Coverage Report

Created: 2021-11-03 07:11

/src/libpcap-1.9.1/optimize.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3
 *  The Regents of the University of California.  All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that: (1) source code distributions
7
 * retain the above copyright notice and this paragraph in its entirety, (2)
8
 * distributions including binary code include the above copyright notice and
9
 * this paragraph in its entirety in the documentation or other materials
10
 * provided with the distribution, and (3) all advertising materials mentioning
11
 * features or use of this software display the following acknowledgement:
12
 * ``This product includes software developed by the University of California,
13
 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14
 * the University nor the names of its contributors may be used to endorse
15
 * or promote products derived from this software without specific prior
16
 * written permission.
17
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20
 *
21
 *  Optimization module for BPF code intermediate representation.
22
 */
23
24
#ifdef HAVE_CONFIG_H
25
#include <config.h>
26
#endif
27
28
#include <pcap-types.h>
29
30
#include <stdio.h>
31
#include <stdlib.h>
32
#include <memory.h>
33
#include <setjmp.h>
34
#include <string.h>
35
36
#include <errno.h>
37
38
#include "pcap-int.h"
39
40
#include "gencode.h"
41
#include "optimize.h"
42
43
#ifdef HAVE_OS_PROTO_H
44
#include "os-proto.h"
45
#endif
46
47
#ifdef BDEBUG
48
/*
49
 * The internal "debug printout" flag for the filter expression optimizer.
50
 * The code to print that stuff is present only if BDEBUG is defined, so
51
 * the flag, and the routine to set it, are defined only if BDEBUG is
52
 * defined.
53
 */
54
static int pcap_optimizer_debug;
55
56
/*
57
 * Routine to set that flag.
58
 *
59
 * This is intended for libpcap developers, not for general use.
60
 * If you want to set these in a program, you'll have to declare this
61
 * routine yourself, with the appropriate DLL import attribute on Windows;
62
 * it's not declared in any header file, and won't be declared in any
63
 * header file provided by libpcap.
64
 */
65
PCAP_API void pcap_set_optimizer_debug(int value);
66
67
PCAP_API_DEF void
68
pcap_set_optimizer_debug(int value)
69
{
70
  pcap_optimizer_debug = value;
71
}
72
73
/*
74
 * The internal "print dot graph" flag for the filter expression optimizer.
75
 * The code to print that stuff is present only if BDEBUG is defined, so
76
 * the flag, and the routine to set it, are defined only if BDEBUG is
77
 * defined.
78
 */
79
static int pcap_print_dot_graph;
80
81
/*
82
 * Routine to set that flag.
83
 *
84
 * This is intended for libpcap developers, not for general use.
85
 * If you want to set these in a program, you'll have to declare this
86
 * routine yourself, with the appropriate DLL import attribute on Windows;
87
 * it's not declared in any header file, and won't be declared in any
88
 * header file provided by libpcap.
89
 */
90
PCAP_API void pcap_set_print_dot_graph(int value);
91
92
PCAP_API_DEF void
93
pcap_set_print_dot_graph(int value)
94
{
95
  pcap_print_dot_graph = value;
96
}
97
98
#endif
99
100
/*
101
 * lowest_set_bit().
102
 *
103
 * Takes a 32-bit integer as an argument.
104
 *
105
 * If handed a non-zero value, returns the index of the lowest set bit,
106
 * counting upwards fro zero.
107
 *
108
 * If handed zero, the results are platform- and compiler-dependent.
109
 * Keep it out of the light, don't give it any water, don't feed it
110
 * after midnight, and don't pass zero to it.
111
 *
112
 * This is the same as the count of trailing zeroes in the word.
113
 */
114
#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115
  /*
116
   * GCC 3.4 and later; we have __builtin_ctz().
117
   */
118
0
  #define lowest_set_bit(mask) __builtin_ctz(mask)
119
#elif defined(_MSC_VER)
120
  /*
121
   * Visual Studio; we support only 2005 and later, so use
122
   * _BitScanForward().
123
   */
124
#include <intrin.h>
125
126
#ifndef __clang__
127
#pragma intrinsic(_BitScanForward)
128
#endif
129
130
static __forceinline int
131
lowest_set_bit(int mask)
132
{
133
  unsigned long bit;
134
135
  /*
136
   * Don't sign-extend mask if long is longer than int.
137
   * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138
   */
139
  if (_BitScanForward(&bit, (unsigned int)mask) == 0)
140
    return -1;  /* mask is zero */
141
  return (int)bit;
142
}
143
#elif defined(MSDOS) && defined(__DJGPP__)
144
  /*
145
   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
146
   * we've already included.
147
   */
148
  #define lowest_set_bit(mask)  (ffs((mask)) - 1)
149
#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150
  /*
151
   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
152
   * or some other platform (UN*X conforming to a sufficient recent version
153
   * of the Single UNIX Specification).
154
   */
155
  #include <strings.h>
156
  #define lowest_set_bit(mask)  (ffs((mask)) - 1)
157
#else
158
/*
159
 * None of the above.
160
 * Use a perfect-hash-function-based function.
161
 */
162
static int
163
lowest_set_bit(int mask)
164
{
165
  unsigned int v = (unsigned int)mask;
166
167
  static const int MultiplyDeBruijnBitPosition[32] = {
168
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
169
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
170
  };
171
172
  /*
173
   * We strip off all but the lowermost set bit (v & ~v),
174
   * and perform a minimal perfect hash on it to look up the
175
   * number of low-order zero bits in a table.
176
   *
177
   * See:
178
   *
179
   *  http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180
   *
181
   *  http://supertech.csail.mit.edu/papers/debruijn.pdf
182
   */
183
  return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
184
}
185
#endif
186
187
/*
188
 * Represents a deleted instruction.
189
 */
190
0
#define NOP -1
191
192
/*
193
 * Register numbers for use-def values.
194
 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
195
 * location.  A_ATOM is the accumulator and X_ATOM is the index
196
 * register.
197
 */
198
0
#define A_ATOM BPF_MEMWORDS
199
0
#define X_ATOM (BPF_MEMWORDS+1)
200
201
/*
202
 * This define is used to represent *both* the accumulator and
203
 * x register in use-def computations.
204
 * Currently, the use-def code assumes only one definition per instruction.
205
 */
206
0
#define AX_ATOM N_ATOMS
207
208
/*
209
 * These data structures are used in a Cocke and Shwarz style
210
 * value numbering scheme.  Since the flowgraph is acyclic,
211
 * exit values can be propagated from a node's predecessors
212
 * provided it is uniquely defined.
213
 */
214
struct valnode {
215
  int code;
216
  int v0, v1;
217
  int val;
218
  struct valnode *next;
219
};
220
221
/* Integer constants mapped with the load immediate opcode. */
222
0
#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
223
224
struct vmapinfo {
225
  int is_const;
226
  bpf_int32 const_val;
227
};
228
229
typedef struct {
230
  /*
231
   * Place to longjmp to on an error.
232
   */
233
  jmp_buf top_ctx;
234
235
  /*
236
   * The buffer into which to put error message.
237
   */
238
  char *errbuf;
239
240
  /*
241
   * A flag to indicate that further optimization is needed.
242
   * Iterative passes are continued until a given pass yields no
243
   * branch movement.
244
   */
245
  int done;
246
247
  int n_blocks;
248
  struct block **blocks;
249
  int n_edges;
250
  struct edge **edges;
251
252
  /*
253
   * A bit vector set representation of the dominators.
254
   * We round up the set size to the next power of two.
255
   */
256
  int nodewords;
257
  int edgewords;
258
  struct block **levels;
259
  bpf_u_int32 *space;
260
261
0
#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
262
/*
263
 * True if a is in uset {p}
264
 */
265
0
#define SET_MEMBER(p, a) \
266
0
((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
267
268
/*
269
 * Add 'a' to uset p.
270
 */
271
0
#define SET_INSERT(p, a) \
272
0
(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
273
274
/*
275
 * Delete 'a' from uset p.
276
 */
277
#define SET_DELETE(p, a) \
278
(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
279
280
/*
281
 * a := a intersect b
282
 */
283
0
#define SET_INTERSECT(a, b, n)\
284
0
{\
285
0
  register bpf_u_int32 *_x = a, *_y = b;\
286
0
  register int _n = n;\
287
0
  while (--_n >= 0) *_x++ &= *_y++;\
288
0
}
289
290
/*
291
 * a := a - b
292
 */
293
#define SET_SUBTRACT(a, b, n)\
294
{\
295
  register bpf_u_int32 *_x = a, *_y = b;\
296
  register int _n = n;\
297
  while (--_n >= 0) *_x++ &=~ *_y++;\
298
}
299
300
/*
301
 * a := a union b
302
 */
303
0
#define SET_UNION(a, b, n)\
304
0
{\
305
0
  register bpf_u_int32 *_x = a, *_y = b;\
306
0
  register int _n = n;\
307
0
  while (--_n >= 0) *_x++ |= *_y++;\
308
0
}
309
310
  uset all_dom_sets;
311
  uset all_closure_sets;
312
  uset all_edge_sets;
313
314
0
#define MODULUS 213
315
  struct valnode *hashtbl[MODULUS];
316
  int curval;
317
  int maxval;
318
319
  struct vmapinfo *vmap;
320
  struct valnode *vnode_base;
321
  struct valnode *next_vnode;
322
} opt_state_t;
323
324
typedef struct {
325
  /*
326
   * Place to longjmp to on an error.
327
   */
328
  jmp_buf top_ctx;
329
330
  /*
331
   * The buffer into which to put error message.
332
   */
333
  char *errbuf;
334
335
  /*
336
   * Some pointers used to convert the basic block form of the code,
337
   * into the array form that BPF requires.  'fstart' will point to
338
   * the malloc'd array while 'ftail' is used during the recursive
339
   * traversal.
340
   */
341
  struct bpf_insn *fstart;
342
  struct bpf_insn *ftail;
343
} conv_state_t;
344
345
static void opt_init(opt_state_t *, struct icode *);
346
static void opt_cleanup(opt_state_t *);
347
static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
348
    PCAP_PRINTFLIKE(2, 3);
349
350
static void intern_blocks(opt_state_t *, struct icode *);
351
352
static void find_inedges(opt_state_t *, struct block *);
353
#ifdef BDEBUG
354
static void opt_dump(opt_state_t *, struct icode *);
355
#endif
356
357
#ifndef MAX
358
0
#define MAX(a,b) ((a)>(b)?(a):(b))
359
#endif
360
361
static void
362
find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
363
0
{
364
0
  int level;
365
366
0
  if (isMarked(ic, b))
367
0
    return;
368
369
0
  Mark(ic, b);
370
0
  b->link = 0;
371
372
0
  if (JT(b)) {
373
0
    find_levels_r(opt_state, ic, JT(b));
374
0
    find_levels_r(opt_state, ic, JF(b));
375
0
    level = MAX(JT(b)->level, JF(b)->level) + 1;
376
0
  } else
377
0
    level = 0;
378
0
  b->level = level;
379
0
  b->link = opt_state->levels[level];
380
0
  opt_state->levels[level] = b;
381
0
}
382
383
/*
384
 * Level graph.  The levels go from 0 at the leaves to
385
 * N_LEVELS at the root.  The opt_state->levels[] array points to the
386
 * first node of the level list, whose elements are linked
387
 * with the 'link' field of the struct block.
388
 */
389
static void
390
find_levels(opt_state_t *opt_state, struct icode *ic)
391
0
{
392
0
  memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
393
0
  unMarkAll(ic);
394
0
  find_levels_r(opt_state, ic, ic->root);
395
0
}
396
397
/*
398
 * Find dominator relationships.
399
 * Assumes graph has been leveled.
400
 */
401
static void
402
find_dom(opt_state_t *opt_state, struct block *root)
403
0
{
404
0
  int i;
405
0
  struct block *b;
406
0
  bpf_u_int32 *x;
407
408
  /*
409
   * Initialize sets to contain all nodes.
410
   */
411
0
  x = opt_state->all_dom_sets;
412
0
  i = opt_state->n_blocks * opt_state->nodewords;
413
0
  while (--i >= 0)
414
0
    *x++ = 0xFFFFFFFFU;
415
  /* Root starts off empty. */
416
0
  for (i = opt_state->nodewords; --i >= 0;)
417
0
    root->dom[i] = 0;
418
419
  /* root->level is the highest level no found. */
420
0
  for (i = root->level; i >= 0; --i) {
421
0
    for (b = opt_state->levels[i]; b; b = b->link) {
422
0
      SET_INSERT(b->dom, b->id);
423
0
      if (JT(b) == 0)
424
0
        continue;
425
0
      SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
426
0
      SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
427
0
    }
428
0
  }
429
0
}
430
431
static void
432
propedom(opt_state_t *opt_state, struct edge *ep)
433
0
{
434
0
  SET_INSERT(ep->edom, ep->id);
435
0
  if (ep->succ) {
436
0
    SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
437
0
    SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
438
0
  }
439
0
}
440
441
/*
442
 * Compute edge dominators.
443
 * Assumes graph has been leveled and predecessors established.
444
 */
445
static void
446
find_edom(opt_state_t *opt_state, struct block *root)
447
0
{
448
0
  int i;
449
0
  uset x;
450
0
  struct block *b;
451
452
0
  x = opt_state->all_edge_sets;
453
0
  for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
454
0
    x[i] = 0xFFFFFFFFU;
455
456
  /* root->level is the highest level no found. */
457
0
  memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
458
0
  memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
459
0
  for (i = root->level; i >= 0; --i) {
460
0
    for (b = opt_state->levels[i]; b != 0; b = b->link) {
461
0
      propedom(opt_state, &b->et);
462
0
      propedom(opt_state, &b->ef);
463
0
    }
464
0
  }
465
0
}
466
467
/*
468
 * Find the backwards transitive closure of the flow graph.  These sets
469
 * are backwards in the sense that we find the set of nodes that reach
470
 * a given node, not the set of nodes that can be reached by a node.
471
 *
472
 * Assumes graph has been leveled.
473
 */
474
static void
475
find_closure(opt_state_t *opt_state, struct block *root)
476
0
{
477
0
  int i;
478
0
  struct block *b;
479
480
  /*
481
   * Initialize sets to contain no nodes.
482
   */
483
0
  memset((char *)opt_state->all_closure_sets, 0,
484
0
        opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
485
486
  /* root->level is the highest level no found. */
487
0
  for (i = root->level; i >= 0; --i) {
488
0
    for (b = opt_state->levels[i]; b; b = b->link) {
489
0
      SET_INSERT(b->closure, b->id);
490
0
      if (JT(b) == 0)
491
0
        continue;
492
0
      SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
493
0
      SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
494
0
    }
495
0
  }
496
0
}
497
498
/*
499
 * Return the register number that is used by s.  If A and X are both
500
 * used, return AX_ATOM.  If no register is used, return -1.
501
 *
502
 * The implementation should probably change to an array access.
503
 */
504
static int
505
atomuse(struct stmt *s)
506
0
{
507
0
  register int c = s->code;
508
509
0
  if (c == NOP)
510
0
    return -1;
511
512
0
  switch (BPF_CLASS(c)) {
513
514
0
  case BPF_RET:
515
0
    return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
516
0
      (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
517
518
0
  case BPF_LD:
519
0
  case BPF_LDX:
520
0
    return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
521
0
      (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
522
523
0
  case BPF_ST:
524
0
    return A_ATOM;
525
526
0
  case BPF_STX:
527
0
    return X_ATOM;
528
529
0
  case BPF_JMP:
530
0
  case BPF_ALU:
531
0
    if (BPF_SRC(c) == BPF_X)
532
0
      return AX_ATOM;
533
0
    return A_ATOM;
534
535
0
  case BPF_MISC:
536
0
    return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
537
0
  }
538
0
  abort();
539
  /* NOTREACHED */
540
0
}
541
542
/*
543
 * Return the register number that is defined by 's'.  We assume that
544
 * a single stmt cannot define more than one register.  If no register
545
 * is defined, return -1.
546
 *
547
 * The implementation should probably change to an array access.
548
 */
549
static int
550
atomdef(struct stmt *s)
551
0
{
552
0
  if (s->code == NOP)
553
0
    return -1;
554
555
0
  switch (BPF_CLASS(s->code)) {
556
557
0
  case BPF_LD:
558
0
  case BPF_ALU:
559
0
    return A_ATOM;
560
561
0
  case BPF_LDX:
562
0
    return X_ATOM;
563
564
0
  case BPF_ST:
565
0
  case BPF_STX:
566
0
    return s->k;
567
568
0
  case BPF_MISC:
569
0
    return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
570
0
  }
571
0
  return -1;
572
0
}
573
574
/*
575
 * Compute the sets of registers used, defined, and killed by 'b'.
576
 *
577
 * "Used" means that a statement in 'b' uses the register before any
578
 * statement in 'b' defines it, i.e. it uses the value left in
579
 * that register by a predecessor block of this block.
580
 * "Defined" means that a statement in 'b' defines it.
581
 * "Killed" means that a statement in 'b' defines it before any
582
 * statement in 'b' uses it, i.e. it kills the value left in that
583
 * register by a predecessor block of this block.
584
 */
585
static void
586
compute_local_ud(struct block *b)
587
0
{
588
0
  struct slist *s;
589
0
  atomset def = 0, use = 0, killed = 0;
590
0
  int atom;
591
592
0
  for (s = b->stmts; s; s = s->next) {
593
0
    if (s->s.code == NOP)
594
0
      continue;
595
0
    atom = atomuse(&s->s);
596
0
    if (atom >= 0) {
597
0
      if (atom == AX_ATOM) {
598
0
        if (!ATOMELEM(def, X_ATOM))
599
0
          use |= ATOMMASK(X_ATOM);
600
0
        if (!ATOMELEM(def, A_ATOM))
601
0
          use |= ATOMMASK(A_ATOM);
602
0
      }
603
0
      else if (atom < N_ATOMS) {
604
0
        if (!ATOMELEM(def, atom))
605
0
          use |= ATOMMASK(atom);
606
0
      }
607
0
      else
608
0
        abort();
609
0
    }
610
0
    atom = atomdef(&s->s);
611
0
    if (atom >= 0) {
612
0
      if (!ATOMELEM(use, atom))
613
0
        killed |= ATOMMASK(atom);
614
0
      def |= ATOMMASK(atom);
615
0
    }
616
0
  }
617
0
  if (BPF_CLASS(b->s.code) == BPF_JMP) {
618
    /*
619
     * XXX - what about RET?
620
     */
621
0
    atom = atomuse(&b->s);
622
0
    if (atom >= 0) {
623
0
      if (atom == AX_ATOM) {
624
0
        if (!ATOMELEM(def, X_ATOM))
625
0
          use |= ATOMMASK(X_ATOM);
626
0
        if (!ATOMELEM(def, A_ATOM))
627
0
          use |= ATOMMASK(A_ATOM);
628
0
      }
629
0
      else if (atom < N_ATOMS) {
630
0
        if (!ATOMELEM(def, atom))
631
0
          use |= ATOMMASK(atom);
632
0
      }
633
0
      else
634
0
        abort();
635
0
    }
636
0
  }
637
638
0
  b->def = def;
639
0
  b->kill = killed;
640
0
  b->in_use = use;
641
0
}
642
643
/*
644
 * Assume graph is already leveled.
645
 */
646
static void
647
find_ud(opt_state_t *opt_state, struct block *root)
648
0
{
649
0
  int i, maxlevel;
650
0
  struct block *p;
651
652
  /*
653
   * root->level is the highest level no found;
654
   * count down from there.
655
   */
656
0
  maxlevel = root->level;
657
0
  for (i = maxlevel; i >= 0; --i)
658
0
    for (p = opt_state->levels[i]; p; p = p->link) {
659
0
      compute_local_ud(p);
660
0
      p->out_use = 0;
661
0
    }
662
663
0
  for (i = 1; i <= maxlevel; ++i) {
664
0
    for (p = opt_state->levels[i]; p; p = p->link) {
665
0
      p->out_use |= JT(p)->in_use | JF(p)->in_use;
666
0
      p->in_use |= p->out_use &~ p->kill;
667
0
    }
668
0
  }
669
0
}
670
static void
671
init_val(opt_state_t *opt_state)
672
0
{
673
0
  opt_state->curval = 0;
674
0
  opt_state->next_vnode = opt_state->vnode_base;
675
0
  memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
676
0
  memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
677
0
}
678
679
/* Because we really don't have an IR, this stuff is a little messy. */
680
static int
681
F(opt_state_t *opt_state, int code, int v0, int v1)
682
0
{
683
0
  u_int hash;
684
0
  int val;
685
0
  struct valnode *p;
686
687
0
  hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8);
688
0
  hash %= MODULUS;
689
690
0
  for (p = opt_state->hashtbl[hash]; p; p = p->next)
691
0
    if (p->code == code && p->v0 == v0 && p->v1 == v1)
692
0
      return p->val;
693
694
0
  val = ++opt_state->curval;
695
0
  if (BPF_MODE(code) == BPF_IMM &&
696
0
      (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
697
0
    opt_state->vmap[val].const_val = v0;
698
0
    opt_state->vmap[val].is_const = 1;
699
0
  }
700
0
  p = opt_state->next_vnode++;
701
0
  p->val = val;
702
0
  p->code = code;
703
0
  p->v0 = v0;
704
0
  p->v1 = v1;
705
0
  p->next = opt_state->hashtbl[hash];
706
0
  opt_state->hashtbl[hash] = p;
707
708
0
  return val;
709
0
}
710
711
static inline void
712
vstore(struct stmt *s, int *valp, int newval, int alter)
713
0
{
714
0
  if (alter && newval != VAL_UNKNOWN && *valp == newval)
715
0
    s->code = NOP;
716
0
  else
717
0
    *valp = newval;
718
0
}
719
720
/*
721
 * Do constant-folding on binary operators.
722
 * (Unary operators are handled elsewhere.)
723
 */
724
static void
725
fold_op(opt_state_t *opt_state, struct stmt *s, int v0, int v1)
726
0
{
727
0
  bpf_u_int32 a, b;
728
729
0
  a = opt_state->vmap[v0].const_val;
730
0
  b = opt_state->vmap[v1].const_val;
731
732
0
  switch (BPF_OP(s->code)) {
733
0
  case BPF_ADD:
734
0
    a += b;
735
0
    break;
736
737
0
  case BPF_SUB:
738
0
    a -= b;
739
0
    break;
740
741
0
  case BPF_MUL:
742
0
    a *= b;
743
0
    break;
744
745
0
  case BPF_DIV:
746
0
    if (b == 0)
747
0
      opt_error(opt_state, "division by zero");
748
0
    a /= b;
749
0
    break;
750
751
0
  case BPF_MOD:
752
0
    if (b == 0)
753
0
      opt_error(opt_state, "modulus by zero");
754
0
    a %= b;
755
0
    break;
756
757
0
  case BPF_AND:
758
0
    a &= b;
759
0
    break;
760
761
0
  case BPF_OR:
762
0
    a |= b;
763
0
    break;
764
765
0
  case BPF_XOR:
766
0
    a ^= b;
767
0
    break;
768
769
0
  case BPF_LSH:
770
    /*
771
     * A left shift of more than the width of the type
772
     * is undefined in C; we'll just treat it as shifting
773
     * all the bits out.
774
     *
775
     * XXX - the BPF interpreter doesn't check for this,
776
     * so its behavior is dependent on the behavior of
777
     * the processor on which it's running.  There are
778
     * processors on which it shifts all the bits out
779
     * and processors on which it does no shift.
780
     */
781
0
    if (b < 32)
782
0
      a <<= b;
783
0
    else
784
0
      a = 0;
785
0
    break;
786
787
0
  case BPF_RSH:
788
    /*
789
     * A right shift of more than the width of the type
790
     * is undefined in C; we'll just treat it as shifting
791
     * all the bits out.
792
     *
793
     * XXX - the BPF interpreter doesn't check for this,
794
     * so its behavior is dependent on the behavior of
795
     * the processor on which it's running.  There are
796
     * processors on which it shifts all the bits out
797
     * and processors on which it does no shift.
798
     */
799
0
    if (b < 32)
800
0
      a >>= b;
801
0
    else
802
0
      a = 0;
803
0
    break;
804
805
0
  default:
806
0
    abort();
807
0
  }
808
0
  s->k = a;
809
0
  s->code = BPF_LD|BPF_IMM;
810
0
  opt_state->done = 0;
811
0
}
812
813
static inline struct slist *
814
this_op(struct slist *s)
815
0
{
816
0
  while (s != 0 && s->s.code == NOP)
817
0
    s = s->next;
818
0
  return s;
819
0
}
820
821
static void
822
opt_not(struct block *b)
823
0
{
824
0
  struct block *tmp = JT(b);
825
826
0
  JT(b) = JF(b);
827
0
  JF(b) = tmp;
828
0
}
829
830
static void
831
opt_peep(opt_state_t *opt_state, struct block *b)
832
0
{
833
0
  struct slist *s;
834
0
  struct slist *next, *last;
835
0
  int val;
836
837
0
  s = b->stmts;
838
0
  if (s == 0)
839
0
    return;
840
841
0
  last = s;
842
0
  for (/*empty*/; /*empty*/; s = next) {
843
    /*
844
     * Skip over nops.
845
     */
846
0
    s = this_op(s);
847
0
    if (s == 0)
848
0
      break; /* nothing left in the block */
849
850
    /*
851
     * Find the next real instruction after that one
852
     * (skipping nops).
853
     */
854
0
    next = this_op(s->next);
855
0
    if (next == 0)
856
0
      break; /* no next instruction */
857
0
    last = next;
858
859
    /*
860
     * st  M[k] --> st  M[k]
861
     * ldx M[k]   tax
862
     */
863
0
    if (s->s.code == BPF_ST &&
864
0
        next->s.code == (BPF_LDX|BPF_MEM) &&
865
0
        s->s.k == next->s.k) {
866
0
      opt_state->done = 0;
867
0
      next->s.code = BPF_MISC|BPF_TAX;
868
0
    }
869
    /*
870
     * ld  #k --> ldx  #k
871
     * tax      txa
872
     */
873
0
    if (s->s.code == (BPF_LD|BPF_IMM) &&
874
0
        next->s.code == (BPF_MISC|BPF_TAX)) {
875
0
      s->s.code = BPF_LDX|BPF_IMM;
876
0
      next->s.code = BPF_MISC|BPF_TXA;
877
0
      opt_state->done = 0;
878
0
    }
879
    /*
880
     * This is an ugly special case, but it happens
881
     * when you say tcp[k] or udp[k] where k is a constant.
882
     */
883
0
    if (s->s.code == (BPF_LD|BPF_IMM)) {
884
0
      struct slist *add, *tax, *ild;
885
886
      /*
887
       * Check that X isn't used on exit from this
888
       * block (which the optimizer might cause).
889
       * We know the code generator won't generate
890
       * any local dependencies.
891
       */
892
0
      if (ATOMELEM(b->out_use, X_ATOM))
893
0
        continue;
894
895
      /*
896
       * Check that the instruction following the ldi
897
       * is an addx, or it's an ldxms with an addx
898
       * following it (with 0 or more nops between the
899
       * ldxms and addx).
900
       */
901
0
      if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
902
0
        add = next;
903
0
      else
904
0
        add = this_op(next->next);
905
0
      if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
906
0
        continue;
907
908
      /*
909
       * Check that a tax follows that (with 0 or more
910
       * nops between them).
911
       */
912
0
      tax = this_op(add->next);
913
0
      if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
914
0
        continue;
915
916
      /*
917
       * Check that an ild follows that (with 0 or more
918
       * nops between them).
919
       */
920
0
      ild = this_op(tax->next);
921
0
      if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
922
0
          BPF_MODE(ild->s.code) != BPF_IND)
923
0
        continue;
924
      /*
925
       * We want to turn this sequence:
926
       *
927
       * (004) ldi     #0x2   {s}
928
       * (005) ldxms   [14]   {next}  -- optional
929
       * (006) addx     {add}
930
       * (007) tax      {tax}
931
       * (008) ild     [x+0]    {ild}
932
       *
933
       * into this sequence:
934
       *
935
       * (004) nop
936
       * (005) ldxms   [14]
937
       * (006) nop
938
       * (007) nop
939
       * (008) ild     [x+2]
940
       *
941
       * XXX We need to check that X is not
942
       * subsequently used, because we want to change
943
       * what'll be in it after this sequence.
944
       *
945
       * We know we can eliminate the accumulator
946
       * modifications earlier in the sequence since
947
       * it is defined by the last stmt of this sequence
948
       * (i.e., the last statement of the sequence loads
949
       * a value into the accumulator, so we can eliminate
950
       * earlier operations on the accumulator).
951
       */
952
0
      ild->s.k += s->s.k;
953
0
      s->s.code = NOP;
954
0
      add->s.code = NOP;
955
0
      tax->s.code = NOP;
956
0
      opt_state->done = 0;
957
0
    }
958
0
  }
959
  /*
960
   * If the comparison at the end of a block is an equality
961
   * comparison against a constant, and nobody uses the value
962
   * we leave in the A register at the end of a block, and
963
   * the operation preceding the comparison is an arithmetic
964
   * operation, we can sometime optimize it away.
965
   */
966
0
  if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
967
0
      !ATOMELEM(b->out_use, A_ATOM)) {
968
        /*
969
         * We can optimize away certain subtractions of the
970
         * X register.
971
         */
972
0
    if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
973
0
      val = b->val[X_ATOM];
974
0
      if (opt_state->vmap[val].is_const) {
975
        /*
976
         * If we have a subtract to do a comparison,
977
         * and the X register is a known constant,
978
         * we can merge this value into the
979
         * comparison:
980
         *
981
         * sub x  ->  nop
982
         * jeq #y jeq #(x+y)
983
         */
984
0
        b->s.k += opt_state->vmap[val].const_val;
985
0
        last->s.code = NOP;
986
0
        opt_state->done = 0;
987
0
      } else if (b->s.k == 0) {
988
        /*
989
         * If the X register isn't a constant,
990
         * and the comparison in the test is
991
         * against 0, we can compare with the
992
         * X register, instead:
993
         *
994
         * sub x  ->  nop
995
         * jeq #0 jeq x
996
         */
997
0
        last->s.code = NOP;
998
0
        b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
999
0
        opt_state->done = 0;
1000
0
      }
1001
0
    }
1002
    /*
1003
     * Likewise, a constant subtract can be simplified:
1004
     *
1005
     * sub #x ->  nop
1006
     * jeq #y ->  jeq #(x+y)
1007
     */
1008
0
    else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1009
0
      last->s.code = NOP;
1010
0
      b->s.k += last->s.k;
1011
0
      opt_state->done = 0;
1012
0
    }
1013
    /*
1014
     * And, similarly, a constant AND can be simplified
1015
     * if we're testing against 0, i.e.:
1016
     *
1017
     * and #k nop
1018
     * jeq #0  -> jset #k
1019
     */
1020
0
    else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1021
0
        b->s.k == 0) {
1022
0
      b->s.k = last->s.k;
1023
0
      b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1024
0
      last->s.code = NOP;
1025
0
      opt_state->done = 0;
1026
0
      opt_not(b);
1027
0
    }
1028
0
  }
1029
  /*
1030
   * jset #0        ->   never
1031
   * jset #ffffffff ->   always
1032
   */
1033
0
  if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1034
0
    if (b->s.k == 0)
1035
0
      JT(b) = JF(b);
1036
0
    if ((u_int)b->s.k == 0xffffffffU)
1037
0
      JF(b) = JT(b);
1038
0
  }
1039
  /*
1040
   * If we're comparing against the index register, and the index
1041
   * register is a known constant, we can just compare against that
1042
   * constant.
1043
   */
1044
0
  val = b->val[X_ATOM];
1045
0
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1046
0
    bpf_int32 v = opt_state->vmap[val].const_val;
1047
0
    b->s.code &= ~BPF_X;
1048
0
    b->s.k = v;
1049
0
  }
1050
  /*
1051
   * If the accumulator is a known constant, we can compute the
1052
   * comparison result.
1053
   */
1054
0
  val = b->val[A_ATOM];
1055
0
  if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1056
0
    bpf_int32 v = opt_state->vmap[val].const_val;
1057
0
    switch (BPF_OP(b->s.code)) {
1058
1059
0
    case BPF_JEQ:
1060
0
      v = v == b->s.k;
1061
0
      break;
1062
1063
0
    case BPF_JGT:
1064
0
      v = (unsigned)v > (unsigned)b->s.k;
1065
0
      break;
1066
1067
0
    case BPF_JGE:
1068
0
      v = (unsigned)v >= (unsigned)b->s.k;
1069
0
      break;
1070
1071
0
    case BPF_JSET:
1072
0
      v &= b->s.k;
1073
0
      break;
1074
1075
0
    default:
1076
0
      abort();
1077
0
    }
1078
0
    if (JF(b) != JT(b))
1079
0
      opt_state->done = 0;
1080
0
    if (v)
1081
0
      JF(b) = JT(b);
1082
0
    else
1083
0
      JT(b) = JF(b);
1084
0
  }
1085
0
}
1086
1087
/*
1088
 * Compute the symbolic value of expression of 's', and update
1089
 * anything it defines in the value table 'val'.  If 'alter' is true,
1090
 * do various optimizations.  This code would be cleaner if symbolic
1091
 * evaluation and code transformations weren't folded together.
1092
 */
1093
static void
1094
opt_stmt(opt_state_t *opt_state, struct stmt *s, int val[], int alter)
1095
0
{
1096
0
  int op;
1097
0
  int v;
1098
1099
0
  switch (s->code) {
1100
1101
0
  case BPF_LD|BPF_ABS|BPF_W:
1102
0
  case BPF_LD|BPF_ABS|BPF_H:
1103
0
  case BPF_LD|BPF_ABS|BPF_B:
1104
0
    v = F(opt_state, s->code, s->k, 0L);
1105
0
    vstore(s, &val[A_ATOM], v, alter);
1106
0
    break;
1107
1108
0
  case BPF_LD|BPF_IND|BPF_W:
1109
0
  case BPF_LD|BPF_IND|BPF_H:
1110
0
  case BPF_LD|BPF_IND|BPF_B:
1111
0
    v = val[X_ATOM];
1112
0
    if (alter && opt_state->vmap[v].is_const) {
1113
0
      s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1114
0
      s->k += opt_state->vmap[v].const_val;
1115
0
      v = F(opt_state, s->code, s->k, 0L);
1116
0
      opt_state->done = 0;
1117
0
    }
1118
0
    else
1119
0
      v = F(opt_state, s->code, s->k, v);
1120
0
    vstore(s, &val[A_ATOM], v, alter);
1121
0
    break;
1122
1123
0
  case BPF_LD|BPF_LEN:
1124
0
    v = F(opt_state, s->code, 0L, 0L);
1125
0
    vstore(s, &val[A_ATOM], v, alter);
1126
0
    break;
1127
1128
0
  case BPF_LD|BPF_IMM:
1129
0
    v = K(s->k);
1130
0
    vstore(s, &val[A_ATOM], v, alter);
1131
0
    break;
1132
1133
0
  case BPF_LDX|BPF_IMM:
1134
0
    v = K(s->k);
1135
0
    vstore(s, &val[X_ATOM], v, alter);
1136
0
    break;
1137
1138
0
  case BPF_LDX|BPF_MSH|BPF_B:
1139
0
    v = F(opt_state, s->code, s->k, 0L);
1140
0
    vstore(s, &val[X_ATOM], v, alter);
1141
0
    break;
1142
1143
0
  case BPF_ALU|BPF_NEG:
1144
0
    if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1145
0
      s->code = BPF_LD|BPF_IMM;
1146
      /*
1147
       * Do this negation as unsigned arithmetic; that's
1148
       * what modern BPF engines do, and it guarantees
1149
       * that all possible values can be negated.  (Yeah,
1150
       * negating 0x80000000, the minimum signed 32-bit
1151
       * two's-complement value, results in 0x80000000,
1152
       * so it's still negative, but we *should* be doing
1153
       * all unsigned arithmetic here, to match what
1154
       * modern BPF engines do.)
1155
       *
1156
       * Express it as 0U - (unsigned value) so that we
1157
       * don't get compiler warnings about negating an
1158
       * unsigned value and don't get UBSan warnings
1159
       * about the result of negating 0x80000000 being
1160
       * undefined.
1161
       */
1162
0
      s->k = 0U - (bpf_u_int32)(opt_state->vmap[val[A_ATOM]].const_val);
1163
0
      val[A_ATOM] = K(s->k);
1164
0
    }
1165
0
    else
1166
0
      val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1167
0
    break;
1168
1169
0
  case BPF_ALU|BPF_ADD|BPF_K:
1170
0
  case BPF_ALU|BPF_SUB|BPF_K:
1171
0
  case BPF_ALU|BPF_MUL|BPF_K:
1172
0
  case BPF_ALU|BPF_DIV|BPF_K:
1173
0
  case BPF_ALU|BPF_MOD|BPF_K:
1174
0
  case BPF_ALU|BPF_AND|BPF_K:
1175
0
  case BPF_ALU|BPF_OR|BPF_K:
1176
0
  case BPF_ALU|BPF_XOR|BPF_K:
1177
0
  case BPF_ALU|BPF_LSH|BPF_K:
1178
0
  case BPF_ALU|BPF_RSH|BPF_K:
1179
0
    op = BPF_OP(s->code);
1180
0
    if (alter) {
1181
0
      if (s->k == 0) {
1182
        /*
1183
         * Optimize operations where the constant
1184
         * is zero.
1185
         *
1186
         * Don't optimize away "sub #0"
1187
         * as it may be needed later to
1188
         * fixup the generated math code.
1189
         *
1190
         * Fail if we're dividing by zero or taking
1191
         * a modulus by zero.
1192
         */
1193
0
        if (op == BPF_ADD ||
1194
0
            op == BPF_LSH || op == BPF_RSH ||
1195
0
            op == BPF_OR || op == BPF_XOR) {
1196
0
          s->code = NOP;
1197
0
          break;
1198
0
        }
1199
0
        if (op == BPF_MUL || op == BPF_AND) {
1200
0
          s->code = BPF_LD|BPF_IMM;
1201
0
          val[A_ATOM] = K(s->k);
1202
0
          break;
1203
0
        }
1204
0
        if (op == BPF_DIV)
1205
0
          opt_error(opt_state,
1206
0
              "division by zero");
1207
0
        if (op == BPF_MOD)
1208
0
          opt_error(opt_state,
1209
0
              "modulus by zero");
1210
0
      }
1211
0
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1212
0
        fold_op(opt_state, s, val[A_ATOM], K(s->k));
1213
0
        val[A_ATOM] = K(s->k);
1214
0
        break;
1215
0
      }
1216
0
    }
1217
0
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1218
0
    break;
1219
1220
0
  case BPF_ALU|BPF_ADD|BPF_X:
1221
0
  case BPF_ALU|BPF_SUB|BPF_X:
1222
0
  case BPF_ALU|BPF_MUL|BPF_X:
1223
0
  case BPF_ALU|BPF_DIV|BPF_X:
1224
0
  case BPF_ALU|BPF_MOD|BPF_X:
1225
0
  case BPF_ALU|BPF_AND|BPF_X:
1226
0
  case BPF_ALU|BPF_OR|BPF_X:
1227
0
  case BPF_ALU|BPF_XOR|BPF_X:
1228
0
  case BPF_ALU|BPF_LSH|BPF_X:
1229
0
  case BPF_ALU|BPF_RSH|BPF_X:
1230
0
    op = BPF_OP(s->code);
1231
0
    if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1232
0
      if (opt_state->vmap[val[A_ATOM]].is_const) {
1233
0
        fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1234
0
        val[A_ATOM] = K(s->k);
1235
0
      }
1236
0
      else {
1237
0
        s->code = BPF_ALU|BPF_K|op;
1238
0
        s->k = opt_state->vmap[val[X_ATOM]].const_val;
1239
        /*
1240
         * XXX - we need to make up our minds
1241
         * as to what integers are signed and
1242
         * what integers are unsigned in BPF
1243
         * programs and in our IR.
1244
         */
1245
0
        if ((op == BPF_LSH || op == BPF_RSH) &&
1246
0
            (s->k < 0 || s->k > 31))
1247
0
          opt_error(opt_state,
1248
0
              "shift by more than 31 bits");
1249
0
        opt_state->done = 0;
1250
0
        val[A_ATOM] =
1251
0
          F(opt_state, s->code, val[A_ATOM], K(s->k));
1252
0
      }
1253
0
      break;
1254
0
    }
1255
    /*
1256
     * Check if we're doing something to an accumulator
1257
     * that is 0, and simplify.  This may not seem like
1258
     * much of a simplification but it could open up further
1259
     * optimizations.
1260
     * XXX We could also check for mul by 1, etc.
1261
     */
1262
0
    if (alter && opt_state->vmap[val[A_ATOM]].is_const
1263
0
        && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1264
0
      if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1265
0
        s->code = BPF_MISC|BPF_TXA;
1266
0
        vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1267
0
        break;
1268
0
      }
1269
0
      else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1270
0
         op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1271
0
        s->code = BPF_LD|BPF_IMM;
1272
0
        s->k = 0;
1273
0
        vstore(s, &val[A_ATOM], K(s->k), alter);
1274
0
        break;
1275
0
      }
1276
0
      else if (op == BPF_NEG) {
1277
0
        s->code = NOP;
1278
0
        break;
1279
0
      }
1280
0
    }
1281
0
    val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1282
0
    break;
1283
1284
0
  case BPF_MISC|BPF_TXA:
1285
0
    vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1286
0
    break;
1287
1288
0
  case BPF_LD|BPF_MEM:
1289
0
    v = val[s->k];
1290
0
    if (alter && opt_state->vmap[v].is_const) {
1291
0
      s->code = BPF_LD|BPF_IMM;
1292
0
      s->k = opt_state->vmap[v].const_val;
1293
0
      opt_state->done = 0;
1294
0
    }
1295
0
    vstore(s, &val[A_ATOM], v, alter);
1296
0
    break;
1297
1298
0
  case BPF_MISC|BPF_TAX:
1299
0
    vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1300
0
    break;
1301
1302
0
  case BPF_LDX|BPF_MEM:
1303
0
    v = val[s->k];
1304
0
    if (alter && opt_state->vmap[v].is_const) {
1305
0
      s->code = BPF_LDX|BPF_IMM;
1306
0
      s->k = opt_state->vmap[v].const_val;
1307
0
      opt_state->done = 0;
1308
0
    }
1309
0
    vstore(s, &val[X_ATOM], v, alter);
1310
0
    break;
1311
1312
0
  case BPF_ST:
1313
0
    vstore(s, &val[s->k], val[A_ATOM], alter);
1314
0
    break;
1315
1316
0
  case BPF_STX:
1317
0
    vstore(s, &val[s->k], val[X_ATOM], alter);
1318
0
    break;
1319
0
  }
1320
0
}
1321
1322
static void
1323
deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1324
0
{
1325
0
  register int atom;
1326
1327
0
  atom = atomuse(s);
1328
0
  if (atom >= 0) {
1329
0
    if (atom == AX_ATOM) {
1330
0
      last[X_ATOM] = 0;
1331
0
      last[A_ATOM] = 0;
1332
0
    }
1333
0
    else
1334
0
      last[atom] = 0;
1335
0
  }
1336
0
  atom = atomdef(s);
1337
0
  if (atom >= 0) {
1338
0
    if (last[atom]) {
1339
0
      opt_state->done = 0;
1340
0
      last[atom]->code = NOP;
1341
0
    }
1342
0
    last[atom] = s;
1343
0
  }
1344
0
}
1345
1346
static void
1347
opt_deadstores(opt_state_t *opt_state, register struct block *b)
1348
0
{
1349
0
  register struct slist *s;
1350
0
  register int atom;
1351
0
  struct stmt *last[N_ATOMS];
1352
1353
0
  memset((char *)last, 0, sizeof last);
1354
1355
0
  for (s = b->stmts; s != 0; s = s->next)
1356
0
    deadstmt(opt_state, &s->s, last);
1357
0
  deadstmt(opt_state, &b->s, last);
1358
1359
0
  for (atom = 0; atom < N_ATOMS; ++atom)
1360
0
    if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1361
0
      last[atom]->code = NOP;
1362
0
      opt_state->done = 0;
1363
0
    }
1364
0
}
1365
1366
static void
1367
opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1368
0
{
1369
0
  struct slist *s;
1370
0
  struct edge *p;
1371
0
  int i;
1372
0
  bpf_int32 aval, xval;
1373
1374
#if 0
1375
  for (s = b->stmts; s && s->next; s = s->next)
1376
    if (BPF_CLASS(s->s.code) == BPF_JMP) {
1377
      do_stmts = 0;
1378
      break;
1379
    }
1380
#endif
1381
1382
  /*
1383
   * Initialize the atom values.
1384
   */
1385
0
  p = b->in_edges;
1386
0
  if (p == 0) {
1387
    /*
1388
     * We have no predecessors, so everything is undefined
1389
     * upon entry to this block.
1390
     */
1391
0
    memset((char *)b->val, 0, sizeof(b->val));
1392
0
  } else {
1393
    /*
1394
     * Inherit values from our predecessors.
1395
     *
1396
     * First, get the values from the predecessor along the
1397
     * first edge leading to this node.
1398
     */
1399
0
    memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1400
    /*
1401
     * Now look at all the other nodes leading to this node.
1402
     * If, for the predecessor along that edge, a register
1403
     * has a different value from the one we have (i.e.,
1404
     * control paths are merging, and the merging paths
1405
     * assign different values to that register), give the
1406
     * register the undefined value of 0.
1407
     */
1408
0
    while ((p = p->next) != NULL) {
1409
0
      for (i = 0; i < N_ATOMS; ++i)
1410
0
        if (b->val[i] != p->pred->val[i])
1411
0
          b->val[i] = 0;
1412
0
    }
1413
0
  }
1414
0
  aval = b->val[A_ATOM];
1415
0
  xval = b->val[X_ATOM];
1416
0
  for (s = b->stmts; s; s = s->next)
1417
0
    opt_stmt(opt_state, &s->s, b->val, do_stmts);
1418
1419
  /*
1420
   * This is a special case: if we don't use anything from this
1421
   * block, and we load the accumulator or index register with a
1422
   * value that is already there, or if this block is a return,
1423
   * eliminate all the statements.
1424
   *
1425
   * XXX - what if it does a store?
1426
   *
1427
   * XXX - why does it matter whether we use anything from this
1428
   * block?  If the accumulator or index register doesn't change
1429
   * its value, isn't that OK even if we use that value?
1430
   *
1431
   * XXX - if we load the accumulator with a different value,
1432
   * and the block ends with a conditional branch, we obviously
1433
   * can't eliminate it, as the branch depends on that value.
1434
   * For the index register, the conditional branch only depends
1435
   * on the index register value if the test is against the index
1436
   * register value rather than a constant; if nothing uses the
1437
   * value we put into the index register, and we're not testing
1438
   * against the index register's value, and there aren't any
1439
   * other problems that would keep us from eliminating this
1440
   * block, can we eliminate it?
1441
   */
1442
0
  if (do_stmts &&
1443
0
      ((b->out_use == 0 &&
1444
0
        aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1445
0
        xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1446
0
       BPF_CLASS(b->s.code) == BPF_RET)) {
1447
0
    if (b->stmts != 0) {
1448
0
      b->stmts = 0;
1449
0
      opt_state->done = 0;
1450
0
    }
1451
0
  } else {
1452
0
    opt_peep(opt_state, b);
1453
0
    opt_deadstores(opt_state, b);
1454
0
  }
1455
  /*
1456
   * Set up values for branch optimizer.
1457
   */
1458
0
  if (BPF_SRC(b->s.code) == BPF_K)
1459
0
    b->oval = K(b->s.k);
1460
0
  else
1461
0
    b->oval = b->val[X_ATOM];
1462
0
  b->et.code = b->s.code;
1463
0
  b->ef.code = -b->s.code;
1464
0
}
1465
1466
/*
1467
 * Return true if any register that is used on exit from 'succ', has
1468
 * an exit value that is different from the corresponding exit value
1469
 * from 'b'.
1470
 */
1471
static int
1472
use_conflict(struct block *b, struct block *succ)
1473
0
{
1474
0
  int atom;
1475
0
  atomset use = succ->out_use;
1476
1477
0
  if (use == 0)
1478
0
    return 0;
1479
1480
0
  for (atom = 0; atom < N_ATOMS; ++atom)
1481
0
    if (ATOMELEM(use, atom))
1482
0
      if (b->val[atom] != succ->val[atom])
1483
0
        return 1;
1484
0
  return 0;
1485
0
}
1486
1487
static struct block *
1488
fold_edge(struct block *child, struct edge *ep)
1489
0
{
1490
0
  int sense;
1491
0
  int aval0, aval1, oval0, oval1;
1492
0
  int code = ep->code;
1493
1494
0
  if (code < 0) {
1495
0
    code = -code;
1496
0
    sense = 0;
1497
0
  } else
1498
0
    sense = 1;
1499
1500
0
  if (child->s.code != code)
1501
0
    return 0;
1502
1503
0
  aval0 = child->val[A_ATOM];
1504
0
  oval0 = child->oval;
1505
0
  aval1 = ep->pred->val[A_ATOM];
1506
0
  oval1 = ep->pred->oval;
1507
1508
0
  if (aval0 != aval1)
1509
0
    return 0;
1510
1511
0
  if (oval0 == oval1)
1512
    /*
1513
     * The operands of the branch instructions are
1514
     * identical, so the result is true if a true
1515
     * branch was taken to get here, otherwise false.
1516
     */
1517
0
    return sense ? JT(child) : JF(child);
1518
1519
0
  if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1520
    /*
1521
     * At this point, we only know the comparison if we
1522
     * came down the true branch, and it was an equality
1523
     * comparison with a constant.
1524
     *
1525
     * I.e., if we came down the true branch, and the branch
1526
     * was an equality comparison with a constant, we know the
1527
     * accumulator contains that constant.  If we came down
1528
     * the false branch, or the comparison wasn't with a
1529
     * constant, we don't know what was in the accumulator.
1530
     *
1531
     * We rely on the fact that distinct constants have distinct
1532
     * value numbers.
1533
     */
1534
0
    return JF(child);
1535
1536
0
  return 0;
1537
0
}
1538
1539
static void
1540
opt_j(opt_state_t *opt_state, struct edge *ep)
1541
0
{
1542
0
  register int i, k;
1543
0
  register struct block *target;
1544
1545
0
  if (JT(ep->succ) == 0)
1546
0
    return;
1547
1548
0
  if (JT(ep->succ) == JF(ep->succ)) {
1549
    /*
1550
     * Common branch targets can be eliminated, provided
1551
     * there is no data dependency.
1552
     */
1553
0
    if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1554
0
      opt_state->done = 0;
1555
0
      ep->succ = JT(ep->succ);
1556
0
    }
1557
0
  }
1558
  /*
1559
   * For each edge dominator that matches the successor of this
1560
   * edge, promote the edge successor to the its grandchild.
1561
   *
1562
   * XXX We violate the set abstraction here in favor a reasonably
1563
   * efficient loop.
1564
   */
1565
0
 top:
1566
0
  for (i = 0; i < opt_state->edgewords; ++i) {
1567
0
    register bpf_u_int32 x = ep->edom[i];
1568
1569
0
    while (x != 0) {
1570
0
      k = lowest_set_bit(x);
1571
0
      x &=~ ((bpf_u_int32)1 << k);
1572
0
      k += i * BITS_PER_WORD;
1573
1574
0
      target = fold_edge(ep->succ, opt_state->edges[k]);
1575
      /*
1576
       * Check that there is no data dependency between
1577
       * nodes that will be violated if we move the edge.
1578
       */
1579
0
      if (target != 0 && !use_conflict(ep->pred, target)) {
1580
0
        opt_state->done = 0;
1581
0
        ep->succ = target;
1582
0
        if (JT(target) != 0)
1583
          /*
1584
           * Start over unless we hit a leaf.
1585
           */
1586
0
          goto top;
1587
0
        return;
1588
0
      }
1589
0
    }
1590
0
  }
1591
0
}
1592
1593
1594
static void
1595
or_pullup(opt_state_t *opt_state, struct block *b)
1596
0
{
1597
0
  int val, at_top;
1598
0
  struct block *pull;
1599
0
  struct block **diffp, **samep;
1600
0
  struct edge *ep;
1601
1602
0
  ep = b->in_edges;
1603
0
  if (ep == 0)
1604
0
    return;
1605
1606
  /*
1607
   * Make sure each predecessor loads the same value.
1608
   * XXX why?
1609
   */
1610
0
  val = ep->pred->val[A_ATOM];
1611
0
  for (ep = ep->next; ep != 0; ep = ep->next)
1612
0
    if (val != ep->pred->val[A_ATOM])
1613
0
      return;
1614
1615
0
  if (JT(b->in_edges->pred) == b)
1616
0
    diffp = &JT(b->in_edges->pred);
1617
0
  else
1618
0
    diffp = &JF(b->in_edges->pred);
1619
1620
0
  at_top = 1;
1621
0
  for (;;) {
1622
0
    if (*diffp == 0)
1623
0
      return;
1624
1625
0
    if (JT(*diffp) != JT(b))
1626
0
      return;
1627
1628
0
    if (!SET_MEMBER((*diffp)->dom, b->id))
1629
0
      return;
1630
1631
0
    if ((*diffp)->val[A_ATOM] != val)
1632
0
      break;
1633
1634
0
    diffp = &JF(*diffp);
1635
0
    at_top = 0;
1636
0
  }
1637
0
  samep = &JF(*diffp);
1638
0
  for (;;) {
1639
0
    if (*samep == 0)
1640
0
      return;
1641
1642
0
    if (JT(*samep) != JT(b))
1643
0
      return;
1644
1645
0
    if (!SET_MEMBER((*samep)->dom, b->id))
1646
0
      return;
1647
1648
0
    if ((*samep)->val[A_ATOM] == val)
1649
0
      break;
1650
1651
    /* XXX Need to check that there are no data dependencies
1652
       between dp0 and dp1.  Currently, the code generator
1653
       will not produce such dependencies. */
1654
0
    samep = &JF(*samep);
1655
0
  }
1656
#ifdef notdef
1657
  /* XXX This doesn't cover everything. */
1658
  for (i = 0; i < N_ATOMS; ++i)
1659
    if ((*samep)->val[i] != pred->val[i])
1660
      return;
1661
#endif
1662
  /* Pull up the node. */
1663
0
  pull = *samep;
1664
0
  *samep = JF(pull);
1665
0
  JF(pull) = *diffp;
1666
1667
  /*
1668
   * At the top of the chain, each predecessor needs to point at the
1669
   * pulled up node.  Inside the chain, there is only one predecessor
1670
   * to worry about.
1671
   */
1672
0
  if (at_top) {
1673
0
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1674
0
      if (JT(ep->pred) == b)
1675
0
        JT(ep->pred) = pull;
1676
0
      else
1677
0
        JF(ep->pred) = pull;
1678
0
    }
1679
0
  }
1680
0
  else
1681
0
    *diffp = pull;
1682
1683
0
  opt_state->done = 0;
1684
0
}
1685
1686
static void
1687
and_pullup(opt_state_t *opt_state, struct block *b)
1688
0
{
1689
0
  int val, at_top;
1690
0
  struct block *pull;
1691
0
  struct block **diffp, **samep;
1692
0
  struct edge *ep;
1693
1694
0
  ep = b->in_edges;
1695
0
  if (ep == 0)
1696
0
    return;
1697
1698
  /*
1699
   * Make sure each predecessor loads the same value.
1700
   */
1701
0
  val = ep->pred->val[A_ATOM];
1702
0
  for (ep = ep->next; ep != 0; ep = ep->next)
1703
0
    if (val != ep->pred->val[A_ATOM])
1704
0
      return;
1705
1706
0
  if (JT(b->in_edges->pred) == b)
1707
0
    diffp = &JT(b->in_edges->pred);
1708
0
  else
1709
0
    diffp = &JF(b->in_edges->pred);
1710
1711
0
  at_top = 1;
1712
0
  for (;;) {
1713
0
    if (*diffp == 0)
1714
0
      return;
1715
1716
0
    if (JF(*diffp) != JF(b))
1717
0
      return;
1718
1719
0
    if (!SET_MEMBER((*diffp)->dom, b->id))
1720
0
      return;
1721
1722
0
    if ((*diffp)->val[A_ATOM] != val)
1723
0
      break;
1724
1725
0
    diffp = &JT(*diffp);
1726
0
    at_top = 0;
1727
0
  }
1728
0
  samep = &JT(*diffp);
1729
0
  for (;;) {
1730
0
    if (*samep == 0)
1731
0
      return;
1732
1733
0
    if (JF(*samep) != JF(b))
1734
0
      return;
1735
1736
0
    if (!SET_MEMBER((*samep)->dom, b->id))
1737
0
      return;
1738
1739
0
    if ((*samep)->val[A_ATOM] == val)
1740
0
      break;
1741
1742
    /* XXX Need to check that there are no data dependencies
1743
       between diffp and samep.  Currently, the code generator
1744
       will not produce such dependencies. */
1745
0
    samep = &JT(*samep);
1746
0
  }
1747
#ifdef notdef
1748
  /* XXX This doesn't cover everything. */
1749
  for (i = 0; i < N_ATOMS; ++i)
1750
    if ((*samep)->val[i] != pred->val[i])
1751
      return;
1752
#endif
1753
  /* Pull up the node. */
1754
0
  pull = *samep;
1755
0
  *samep = JT(pull);
1756
0
  JT(pull) = *diffp;
1757
1758
  /*
1759
   * At the top of the chain, each predecessor needs to point at the
1760
   * pulled up node.  Inside the chain, there is only one predecessor
1761
   * to worry about.
1762
   */
1763
0
  if (at_top) {
1764
0
    for (ep = b->in_edges; ep != 0; ep = ep->next) {
1765
0
      if (JT(ep->pred) == b)
1766
0
        JT(ep->pred) = pull;
1767
0
      else
1768
0
        JF(ep->pred) = pull;
1769
0
    }
1770
0
  }
1771
0
  else
1772
0
    *diffp = pull;
1773
1774
0
  opt_state->done = 0;
1775
0
}
1776
1777
static void
1778
opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
1779
0
{
1780
0
  int i, maxlevel;
1781
0
  struct block *p;
1782
1783
0
  init_val(opt_state);
1784
0
  maxlevel = ic->root->level;
1785
1786
0
  find_inedges(opt_state, ic->root);
1787
0
  for (i = maxlevel; i >= 0; --i)
1788
0
    for (p = opt_state->levels[i]; p; p = p->link)
1789
0
      opt_blk(opt_state, p, do_stmts);
1790
1791
0
  if (do_stmts)
1792
    /*
1793
     * No point trying to move branches; it can't possibly
1794
     * make a difference at this point.
1795
     */
1796
0
    return;
1797
1798
0
  for (i = 1; i <= maxlevel; ++i) {
1799
0
    for (p = opt_state->levels[i]; p; p = p->link) {
1800
0
      opt_j(opt_state, &p->et);
1801
0
      opt_j(opt_state, &p->ef);
1802
0
    }
1803
0
  }
1804
1805
0
  find_inedges(opt_state, ic->root);
1806
0
  for (i = 1; i <= maxlevel; ++i) {
1807
0
    for (p = opt_state->levels[i]; p; p = p->link) {
1808
0
      or_pullup(opt_state, p);
1809
0
      and_pullup(opt_state, p);
1810
0
    }
1811
0
  }
1812
0
}
1813
1814
static inline void
1815
link_inedge(struct edge *parent, struct block *child)
1816
0
{
1817
0
  parent->next = child->in_edges;
1818
0
  child->in_edges = parent;
1819
0
}
1820
1821
static void
1822
find_inedges(opt_state_t *opt_state, struct block *root)
1823
0
{
1824
0
  int i;
1825
0
  struct block *b;
1826
1827
0
  for (i = 0; i < opt_state->n_blocks; ++i)
1828
0
    opt_state->blocks[i]->in_edges = 0;
1829
1830
  /*
1831
   * Traverse the graph, adding each edge to the predecessor
1832
   * list of its successors.  Skip the leaves (i.e. level 0).
1833
   */
1834
0
  for (i = root->level; i > 0; --i) {
1835
0
    for (b = opt_state->levels[i]; b != 0; b = b->link) {
1836
0
      link_inedge(&b->et, JT(b));
1837
0
      link_inedge(&b->ef, JF(b));
1838
0
    }
1839
0
  }
1840
0
}
1841
1842
static void
1843
opt_root(struct block **b)
1844
0
{
1845
0
  struct slist *tmp, *s;
1846
1847
0
  s = (*b)->stmts;
1848
0
  (*b)->stmts = 0;
1849
0
  while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1850
0
    *b = JT(*b);
1851
1852
0
  tmp = (*b)->stmts;
1853
0
  if (tmp != 0)
1854
0
    sappend(s, tmp);
1855
0
  (*b)->stmts = s;
1856
1857
  /*
1858
   * If the root node is a return, then there is no
1859
   * point executing any statements (since the bpf machine
1860
   * has no side effects).
1861
   */
1862
0
  if (BPF_CLASS((*b)->s.code) == BPF_RET)
1863
0
    (*b)->stmts = 0;
1864
0
}
1865
1866
static void
1867
opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
1868
0
{
1869
1870
#ifdef BDEBUG
1871
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1872
    printf("opt_loop(root, %d) begin\n", do_stmts);
1873
    opt_dump(opt_state, ic);
1874
  }
1875
#endif
1876
0
  do {
1877
0
    opt_state->done = 1;
1878
0
    find_levels(opt_state, ic);
1879
0
    find_dom(opt_state, ic->root);
1880
0
    find_closure(opt_state, ic->root);
1881
0
    find_ud(opt_state, ic->root);
1882
0
    find_edom(opt_state, ic->root);
1883
0
    opt_blks(opt_state, ic, do_stmts);
1884
#ifdef BDEBUG
1885
    if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1886
      printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
1887
      opt_dump(opt_state, ic);
1888
    }
1889
#endif
1890
0
  } while (!opt_state->done);
1891
0
}
1892
1893
/*
1894
 * Optimize the filter code in its dag representation.
1895
 * Return 0 on success, -1 on error.
1896
 */
1897
int
1898
bpf_optimize(struct icode *ic, char *errbuf)
1899
0
{
1900
0
  opt_state_t opt_state;
1901
1902
0
  memset(&opt_state, 0, sizeof(opt_state));
1903
0
  opt_state.errbuf = errbuf;
1904
0
  if (setjmp(opt_state.top_ctx)) {
1905
0
    opt_cleanup(&opt_state);
1906
0
    return -1;
1907
0
  }
1908
0
  opt_init(&opt_state, ic);
1909
0
  opt_loop(&opt_state, ic, 0);
1910
0
  opt_loop(&opt_state, ic, 1);
1911
0
  intern_blocks(&opt_state, ic);
1912
#ifdef BDEBUG
1913
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1914
    printf("after intern_blocks()\n");
1915
    opt_dump(&opt_state, ic);
1916
  }
1917
#endif
1918
0
  opt_root(&ic->root);
1919
#ifdef BDEBUG
1920
  if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1921
    printf("after opt_root()\n");
1922
    opt_dump(&opt_state, ic);
1923
  }
1924
#endif
1925
0
  opt_cleanup(&opt_state);
1926
0
  return 0;
1927
0
}
1928
1929
static void
1930
make_marks(struct icode *ic, struct block *p)
1931
0
{
1932
0
  if (!isMarked(ic, p)) {
1933
0
    Mark(ic, p);
1934
0
    if (BPF_CLASS(p->s.code) != BPF_RET) {
1935
0
      make_marks(ic, JT(p));
1936
0
      make_marks(ic, JF(p));
1937
0
    }
1938
0
  }
1939
0
}
1940
1941
/*
1942
 * Mark code array such that isMarked(ic->cur_mark, i) is true
1943
 * only for nodes that are alive.
1944
 */
1945
static void
1946
mark_code(struct icode *ic)
1947
0
{
1948
0
  ic->cur_mark += 1;
1949
0
  make_marks(ic, ic->root);
1950
0
}
1951
1952
/*
1953
 * True iff the two stmt lists load the same value from the packet into
1954
 * the accumulator.
1955
 */
1956
static int
1957
eq_slist(struct slist *x, struct slist *y)
1958
0
{
1959
0
  for (;;) {
1960
0
    while (x && x->s.code == NOP)
1961
0
      x = x->next;
1962
0
    while (y && y->s.code == NOP)
1963
0
      y = y->next;
1964
0
    if (x == 0)
1965
0
      return y == 0;
1966
0
    if (y == 0)
1967
0
      return x == 0;
1968
0
    if (x->s.code != y->s.code || x->s.k != y->s.k)
1969
0
      return 0;
1970
0
    x = x->next;
1971
0
    y = y->next;
1972
0
  }
1973
0
}
1974
1975
static inline int
1976
eq_blk(struct block *b0, struct block *b1)
1977
0
{
1978
0
  if (b0->s.code == b1->s.code &&
1979
0
      b0->s.k == b1->s.k &&
1980
0
      b0->et.succ == b1->et.succ &&
1981
0
      b0->ef.succ == b1->ef.succ)
1982
0
    return eq_slist(b0->stmts, b1->stmts);
1983
0
  return 0;
1984
0
}
1985
1986
static void
1987
intern_blocks(opt_state_t *opt_state, struct icode *ic)
1988
0
{
1989
0
  struct block *p;
1990
0
  int i, j;
1991
0
  int done1; /* don't shadow global */
1992
0
 top:
1993
0
  done1 = 1;
1994
0
  for (i = 0; i < opt_state->n_blocks; ++i)
1995
0
    opt_state->blocks[i]->link = 0;
1996
1997
0
  mark_code(ic);
1998
1999
0
  for (i = opt_state->n_blocks - 1; --i >= 0; ) {
2000
0
    if (!isMarked(ic, opt_state->blocks[i]))
2001
0
      continue;
2002
0
    for (j = i + 1; j < opt_state->n_blocks; ++j) {
2003
0
      if (!isMarked(ic, opt_state->blocks[j]))
2004
0
        continue;
2005
0
      if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2006
0
        opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2007
0
          opt_state->blocks[j]->link : opt_state->blocks[j];
2008
0
        break;
2009
0
      }
2010
0
    }
2011
0
  }
2012
0
  for (i = 0; i < opt_state->n_blocks; ++i) {
2013
0
    p = opt_state->blocks[i];
2014
0
    if (JT(p) == 0)
2015
0
      continue;
2016
0
    if (JT(p)->link) {
2017
0
      done1 = 0;
2018
0
      JT(p) = JT(p)->link;
2019
0
    }
2020
0
    if (JF(p)->link) {
2021
0
      done1 = 0;
2022
0
      JF(p) = JF(p)->link;
2023
0
    }
2024
0
  }
2025
0
  if (!done1)
2026
0
    goto top;
2027
0
}
2028
2029
static void
2030
opt_cleanup(opt_state_t *opt_state)
2031
0
{
2032
0
  free((void *)opt_state->vnode_base);
2033
0
  free((void *)opt_state->vmap);
2034
0
  free((void *)opt_state->edges);
2035
0
  free((void *)opt_state->space);
2036
0
  free((void *)opt_state->levels);
2037
0
  free((void *)opt_state->blocks);
2038
0
}
2039
2040
/*
2041
 * For optimizer errors.
2042
 */
2043
static void PCAP_NORETURN
2044
opt_error(opt_state_t *opt_state, const char *fmt, ...)
2045
0
{
2046
0
  va_list ap;
2047
2048
0
  if (opt_state->errbuf != NULL) {
2049
0
    va_start(ap, fmt);
2050
0
    (void)pcap_vsnprintf(opt_state->errbuf,
2051
0
        PCAP_ERRBUF_SIZE, fmt, ap);
2052
0
    va_end(ap);
2053
0
  }
2054
0
  longjmp(opt_state->top_ctx, 1);
2055
  /* NOTREACHED */
2056
0
}
2057
2058
/*
2059
 * Return the number of stmts in 's'.
2060
 */
2061
static u_int
2062
slength(struct slist *s)
2063
0
{
2064
0
  u_int n = 0;
2065
2066
0
  for (; s; s = s->next)
2067
0
    if (s->s.code != NOP)
2068
0
      ++n;
2069
0
  return n;
2070
0
}
2071
2072
/*
2073
 * Return the number of nodes reachable by 'p'.
2074
 * All nodes should be initially unmarked.
2075
 */
2076
static int
2077
count_blocks(struct icode *ic, struct block *p)
2078
0
{
2079
0
  if (p == 0 || isMarked(ic, p))
2080
0
    return 0;
2081
0
  Mark(ic, p);
2082
0
  return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2083
0
}
2084
2085
/*
2086
 * Do a depth first search on the flow graph, numbering the
2087
 * the basic blocks, and entering them into the 'blocks' array.`
2088
 */
2089
static void
2090
number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2091
0
{
2092
0
  int n;
2093
2094
0
  if (p == 0 || isMarked(ic, p))
2095
0
    return;
2096
2097
0
  Mark(ic, p);
2098
0
  n = opt_state->n_blocks++;
2099
0
  p->id = n;
2100
0
  opt_state->blocks[n] = p;
2101
2102
0
  number_blks_r(opt_state, ic, JT(p));
2103
0
  number_blks_r(opt_state, ic, JF(p));
2104
0
}
2105
2106
/*
2107
 * Return the number of stmts in the flowgraph reachable by 'p'.
2108
 * The nodes should be unmarked before calling.
2109
 *
2110
 * Note that "stmts" means "instructions", and that this includes
2111
 *
2112
 *  side-effect statements in 'p' (slength(p->stmts));
2113
 *
2114
 *  statements in the true branch from 'p' (count_stmts(JT(p)));
2115
 *
2116
 *  statements in the false branch from 'p' (count_stmts(JF(p)));
2117
 *
2118
 *  the conditional jump itself (1);
2119
 *
2120
 *  an extra long jump if the true branch requires it (p->longjt);
2121
 *
2122
 *  an extra long jump if the false branch requires it (p->longjf).
2123
 */
2124
static u_int
2125
count_stmts(struct icode *ic, struct block *p)
2126
0
{
2127
0
  u_int n;
2128
2129
0
  if (p == 0 || isMarked(ic, p))
2130
0
    return 0;
2131
0
  Mark(ic, p);
2132
0
  n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2133
0
  return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2134
0
}
2135
2136
/*
2137
 * Allocate memory.  All allocation is done before optimization
2138
 * is begun.  A linear bound on the size of all data structures is computed
2139
 * from the total number of blocks and/or statements.
2140
 */
2141
static void
2142
opt_init(opt_state_t *opt_state, struct icode *ic)
2143
0
{
2144
0
  bpf_u_int32 *p;
2145
0
  int i, n, max_stmts;
2146
2147
  /*
2148
   * First, count the blocks, so we can malloc an array to map
2149
   * block number to block.  Then, put the blocks into the array.
2150
   */
2151
0
  unMarkAll(ic);
2152
0
  n = count_blocks(ic, ic->root);
2153
0
  opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2154
0
  if (opt_state->blocks == NULL)
2155
0
    opt_error(opt_state, "malloc");
2156
0
  unMarkAll(ic);
2157
0
  opt_state->n_blocks = 0;
2158
0
  number_blks_r(opt_state, ic, ic->root);
2159
2160
0
  opt_state->n_edges = 2 * opt_state->n_blocks;
2161
0
  opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2162
0
  if (opt_state->edges == NULL) {
2163
0
    opt_error(opt_state, "malloc");
2164
0
  }
2165
2166
  /*
2167
   * The number of levels is bounded by the number of nodes.
2168
   */
2169
0
  opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2170
0
  if (opt_state->levels == NULL) {
2171
0
    opt_error(opt_state, "malloc");
2172
0
  }
2173
2174
0
  opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2175
0
  opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2176
2177
  /* XXX */
2178
0
  opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
2179
0
         + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
2180
0
  if (opt_state->space == NULL) {
2181
0
    opt_error(opt_state, "malloc");
2182
0
  }
2183
0
  p = opt_state->space;
2184
0
  opt_state->all_dom_sets = p;
2185
0
  for (i = 0; i < n; ++i) {
2186
0
    opt_state->blocks[i]->dom = p;
2187
0
    p += opt_state->nodewords;
2188
0
  }
2189
0
  opt_state->all_closure_sets = p;
2190
0
  for (i = 0; i < n; ++i) {
2191
0
    opt_state->blocks[i]->closure = p;
2192
0
    p += opt_state->nodewords;
2193
0
  }
2194
0
  opt_state->all_edge_sets = p;
2195
0
  for (i = 0; i < n; ++i) {
2196
0
    register struct block *b = opt_state->blocks[i];
2197
2198
0
    b->et.edom = p;
2199
0
    p += opt_state->edgewords;
2200
0
    b->ef.edom = p;
2201
0
    p += opt_state->edgewords;
2202
0
    b->et.id = i;
2203
0
    opt_state->edges[i] = &b->et;
2204
0
    b->ef.id = opt_state->n_blocks + i;
2205
0
    opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2206
0
    b->et.pred = b;
2207
0
    b->ef.pred = b;
2208
0
  }
2209
0
  max_stmts = 0;
2210
0
  for (i = 0; i < n; ++i)
2211
0
    max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2212
  /*
2213
   * We allocate at most 3 value numbers per statement,
2214
   * so this is an upper bound on the number of valnodes
2215
   * we'll need.
2216
   */
2217
0
  opt_state->maxval = 3 * max_stmts;
2218
0
  opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2219
0
  if (opt_state->vmap == NULL) {
2220
0
    opt_error(opt_state, "malloc");
2221
0
  }
2222
0
  opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2223
0
  if (opt_state->vnode_base == NULL) {
2224
0
    opt_error(opt_state, "malloc");
2225
0
  }
2226
0
}
2227
2228
/*
2229
 * This is only used when supporting optimizer debugging.  It is
2230
 * global state, so do *not* do more than one compile in parallel
2231
 * and expect it to provide meaningful information.
2232
 */
2233
#ifdef BDEBUG
2234
int bids[NBIDS];
2235
#endif
2236
2237
static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2238
    PCAP_PRINTFLIKE(2, 3);
2239
2240
/*
2241
 * Returns true if successful.  Returns false if a branch has
2242
 * an offset that is too large.  If so, we have marked that
2243
 * branch so that on a subsequent iteration, it will be treated
2244
 * properly.
2245
 */
2246
static int
2247
convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2248
0
{
2249
0
  struct bpf_insn *dst;
2250
0
  struct slist *src;
2251
0
  u_int slen;
2252
0
  u_int off;
2253
0
  u_int extrajmps;  /* number of extra jumps inserted */
2254
0
  struct slist **offset = NULL;
2255
2256
0
  if (p == 0 || isMarked(ic, p))
2257
0
    return (1);
2258
0
  Mark(ic, p);
2259
2260
0
  if (convert_code_r(conv_state, ic, JF(p)) == 0)
2261
0
    return (0);
2262
0
  if (convert_code_r(conv_state, ic, JT(p)) == 0)
2263
0
    return (0);
2264
2265
0
  slen = slength(p->stmts);
2266
0
  dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2267
    /* inflate length by any extra jumps */
2268
2269
0
  p->offset = (int)(dst - conv_state->fstart);
2270
2271
  /* generate offset[] for convenience  */
2272
0
  if (slen) {
2273
0
    offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2274
0
    if (!offset) {
2275
0
      conv_error(conv_state, "not enough core");
2276
      /*NOTREACHED*/
2277
0
    }
2278
0
  }
2279
0
  src = p->stmts;
2280
0
  for (off = 0; off < slen && src; off++) {
2281
#if 0
2282
    printf("off=%d src=%x\n", off, src);
2283
#endif
2284
0
    offset[off] = src;
2285
0
    src = src->next;
2286
0
  }
2287
2288
0
  off = 0;
2289
0
  for (src = p->stmts; src; src = src->next) {
2290
0
    if (src->s.code == NOP)
2291
0
      continue;
2292
0
    dst->code = (u_short)src->s.code;
2293
0
    dst->k = src->s.k;
2294
2295
    /* fill block-local relative jump */
2296
0
    if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2297
#if 0
2298
      if (src->s.jt || src->s.jf) {
2299
        free(offset);
2300
        conv_error(conv_state, "illegal jmp destination");
2301
        /*NOTREACHED*/
2302
      }
2303
#endif
2304
0
      goto filled;
2305
0
    }
2306
0
    if (off == slen - 2) /*???*/
2307
0
      goto filled;
2308
2309
0
      {
2310
0
    u_int i;
2311
0
    int jt, jf;
2312
0
    const char ljerr[] = "%s for block-local relative jump: off=%d";
2313
2314
#if 0
2315
    printf("code=%x off=%d %x %x\n", src->s.code,
2316
      off, src->s.jt, src->s.jf);
2317
#endif
2318
2319
0
    if (!src->s.jt || !src->s.jf) {
2320
0
      free(offset);
2321
0
      conv_error(conv_state, ljerr, "no jmp destination", off);
2322
      /*NOTREACHED*/
2323
0
    }
2324
2325
0
    jt = jf = 0;
2326
0
    for (i = 0; i < slen; i++) {
2327
0
      if (offset[i] == src->s.jt) {
2328
0
        if (jt) {
2329
0
          free(offset);
2330
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2331
          /*NOTREACHED*/
2332
0
        }
2333
2334
0
        if (i - off - 1 >= 256) {
2335
0
          free(offset);
2336
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2337
          /*NOTREACHED*/
2338
0
        }
2339
0
        dst->jt = (u_char)(i - off - 1);
2340
0
        jt++;
2341
0
      }
2342
0
      if (offset[i] == src->s.jf) {
2343
0
        if (jf) {
2344
0
          free(offset);
2345
0
          conv_error(conv_state, ljerr, "multiple matches", off);
2346
          /*NOTREACHED*/
2347
0
        }
2348
0
        if (i - off - 1 >= 256) {
2349
0
          free(offset);
2350
0
          conv_error(conv_state, ljerr, "out-of-range jump", off);
2351
          /*NOTREACHED*/
2352
0
        }
2353
0
        dst->jf = (u_char)(i - off - 1);
2354
0
        jf++;
2355
0
      }
2356
0
    }
2357
0
    if (!jt || !jf) {
2358
0
      free(offset);
2359
0
      conv_error(conv_state, ljerr, "no destination found", off);
2360
      /*NOTREACHED*/
2361
0
    }
2362
0
      }
2363
0
filled:
2364
0
    ++dst;
2365
0
    ++off;
2366
0
  }
2367
0
  if (offset)
2368
0
    free(offset);
2369
2370
#ifdef BDEBUG
2371
  if (dst - conv_state->fstart < NBIDS)
2372
    bids[dst - conv_state->fstart] = p->id + 1;
2373
#endif
2374
0
  dst->code = (u_short)p->s.code;
2375
0
  dst->k = p->s.k;
2376
0
  if (JT(p)) {
2377
0
    extrajmps = 0;
2378
0
    off = JT(p)->offset - (p->offset + slen) - 1;
2379
0
    if (off >= 256) {
2380
        /* offset too large for branch, must add a jump */
2381
0
        if (p->longjt == 0) {
2382
          /* mark this instruction and retry */
2383
0
      p->longjt++;
2384
0
      return(0);
2385
0
        }
2386
        /* branch if T to following jump */
2387
0
        if (extrajmps >= 256) {
2388
0
      conv_error(conv_state, "too many extra jumps");
2389
      /*NOTREACHED*/
2390
0
        }
2391
0
        dst->jt = (u_char)extrajmps;
2392
0
        extrajmps++;
2393
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2394
0
        dst[extrajmps].k = off - extrajmps;
2395
0
    }
2396
0
    else
2397
0
        dst->jt = (u_char)off;
2398
0
    off = JF(p)->offset - (p->offset + slen) - 1;
2399
0
    if (off >= 256) {
2400
        /* offset too large for branch, must add a jump */
2401
0
        if (p->longjf == 0) {
2402
          /* mark this instruction and retry */
2403
0
      p->longjf++;
2404
0
      return(0);
2405
0
        }
2406
        /* branch if F to following jump */
2407
        /* if two jumps are inserted, F goes to second one */
2408
0
        if (extrajmps >= 256) {
2409
0
      conv_error(conv_state, "too many extra jumps");
2410
      /*NOTREACHED*/
2411
0
        }
2412
0
        dst->jf = (u_char)extrajmps;
2413
0
        extrajmps++;
2414
0
        dst[extrajmps].code = BPF_JMP|BPF_JA;
2415
0
        dst[extrajmps].k = off - extrajmps;
2416
0
    }
2417
0
    else
2418
0
        dst->jf = (u_char)off;
2419
0
  }
2420
0
  return (1);
2421
0
}
2422
2423
2424
/*
2425
 * Convert flowgraph intermediate representation to the
2426
 * BPF array representation.  Set *lenp to the number of instructions.
2427
 *
2428
 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2429
 * not* do free(fp) before returning fp; doing so would make no sense,
2430
 * as the BPF array pointed to by the return value of icode_to_fcode()
2431
 * must be valid - it's being returned for use in a bpf_program structure.
2432
 *
2433
 * If it appears that icode_to_fcode() is leaking, the problem is that
2434
 * the program using pcap_compile() is failing to free the memory in
2435
 * the BPF program when it's done - the leak is in the program, not in
2436
 * the routine that happens to be allocating the memory.  (By analogy, if
2437
 * a program calls fopen() without ever calling fclose() on the FILE *,
2438
 * it will leak the FILE structure; the leak is not in fopen(), it's in
2439
 * the program.)  Change the program to use pcap_freecode() when it's
2440
 * done with the filter program.  See the pcap man page.
2441
 */
2442
struct bpf_insn *
2443
icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp, 
2444
    char *errbuf)
2445
0
{
2446
0
  u_int n;
2447
0
  struct bpf_insn *fp;
2448
0
  conv_state_t conv_state;
2449
2450
0
  conv_state.fstart = NULL;
2451
0
  conv_state.errbuf = errbuf;
2452
0
  if (setjmp(conv_state.top_ctx) != 0) {
2453
0
    free(conv_state.fstart);
2454
0
    return NULL;
2455
0
  }
2456
2457
  /*
2458
   * Loop doing convert_code_r() until no branches remain
2459
   * with too-large offsets.
2460
   */
2461
0
  for (;;) {
2462
0
      unMarkAll(ic);
2463
0
      n = *lenp = count_stmts(ic, root);
2464
2465
0
      fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2466
0
      if (fp == NULL) {
2467
0
    (void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE,
2468
0
        "malloc");
2469
0
    free(fp);
2470
0
    return NULL;
2471
0
      }
2472
0
      memset((char *)fp, 0, sizeof(*fp) * n);
2473
0
      conv_state.fstart = fp;
2474
0
      conv_state.ftail = fp + n;
2475
2476
0
      unMarkAll(ic);
2477
0
      if (convert_code_r(&conv_state, ic, root))
2478
0
    break;
2479
0
      free(fp);
2480
0
  }
2481
2482
0
  return fp;
2483
0
}
2484
2485
/*
2486
 * For iconv_to_fconv() errors.
2487
 */
2488
static void PCAP_NORETURN
2489
conv_error(conv_state_t *conv_state, const char *fmt, ...)
2490
0
{
2491
0
  va_list ap;
2492
2493
0
  va_start(ap, fmt);
2494
0
  (void)pcap_vsnprintf(conv_state->errbuf,
2495
0
      PCAP_ERRBUF_SIZE, fmt, ap);
2496
0
  va_end(ap);
2497
0
  longjmp(conv_state->top_ctx, 1);
2498
  /* NOTREACHED */
2499
0
}
2500
2501
/*
2502
 * Make a copy of a BPF program and put it in the "fcode" member of
2503
 * a "pcap_t".
2504
 *
2505
 * If we fail to allocate memory for the copy, fill in the "errbuf"
2506
 * member of the "pcap_t" with an error message, and return -1;
2507
 * otherwise, return 0.
2508
 */
2509
int
2510
install_bpf_program(pcap_t *p, struct bpf_program *fp)
2511
0
{
2512
0
  size_t prog_size;
2513
2514
  /*
2515
   * Validate the program.
2516
   */
2517
0
  if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2518
0
    pcap_snprintf(p->errbuf, sizeof(p->errbuf),
2519
0
      "BPF program is not valid");
2520
0
    return (-1);
2521
0
  }
2522
2523
  /*
2524
   * Free up any already installed program.
2525
   */
2526
0
  pcap_freecode(&p->fcode);
2527
2528
0
  prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2529
0
  p->fcode.bf_len = fp->bf_len;
2530
0
  p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2531
0
  if (p->fcode.bf_insns == NULL) {
2532
0
    pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2533
0
        errno, "malloc");
2534
0
    return (-1);
2535
0
  }
2536
0
  memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2537
0
  return (0);
2538
0
}
2539
2540
#ifdef BDEBUG
2541
static void
2542
dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2543
    FILE *out)
2544
{
2545
  int icount, noffset;
2546
  int i;
2547
2548
  if (block == NULL || isMarked(ic, block))
2549
    return;
2550
  Mark(ic, block);
2551
2552
  icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2553
  noffset = min(block->offset + icount, (int)prog->bf_len);
2554
2555
  fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2556
  for (i = block->offset; i < noffset; i++) {
2557
    fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2558
  }
2559
  fprintf(out, "\" tooltip=\"");
2560
  for (i = 0; i < BPF_MEMWORDS; i++)
2561
    if (block->val[i] != VAL_UNKNOWN)
2562
      fprintf(out, "val[%d]=%d ", i, block->val[i]);
2563
  fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2564
  fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2565
  fprintf(out, "\"");
2566
  if (JT(block) == NULL)
2567
    fprintf(out, ", peripheries=2");
2568
  fprintf(out, "];\n");
2569
2570
  dot_dump_node(ic, JT(block), prog, out);
2571
  dot_dump_node(ic, JF(block), prog, out);
2572
}
2573
2574
static void
2575
dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
2576
{
2577
  if (block == NULL || isMarked(ic, block))
2578
    return;
2579
  Mark(ic, block);
2580
2581
  if (JT(block)) {
2582
    fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2583
        block->id, JT(block)->id);
2584
    fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2585
         block->id, JF(block)->id);
2586
  }
2587
  dot_dump_edge(ic, JT(block), out);
2588
  dot_dump_edge(ic, JF(block), out);
2589
}
2590
2591
/* Output the block CFG using graphviz/DOT language
2592
 * In the CFG, block's code, value index for each registers at EXIT,
2593
 * and the jump relationship is show.
2594
 *
2595
 * example DOT for BPF `ip src host 1.1.1.1' is:
2596
    digraph BPF {
2597
      block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2  jf 5" tooltip="val[A]=0 val[X]=0"];
2598
      block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4  jf 5" tooltip="val[A]=0 val[X]=0"];
2599
      block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2600
      block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2601
      "block0":se -> "block1":n [label="T"];
2602
      "block0":sw -> "block3":n [label="F"];
2603
      "block1":se -> "block2":n [label="T"];
2604
      "block1":sw -> "block3":n [label="F"];
2605
    }
2606
 *
2607
 *  After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2608
 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
2609
 */
2610
static int
2611
dot_dump(struct icode *ic, char *errbuf)
2612
{
2613
  struct bpf_program f;
2614
  FILE *out = stdout;
2615
2616
  memset(bids, 0, sizeof bids);
2617
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
2618
  if (f.bf_insns == NULL)
2619
    return -1;
2620
2621
  fprintf(out, "digraph BPF {\n");
2622
  unMarkAll(ic);
2623
  dot_dump_node(ic, ic->root, &f, out);
2624
  unMarkAll(ic);
2625
  dot_dump_edge(ic, ic->root, out);
2626
  fprintf(out, "}\n");
2627
2628
  free((char *)f.bf_insns);
2629
  return 0;
2630
}
2631
2632
static int
2633
plain_dump(struct icode *ic, char *errbuf)
2634
{
2635
  struct bpf_program f;
2636
2637
  memset(bids, 0, sizeof bids);
2638
  f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
2639
  if (f.bf_insns == NULL)
2640
    return -1;
2641
  bpf_dump(&f, 1);
2642
  putchar('\n');
2643
  free((char *)f.bf_insns);
2644
  return 0;
2645
}
2646
2647
static void
2648
opt_dump(opt_state_t *opt_state, struct icode *ic)
2649
{
2650
  int status;
2651
  char errbuf[PCAP_ERRBUF_SIZE];
2652
2653
  /*
2654
   * If the CFG, in DOT format, is requested, output it rather than
2655
   * the code that would be generated from that graph.
2656
   */
2657
  if (pcap_print_dot_graph)
2658
    status = dot_dump(ic, errbuf);
2659
  else
2660
    status = plain_dump(ic, errbuf);
2661
  if (status == -1)
2662
    opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
2663
}
2664
#endif