clone, Debug)] |
52 | | #[allow(missing_docs)] |
53 | | pub struct Ratio<T> { |
54 | | /// Numerator. |
55 | | numer: T, |
56 | | /// Denominator. |
57 | | denom: T, |
58 | | } |
59 | | |
60 | | /// Alias for a `Ratio` of machine-sized integers. |
61 | | pub type Rational = Ratio<isize>; |
62 | | /// Alias for a `Ratio` of 32-bit-sized integers. |
63 | | pub type Rational32 = Ratio<i32>; |
64 | | /// Alias for a `Ratio` of 64-bit-sized integers. |
65 | | pub type Rational64 = Ratio<i64>; |
66 | | |
67 | | #[cfg(feature = "bigint")] |
68 | | /// Alias for arbitrary precision rationals. |
69 | | pub type BigRational = Ratio<BigInt>; |
70 | | |
71 | | macro_rules! maybe_const { |
72 | | ($( $(#[$attr:meta])* pub fn $name:ident $args:tt -> $ret:ty $body:block )*) => {$( |
73 | | #[cfg(has_const_fn)] |
74 | | $(#[$attr])* pub const fn $name $args -> $ret $body |
75 | | |
76 | | #[cfg(not(has_const_fn))] |
77 | | $(#[$attr])* pub fn $name $args -> $ret $body |
78 | | )*} |
79 | | } |
80 | | |
81 | | /// These method are `const` for Rust 1.31 and later. |
82 | | impl<T> Ratio<T> { |
83 | | maybe_const! { |
84 | | /// Creates a `Ratio` without checking for `denom == 0` or reducing. |
85 | | #[inline] |
86 | 0 | pub fn new_raw(numer: T, denom: T) -> Ratio<T> { |
87 | 0 | Ratio { |
88 | 0 | numer: numer, |
89 | 0 | denom: denom, |
90 | 0 | } |
91 | 0 | } Unexecuted instantiation: <num_rational::Ratio<u8>>::new_raw Unexecuted instantiation: <num_rational::Ratio<usize>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i32>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i64>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u16>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i128>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i16>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u32>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u64>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i8>>::new_raw Unexecuted instantiation: <num_rational::Ratio<isize>>::new_raw Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u128>>::new_raw |
92 | | |
93 | | /// Gets an immutable reference to the numerator. |
94 | | #[inline] |
95 | 0 | pub fn numer(&self) -> &T { |
96 | 0 | &self.numer |
97 | 0 | } |
98 | | |
99 | | /// Gets an immutable reference to the denominator. |
100 | | #[inline] |
101 | 0 | pub fn denom(&self) -> &T { |
102 | 0 | &self.denom |
103 | 0 | } |
104 | | } |
105 | | } |
106 | | |
107 | | impl<T: Clone + Integer> Ratio<T> { |
108 | | /// Creates a new `Ratio`. Fails if `denom` is zero. |
109 | | #[inline] |
110 | 0 | pub fn new(numer: T, denom: T) -> Ratio<T> { |
111 | 0 | let mut ret = Ratio::new_raw(numer, denom); |
112 | 0 | ret.reduce(); |
113 | 0 | ret |
114 | 0 | } Unexecuted instantiation: <num_rational::Ratio<isize>>::new Unexecuted instantiation: <num_rational::Ratio<u8>>::new Unexecuted instantiation: <num_rational::Ratio<i64>>::new Unexecuted instantiation: <num_rational::Ratio<usize>>::new Unexecuted instantiation: <num_rational::Ratio<u16>>::new Unexecuted instantiation: <num_rational::Ratio<i32>>::new Unexecuted instantiation: <num_rational::Ratio<i128>>::new Unexecuted instantiation: <num_rational::Ratio<i16>>::new Unexecuted instantiation: <num_rational::Ratio<u32>>::new Unexecuted instantiation: <num_rational::Ratio<u64>>::new Unexecuted instantiation: <num_rational::Ratio<i8>>::new Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::new Unexecuted instantiation: <num_rational::Ratio<u128>>::new |
115 | | |
116 | | /// Creates a `Ratio` representing the integer `t`. |
117 | | #[inline] |
118 | 0 | pub fn from_integer(t: T) -> Ratio<T> { |
119 | 0 | Ratio::new_raw(t, One::one()) |
120 | 0 | } Unexecuted instantiation: <num_rational::Ratio<usize>>::from_integer Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u128>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i32>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u8>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i64>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u16>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u64>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i8>>::from_integer Unexecuted instantiation: <num_rational::Ratio<isize>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i128>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i16>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u32>>::from_integer |
121 | | |
122 | | /// Converts to an integer, rounding towards zero. |
123 | | #[inline] |
124 | 0 | pub fn to_integer(&self) -> T { |
125 | 0 | self.trunc().numer |
126 | 0 | } |
127 | | |
128 | | /// Returns true if the rational number is an integer (denominator is 1). |
129 | | #[inline] |
130 | 0 | pub fn is_integer(&self) -> bool { |
131 | 0 | self.denom.is_one() |
132 | 0 | } |
133 | | |
134 | | /// Puts self into lowest terms, with denom > 0. |
135 | 0 | fn reduce(&mut self) { |
136 | 0 | if self.denom.is_zero() { |
137 | 0 | panic!("denominator == 0"); |
138 | 0 | } |
139 | 0 | if self.numer.is_zero() { |
140 | 0 | self.denom.set_one(); |
141 | 0 | return; |
142 | 0 | } |
143 | 0 | if self.numer == self.denom { |
144 | 0 | self.set_one(); |
145 | 0 | return; |
146 | 0 | } |
147 | 0 | let g: T = self.numer.gcd(&self.denom); |
148 | 0 |
|
149 | 0 | // FIXME(#5992): assignment operator overloads |
150 | 0 | // self.numer /= g; |
151 | 0 | // T: Clone + Integer != T: Clone + NumAssign |
152 | 0 | self.numer = self.numer.clone() / g.clone(); |
153 | 0 | // FIXME(#5992): assignment operator overloads |
154 | 0 | // self.denom /= g; |
155 | 0 | // T: Clone + Integer != T: Clone + NumAssign |
156 | 0 | self.denom = self.denom.clone() / g; |
157 | 0 |
|
158 | 0 | // keep denom positive! |
159 | 0 | if self.denom < T::zero() { |
160 | 0 | self.numer = T::zero() - self.numer.clone(); |
161 | 0 | self.denom = T::zero() - self.denom.clone(); |
162 | 0 | } |
163 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32>>::reduce Unexecuted instantiation: <num_rational::Ratio<i8>>::reduce Unexecuted instantiation: <num_rational::Ratio<usize>>::reduce Unexecuted instantiation: <num_rational::Ratio<u64>>::reduce Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce Unexecuted instantiation: <num_rational::Ratio<u16>>::reduce Unexecuted instantiation: <num_rational::Ratio<isize>>::reduce Unexecuted instantiation: <num_rational::Ratio<i64>>::reduce Unexecuted instantiation: <num_rational::Ratio<i16>>::reduce Unexecuted instantiation: <num_rational::Ratio<u128>>::reduce Unexecuted instantiation: <num_rational::Ratio<u32>>::reduce Unexecuted instantiation: <num_rational::Ratio<u8>>::reduce Unexecuted instantiation: <num_rational::Ratio<i128>>::reduce |
164 | | |
165 | | /// Returns a reduced copy of self. |
166 | | /// |
167 | | /// In general, it is not necessary to use this method, as the only |
168 | | /// method of procuring a non-reduced fraction is through `new_raw`. |
169 | 0 | pub fn reduced(&self) -> Ratio<T> { |
170 | 0 | let mut ret = self.clone(); |
171 | 0 | ret.reduce(); |
172 | 0 | ret |
173 | 0 | } |
174 | | |
175 | | /// Returns the reciprocal. |
176 | | /// |
177 | | /// Fails if the `Ratio` is zero. |
178 | | #[inline] |
179 | 0 | pub fn recip(&self) -> Ratio<T> { |
180 | 0 | match self.numer.cmp(&T::zero()) { |
181 | 0 | cmp::Ordering::Equal => panic!("numerator == 0"), |
182 | 0 | cmp::Ordering::Greater => Ratio::new_raw(self.denom.clone(), self.numer.clone()), |
183 | 0 | cmp::Ordering::Less => Ratio::new_raw( |
184 | 0 | T::zero() - self.denom.clone(), |
185 | 0 | T::zero() - self.numer.clone(), |
186 | 0 | ), |
187 | | } |
188 | 0 | } |
189 | | |
190 | | /// Rounds towards minus infinity. |
191 | | #[inline] |
192 | 0 | pub fn floor(&self) -> Ratio<T> { |
193 | 0 | if *self < Zero::zero() { |
194 | 0 | let one: T = One::one(); |
195 | 0 | Ratio::from_integer( |
196 | 0 | (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), |
197 | 0 | ) |
198 | | } else { |
199 | 0 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
200 | | } |
201 | 0 | } |
202 | | |
203 | | /// Rounds towards plus infinity. |
204 | | #[inline] |
205 | 0 | pub fn ceil(&self) -> Ratio<T> { |
206 | 0 | if *self < Zero::zero() { |
207 | 0 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
208 | | } else { |
209 | 0 | let one: T = One::one(); |
210 | 0 | Ratio::from_integer( |
211 | 0 | (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), |
212 | 0 | ) |
213 | | } |
214 | 0 | } |
215 | | |
216 | | /// Rounds to the nearest integer. Rounds half-way cases away from zero. |
217 | | #[inline] |
218 | 0 | pub fn round(&self) -> Ratio<T> { |
219 | 0 | let zero: Ratio<T> = Zero::zero(); |
220 | 0 | let one: T = One::one(); |
221 | 0 | let two: T = one.clone() + one.clone(); |
222 | 0 |
|
223 | 0 | // Find unsigned fractional part of rational number |
224 | 0 | let mut fractional = self.fract(); |
225 | 0 | if fractional < zero { |
226 | 0 | fractional = zero - fractional |
227 | 0 | }; |
228 | | |
229 | | // The algorithm compares the unsigned fractional part with 1/2, that |
230 | | // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use |
231 | | // a >= (b/2)+1. This avoids overflow issues. |
232 | 0 | let half_or_larger = if fractional.denom().is_even() { |
233 | 0 | *fractional.numer() >= fractional.denom().clone() / two.clone() |
234 | | } else { |
235 | 0 | *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone() |
236 | | }; |
237 | | |
238 | 0 | if half_or_larger { |
239 | 0 | let one: Ratio<T> = One::one(); |
240 | 0 | if *self >= Zero::zero() { |
241 | 0 | self.trunc() + one |
242 | | } else { |
243 | 0 | self.trunc() - one |
244 | | } |
245 | | } else { |
246 | 0 | self.trunc() |
247 | | } |
248 | 0 | } |
249 | | |
250 | | /// Rounds towards zero. |
251 | | #[inline] |
252 | 0 | pub fn trunc(&self) -> Ratio<T> { |
253 | 0 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
254 | 0 | } |
255 | | |
256 | | /// Returns the fractional part of a number, with division rounded towards zero. |
257 | | /// |
258 | | /// Satisfies `self == self.trunc() + self.fract()`. |
259 | | #[inline] |
260 | 0 | pub fn fract(&self) -> Ratio<T> { |
261 | 0 | Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) |
262 | 0 | } |
263 | | } |
264 | | |
265 | | impl<T: Clone + Integer + Pow<u32, Output = T>> Ratio<T> { |
266 | | /// Raises the `Ratio` to the power of an exponent. |
267 | | #[inline] |
268 | 0 | pub fn pow(&self, expon: i32) -> Ratio<T> { |
269 | 0 | Pow::pow(self, expon) |
270 | 0 | } |
271 | | } |
272 | | |
273 | | macro_rules! pow_impl { |
274 | | ($exp:ty) => { |
275 | | pow_impl!($exp, $exp); |
276 | | }; |
277 | | ($exp:ty, $unsigned:ty) => { |
278 | | impl<T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<$exp> for Ratio<T> { |
279 | | type Output = Ratio<T>; |
280 | | #[inline] |
281 | 0 | fn pow(self, expon: $exp) -> Ratio<T> { |
282 | 0 | match expon.cmp(&0) { |
283 | 0 | cmp::Ordering::Equal => One::one(), |
284 | | cmp::Ordering::Less => { |
285 | 0 | let expon = expon.wrapping_abs() as $unsigned; |
286 | 0 | Ratio::new_raw(Pow::pow(self.denom, expon), Pow::pow(self.numer, expon)) |
287 | | } |
288 | 0 | cmp::Ordering::Greater => Ratio::new_raw( |
289 | 0 | Pow::pow(self.numer, expon as $unsigned), |
290 | 0 | Pow::pow(self.denom, expon as $unsigned), |
291 | 0 | ), |
292 | | } |
293 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<isize>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<i16>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<usize>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<i32>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<u32>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<i64>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<i8>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<u64>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<u8>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<u16>>::pow |
294 | | } |
295 | | impl<'a, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<$exp> for &'a Ratio<T> { |
296 | | type Output = Ratio<T>; |
297 | | #[inline] |
298 | 0 | fn pow(self, expon: $exp) -> Ratio<T> { |
299 | 0 | Pow::pow(self.clone(), expon) |
300 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<i8>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<u64>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<u8>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<i32>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<usize>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<i64>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<isize>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<i16>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<u32>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<u16>>::pow |
301 | | } |
302 | | impl<'a, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<&'a $exp> for Ratio<T> { |
303 | | type Output = Ratio<T>; |
304 | | #[inline] |
305 | 0 | fn pow(self, expon: &'a $exp) -> Ratio<T> { |
306 | 0 | Pow::pow(self, *expon) |
307 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&u32>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&usize>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&u8>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&i64>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&i32>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&u64>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&i8>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&isize>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&i16>>::pow Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::pow::Pow<&u16>>::pow |
308 | | } |
309 | | impl<'a, 'b, T: Clone + Integer + Pow<$unsigned, Output = T>> Pow<&'a $exp> |
310 | | for &'b Ratio<T> |
311 | | { |
312 | | type Output = Ratio<T>; |
313 | | #[inline] |
314 | 0 | fn pow(self, expon: &'a $exp) -> Ratio<T> { |
315 | 0 | Pow::pow(self.clone(), *expon) |
316 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&u8>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&usize>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&i64>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&i8>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&isize>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&i32>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&u16>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&u32>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&i16>>::pow Unexecuted instantiation: <&num_rational::Ratio<_> as num_traits::pow::Pow<&u64>>::pow |
317 | | } |
318 | | }; |
319 | | } |
320 | | |
321 | | // this is solely to make `pow_impl!` work |
322 | | trait WrappingAbs: Sized { |
323 | 0 | fn wrapping_abs(self) -> Self { |
324 | 0 | self |
325 | 0 | } |
326 | | } |
327 | | impl WrappingAbs for u8 {} |
328 | | impl WrappingAbs for u16 {} |
329 | | impl WrappingAbs for u32 {} |
330 | | impl WrappingAbs for u64 {} |
331 | | impl WrappingAbs for usize {} |
332 | | |
333 | | pow_impl!(i8, u8); |
334 | | pow_impl!(i16, u16); |
335 | | pow_impl!(i32, u32); |
336 | | pow_impl!(i64, u64); |
337 | | pow_impl!(isize, usize); |
338 | | pow_impl!(u8); |
339 | | pow_impl!(u16); |
340 | | pow_impl!(u32); |
341 | | pow_impl!(u64); |
342 | | pow_impl!(usize); |
343 | | |
344 | | // TODO: pow_impl!(BigUint) and pow_impl!(BigInt, BigUint) |
345 | | |
346 | | #[cfg(feature = "bigint")] |
347 | | impl Ratio<BigInt> { |
348 | | /// Converts a float into a rational number. |
349 | 0 | pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> { |
350 | 0 | if !f.is_finite() { |
351 | 0 | return None; |
352 | 0 | } |
353 | 0 | let (mantissa, exponent, sign) = f.integer_decode(); |
354 | 0 | let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; |
355 | 0 | if exponent < 0 { |
356 | 0 | let one: BigInt = One::one(); |
357 | 0 | let denom: BigInt = one << ((-exponent) as usize); |
358 | 0 | let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
359 | 0 | Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) |
360 | | } else { |
361 | 0 | let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
362 | 0 | numer = numer << (exponent as usize); |
363 | 0 | Some(Ratio::from_integer(BigInt::from_biguint( |
364 | 0 | bigint_sign, |
365 | 0 | numer, |
366 | 0 | ))) |
367 | | } |
368 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::from_float::<f32> Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::from_float::<f64> |
369 | | } |
370 | | |
371 | | // From integer |
372 | | impl<T> From<T> for Ratio<T> |
373 | | where |
374 | | T: Clone + Integer, |
375 | | { |
376 | 0 | fn from(x: T) -> Ratio<T> { |
377 | 0 | Ratio::from_integer(x) |
378 | 0 | } |
379 | | } |
380 | | |
381 | | // From pair (through the `new` constructor) |
382 | | impl<T> From<(T, T)> for Ratio<T> |
383 | | where |
384 | | T: Clone + Integer, |
385 | | { |
386 | 0 | fn from(pair: (T, T)) -> Ratio<T> { |
387 | 0 | Ratio::new(pair.0, pair.1) |
388 | 0 | } |
389 | | } |
390 | | |
391 | | // Comparisons |
392 | | |
393 | | // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy |
394 | | // for those multiplications to overflow fixed-size integers, so we need to take care. |
395 | | |
396 | | impl<T: Clone + Integer> Ord for Ratio<T> { |
397 | | #[inline] |
398 | 0 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
399 | 0 | // With equal denominators, the numerators can be directly compared |
400 | 0 | if self.denom == other.denom { |
401 | 0 | let ord = self.numer.cmp(&other.numer); |
402 | 0 | return if self.denom < T::zero() { |
403 | 0 | ord.reverse() |
404 | | } else { |
405 | 0 | ord |
406 | | }; |
407 | 0 | } |
408 | 0 |
|
409 | 0 | // With equal numerators, the denominators can be inversely compared |
410 | 0 | if self.numer == other.numer { |
411 | 0 | if self.numer.is_zero() { |
412 | 0 | return cmp::Ordering::Equal; |
413 | 0 | } |
414 | 0 | let ord = self.denom.cmp(&other.denom); |
415 | 0 | return if self.numer < T::zero() { |
416 | 0 | ord |
417 | | } else { |
418 | 0 | ord.reverse() |
419 | | }; |
420 | 0 | } |
421 | 0 |
|
422 | 0 | // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the |
423 | 0 | // division below, or even always avoid it for BigInt and BigUint. |
424 | 0 | // FIXME- future breaking change to add Checked* to Integer? |
425 | 0 |
|
426 | 0 | // Compare as floored integers and remainders |
427 | 0 | let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); |
428 | 0 | let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); |
429 | 0 | match self_int.cmp(&other_int) { |
430 | 0 | cmp::Ordering::Greater => cmp::Ordering::Greater, |
431 | 0 | cmp::Ordering::Less => cmp::Ordering::Less, |
432 | | cmp::Ordering::Equal => { |
433 | 0 | match (self_rem.is_zero(), other_rem.is_zero()) { |
434 | 0 | (true, true) => cmp::Ordering::Equal, |
435 | 0 | (true, false) => cmp::Ordering::Less, |
436 | 0 | (false, true) => cmp::Ordering::Greater, |
437 | | (false, false) => { |
438 | | // Compare the reciprocals of the remaining fractions in reverse |
439 | 0 | let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); |
440 | 0 | let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); |
441 | 0 | self_recip.cmp(&other_recip).reverse() |
442 | | } |
443 | | } |
444 | | } |
445 | | } |
446 | 0 | } |
447 | | } |
448 | | |
449 | | impl<T: Clone + Integer> PartialOrd for Ratio<T> { |
450 | | #[inline] |
451 | 0 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
452 | 0 | Some(self.cmp(other)) |
453 | 0 | } |
454 | | } |
455 | | |
456 | | impl<T: Clone + Integer> PartialEq for Ratio<T> { |
457 | | #[inline] |
458 | 0 | fn eq(&self, other: &Self) -> bool { |
459 | 0 | self.cmp(other) == cmp::Ordering::Equal |
460 | 0 | } |
461 | | } |
462 | | |
463 | | impl<T: Clone + Integer> Eq for Ratio<T> {} |
464 | | |
465 | | // NB: We can't just `#[derive(Hash)]`, because it needs to agree |
466 | | // with `Eq` even for non-reduced ratios. |
467 | | impl<T: Clone + Integer + Hash> Hash for Ratio<T> { |
468 | 0 | fn hash<H: Hasher>(&self, state: &mut H) { |
469 | 0 | recurse(&self.numer, &self.denom, state); |
470 | 0 |
|
471 | 0 | fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) { |
472 | 0 | if !denom.is_zero() { |
473 | 0 | let (int, rem) = numer.div_mod_floor(denom); |
474 | 0 | int.hash(state); |
475 | 0 | recurse(denom, &rem, state); |
476 | 0 | } else { |
477 | 0 | denom.hash(state); |
478 | 0 | } |
479 | 0 | } |
480 | 0 | } |
481 | | } |
482 | | |
483 | | mod iter_sum_product { |
484 | | use core::iter::{Product, Sum}; |
485 | | use integer::Integer; |
486 | | use traits::{One, Zero}; |
487 | | use Ratio; |
488 | | |
489 | | impl<T: Integer + Clone> Sum for Ratio<T> { |
490 | 0 | fn sum<I>(iter: I) -> Self |
491 | 0 | where |
492 | 0 | I: Iterator<Item = Ratio<T>>, |
493 | 0 | { |
494 | 0 | iter.fold(Self::zero(), |sum, num| sum + num) |
495 | 0 | } |
496 | | } |
497 | | |
498 | | impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> { |
499 | 0 | fn sum<I>(iter: I) -> Self |
500 | 0 | where |
501 | 0 | I: Iterator<Item = &'a Ratio<T>>, |
502 | 0 | { |
503 | 0 | iter.fold(Self::zero(), |sum, num| sum + num) |
504 | 0 | } |
505 | | } |
506 | | |
507 | | impl<T: Integer + Clone> Product for Ratio<T> { |
508 | 0 | fn product<I>(iter: I) -> Self |
509 | 0 | where |
510 | 0 | I: Iterator<Item = Ratio<T>>, |
511 | 0 | { |
512 | 0 | iter.fold(Self::one(), |prod, num| prod * num) |
513 | 0 | } |
514 | | } |
515 | | |
516 | | impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> { |
517 | 0 | fn product<I>(iter: I) -> Self |
518 | 0 | where |
519 | 0 | I: Iterator<Item = &'a Ratio<T>>, |
520 | 0 | { |
521 | 0 | iter.fold(Self::one(), |prod, num| prod * num) |
522 | 0 | } |
523 | | } |
524 | | } |
525 | | |
526 | | mod opassign { |
527 | | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
528 | | |
529 | | use integer::Integer; |
530 | | use traits::NumAssign; |
531 | | use Ratio; |
532 | | |
533 | | impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> { |
534 | 0 | fn add_assign(&mut self, other: Ratio<T>) { |
535 | 0 | if self.denom == other.denom { |
536 | 0 | self.numer += other.numer |
537 | 0 | } else { |
538 | 0 | let lcm = self.denom.lcm(&other.denom); |
539 | 0 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
540 | 0 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
541 | 0 | self.numer = lhs_numer + rhs_numer; |
542 | 0 | self.denom = lcm; |
543 | 0 | } |
544 | 0 | self.reduce(); |
545 | 0 | } |
546 | | } |
547 | | |
548 | | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
549 | | impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> { |
550 | 0 | fn div_assign(&mut self, other: Ratio<T>) { |
551 | 0 | let gcd_ac = self.numer.gcd(&other.numer); |
552 | 0 | let gcd_bd = self.denom.gcd(&other.denom); |
553 | 0 | self.numer /= gcd_ac.clone(); |
554 | 0 | self.numer *= other.denom / gcd_bd.clone(); |
555 | 0 | self.denom /= gcd_bd; |
556 | 0 | self.denom *= other.numer / gcd_ac; |
557 | 0 | self.reduce(); //TODO: remove this line. see #8. |
558 | 0 | } |
559 | | } |
560 | | |
561 | | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
562 | | impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> { |
563 | 0 | fn mul_assign(&mut self, other: Ratio<T>) { |
564 | 0 | let gcd_ad = self.numer.gcd(&other.denom); |
565 | 0 | let gcd_bc = self.denom.gcd(&other.numer); |
566 | 0 | self.numer /= gcd_ad.clone(); |
567 | 0 | self.numer *= other.numer / gcd_bc.clone(); |
568 | 0 | self.denom /= gcd_bc; |
569 | 0 | self.denom *= other.denom / gcd_ad; |
570 | 0 | self.reduce(); //TODO: remove this line. see #8. |
571 | 0 | } |
572 | | } |
573 | | |
574 | | impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> { |
575 | 0 | fn rem_assign(&mut self, other: Ratio<T>) { |
576 | 0 | if self.denom == other.denom { |
577 | 0 | self.numer %= other.numer |
578 | 0 | } else { |
579 | 0 | let lcm = self.denom.lcm(&other.denom); |
580 | 0 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
581 | 0 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
582 | 0 | self.numer = lhs_numer % rhs_numer; |
583 | 0 | self.denom = lcm; |
584 | 0 | } |
585 | 0 | self.reduce(); |
586 | 0 | } |
587 | | } |
588 | | |
589 | | impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> { |
590 | 0 | fn sub_assign(&mut self, other: Ratio<T>) { |
591 | 0 | if self.denom == other.denom { |
592 | 0 | self.numer -= other.numer |
593 | 0 | } else { |
594 | 0 | let lcm = self.denom.lcm(&other.denom); |
595 | 0 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
596 | 0 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
597 | 0 | self.numer = lhs_numer - rhs_numer; |
598 | 0 | self.denom = lcm; |
599 | 0 | } |
600 | 0 | self.reduce(); |
601 | 0 | } |
602 | | } |
603 | | |
604 | | // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b |
605 | | impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> { |
606 | 0 | fn add_assign(&mut self, other: T) { |
607 | 0 | self.numer += self.denom.clone() * other; |
608 | 0 | self.reduce(); |
609 | 0 | } |
610 | | } |
611 | | |
612 | | impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> { |
613 | 0 | fn div_assign(&mut self, other: T) { |
614 | 0 | let gcd = self.numer.gcd(&other); |
615 | 0 | self.numer /= gcd.clone(); |
616 | 0 | self.denom *= other / gcd; |
617 | 0 | self.reduce(); //TODO: remove this line. see #8. |
618 | 0 | } |
619 | | } |
620 | | |
621 | | impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> { |
622 | 0 | fn mul_assign(&mut self, other: T) { |
623 | 0 | let gcd = self.denom.gcd(&other); |
624 | 0 | self.denom /= gcd.clone(); |
625 | 0 | self.numer *= other / gcd; |
626 | 0 | self.reduce(); //TODO: remove this line. see #8. |
627 | 0 | } |
628 | | } |
629 | | |
630 | | // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b |
631 | | impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> { |
632 | 0 | fn rem_assign(&mut self, other: T) { |
633 | 0 | self.numer %= self.denom.clone() * other; |
634 | 0 | self.reduce(); |
635 | 0 | } |
636 | | } |
637 | | |
638 | | // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b |
639 | | impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> { |
640 | 0 | fn sub_assign(&mut self, other: T) { |
641 | 0 | self.numer -= self.denom.clone() * other; |
642 | 0 | self.reduce(); |
643 | 0 | } |
644 | | } |
645 | | |
646 | | macro_rules! forward_op_assign { |
647 | | (impl $imp:ident, $method:ident) => { |
648 | | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> { |
649 | | #[inline] |
650 | 0 | fn $method(&mut self, other: &Ratio<T>) { |
651 | 0 | self.$method(other.clone()) |
652 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::RemAssign<&num_rational::Ratio<_>>>::rem_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::SubAssign<&num_rational::Ratio<_>>>::sub_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::DivAssign<&num_rational::Ratio<_>>>::div_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::AddAssign<&num_rational::Ratio<_>>>::add_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::MulAssign<&num_rational::Ratio<_>>>::mul_assign |
653 | | } |
654 | | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> { |
655 | | #[inline] |
656 | 0 | fn $method(&mut self, other: &T) { |
657 | 0 | self.$method(other.clone()) |
658 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::DivAssign<&_>>::div_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::RemAssign<&_>>::rem_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::MulAssign<&_>>::mul_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::AddAssign<&_>>::add_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::SubAssign<&_>>::sub_assign |
659 | | } |
660 | | }; |
661 | | } |
662 | | |
663 | | forward_op_assign!(impl AddAssign, add_assign); |
664 | | forward_op_assign!(impl DivAssign, div_assign); |
665 | | forward_op_assign!(impl MulAssign, mul_assign); |
666 | | forward_op_assign!(impl RemAssign, rem_assign); |
667 | | forward_op_assign!(impl SubAssign, sub_assign); |
668 | | } |
669 | | |
670 | | macro_rules! forward_ref_ref_binop { |
671 | | (impl $imp:ident, $method:ident) => { |
672 | | impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> { |
673 | | type Output = Ratio<T>; |
674 | | |
675 | | #[inline] |
676 | 0 | fn $method(self, other: &'b Ratio<T>) -> Ratio<T> { |
677 | 0 | self.clone().$method(other.clone()) |
678 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add>::add Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem>::rem |
679 | | } |
680 | | impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> { |
681 | | type Output = Ratio<T>; |
682 | | |
683 | | #[inline] |
684 | 0 | fn $method(self, other: &'b T) -> Ratio<T> { |
685 | 0 | self.clone().$method(other.clone()) |
686 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div<&_>>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul<&_>>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add<&_>>::add Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub<&_>>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem<&_>>::rem |
687 | | } |
688 | | }; |
689 | | } |
690 | | |
691 | | macro_rules! forward_ref_val_binop { |
692 | | (impl $imp:ident, $method:ident) => { |
693 | | impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> |
694 | | where |
695 | | T: Clone + Integer, |
696 | | { |
697 | | type Output = Ratio<T>; |
698 | | |
699 | | #[inline] |
700 | 0 | fn $method(self, other: Ratio<T>) -> Ratio<T> { |
701 | 0 | self.clone().$method(other) |
702 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul<num_rational::Ratio<_>>>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem<num_rational::Ratio<_>>>::rem Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub<num_rational::Ratio<_>>>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add<num_rational::Ratio<_>>>::add Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div<num_rational::Ratio<_>>>::div |
703 | | } |
704 | | impl<'a, T> $imp<T> for &'a Ratio<T> |
705 | | where |
706 | | T: Clone + Integer, |
707 | | { |
708 | | type Output = Ratio<T>; |
709 | | |
710 | | #[inline] |
711 | 0 | fn $method(self, other: T) -> Ratio<T> { |
712 | 0 | self.clone().$method(other) |
713 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem<_>>::rem Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div<_>>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add<_>>::add Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul<_>>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub<_>>::sub |
714 | | } |
715 | | }; |
716 | | } |
717 | | |
718 | | macro_rules! forward_val_ref_binop { |
719 | | (impl $imp:ident, $method:ident) => { |
720 | | impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> |
721 | | where |
722 | | T: Clone + Integer, |
723 | | { |
724 | | type Output = Ratio<T>; |
725 | | |
726 | | #[inline] |
727 | 0 | fn $method(self, other: &Ratio<T>) -> Ratio<T> { |
728 | 0 | self.$method(other.clone()) |
729 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Div<&num_rational::Ratio<_>>>::div Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add<&num_rational::Ratio<_>>>::add Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Mul<&num_rational::Ratio<_>>>::mul Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem<&num_rational::Ratio<_>>>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub<&num_rational::Ratio<_>>>::sub |
730 | | } |
731 | | impl<'a, T> $imp<&'a T> for Ratio<T> |
732 | | where |
733 | | T: Clone + Integer, |
734 | | { |
735 | | type Output = Ratio<T>; |
736 | | |
737 | | #[inline] |
738 | 0 | fn $method(self, other: &T) -> Ratio<T> { |
739 | 0 | self.$method(other.clone()) |
740 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem<&_>>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Div<&_>>::div Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub<&_>>::sub Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add<&_>>::add Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Mul<&_>>::mul |
741 | | } |
742 | | }; |
743 | | } |
744 | | |
745 | | macro_rules! forward_all_binop { |
746 | | (impl $imp:ident, $method:ident) => { |
747 | | forward_ref_ref_binop!(impl $imp, $method); |
748 | | forward_ref_val_binop!(impl $imp, $method); |
749 | | forward_val_ref_binop!(impl $imp, $method); |
750 | | }; |
751 | | } |
752 | | |
753 | | // Arithmetic |
754 | | forward_all_binop!(impl Mul, mul); |
755 | | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
756 | | impl<T> Mul<Ratio<T>> for Ratio<T> |
757 | | where |
758 | | T: Clone + Integer, |
759 | | { |
760 | | type Output = Ratio<T>; |
761 | | #[inline] |
762 | 0 | fn mul(self, rhs: Ratio<T>) -> Ratio<T> { |
763 | 0 | let gcd_ad = self.numer.gcd(&rhs.denom); |
764 | 0 | let gcd_bc = self.denom.gcd(&rhs.numer); |
765 | 0 | Ratio::new( |
766 | 0 | self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), |
767 | 0 | self.denom / gcd_bc * (rhs.denom / gcd_ad), |
768 | 0 | ) |
769 | 0 | } |
770 | | } |
771 | | // a/b * c/1 = (a*c) / (b*1) = (a*c) / b |
772 | | impl<T> Mul<T> for Ratio<T> |
773 | | where |
774 | | T: Clone + Integer, |
775 | | { |
776 | | type Output = Ratio<T>; |
777 | | #[inline] |
778 | 0 | fn mul(self, rhs: T) -> Ratio<T> { |
779 | 0 | let gcd = self.denom.gcd(&rhs); |
780 | 0 | Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) |
781 | 0 | } |
782 | | } |
783 | | |
784 | | forward_all_binop!(impl Div, div); |
785 | | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
786 | | impl<T> Div<Ratio<T>> for Ratio<T> |
787 | | where |
788 | | T: Clone + Integer, |
789 | | { |
790 | | type Output = Ratio<T>; |
791 | | |
792 | | #[inline] |
793 | 0 | fn div(self, rhs: Ratio<T>) -> Ratio<T> { |
794 | 0 | let gcd_ac = self.numer.gcd(&rhs.numer); |
795 | 0 | let gcd_bd = self.denom.gcd(&rhs.denom); |
796 | 0 | Ratio::new( |
797 | 0 | self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), |
798 | 0 | self.denom / gcd_bd * (rhs.numer / gcd_ac), |
799 | 0 | ) |
800 | 0 | } |
801 | | } |
802 | | // (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) |
803 | | impl<T> Div<T> for Ratio<T> |
804 | | where |
805 | | T: Clone + Integer, |
806 | | { |
807 | | type Output = Ratio<T>; |
808 | | |
809 | | #[inline] |
810 | 0 | fn div(self, rhs: T) -> Ratio<T> { |
811 | 0 | let gcd = self.numer.gcd(&rhs); |
812 | 0 | Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) |
813 | 0 | } |
814 | | } |
815 | | |
816 | | macro_rules! arith_impl { |
817 | | (impl $imp:ident, $method:ident) => { |
818 | | forward_all_binop!(impl $imp, $method); |
819 | | // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) |
820 | | impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> { |
821 | | type Output = Ratio<T>; |
822 | | #[inline] |
823 | 0 | fn $method(self, rhs: Ratio<T>) -> Ratio<T> { |
824 | 0 | if self.denom == rhs.denom { |
825 | 0 | return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); |
826 | 0 | } |
827 | 0 | let lcm = self.denom.lcm(&rhs.denom); |
828 | 0 | let lhs_numer = self.numer * (lcm.clone() / self.denom); |
829 | 0 | let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); |
830 | 0 | Ratio::new(lhs_numer.$method(rhs_numer), lcm) |
831 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub>::sub Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add>::add |
832 | | } |
833 | | // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern |
834 | | impl<T: Clone + Integer> $imp<T> for Ratio<T> { |
835 | | type Output = Ratio<T>; |
836 | | #[inline] |
837 | 0 | fn $method(self, rhs: T) -> Ratio<T> { |
838 | 0 | Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) |
839 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub<_>>::sub Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem<_>>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add<_>>::add |
840 | | } |
841 | | }; |
842 | | } |
843 | | |
844 | | arith_impl!(impl Add, add); |
845 | | arith_impl!(impl Sub, sub); |
846 | | arith_impl!(impl Rem, rem); |
847 | | |
848 | | // Like `std::try!` for Option<T>, unwrap the value or early-return None. |
849 | | // Since Rust 1.22 this can be replaced by the `?` operator. |
850 | | macro_rules! otry { |
851 | | ($expr:expr) => { |
852 | | match $expr { |
853 | | Some(val) => val, |
854 | | None => return None, |
855 | | } |
856 | | }; |
857 | | } |
858 | | |
859 | | // a/b * c/d = (a*c)/(b*d) |
860 | | impl<T> CheckedMul for Ratio<T> |
861 | | where |
862 | | T: Clone + Integer + CheckedMul, |
863 | | { |
864 | | #[inline] |
865 | 0 | fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
866 | 0 | let gcd_ad = self.numer.gcd(&rhs.denom); |
867 | 0 | let gcd_bc = self.denom.gcd(&rhs.numer); |
868 | | Some(Ratio::new( |
869 | 0 | otry!((self.numer.clone() / gcd_ad.clone()) |
870 | 0 | .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))), |
871 | 0 | otry!((self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))), |
872 | | )) |
873 | 0 | } |
874 | | } |
875 | | |
876 | | // (a/b) / (c/d) = (a*d)/(b*c) |
877 | | impl<T> CheckedDiv for Ratio<T> |
878 | | where |
879 | | T: Clone + Integer + CheckedMul, |
880 | | { |
881 | | #[inline] |
882 | 0 | fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
883 | 0 | if rhs.is_zero() { |
884 | 0 | return None; |
885 | 0 | } |
886 | 0 | let (numer, denom) = if self.denom == rhs.denom { |
887 | 0 | (self.numer.clone(), rhs.numer.clone()) |
888 | 0 | } else if self.numer == rhs.numer { |
889 | 0 | (rhs.denom.clone(), self.denom.clone()) |
890 | | } else { |
891 | 0 | let gcd_ac = self.numer.gcd(&rhs.numer); |
892 | 0 | let gcd_bd = self.denom.gcd(&rhs.denom); |
893 | 0 | let denom = otry!((self.denom.clone() / gcd_bd.clone()) |
894 | 0 | .checked_mul(&(rhs.numer.clone() / gcd_ac.clone()))); |
895 | 0 | ( |
896 | 0 | otry!((self.numer.clone() / gcd_ac).checked_mul(&(rhs.denom.clone() / gcd_bd))), |
897 | 0 | denom, |
898 | | ) |
899 | | }; |
900 | | // Manual `reduce()`, avoiding sharp edges |
901 | 0 | if denom.is_zero() { |
902 | 0 | None |
903 | 0 | } else if numer.is_zero() { |
904 | 0 | Some(Self::zero()) |
905 | 0 | } else if numer == denom { |
906 | 0 | Some(Self::one()) |
907 | | } else { |
908 | 0 | let g = numer.gcd(&denom); |
909 | 0 | let numer = numer / g.clone(); |
910 | 0 | let denom = denom / g; |
911 | 0 | let raw = if denom < T::zero() { |
912 | | // We need to keep denom positive, but 2's-complement MIN may |
913 | | // overflow negation -- instead we can check multiplying -1. |
914 | 0 | let n1 = T::zero() - T::one(); |
915 | 0 | Ratio::new_raw(otry!(numer.checked_mul(&n1)), otry!(denom.checked_mul(&n1))) |
916 | | } else { |
917 | 0 | Ratio::new_raw(numer, denom) |
918 | | }; |
919 | 0 | Some(raw) |
920 | | } |
921 | 0 | } |
922 | | } |
923 | | |
924 | | // As arith_impl! but for Checked{Add,Sub} traits |
925 | | macro_rules! checked_arith_impl { |
926 | | (impl $imp:ident, $method:ident) => { |
927 | | impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> { |
928 | | #[inline] |
929 | 0 | fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
930 | 0 | let gcd = self.denom.clone().gcd(&rhs.denom); |
931 | 0 | let lcm = otry!((self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)); |
932 | 0 | let lhs_numer = otry!((lcm.clone() / self.denom.clone()).checked_mul(&self.numer)); |
933 | 0 | let rhs_numer = otry!((lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)); |
934 | 0 | Some(Ratio::new(otry!(lhs_numer.$method(&rhs_numer)), lcm)) |
935 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::ops::checked::CheckedSub>::checked_sub Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::ops::checked::CheckedAdd>::checked_add |
936 | | } |
937 | | }; |
938 | | } |
939 | | |
940 | | // a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) |
941 | | checked_arith_impl!(impl CheckedAdd, checked_add); |
942 | | |
943 | | // a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) |
944 | | checked_arith_impl!(impl CheckedSub, checked_sub); |
945 | | |
946 | | impl<T> Neg for Ratio<T> |
947 | | where |
948 | | T: Clone + Integer + Neg<Output = T>, |
949 | | { |
950 | | type Output = Ratio<T>; |
951 | | |
952 | | #[inline] |
953 | 0 | fn neg(self) -> Ratio<T> { |
954 | 0 | Ratio::new_raw(-self.numer, self.denom) |
955 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i16> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i32> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i128> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<isize> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i8> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i64> as core::ops::arith::Neg>::neg |
956 | | } |
957 | | |
958 | | impl<'a, T> Neg for &'a Ratio<T> |
959 | | where |
960 | | T: Clone + Integer + Neg<Output = T>, |
961 | | { |
962 | | type Output = Ratio<T>; |
963 | | |
964 | | #[inline] |
965 | 0 | fn neg(self) -> Ratio<T> { |
966 | 0 | -self.clone() |
967 | 0 | } |
968 | | } |
969 | | |
970 | | impl<T> Inv for Ratio<T> |
971 | | where |
972 | | T: Clone + Integer, |
973 | | { |
974 | | type Output = Ratio<T>; |
975 | | |
976 | | #[inline] |
977 | 0 | fn inv(self) -> Ratio<T> { |
978 | 0 | self.recip() |
979 | 0 | } |
980 | | } |
981 | | |
982 | | impl<'a, T> Inv for &'a Ratio<T> |
983 | | where |
984 | | T: Clone + Integer, |
985 | | { |
986 | | type Output = Ratio<T>; |
987 | | |
988 | | #[inline] |
989 | 0 | fn inv(self) -> Ratio<T> { |
990 | 0 | self.recip() |
991 | 0 | } |
992 | | } |
993 | | |
994 | | // Constants |
995 | | impl<T: Clone + Integer> Zero for Ratio<T> { |
996 | | #[inline] |
997 | 0 | fn zero() -> Ratio<T> { |
998 | 0 | Ratio::new_raw(Zero::zero(), One::one()) |
999 | 0 | } |
1000 | | |
1001 | | #[inline] |
1002 | 0 | fn is_zero(&self) -> bool { |
1003 | 0 | self.numer.is_zero() |
1004 | 0 | } |
1005 | | |
1006 | | #[inline] |
1007 | 0 | fn set_zero(&mut self) { |
1008 | 0 | self.numer.set_zero(); |
1009 | 0 | self.denom.set_one(); |
1010 | 0 | } |
1011 | | } |
1012 | | |
1013 | | impl<T: Clone + Integer> One for Ratio<T> { |
1014 | | #[inline] |
1015 | 0 | fn one() -> Ratio<T> { |
1016 | 0 | Ratio::new_raw(One::one(), One::one()) |
1017 | 0 | } |
1018 | | |
1019 | | #[inline] |
1020 | 0 | fn is_one(&self) -> bool { |
1021 | 0 | self.numer == self.denom |
1022 | 0 | } |
1023 | | |
1024 | | #[inline] |
1025 | 0 | fn set_one(&mut self) { |
1026 | 0 | self.numer.set_one(); |
1027 | 0 | self.denom.set_one(); |
1028 | 0 | } Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::identities::One>::set_one |
1029 | | } |
1030 | | |
1031 | | impl<T: Clone + Integer> Num for Ratio<T> { |
1032 | | type FromStrRadixErr = ParseRatioError; |
1033 | | |
1034 | | /// Parses `numer/denom` where the numbers are in base `radix`. |
1035 | 0 | fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> { |
1036 | 0 | if s.splitn(2, '/').count() == 2 { |
1037 | 0 | let mut parts = s.splitn(2, '/').map(|ss| { |
1038 | 0 | T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { |
1039 | 0 | kind: RatioErrorKind::ParseError, |
1040 | 0 | }) |
1041 | 0 | }); |
1042 | 0 | let numer: T = parts.next().unwrap()?; |
1043 | 0 | let denom: T = parts.next().unwrap()?; |
1044 | 0 | if denom.is_zero() { |
1045 | 0 | Err(ParseRatioError { |
1046 | 0 | kind: RatioErrorKind::ZeroDenominator, |
1047 | 0 | }) |
1048 | | } else { |
1049 | 0 | Ok(Ratio::new(numer, denom)) |
1050 | | } |
1051 | | } else { |
1052 | 0 | Err(ParseRatioError { |
1053 | 0 | kind: RatioErrorKind::ParseError, |
1054 | 0 | }) |
1055 | | } |
1056 | 0 | } |
1057 | | } |
1058 | | |
1059 | | impl<T: Clone + Integer + Signed> Signed for Ratio<T> { |
1060 | | #[inline] |
1061 | 0 | fn abs(&self) -> Ratio<T> { |
1062 | 0 | if self.is_negative() { |
1063 | 0 | -self.clone() |
1064 | | } else { |
1065 | 0 | self.clone() |
1066 | | } |
1067 | 0 | } |
1068 | | |
1069 | | #[inline] |
1070 | 0 | fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { |
1071 | 0 | if *self <= *other { |
1072 | 0 | Zero::zero() |
1073 | | } else { |
1074 | 0 | self - other |
1075 | | } |
1076 | 0 | } |
1077 | | |
1078 | | #[inline] |
1079 | 0 | fn signum(&self) -> Ratio<T> { |
1080 | 0 | if self.is_positive() { |
1081 | 0 | Self::one() |
1082 | 0 | } else if self.is_zero() { |
1083 | 0 | Self::zero() |
1084 | | } else { |
1085 | 0 | -Self::one() |
1086 | | } |
1087 | 0 | } |
1088 | | |
1089 | | #[inline] |
1090 | 0 | fn is_positive(&self) -> bool { |
1091 | 0 | (self.numer.is_positive() && self.denom.is_positive()) |
1092 | 0 | || (self.numer.is_negative() && self.denom.is_negative()) |
1093 | 0 | } |
1094 | | |
1095 | | #[inline] |
1096 | 0 | fn is_negative(&self) -> bool { |
1097 | 0 | (self.numer.is_negative() && self.denom.is_positive()) |
1098 | 0 | || (self.numer.is_positive() && self.denom.is_negative()) |
1099 | 0 | } |
1100 | | } |
1101 | | |
1102 | | // String conversions |
1103 | | impl<T> fmt::Display for Ratio<T> |
1104 | | where |
1105 | | T: fmt::Display + Eq + One, |
1106 | | { |
1107 | | /// Renders as `numer/denom`. If denom=1, renders as numer. |
1108 | 0 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1109 | 0 | if self.denom.is_one() { |
1110 | 0 | write!(f, "{}", self.numer) |
1111 | | } else { |
1112 | 0 | write!(f, "{}/{}", self.numer, self.denom) |
1113 | | } |
1114 | 0 | } |
1115 | | } |
1116 | | |
1117 | | impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> { |
1118 | | type Err = ParseRatioError; |
1119 | | |
1120 | | /// Parses `numer/denom` or just `numer`. |
1121 | 0 | fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> { |
1122 | 0 | let mut split = s.splitn(2, '/'); |
1123 | | |
1124 | 0 | let n = split.next().ok_or(ParseRatioError { |
1125 | 0 | kind: RatioErrorKind::ParseError, |
1126 | 0 | })?; |
1127 | 0 | let num = FromStr::from_str(n).map_err(|_| ParseRatioError { |
1128 | 0 | kind: RatioErrorKind::ParseError, |
1129 | 0 | })?; |
1130 | | |
1131 | 0 | let d = split.next().unwrap_or("1"); |
1132 | 0 | let den = FromStr::from_str(d).map_err(|_| ParseRatioError { |
1133 | 0 | kind: RatioErrorKind::ParseError, |
1134 | 0 | })?; |
1135 | | |
1136 | 0 | if Zero::is_zero(&den) { |
1137 | 0 | Err(ParseRatioError { |
1138 | 0 | kind: RatioErrorKind::ZeroDenominator, |
1139 | 0 | }) |
1140 | | } else { |
1141 | 0 | Ok(Ratio::new(num, den)) |
1142 | | } |
1143 | 0 | } |
1144 | | } |
1145 | | |
1146 | | impl<T> Into<(T, T)> for Ratio<T> { |
1147 | 0 | fn into(self) -> (T, T) { |
1148 | 0 | (self.numer, self.denom) |
1149 | 0 | } |
1150 | | } |
1151 | | |
1152 | | #[cfg(feature = "serde")] |
1153 | | impl<T> serde::Serialize for Ratio<T> |
1154 | | where |
1155 | | T: serde::Serialize + Clone + Integer + PartialOrd, |
1156 | | { |
1157 | | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
1158 | | where |
1159 | | S: serde::Serializer, |
1160 | | { |
1161 | | (self.numer(), self.denom()).serialize(serializer) |
1162 | | } |
1163 | | } |
1164 | | |
1165 | | #[cfg(feature = "serde")] |
1166 | | impl<'de, T> serde::Deserialize<'de> for Ratio<T> |
1167 | | where |
1168 | | T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, |
1169 | | { |
1170 | | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1171 | | where |
1172 | | D: serde::Deserializer<'de>, |
1173 | | { |
1174 | | use serde::de::Error; |
1175 | | use serde::de::Unexpected; |
1176 | | let (numer, denom): (T, T) = try!(serde::Deserialize::deserialize(deserializer)); |
1177 | | if denom.is_zero() { |
1178 | | Err(Error::invalid_value( |
1179 | | Unexpected::Signed(0), |
1180 | | &"a ratio with non-zero denominator", |
1181 | | )) |
1182 | | } else { |
1183 | | Ok(Ratio::new_raw(numer, denom)) |
1184 | | } |
1185 | | } |
1186 | | } |
1187 | | |
1188 | | // FIXME: Bubble up specific errors |
1189 | 0 | #[derive(Copy, Clone, Debug, PartialEq)] Unexecuted instantiation: <num_rational::ParseRatioError as core::cmp::PartialEq>::ne Unexecuted instantiation: <num_rational::ParseRatioError as core::cmp::PartialEq>::eq |
1190 | | pub struct ParseRatioError { |
1191 | | kind: RatioErrorKind, |
1192 | | } |
1193 | | |
1194 | 0 | #[derive(Copy, Clone, Debug, PartialEq)] |
1195 | | enum RatioErrorKind { |
1196 | | ParseError, |
1197 | | ZeroDenominator, |
1198 | | } |
1199 | | |
1200 | | impl fmt::Display for ParseRatioError { |
1201 | 0 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1202 | 0 | self.kind.description().fmt(f) |
1203 | 0 | } |
1204 | | } |
1205 | | |
1206 | | #[cfg(feature = "std")] |
1207 | | impl Error for ParseRatioError { |
1208 | 0 | fn description(&self) -> &str { |
1209 | 0 | self.kind.description() |
1210 | 0 | } |
1211 | | } |
1212 | | |
1213 | | impl RatioErrorKind { |
1214 | 0 | fn description(&self) -> &'static str { |
1215 | 0 | match *self { |
1216 | 0 | RatioErrorKind::ParseError => "failed to parse integer", |
1217 | 0 | RatioErrorKind::ZeroDenominator => "zero value denominator", |
1218 | | } |
1219 | 0 | } |
1220 | | } |
1221 | | |
1222 | | #[cfg(feature = "bigint")] |
1223 | | impl FromPrimitive for Ratio<BigInt> { |
1224 | 0 | fn from_i64(n: i64) -> Option<Self> { |
1225 | 0 | Some(Ratio::from_integer(n.into())) |
1226 | 0 | } |
1227 | | |
1228 | | #[cfg(has_i128)] |
1229 | 0 | fn from_i128(n: i128) -> Option<Self> { |
1230 | 0 | Some(Ratio::from_integer(n.into())) |
1231 | 0 | } |
1232 | | |
1233 | 0 | fn from_u64(n: u64) -> Option<Self> { |
1234 | 0 | Some(Ratio::from_integer(n.into())) |
1235 | 0 | } |
1236 | | |
1237 | | #[cfg(has_i128)] |
1238 | 0 | fn from_u128(n: u128) -> Option<Self> { |
1239 | 0 | Some(Ratio::from_integer(n.into())) |
1240 | 0 | } |
1241 | | |
1242 | 0 | fn from_f32(n: f32) -> Option<Self> { |
1243 | 0 | Ratio::from_float(n) |
1244 | 0 | } |
1245 | | |
1246 | 0 | fn from_f64(n: f64) -> Option<Self> { |
1247 | 0 | Ratio::from_float(n) |
1248 | 0 | } |
1249 | | } |
1250 | | |
1251 | | macro_rules! from_primitive_integer { |
1252 | | ($typ:ty, $approx:ident) => { |
1253 | | impl FromPrimitive for Ratio<$typ> { |
1254 | 0 | fn from_i64(n: i64) -> Option<Self> { |
1255 | 0 | <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) |
1256 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_i64 |
1257 | | |
1258 | | #[cfg(has_i128)] |
1259 | 0 | fn from_i128(n: i128) -> Option<Self> { |
1260 | 0 | <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) |
1261 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_i128 |
1262 | | |
1263 | 0 | fn from_u64(n: u64) -> Option<Self> { |
1264 | 0 | <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) |
1265 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_u64 |
1266 | | |
1267 | | #[cfg(has_i128)] |
1268 | 0 | fn from_u128(n: u128) -> Option<Self> { |
1269 | 0 | <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) |
1270 | 0 | } Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_u128 |
1271 | | |
1272 | 0 | fn from_f32(n: f32) -> Option<Self> { |
1273 | 0 | $approx(n, 10e-20, 30) |
1274 | 0 | } Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_f32 |
1275 | | |
1276 | 0 | fn from_f64(n: f64) -> Option<Self> { |
1277 | 0 | $approx(n, 10e-20, 30) |
1278 | 0 | } Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_f64 |
1279 | | } |
1280 | | }; |
1281 | | } |
1282 | | |
1283 | | from_primitive_integer!(i8, approximate_float); |
1284 | | from_primitive_integer!(i16, approximate_float); |
1285 | | from_primitive_integer!(i32, approximate_float); |
1286 | | from_primitive_integer!(i64, approximate_float); |
1287 | | #[cfg(has_i128)] |
1288 | | from_primitive_integer!(i128, approximate_float); |
1289 | | from_primitive_integer!(isize, approximate_float); |
1290 | | |
1291 | | from_primitive_integer!(u8, approximate_float_unsigned); |
1292 | | from_primitive_integer!(u16, approximate_float_unsigned); |
1293 | | from_primitive_integer!(u32, approximate_float_unsigned); |
1294 | | from_primitive_integer!(u64, approximate_float_unsigned); |
1295 | | #[cfg(has_i128)] |
1296 | | from_primitive_integer!(u128, approximate_float_unsigned); |
1297 | | from_primitive_integer!(usize, approximate_float_unsigned); |
1298 | | |
1299 | | impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> { |
1300 | 0 | pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
1301 | 0 | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
1302 | 0 | // to work well. Might want to choose something based on the types in the future, e.g. |
1303 | 0 | // T::max().recip() and T::bits() or something similar. |
1304 | 0 | let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20"); |
1305 | 0 | approximate_float(f, epsilon, 30) |
1306 | 0 | } |
1307 | | } |
1308 | | |
1309 | 0 | fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
1310 | 0 | where |
1311 | 0 | T: Integer + Signed + Bounded + NumCast + Clone, |
1312 | 0 | F: FloatCore + NumCast, |
1313 | 0 | { |
1314 | 0 | let negative = val.is_sign_negative(); |
1315 | 0 | let abs_val = val.abs(); |
1316 | 0 |
|
1317 | 0 | let r = approximate_float_unsigned(abs_val, max_error, max_iterations); |
1318 | 0 |
|
1319 | 0 | // Make negative again if needed |
1320 | 0 | if negative { |
1321 | 0 | r.map(|r| r.neg()) Unexecuted instantiation: num_rational::approximate_float::<i128, f64>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i64, f32>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i64, f64>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<isize, f64>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i8, f32>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i8, f64>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i32, f64>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i16, f32>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i32, f32>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i16, f64>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<isize, f32>::{closure#0} Unexecuted instantiation: num_rational::approximate_float::<i128, f32>::{closure#0} |
1322 | | } else { |
1323 | 0 | r |
1324 | | } |
1325 | 0 | } Unexecuted instantiation: num_rational::approximate_float::<i128, f64> Unexecuted instantiation: num_rational::approximate_float::<i64, f32> Unexecuted instantiation: num_rational::approximate_float::<i16, f64> Unexecuted instantiation: num_rational::approximate_float::<i8, f64> Unexecuted instantiation: num_rational::approximate_float::<isize, f32> Unexecuted instantiation: num_rational::approximate_float::<i8, f32> Unexecuted instantiation: num_rational::approximate_float::<i128, f32> Unexecuted instantiation: num_rational::approximate_float::<i32, f64> Unexecuted instantiation: num_rational::approximate_float::<i16, f32> Unexecuted instantiation: num_rational::approximate_float::<i64, f64> Unexecuted instantiation: num_rational::approximate_float::<i32, f32> Unexecuted instantiation: num_rational::approximate_float::<isize, f64> |
1326 | | |
1327 | | // No Unsigned constraint because this also works on positive integers and is called |
1328 | | // like that, see above |
1329 | 0 | fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
1330 | 0 | where |
1331 | 0 | T: Integer + Bounded + NumCast + Clone, |
1332 | 0 | F: FloatCore + NumCast, |
1333 | 0 | { |
1334 | 0 | // Continued fractions algorithm |
1335 | 0 | // http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac |
1336 | 0 |
|
1337 | 0 | if val < F::zero() || val.is_nan() { |
1338 | 0 | return None; |
1339 | 0 | } |
1340 | 0 |
|
1341 | 0 | let mut q = val; |
1342 | 0 | let mut n0 = T::zero(); |
1343 | 0 | let mut d0 = T::one(); |
1344 | 0 | let mut n1 = T::one(); |
1345 | 0 | let mut d1 = T::zero(); |
1346 | 0 |
|
1347 | 0 | let t_max = T::max_value(); |
1348 | 0 | let t_max_f = match <F as NumCast>::from(t_max.clone()) { |
1349 | 0 | None => return None, |
1350 | 0 | Some(t_max_f) => t_max_f, |
1351 | 0 | }; |
1352 | 0 |
|
1353 | 0 | // 1/epsilon > T::MAX |
1354 | 0 | let epsilon = t_max_f.recip(); |
1355 | 0 |
|
1356 | 0 | // Overflow |
1357 | 0 | if q > t_max_f { |
1358 | 0 | return None; |
1359 | 0 | } |
1360 | | |
1361 | 0 | for _ in 0..max_iterations { |
1362 | 0 | let a = match <T as NumCast>::from(q) { |
1363 | 0 | None => break, |
1364 | 0 | Some(a) => a, |
1365 | | }; |
1366 | | |
1367 | 0 | let a_f = match <F as NumCast>::from(a.clone()) { |
1368 | 0 | None => break, |
1369 | 0 | Some(a_f) => a_f, |
1370 | 0 | }; |
1371 | 0 | let f = q - a_f; |
1372 | 0 |
|
1373 | 0 | // Prevent overflow |
1374 | 0 | if !a.is_zero() |
1375 | 0 | && (n1 > t_max.clone() / a.clone() |
1376 | 0 | || d1 > t_max.clone() / a.clone() |
1377 | 0 | || a.clone() * n1.clone() > t_max.clone() - n0.clone() |
1378 | 0 | || a.clone() * d1.clone() > t_max.clone() - d0.clone()) |
1379 | | { |
1380 | 0 | break; |
1381 | 0 | } |
1382 | 0 |
|
1383 | 0 | let n = a.clone() * n1.clone() + n0.clone(); |
1384 | 0 | let d = a.clone() * d1.clone() + d0.clone(); |
1385 | 0 |
|
1386 | 0 | n0 = n1; |
1387 | 0 | d0 = d1; |
1388 | 0 | n1 = n.clone(); |
1389 | 0 | d1 = d.clone(); |
1390 | 0 |
|
1391 | 0 | // Simplify fraction. Doing so here instead of at the end |
1392 | 0 | // allows us to get closer to the target value without overflows |
1393 | 0 | let g = Integer::gcd(&n1, &d1); |
1394 | 0 | if !g.is_zero() { |
1395 | 0 | n1 = n1 / g.clone(); |
1396 | 0 | d1 = d1 / g.clone(); |
1397 | 0 | } |
1398 | | |
1399 | | // Close enough? |
1400 | 0 | let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) { |
1401 | 0 | (Some(n_f), Some(d_f)) => (n_f, d_f), |
1402 | 0 | _ => break, |
1403 | | }; |
1404 | 0 | if (n_f / d_f - val).abs() < max_error { |
1405 | 0 | break; |
1406 | 0 | } |
1407 | 0 |
|
1408 | 0 | // Prevent division by ~0 |
1409 | 0 | if f < epsilon { |
1410 | 0 | break; |
1411 | 0 | } |
1412 | 0 | q = f.recip(); |
1413 | | } |
1414 | | |
1415 | | // Overflow |
1416 | 0 | if d1.is_zero() { |
1417 | 0 | return None; |
1418 | 0 | } |
1419 | 0 |
|
1420 | 0 | Some(Ratio::new(n1, d1)) |
1421 | 0 | } Unexecuted instantiation: num_rational::approximate_float_unsigned::<u128, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i128, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u32, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<isize, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i8, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u128, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u64, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i16, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u16, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i64, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<isize, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u64, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<usize, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i32, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i16, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u16, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i128, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i64, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u8, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<usize, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u32, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i8, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i32, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u8, f64> |
1422 | | |
1423 | | #[cfg(test)] |
1424 | | #[cfg(feature = "std")] |
1425 | | fn hash<T: Hash>(x: &T) -> u64 { |
1426 | | use std::collections::hash_map::RandomState; |
1427 | | use std::hash::BuildHasher; |
1428 | | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
1429 | | x.hash(&mut hasher); |
1430 | | hasher.finish() |
1431 | | } |
1432 | | |
1433 | | #[cfg(test)] |
1434 | | mod test { |
1435 | | #[cfg(feature = "bigint")] |
1436 | | use super::BigRational; |
1437 | | use super::{Ratio, Rational, Rational64}; |
1438 | | |
1439 | | use core::f64; |
1440 | | use core::i32; |
1441 | | use core::isize; |
1442 | | use core::str::FromStr; |
1443 | | use integer::Integer; |
1444 | | use traits::{FromPrimitive, One, Pow, Signed, Zero}; |
1445 | | |
1446 | | pub const _0: Rational = Ratio { numer: 0, denom: 1 }; |
1447 | | pub const _1: Rational = Ratio { numer: 1, denom: 1 }; |
1448 | | pub const _2: Rational = Ratio { numer: 2, denom: 1 }; |
1449 | | pub const _NEG2: Rational = Ratio { |
1450 | | numer: -2, |
1451 | | denom: 1, |
1452 | | }; |
1453 | | pub const _1_2: Rational = Ratio { numer: 1, denom: 2 }; |
1454 | | pub const _3_2: Rational = Ratio { numer: 3, denom: 2 }; |
1455 | | pub const _5_2: Rational = Ratio { numer: 5, denom: 2 }; |
1456 | | pub const _NEG1_2: Rational = Ratio { |
1457 | | numer: -1, |
1458 | | denom: 2, |
1459 | | }; |
1460 | | pub const _1_NEG2: Rational = Ratio { |
1461 | | numer: 1, |
1462 | | denom: -2, |
1463 | | }; |
1464 | | pub const _NEG1_NEG2: Rational = Ratio { |
1465 | | numer: -1, |
1466 | | denom: -2, |
1467 | | }; |
1468 | | pub const _1_3: Rational = Ratio { numer: 1, denom: 3 }; |
1469 | | pub const _NEG1_3: Rational = Ratio { |
1470 | | numer: -1, |
1471 | | denom: 3, |
1472 | | }; |
1473 | | pub const _2_3: Rational = Ratio { numer: 2, denom: 3 }; |
1474 | | pub const _NEG2_3: Rational = Ratio { |
1475 | | numer: -2, |
1476 | | denom: 3, |
1477 | | }; |
1478 | | pub const _MIN: Rational = Ratio { |
1479 | | numer: isize::MIN, |
1480 | | denom: 1, |
1481 | | }; |
1482 | | pub const _MIN_P1: Rational = Ratio { |
1483 | | numer: isize::MIN + 1, |
1484 | | denom: 1, |
1485 | | }; |
1486 | | pub const _MAX: Rational = Ratio { |
1487 | | numer: isize::MAX, |
1488 | | denom: 1, |
1489 | | }; |
1490 | | pub const _MAX_M1: Rational = Ratio { |
1491 | | numer: isize::MAX - 1, |
1492 | | denom: 1, |
1493 | | }; |
1494 | | |
1495 | | #[cfg(feature = "bigint")] |
1496 | | pub fn to_big(n: Rational) -> BigRational { |
1497 | | Ratio::new( |
1498 | | FromPrimitive::from_isize(n.numer).unwrap(), |
1499 | | FromPrimitive::from_isize(n.denom).unwrap(), |
1500 | | ) |
1501 | | } |
1502 | | #[cfg(not(feature = "bigint"))] |
1503 | | pub fn to_big(n: Rational) -> Rational { |
1504 | | Ratio::new( |
1505 | | FromPrimitive::from_isize(n.numer).unwrap(), |
1506 | | FromPrimitive::from_isize(n.denom).unwrap(), |
1507 | | ) |
1508 | | } |
1509 | | |
1510 | | #[test] |
1511 | | fn test_test_constants() { |
1512 | | // check our constants are what Ratio::new etc. would make. |
1513 | | assert_eq!(_0, Zero::zero()); |
1514 | | assert_eq!(_1, One::one()); |
1515 | | assert_eq!(_2, Ratio::from_integer(2)); |
1516 | | assert_eq!(_1_2, Ratio::new(1, 2)); |
1517 | | assert_eq!(_3_2, Ratio::new(3, 2)); |
1518 | | assert_eq!(_NEG1_2, Ratio::new(-1, 2)); |
1519 | | assert_eq!(_2, From::from(2)); |
1520 | | } |
1521 | | |
1522 | | #[test] |
1523 | | fn test_new_reduce() { |
1524 | | assert_eq!(Ratio::new(2, 2), One::one()); |
1525 | | assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); |
1526 | | assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); |
1527 | | } |
1528 | | #[test] |
1529 | | #[should_panic] |
1530 | | fn test_new_zero() { |
1531 | | let _a = Ratio::new(1, 0); |
1532 | | } |
1533 | | |
1534 | | #[test] |
1535 | | fn test_approximate_float() { |
1536 | | assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); |
1537 | | assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); |
1538 | | assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); |
1539 | | assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); |
1540 | | assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); |
1541 | | assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); |
1542 | | |
1543 | | assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); |
1544 | | assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); |
1545 | | assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); |
1546 | | assert_eq!(Ratio::<i8>::from_f32(127.5f32), None); |
1547 | | assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); |
1548 | | assert_eq!( |
1549 | | Ratio::<i8>::from_f32(-126.5f32), |
1550 | | Some(Ratio::new(-126i8, 1)) |
1551 | | ); |
1552 | | assert_eq!( |
1553 | | Ratio::<i8>::from_f32(-127.0f32), |
1554 | | Some(Ratio::new(-127i8, 1)) |
1555 | | ); |
1556 | | assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None); |
1557 | | |
1558 | | assert_eq!(Ratio::<u8>::from_f32(-127f32), None); |
1559 | | assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1))); |
1560 | | assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); |
1561 | | assert_eq!(Ratio::<u8>::from_f32(256f32), None); |
1562 | | |
1563 | | assert_eq!(Ratio::<i64>::from_f64(-10e200), None); |
1564 | | assert_eq!(Ratio::<i64>::from_f64(10e200), None); |
1565 | | assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None); |
1566 | | assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None); |
1567 | | assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None); |
1568 | | assert_eq!( |
1569 | | Ratio::<i64>::from_f64(f64::EPSILON), |
1570 | | Some(Ratio::new(1, 4503599627370496)) |
1571 | | ); |
1572 | | assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1))); |
1573 | | assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1))); |
1574 | | } |
1575 | | |
1576 | | #[test] |
1577 | | fn test_cmp() { |
1578 | | assert!(_0 == _0 && _1 == _1); |
1579 | | assert!(_0 != _1 && _1 != _0); |
1580 | | assert!(_0 < _1 && !(_1 < _0)); |
1581 | | assert!(_1 > _0 && !(_0 > _1)); |
1582 | | |
1583 | | assert!(_0 <= _0 && _1 <= _1); |
1584 | | assert!(_0 <= _1 && !(_1 <= _0)); |
1585 | | |
1586 | | assert!(_0 >= _0 && _1 >= _1); |
1587 | | assert!(_1 >= _0 && !(_0 >= _1)); |
1588 | | |
1589 | | let _0_2: Rational = Ratio::new_raw(0, 2); |
1590 | | assert_eq!(_0, _0_2); |
1591 | | } |
1592 | | |
1593 | | #[test] |
1594 | | fn test_cmp_overflow() { |
1595 | | use core::cmp::Ordering; |
1596 | | |
1597 | | // issue #7 example: |
1598 | | let big = Ratio::new(128u8, 1); |
1599 | | let small = big.recip(); |
1600 | | assert!(big > small); |
1601 | | |
1602 | | // try a few that are closer together |
1603 | | // (some matching numer, some matching denom, some neither) |
1604 | | let ratios = [ |
1605 | | Ratio::new(125_i8, 127_i8), |
1606 | | Ratio::new(63_i8, 64_i8), |
1607 | | Ratio::new(124_i8, 125_i8), |
1608 | | Ratio::new(125_i8, 126_i8), |
1609 | | Ratio::new(126_i8, 127_i8), |
1610 | | Ratio::new(127_i8, 126_i8), |
1611 | | ]; |
1612 | | |
1613 | | fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) { |
1614 | | #[cfg(feature = "std")] |
1615 | | println!("comparing {} and {}", a, b); |
1616 | | assert_eq!(a.cmp(&b), ord); |
1617 | | assert_eq!(b.cmp(&a), ord.reverse()); |
1618 | | } |
1619 | | |
1620 | | for (i, &a) in ratios.iter().enumerate() { |
1621 | | check_cmp(a, a, Ordering::Equal); |
1622 | | check_cmp(-a, a, Ordering::Less); |
1623 | | for &b in &ratios[i + 1..] { |
1624 | | check_cmp(a, b, Ordering::Less); |
1625 | | check_cmp(-a, -b, Ordering::Greater); |
1626 | | check_cmp(a.recip(), b.recip(), Ordering::Greater); |
1627 | | check_cmp(-a.recip(), -b.recip(), Ordering::Less); |
1628 | | } |
1629 | | } |
1630 | | } |
1631 | | |
1632 | | #[test] |
1633 | | fn test_to_integer() { |
1634 | | assert_eq!(_0.to_integer(), 0); |
1635 | | assert_eq!(_1.to_integer(), 1); |
1636 | | assert_eq!(_2.to_integer(), 2); |
1637 | | assert_eq!(_1_2.to_integer(), 0); |
1638 | | assert_eq!(_3_2.to_integer(), 1); |
1639 | | assert_eq!(_NEG1_2.to_integer(), 0); |
1640 | | } |
1641 | | |
1642 | | #[test] |
1643 | | fn test_numer() { |
1644 | | assert_eq!(_0.numer(), &0); |
1645 | | assert_eq!(_1.numer(), &1); |
1646 | | assert_eq!(_2.numer(), &2); |
1647 | | assert_eq!(_1_2.numer(), &1); |
1648 | | assert_eq!(_3_2.numer(), &3); |
1649 | | assert_eq!(_NEG1_2.numer(), &(-1)); |
1650 | | } |
1651 | | #[test] |
1652 | | fn test_denom() { |
1653 | | assert_eq!(_0.denom(), &1); |
1654 | | assert_eq!(_1.denom(), &1); |
1655 | | assert_eq!(_2.denom(), &1); |
1656 | | assert_eq!(_1_2.denom(), &2); |
1657 | | assert_eq!(_3_2.denom(), &2); |
1658 | | assert_eq!(_NEG1_2.denom(), &2); |
1659 | | } |
1660 | | |
1661 | | #[test] |
1662 | | fn test_is_integer() { |
1663 | | assert!(_0.is_integer()); |
1664 | | assert!(_1.is_integer()); |
1665 | | assert!(_2.is_integer()); |
1666 | | assert!(!_1_2.is_integer()); |
1667 | | assert!(!_3_2.is_integer()); |
1668 | | assert!(!_NEG1_2.is_integer()); |
1669 | | } |
1670 | | |
1671 | | #[test] |
1672 | | #[cfg(feature = "std")] |
1673 | | fn test_show() { |
1674 | | use std::string::ToString; |
1675 | | assert_eq!(format!("{}", _2), "2".to_string()); |
1676 | | assert_eq!(format!("{}", _1_2), "1/2".to_string()); |
1677 | | assert_eq!(format!("{}", _0), "0".to_string()); |
1678 | | assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string()); |
1679 | | } |
1680 | | |
1681 | | mod arith { |
1682 | | use super::super::{Ratio, Rational}; |
1683 | | use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; |
1684 | | use core::fmt::Debug; |
1685 | | use integer::Integer; |
1686 | | use traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; |
1687 | | |
1688 | | #[test] |
1689 | | fn test_add() { |
1690 | | fn test(a: Rational, b: Rational, c: Rational) { |
1691 | | assert_eq!(a + b, c); |
1692 | | assert_eq!( |
1693 | | { |
1694 | | let mut x = a; |
1695 | | x += b; |
1696 | | x |
1697 | | }, |
1698 | | c |
1699 | | ); |
1700 | | assert_eq!(to_big(a) + to_big(b), to_big(c)); |
1701 | | assert_eq!(a.checked_add(&b), Some(c)); |
1702 | | assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); |
1703 | | } |
1704 | | fn test_assign(a: Rational, b: isize, c: Rational) { |
1705 | | assert_eq!(a + b, c); |
1706 | | assert_eq!( |
1707 | | { |
1708 | | let mut x = a; |
1709 | | x += b; |
1710 | | x |
1711 | | }, |
1712 | | c |
1713 | | ); |
1714 | | } |
1715 | | |
1716 | | test(_1, _1_2, _3_2); |
1717 | | test(_1, _1, _2); |
1718 | | test(_1_2, _3_2, _2); |
1719 | | test(_1_2, _NEG1_2, _0); |
1720 | | test_assign(_1_2, 1, _3_2); |
1721 | | } |
1722 | | |
1723 | | #[test] |
1724 | | fn test_add_overflow() { |
1725 | | // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) |
1726 | | // to Ratio(1+1, T::max_value()) for each integer type. |
1727 | | // Previously, this calculation would overflow. |
1728 | | fn test_add_typed_overflow<T>() |
1729 | | where |
1730 | | T: Integer + Bounded + Clone + Debug + NumAssign, |
1731 | | { |
1732 | | let _1_max = Ratio::new(T::one(), T::max_value()); |
1733 | | let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); |
1734 | | assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); |
1735 | | assert_eq!( |
1736 | | { |
1737 | | let mut tmp = _1_max.clone(); |
1738 | | tmp += _1_max.clone(); |
1739 | | tmp |
1740 | | }, |
1741 | | _2_max.clone() |
1742 | | ); |
1743 | | } |
1744 | | test_add_typed_overflow::<u8>(); |
1745 | | test_add_typed_overflow::<u16>(); |
1746 | | test_add_typed_overflow::<u32>(); |
1747 | | test_add_typed_overflow::<u64>(); |
1748 | | test_add_typed_overflow::<usize>(); |
1749 | | #[cfg(has_u128)] |
1750 | | test_add_typed_overflow::<u128>(); |
1751 | | |
1752 | | test_add_typed_overflow::<i8>(); |
1753 | | test_add_typed_overflow::<i16>(); |
1754 | | test_add_typed_overflow::<i32>(); |
1755 | | test_add_typed_overflow::<i64>(); |
1756 | | test_add_typed_overflow::<isize>(); |
1757 | | #[cfg(has_i128)] |
1758 | | test_add_typed_overflow::<i128>(); |
1759 | | } |
1760 | | |
1761 | | #[test] |
1762 | | fn test_sub() { |
1763 | | fn test(a: Rational, b: Rational, c: Rational) { |
1764 | | assert_eq!(a - b, c); |
1765 | | assert_eq!( |
1766 | | { |
1767 | | let mut x = a; |
1768 | | x -= b; |
1769 | | x |
1770 | | }, |
1771 | | c |
1772 | | ); |
1773 | | assert_eq!(to_big(a) - to_big(b), to_big(c)); |
1774 | | assert_eq!(a.checked_sub(&b), Some(c)); |
1775 | | assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); |
1776 | | } |
1777 | | fn test_assign(a: Rational, b: isize, c: Rational) { |
1778 | | assert_eq!(a - b, c); |
1779 | | assert_eq!( |
1780 | | { |
1781 | | let mut x = a; |
1782 | | x -= b; |
1783 | | x |
1784 | | }, |
1785 | | c |
1786 | | ); |
1787 | | } |
1788 | | |
1789 | | test(_1, _1_2, _1_2); |
1790 | | test(_3_2, _1_2, _1); |
1791 | | test(_1, _NEG1_2, _3_2); |
1792 | | test_assign(_1_2, 1, _NEG1_2); |
1793 | | } |
1794 | | |
1795 | | #[test] |
1796 | | fn test_sub_overflow() { |
1797 | | // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() |
1798 | | // for each integer type. Previously, this calculation would overflow. |
1799 | | fn test_sub_typed_overflow<T>() |
1800 | | where |
1801 | | T: Integer + Bounded + Clone + Debug + NumAssign, |
1802 | | { |
1803 | | let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value()); |
1804 | | assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); |
1805 | | { |
1806 | | let mut tmp: Ratio<T> = _1_max.clone(); |
1807 | | tmp -= _1_max.clone(); |
1808 | | assert!(T::is_zero(&tmp.numer)); |
1809 | | } |
1810 | | } |
1811 | | test_sub_typed_overflow::<u8>(); |
1812 | | test_sub_typed_overflow::<u16>(); |
1813 | | test_sub_typed_overflow::<u32>(); |
1814 | | test_sub_typed_overflow::<u64>(); |
1815 | | test_sub_typed_overflow::<usize>(); |
1816 | | #[cfg(has_u128)] |
1817 | | test_sub_typed_overflow::<u128>(); |
1818 | | |
1819 | | test_sub_typed_overflow::<i8>(); |
1820 | | test_sub_typed_overflow::<i16>(); |
1821 | | test_sub_typed_overflow::<i32>(); |
1822 | | test_sub_typed_overflow::<i64>(); |
1823 | | test_sub_typed_overflow::<isize>(); |
1824 | | #[cfg(has_i128)] |
1825 | | test_sub_typed_overflow::<i128>(); |
1826 | | } |
1827 | | |
1828 | | #[test] |
1829 | | fn test_mul() { |
1830 | | fn test(a: Rational, b: Rational, c: Rational) { |
1831 | | assert_eq!(a * b, c); |
1832 | | assert_eq!( |
1833 | | { |
1834 | | let mut x = a; |
1835 | | x *= b; |
1836 | | x |
1837 | | }, |
1838 | | c |
1839 | | ); |
1840 | | assert_eq!(to_big(a) * to_big(b), to_big(c)); |
1841 | | assert_eq!(a.checked_mul(&b), Some(c)); |
1842 | | assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); |
1843 | | } |
1844 | | fn test_assign(a: Rational, b: isize, c: Rational) { |
1845 | | assert_eq!(a * b, c); |
1846 | | assert_eq!( |
1847 | | { |
1848 | | let mut x = a; |
1849 | | x *= b; |
1850 | | x |
1851 | | }, |
1852 | | c |
1853 | | ); |
1854 | | } |
1855 | | |
1856 | | test(_1, _1_2, _1_2); |
1857 | | test(_1_2, _3_2, Ratio::new(3, 4)); |
1858 | | test(_1_2, _NEG1_2, Ratio::new(-1, 4)); |
1859 | | test_assign(_1_2, 2, _1); |
1860 | | } |
1861 | | |
1862 | | #[test] |
1863 | | fn test_mul_overflow() { |
1864 | | fn test_mul_typed_overflow<T>() |
1865 | | where |
1866 | | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
1867 | | { |
1868 | | let two = T::one() + T::one(); |
1869 | | let _3 = T::one() + T::one() + T::one(); |
1870 | | |
1871 | | // 1/big * 2/3 = 1/(max/4*3), where big is max/2 |
1872 | | // make big = max/2, but also divisible by 2 |
1873 | | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
1874 | | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
1875 | | let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone()); |
1876 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
1877 | | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
1878 | | assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); |
1879 | | assert_eq!( |
1880 | | Some(expected.clone()), |
1881 | | _1_big.clone().checked_mul(&_2_3.clone()) |
1882 | | ); |
1883 | | assert_eq!(expected, { |
1884 | | let mut tmp = _1_big.clone(); |
1885 | | tmp *= _2_3; |
1886 | | tmp |
1887 | | }); |
1888 | | |
1889 | | // big/3 * 3 = big/1 |
1890 | | // make big = max/2, but make it indivisible by 3 |
1891 | | let big = T::max_value() / two.clone() / _3.clone() * _3.clone() + T::one(); |
1892 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
1893 | | let big_3 = Ratio::new(big.clone(), _3.clone()); |
1894 | | let expected = Ratio::new(big.clone(), T::one()); |
1895 | | assert_eq!(expected, big_3.clone() * _3.clone()); |
1896 | | assert_eq!(expected, { |
1897 | | let mut tmp = big_3.clone(); |
1898 | | tmp *= _3.clone(); |
1899 | | tmp |
1900 | | }); |
1901 | | } |
1902 | | test_mul_typed_overflow::<u16>(); |
1903 | | test_mul_typed_overflow::<u8>(); |
1904 | | test_mul_typed_overflow::<u32>(); |
1905 | | test_mul_typed_overflow::<u64>(); |
1906 | | test_mul_typed_overflow::<usize>(); |
1907 | | #[cfg(has_u128)] |
1908 | | test_mul_typed_overflow::<u128>(); |
1909 | | |
1910 | | test_mul_typed_overflow::<i8>(); |
1911 | | test_mul_typed_overflow::<i16>(); |
1912 | | test_mul_typed_overflow::<i32>(); |
1913 | | test_mul_typed_overflow::<i64>(); |
1914 | | test_mul_typed_overflow::<isize>(); |
1915 | | #[cfg(has_i128)] |
1916 | | test_mul_typed_overflow::<i128>(); |
1917 | | } |
1918 | | |
1919 | | #[test] |
1920 | | fn test_div() { |
1921 | | fn test(a: Rational, b: Rational, c: Rational) { |
1922 | | assert_eq!(a / b, c); |
1923 | | assert_eq!( |
1924 | | { |
1925 | | let mut x = a; |
1926 | | x /= b; |
1927 | | x |
1928 | | }, |
1929 | | c |
1930 | | ); |
1931 | | assert_eq!(to_big(a) / to_big(b), to_big(c)); |
1932 | | assert_eq!(a.checked_div(&b), Some(c)); |
1933 | | assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); |
1934 | | } |
1935 | | fn test_assign(a: Rational, b: isize, c: Rational) { |
1936 | | assert_eq!(a / b, c); |
1937 | | assert_eq!( |
1938 | | { |
1939 | | let mut x = a; |
1940 | | x /= b; |
1941 | | x |
1942 | | }, |
1943 | | c |
1944 | | ); |
1945 | | } |
1946 | | |
1947 | | test(_1, _1_2, _2); |
1948 | | test(_3_2, _1_2, _1 + _2); |
1949 | | test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); |
1950 | | test_assign(_1, 2, _1_2); |
1951 | | } |
1952 | | |
1953 | | #[test] |
1954 | | fn test_div_overflow() { |
1955 | | fn test_div_typed_overflow<T>() |
1956 | | where |
1957 | | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
1958 | | { |
1959 | | let two = T::one() + T::one(); |
1960 | | let _3 = T::one() + T::one() + T::one(); |
1961 | | |
1962 | | // 1/big / 3/2 = 1/(max/4*3), where big is max/2 |
1963 | | // big ~ max/2, and big is divisible by 2 |
1964 | | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
1965 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
1966 | | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
1967 | | let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone()); |
1968 | | let expected = Ratio::new(T::one(), big.clone() / two.clone() * _3.clone()); |
1969 | | assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); |
1970 | | assert_eq!( |
1971 | | Some(expected.clone()), |
1972 | | _1_big.clone().checked_div(&_3_two.clone()) |
1973 | | ); |
1974 | | assert_eq!(expected, { |
1975 | | let mut tmp = _1_big.clone(); |
1976 | | tmp /= _3_two; |
1977 | | tmp |
1978 | | }); |
1979 | | |
1980 | | // 3/big / 3 = 1/big where big is max/2 |
1981 | | // big ~ max/2, and big is not divisible by 3 |
1982 | | let big = T::max_value() / two.clone() / _3.clone() * _3.clone() + T::one(); |
1983 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
1984 | | let _3_big = Ratio::new(_3.clone(), big.clone()); |
1985 | | let expected = Ratio::new(T::one(), big.clone()); |
1986 | | assert_eq!(expected, _3_big.clone() / _3.clone()); |
1987 | | assert_eq!(expected, { |
1988 | | let mut tmp = _3_big.clone(); |
1989 | | tmp /= _3.clone(); |
1990 | | tmp |
1991 | | }); |
1992 | | } |
1993 | | test_div_typed_overflow::<u8>(); |
1994 | | test_div_typed_overflow::<u16>(); |
1995 | | test_div_typed_overflow::<u32>(); |
1996 | | test_div_typed_overflow::<u64>(); |
1997 | | test_div_typed_overflow::<usize>(); |
1998 | | #[cfg(has_u128)] |
1999 | | test_div_typed_overflow::<u128>(); |
2000 | | |
2001 | | test_div_typed_overflow::<i8>(); |
2002 | | test_div_typed_overflow::<i16>(); |
2003 | | test_div_typed_overflow::<i32>(); |
2004 | | test_div_typed_overflow::<i64>(); |
2005 | | test_div_typed_overflow::<isize>(); |
2006 | | #[cfg(has_i128)] |
2007 | | test_div_typed_overflow::<i128>(); |
2008 | | } |
2009 | | |
2010 | | #[test] |
2011 | | fn test_rem() { |
2012 | | fn test(a: Rational, b: Rational, c: Rational) { |
2013 | | assert_eq!(a % b, c); |
2014 | | assert_eq!( |
2015 | | { |
2016 | | let mut x = a; |
2017 | | x %= b; |
2018 | | x |
2019 | | }, |
2020 | | c |
2021 | | ); |
2022 | | assert_eq!(to_big(a) % to_big(b), to_big(c)) |
2023 | | } |
2024 | | fn test_assign(a: Rational, b: isize, c: Rational) { |
2025 | | assert_eq!(a % b, c); |
2026 | | assert_eq!( |
2027 | | { |
2028 | | let mut x = a; |
2029 | | x %= b; |
2030 | | x |
2031 | | }, |
2032 | | c |
2033 | | ); |
2034 | | } |
2035 | | |
2036 | | test(_3_2, _1, _1_2); |
2037 | | test(_3_2, _1_2, _0); |
2038 | | test(_5_2, _3_2, _1); |
2039 | | test(_2, _NEG1_2, _0); |
2040 | | test(_1_2, _2, _1_2); |
2041 | | test_assign(_3_2, 1, _1_2); |
2042 | | } |
2043 | | |
2044 | | #[test] |
2045 | | fn test_rem_overflow() { |
2046 | | // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 |
2047 | | // for each integer type. Previously, this calculation would overflow. |
2048 | | fn test_rem_typed_overflow<T>() |
2049 | | where |
2050 | | T: Integer + Bounded + Clone + Debug + NumAssign, |
2051 | | { |
2052 | | let two = T::one() + T::one(); |
2053 | | //value near to maximum, but divisible by two |
2054 | | let max_div2 = T::max_value() / two.clone() * two.clone(); |
2055 | | let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2.clone()); |
2056 | | let _1_two: Ratio<T> = Ratio::new(T::one(), two); |
2057 | | assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); |
2058 | | { |
2059 | | let mut tmp: Ratio<T> = _1_two.clone(); |
2060 | | tmp %= _1_max.clone(); |
2061 | | assert!(T::is_zero(&tmp.numer)); |
2062 | | } |
2063 | | } |
2064 | | test_rem_typed_overflow::<u8>(); |
2065 | | test_rem_typed_overflow::<u16>(); |
2066 | | test_rem_typed_overflow::<u32>(); |
2067 | | test_rem_typed_overflow::<u64>(); |
2068 | | test_rem_typed_overflow::<usize>(); |
2069 | | #[cfg(has_u128)] |
2070 | | test_rem_typed_overflow::<u128>(); |
2071 | | |
2072 | | test_rem_typed_overflow::<i8>(); |
2073 | | test_rem_typed_overflow::<i16>(); |
2074 | | test_rem_typed_overflow::<i32>(); |
2075 | | test_rem_typed_overflow::<i64>(); |
2076 | | test_rem_typed_overflow::<isize>(); |
2077 | | #[cfg(has_i128)] |
2078 | | test_rem_typed_overflow::<i128>(); |
2079 | | } |
2080 | | |
2081 | | #[test] |
2082 | | fn test_neg() { |
2083 | | fn test(a: Rational, b: Rational) { |
2084 | | assert_eq!(-a, b); |
2085 | | assert_eq!(-to_big(a), to_big(b)) |
2086 | | } |
2087 | | |
2088 | | test(_0, _0); |
2089 | | test(_1_2, _NEG1_2); |
2090 | | test(-_1, _1); |
2091 | | } |
2092 | | #[test] |
2093 | | fn test_zero() { |
2094 | | assert_eq!(_0 + _0, _0); |
2095 | | assert_eq!(_0 * _0, _0); |
2096 | | assert_eq!(_0 * _1, _0); |
2097 | | assert_eq!(_0 / _NEG1_2, _0); |
2098 | | assert_eq!(_0 - _0, _0); |
2099 | | } |
2100 | | #[test] |
2101 | | #[should_panic] |
2102 | | fn test_div_0() { |
2103 | | let _a = _1 / _0; |
2104 | | } |
2105 | | |
2106 | | #[test] |
2107 | | fn test_checked_failures() { |
2108 | | let big = Ratio::new(128u8, 1); |
2109 | | let small = Ratio::new(1, 128u8); |
2110 | | assert_eq!(big.checked_add(&big), None); |
2111 | | assert_eq!(small.checked_sub(&big), None); |
2112 | | assert_eq!(big.checked_mul(&big), None); |
2113 | | assert_eq!(small.checked_div(&big), None); |
2114 | | assert_eq!(_1.checked_div(&_0), None); |
2115 | | } |
2116 | | |
2117 | | #[test] |
2118 | | fn test_checked_zeros() { |
2119 | | assert_eq!(_0.checked_add(&_0), Some(_0)); |
2120 | | assert_eq!(_0.checked_sub(&_0), Some(_0)); |
2121 | | assert_eq!(_0.checked_mul(&_0), Some(_0)); |
2122 | | assert_eq!(_0.checked_div(&_0), None); |
2123 | | } |
2124 | | |
2125 | | #[test] |
2126 | | fn test_checked_min() { |
2127 | | assert_eq!(_MIN.checked_add(&_MIN), None); |
2128 | | assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); |
2129 | | assert_eq!(_MIN.checked_mul(&_MIN), None); |
2130 | | assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); |
2131 | | assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); |
2132 | | assert_eq!(_0.checked_sub(&_MIN), None); |
2133 | | assert_eq!(_0.checked_mul(&_MIN), Some(_0)); |
2134 | | assert_eq!(_0.checked_div(&_MIN), Some(_0)); |
2135 | | assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); |
2136 | | assert_eq!(_1.checked_sub(&_MIN), None); |
2137 | | assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); |
2138 | | assert_eq!(_1.checked_div(&_MIN), None); |
2139 | | assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); |
2140 | | assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); |
2141 | | assert_eq!(_MIN.checked_mul(&_0), Some(_0)); |
2142 | | assert_eq!(_MIN.checked_div(&_0), None); |
2143 | | assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); |
2144 | | assert_eq!(_MIN.checked_sub(&_1), None); |
2145 | | assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); |
2146 | | assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); |
2147 | | } |
2148 | | |
2149 | | #[test] |
2150 | | fn test_checked_max() { |
2151 | | assert_eq!(_MAX.checked_add(&_MAX), None); |
2152 | | assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); |
2153 | | assert_eq!(_MAX.checked_mul(&_MAX), None); |
2154 | | assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); |
2155 | | assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); |
2156 | | assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); |
2157 | | assert_eq!(_0.checked_mul(&_MAX), Some(_0)); |
2158 | | assert_eq!(_0.checked_div(&_MAX), Some(_0)); |
2159 | | assert_eq!(_1.checked_add(&_MAX), None); |
2160 | | assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); |
2161 | | assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); |
2162 | | assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); |
2163 | | assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); |
2164 | | assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); |
2165 | | assert_eq!(_MAX.checked_mul(&_0), Some(_0)); |
2166 | | assert_eq!(_MAX.checked_div(&_0), None); |
2167 | | assert_eq!(_MAX.checked_add(&_1), None); |
2168 | | assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); |
2169 | | assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); |
2170 | | assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); |
2171 | | } |
2172 | | |
2173 | | #[test] |
2174 | | fn test_checked_min_max() { |
2175 | | assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); |
2176 | | assert_eq!(_MIN.checked_sub(&_MAX), None); |
2177 | | assert_eq!(_MIN.checked_mul(&_MAX), None); |
2178 | | assert_eq!( |
2179 | | _MIN.checked_div(&_MAX), |
2180 | | Some(Ratio::new(_MIN.numer, _MAX.numer)) |
2181 | | ); |
2182 | | assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); |
2183 | | assert_eq!(_MAX.checked_sub(&_MIN), None); |
2184 | | assert_eq!(_MAX.checked_mul(&_MIN), None); |
2185 | | assert_eq!(_MAX.checked_div(&_MIN), None); |
2186 | | } |
2187 | | } |
2188 | | |
2189 | | #[test] |
2190 | | fn test_round() { |
2191 | | assert_eq!(_1_3.ceil(), _1); |
2192 | | assert_eq!(_1_3.floor(), _0); |
2193 | | assert_eq!(_1_3.round(), _0); |
2194 | | assert_eq!(_1_3.trunc(), _0); |
2195 | | |
2196 | | assert_eq!(_NEG1_3.ceil(), _0); |
2197 | | assert_eq!(_NEG1_3.floor(), -_1); |
2198 | | assert_eq!(_NEG1_3.round(), _0); |
2199 | | assert_eq!(_NEG1_3.trunc(), _0); |
2200 | | |
2201 | | assert_eq!(_2_3.ceil(), _1); |
2202 | | assert_eq!(_2_3.floor(), _0); |
2203 | | assert_eq!(_2_3.round(), _1); |
2204 | | assert_eq!(_2_3.trunc(), _0); |
2205 | | |
2206 | | assert_eq!(_NEG2_3.ceil(), _0); |
2207 | | assert_eq!(_NEG2_3.floor(), -_1); |
2208 | | assert_eq!(_NEG2_3.round(), -_1); |
2209 | | assert_eq!(_NEG2_3.trunc(), _0); |
2210 | | |
2211 | | assert_eq!(_1_2.ceil(), _1); |
2212 | | assert_eq!(_1_2.floor(), _0); |
2213 | | assert_eq!(_1_2.round(), _1); |
2214 | | assert_eq!(_1_2.trunc(), _0); |
2215 | | |
2216 | | assert_eq!(_NEG1_2.ceil(), _0); |
2217 | | assert_eq!(_NEG1_2.floor(), -_1); |
2218 | | assert_eq!(_NEG1_2.round(), -_1); |
2219 | | assert_eq!(_NEG1_2.trunc(), _0); |
2220 | | |
2221 | | assert_eq!(_1.ceil(), _1); |
2222 | | assert_eq!(_1.floor(), _1); |
2223 | | assert_eq!(_1.round(), _1); |
2224 | | assert_eq!(_1.trunc(), _1); |
2225 | | |
2226 | | // Overflow checks |
2227 | | |
2228 | | let _neg1 = Ratio::from_integer(-1); |
2229 | | let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); |
2230 | | let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); |
2231 | | let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); |
2232 | | let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); |
2233 | | let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); |
2234 | | let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); |
2235 | | let _large_rat7 = Ratio::new(1, i32::MIN + 1); |
2236 | | let _large_rat8 = Ratio::new(1, i32::MAX); |
2237 | | |
2238 | | assert_eq!(_large_rat1.round(), One::one()); |
2239 | | assert_eq!(_large_rat2.round(), One::one()); |
2240 | | assert_eq!(_large_rat3.round(), One::one()); |
2241 | | assert_eq!(_large_rat4.round(), One::one()); |
2242 | | assert_eq!(_large_rat5.round(), _neg1); |
2243 | | assert_eq!(_large_rat6.round(), _neg1); |
2244 | | assert_eq!(_large_rat7.round(), Zero::zero()); |
2245 | | assert_eq!(_large_rat8.round(), Zero::zero()); |
2246 | | } |
2247 | | |
2248 | | #[test] |
2249 | | fn test_fract() { |
2250 | | assert_eq!(_1.fract(), _0); |
2251 | | assert_eq!(_NEG1_2.fract(), _NEG1_2); |
2252 | | assert_eq!(_1_2.fract(), _1_2); |
2253 | | assert_eq!(_3_2.fract(), _1_2); |
2254 | | } |
2255 | | |
2256 | | #[test] |
2257 | | fn test_recip() { |
2258 | | assert_eq!(_1 * _1.recip(), _1); |
2259 | | assert_eq!(_2 * _2.recip(), _1); |
2260 | | assert_eq!(_1_2 * _1_2.recip(), _1); |
2261 | | assert_eq!(_3_2 * _3_2.recip(), _1); |
2262 | | assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); |
2263 | | |
2264 | | assert_eq!(_3_2.recip(), _2_3); |
2265 | | assert_eq!(_NEG1_2.recip(), _NEG2); |
2266 | | assert_eq!(_NEG1_2.recip().denom(), &1); |
2267 | | } |
2268 | | |
2269 | | #[test] |
2270 | | #[should_panic(expected = "== 0")] |
2271 | | fn test_recip_fail() { |
2272 | | let _a = Ratio::new(0, 1).recip(); |
2273 | | } |
2274 | | |
2275 | | #[test] |
2276 | | fn test_pow() { |
2277 | | fn test(r: Rational, e: i32, expected: Rational) { |
2278 | | assert_eq!(r.pow(e), expected); |
2279 | | assert_eq!(Pow::pow(r, e), expected); |
2280 | | assert_eq!(Pow::pow(r, &e), expected); |
2281 | | assert_eq!(Pow::pow(&r, e), expected); |
2282 | | assert_eq!(Pow::pow(&r, &e), expected); |
2283 | | } |
2284 | | |
2285 | | test(_1_2, 2, Ratio::new(1, 4)); |
2286 | | test(_1_2, -2, Ratio::new(4, 1)); |
2287 | | test(_1, 1, _1); |
2288 | | test(_1, i32::MAX, _1); |
2289 | | test(_1, i32::MIN, _1); |
2290 | | test(_NEG1_2, 2, _1_2.pow(2i32)); |
2291 | | test(_NEG1_2, 3, -_1_2.pow(3i32)); |
2292 | | test(_3_2, 0, _1); |
2293 | | test(_3_2, -1, _3_2.recip()); |
2294 | | test(_3_2, 3, Ratio::new(27, 8)); |
2295 | | } |
2296 | | |
2297 | | #[test] |
2298 | | #[cfg(feature = "std")] |
2299 | | fn test_to_from_str() { |
2300 | | use std::string::{String, ToString}; |
2301 | | fn test(r: Rational, s: String) { |
2302 | | assert_eq!(FromStr::from_str(&s), Ok(r)); |
2303 | | assert_eq!(r.to_string(), s); |
2304 | | } |
2305 | | test(_1, "1".to_string()); |
2306 | | test(_0, "0".to_string()); |
2307 | | test(_1_2, "1/2".to_string()); |
2308 | | test(_3_2, "3/2".to_string()); |
2309 | | test(_2, "2".to_string()); |
2310 | | test(_NEG1_2, "-1/2".to_string()); |
2311 | | } |
2312 | | #[test] |
2313 | | fn test_from_str_fail() { |
2314 | | fn test(s: &str) { |
2315 | | let rational: Result<Rational, _> = FromStr::from_str(s); |
2316 | | assert!(rational.is_err()); |
2317 | | } |
2318 | | |
2319 | | let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; |
2320 | | for &s in xs.iter() { |
2321 | | test(s); |
2322 | | } |
2323 | | } |
2324 | | |
2325 | | #[cfg(feature = "bigint")] |
2326 | | #[test] |
2327 | | fn test_from_float() { |
2328 | | use traits::float::FloatCore; |
2329 | | fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) { |
2330 | | let ratio: BigRational = Ratio::from_float(given).unwrap(); |
2331 | | assert_eq!( |
2332 | | ratio, |
2333 | | Ratio::new( |
2334 | | FromStr::from_str(numer).unwrap(), |
2335 | | FromStr::from_str(denom).unwrap() |
2336 | | ) |
2337 | | ); |
2338 | | } |
2339 | | |
2340 | | // f32 |
2341 | | test(3.14159265359f32, ("13176795", "4194304")); |
2342 | | test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); |
2343 | | test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1")); |
2344 | | test( |
2345 | | 1.0 / 2f32.powf(100.), |
2346 | | ("1", "1267650600228229401496703205376"), |
2347 | | ); |
2348 | | test(684729.48391f32, ("1369459", "2")); |
2349 | | test(-8573.5918555f32, ("-4389679", "512")); |
2350 | | |
2351 | | // f64 |
2352 | | test(3.14159265359f64, ("3537118876014453", "1125899906842624")); |
2353 | | test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); |
2354 | | test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1")); |
2355 | | test(684729.48391f64, ("367611342500051", "536870912")); |
2356 | | test(-8573.5918555f64, ("-4713381968463931", "549755813888")); |
2357 | | test( |
2358 | | 1.0 / 2f64.powf(100.), |
2359 | | ("1", "1267650600228229401496703205376"), |
2360 | | ); |
2361 | | } |
2362 | | |
2363 | | #[cfg(feature = "bigint")] |
2364 | | #[test] |
2365 | | fn test_from_float_fail() { |
2366 | | use core::{f32, f64}; |
2367 | | |
2368 | | assert_eq!(Ratio::from_float(f32::NAN), None); |
2369 | | assert_eq!(Ratio::from_float(f32::INFINITY), None); |
2370 | | assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); |
2371 | | assert_eq!(Ratio::from_float(f64::NAN), None); |
2372 | | assert_eq!(Ratio::from_float(f64::INFINITY), None); |
2373 | | assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); |
2374 | | } |
2375 | | |
2376 | | #[test] |
2377 | | fn test_signed() { |
2378 | | assert_eq!(_NEG1_2.abs(), _1_2); |
2379 | | assert_eq!(_3_2.abs_sub(&_1_2), _1); |
2380 | | assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); |
2381 | | assert_eq!(_1_2.signum(), One::one()); |
2382 | | assert_eq!(_NEG1_2.signum(), -<Ratio<isize>>::one()); |
2383 | | assert_eq!(_0.signum(), Zero::zero()); |
2384 | | assert!(_NEG1_2.is_negative()); |
2385 | | assert!(_1_NEG2.is_negative()); |
2386 | | assert!(!_NEG1_2.is_positive()); |
2387 | | assert!(!_1_NEG2.is_positive()); |
2388 | | assert!(_1_2.is_positive()); |
2389 | | assert!(_NEG1_NEG2.is_positive()); |
2390 | | assert!(!_1_2.is_negative()); |
2391 | | assert!(!_NEG1_NEG2.is_negative()); |
2392 | | assert!(!_0.is_positive()); |
2393 | | assert!(!_0.is_negative()); |
2394 | | } |
2395 | | |
2396 | | #[test] |
2397 | | #[cfg(feature = "std")] |
2398 | | fn test_hash() { |
2399 | | assert!(::hash(&_0) != ::hash(&_1)); |
2400 | | assert!(::hash(&_0) != ::hash(&_3_2)); |
2401 | | |
2402 | | // a == b -> hash(a) == hash(b) |
2403 | | let a = Rational::new_raw(4, 2); |
2404 | | let b = Rational::new_raw(6, 3); |
2405 | | assert_eq!(a, b); |
2406 | | assert_eq!(::hash(&a), ::hash(&b)); |
2407 | | |
2408 | | let a = Rational::new_raw(123456789, 1000); |
2409 | | let b = Rational::new_raw(123456789 * 5, 5000); |
2410 | | assert_eq!(a, b); |
2411 | | assert_eq!(::hash(&a), ::hash(&b)); |
2412 | | } |
2413 | | |
2414 | | #[test] |
2415 | | fn test_into_pair() { |
2416 | | assert_eq!((0, 1), _0.into()); |
2417 | | assert_eq!((-2, 1), _NEG2.into()); |
2418 | | assert_eq!((1, -2), _1_NEG2.into()); |
2419 | | } |
2420 | | |
2421 | | #[test] |
2422 | | fn test_from_pair() { |
2423 | | assert_eq!(_0, Ratio::from((0, 1))); |
2424 | | assert_eq!(_1, Ratio::from((1, 1))); |
2425 | | assert_eq!(_NEG2, Ratio::from((-2, 1))); |
2426 | | assert_eq!(_1_NEG2, Ratio::from((1, -2))); |
2427 | | } |
2428 | | |
2429 | | #[test] |
2430 | | fn ratio_iter_sum() { |
2431 | | // generic function to assure the iter method can be called |
2432 | | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
2433 | | fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
2434 | | let mut manual_sum = Ratio::new(T::zero(), T::one()); |
2435 | | for ratio in slice { |
2436 | | manual_sum = manual_sum + ratio; |
2437 | | } |
2438 | | [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] |
2439 | | } |
2440 | | // collect into array so test works on no_std |
2441 | | let mut nums = [Ratio::new(0, 1); 1000]; |
2442 | | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
2443 | | nums[i] = r; |
2444 | | } |
2445 | | let sums = iter_sums(&nums[..]); |
2446 | | assert_eq!(sums[0], sums[1]); |
2447 | | assert_eq!(sums[0], sums[2]); |
2448 | | } |
2449 | | |
2450 | | #[test] |
2451 | | fn ratio_iter_product() { |
2452 | | // generic function to assure the iter method can be called |
2453 | | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
2454 | | fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
2455 | | let mut manual_prod = Ratio::new(T::one(), T::one()); |
2456 | | for ratio in slice { |
2457 | | manual_prod = manual_prod * ratio; |
2458 | | } |
2459 | | [ |
2460 | | manual_prod, |
2461 | | slice.iter().product(), |
2462 | | slice.iter().cloned().product(), |
2463 | | ] |
2464 | | } |
2465 | | |
2466 | | // collect into array so test works on no_std |
2467 | | let mut nums = [Ratio::new(0, 1); 1000]; |
2468 | | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
2469 | | nums[i] = r; |
2470 | | } |
2471 | | let products = iter_products(&nums[..]); |
2472 | | assert_eq!(products[0], products[1]); |
2473 | | assert_eq!(products[0], products[2]); |
2474 | | } |
2475 | | |
2476 | | #[test] |
2477 | | fn test_num_zero() { |
2478 | | let zero = Rational64::zero(); |
2479 | | assert!(zero.is_zero()); |
2480 | | |
2481 | | let mut r = Rational64::new(123, 456); |
2482 | | assert!(!r.is_zero()); |
2483 | | assert_eq!(&r + &zero, r); |
2484 | | |
2485 | | r.set_zero(); |
2486 | | assert!(r.is_zero()); |
2487 | | } |
2488 | | |
2489 | | #[test] |
2490 | | fn test_num_one() { |
2491 | | let one = Rational64::one(); |
2492 | | assert!(one.is_one()); |
2493 | | |
2494 | | let mut r = Rational64::new(123, 456); |
2495 | | assert!(!r.is_one()); |
2496 | | assert_eq!(&r * &one, r); |
2497 | | |
2498 | | r.set_one(); |
2499 | | assert!(r.is_one()); |
2500 | | } |
2501 | | |
2502 | | #[cfg(has_const_fn)] |
2503 | | #[test] |
2504 | | fn test_const() { |
2505 | | const N: Ratio<i32> = Ratio::new_raw(123, 456); |
2506 | | const N_NUMER: &i32 = N.numer(); |
2507 | | const N_DENOM: &i32 = N.denom(); |
2508 | | |
2509 | | assert_eq!(N_NUMER, &123); |
2510 | | assert_eq!(N_DENOM, &456); |
2511 | | |
2512 | | let r = N.reduced(); |
2513 | | assert_eq!(r.numer(), &(123 / 3)); |
2514 | | assert_eq!(r.denom(), &(456 / 3)); |
2515 | | } |
2516 | | } |