/src/suricata7/src/defrag.c
Line | Count | Source |
1 | | /* Copyright (C) 2007-2024 Open Information Security Foundation |
2 | | * |
3 | | * You can copy, redistribute or modify this Program under the terms of |
4 | | * the GNU General Public License version 2 as published by the Free |
5 | | * Software Foundation. |
6 | | * |
7 | | * This program is distributed in the hope that it will be useful, |
8 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
9 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
10 | | * GNU General Public License for more details. |
11 | | * |
12 | | * You should have received a copy of the GNU General Public License |
13 | | * version 2 along with this program; if not, write to the Free Software |
14 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
15 | | * 02110-1301, USA. |
16 | | */ |
17 | | |
18 | | /** |
19 | | * \file |
20 | | * |
21 | | * \author Endace Technology Limited, Jason Ish <jason.ish@endace.com> |
22 | | * |
23 | | * Defragmentation module. |
24 | | * References: |
25 | | * - RFC 815 |
26 | | * - OpenBSD PF's IP normalization (pf_norm.c) |
27 | | * |
28 | | * \todo pool for frag packet storage |
29 | | * \todo policy bsd-right |
30 | | * \todo profile hash function |
31 | | * \todo log anomalies |
32 | | */ |
33 | | |
34 | | #include "suricata-common.h" |
35 | | |
36 | | #include "queue.h" |
37 | | |
38 | | #include "suricata.h" |
39 | | #include "threads.h" |
40 | | #include "conf.h" |
41 | | #include "decode-ipv6.h" |
42 | | #include "util-hashlist.h" |
43 | | #include "util-pool.h" |
44 | | #include "util-time.h" |
45 | | #include "util-print.h" |
46 | | #include "util-debug.h" |
47 | | #include "util-fix_checksum.h" |
48 | | #include "util-random.h" |
49 | | #include "stream-tcp-private.h" |
50 | | #include "stream-tcp-reassemble.h" |
51 | | #include "util-host-os-info.h" |
52 | | #include "util-validate.h" |
53 | | |
54 | | #include "defrag.h" |
55 | | #include "defrag-hash.h" |
56 | | #include "defrag-queue.h" |
57 | | #include "defrag-config.h" |
58 | | |
59 | | #include "tmqh-packetpool.h" |
60 | | #include "decode.h" |
61 | | |
62 | | #ifdef UNITTESTS |
63 | | #include "util-unittest.h" |
64 | | #endif |
65 | | |
66 | 104 | #define DEFAULT_DEFRAG_HASH_SIZE 0xffff |
67 | 33 | #define DEFAULT_DEFRAG_POOL_SIZE 0xffff |
68 | | |
69 | | /** |
70 | | * Default timeout (in seconds) before a defragmentation tracker will |
71 | | * be released. |
72 | | */ |
73 | 33 | #define TIMEOUT_DEFAULT 60 |
74 | | |
75 | | /** |
76 | | * Maximum allowed timeout, 24 hours. |
77 | | */ |
78 | 0 | #define TIMEOUT_MAX (60 * 60 * 24) |
79 | | |
80 | | /** |
81 | | * Minimum allowed timeout, 1 second. |
82 | | */ |
83 | 0 | #define TIMEOUT_MIN 1 |
84 | | |
85 | | /** Fragment reassembly policies. */ |
86 | | enum defrag_policies { |
87 | | DEFRAG_POLICY_FIRST = 1, |
88 | | DEFRAG_POLICY_LAST, |
89 | | DEFRAG_POLICY_BSD, |
90 | | DEFRAG_POLICY_BSD_RIGHT, |
91 | | DEFRAG_POLICY_LINUX, |
92 | | DEFRAG_POLICY_WINDOWS, |
93 | | DEFRAG_POLICY_SOLARIS, |
94 | | |
95 | | DEFRAG_POLICY_DEFAULT = DEFRAG_POLICY_BSD, |
96 | | }; |
97 | | |
98 | | static uint8_t default_policy = DEFRAG_POLICY_BSD; |
99 | | |
100 | | /** The global DefragContext so all threads operate from the same |
101 | | * context. */ |
102 | | static DefragContext *defrag_context; |
103 | | |
104 | 4.35M | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); IP_FRAGMENTS_RB_INSERT_COLOR Line | Count | Source | 104 | | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); |
IP_FRAGMENTS_RB_REMOVE_COLOR Line | Count | Source | 104 | | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); |
Line | Count | Source | 104 | | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); |
Line | Count | Source | 104 | | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); |
Unexecuted instantiation: IP_FRAGMENTS_RB_FIND Line | Count | Source | 104 | | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); |
Line | Count | Source | 104 | | RB_GENERATE(IP_FRAGMENTS, Frag_, rb, DefragRbFragCompare); |
|
105 | 4.35M | |
106 | 4.35M | /** |
107 | 4.35M | * \brief Reset a frag for reuse in a pool. |
108 | 4.35M | */ |
109 | 4.35M | static void |
110 | 4.35M | DefragFragReset(Frag *frag) |
111 | 4.35M | { |
112 | 154k | if (frag->pkt != NULL) |
113 | 154k | SCFree(frag->pkt); |
114 | 154k | memset(frag, 0, sizeof(*frag)); |
115 | 154k | } |
116 | | |
117 | | /** |
118 | | * \brief Allocate a new frag for use in a pool. |
119 | | */ |
120 | | static int |
121 | | DefragFragInit(void *data, void *initdata) |
122 | 2.33M | { |
123 | 2.33M | Frag *frag = data; |
124 | | |
125 | 2.33M | memset(frag, 0, sizeof(*frag)); |
126 | 2.33M | return 1; |
127 | 2.33M | } |
128 | | |
129 | | /** |
130 | | * \brief Free all frags associated with a tracker. |
131 | | */ |
132 | | void |
133 | | DefragTrackerFreeFrags(DefragTracker *tracker) |
134 | 42.7k | { |
135 | 42.7k | Frag *frag, *tmp; |
136 | | |
137 | | /* Lock the frag pool as we'll be return items to it. */ |
138 | 42.7k | SCMutexLock(&defrag_context->frag_pool_lock); |
139 | | |
140 | 145k | RB_FOREACH_SAFE(frag, IP_FRAGMENTS, &tracker->fragment_tree, tmp) { |
141 | 145k | RB_REMOVE(IP_FRAGMENTS, &tracker->fragment_tree, frag); |
142 | 145k | DefragFragReset(frag); |
143 | 145k | PoolReturn(defrag_context->frag_pool, frag); |
144 | 145k | } |
145 | | |
146 | 42.7k | SCMutexUnlock(&defrag_context->frag_pool_lock); |
147 | 42.7k | } |
148 | | |
149 | | /** |
150 | | * \brief Create a new DefragContext. |
151 | | * |
152 | | * \retval On success a return an initialized DefragContext, otherwise |
153 | | * NULL will be returned. |
154 | | */ |
155 | | static DefragContext * |
156 | | DefragContextNew(void) |
157 | 33 | { |
158 | 33 | DefragContext *dc; |
159 | | |
160 | 33 | dc = SCCalloc(1, sizeof(*dc)); |
161 | 33 | if (unlikely(dc == NULL)) |
162 | 0 | return NULL; |
163 | | |
164 | | /* Initialize the pool of trackers. */ |
165 | 33 | intmax_t tracker_pool_size; |
166 | 33 | if (!ConfGetInt("defrag.trackers", &tracker_pool_size) || tracker_pool_size == 0) { |
167 | 33 | tracker_pool_size = DEFAULT_DEFRAG_HASH_SIZE; |
168 | 33 | } |
169 | | |
170 | | /* Initialize the pool of frags. */ |
171 | 33 | intmax_t frag_pool_size; |
172 | 33 | if (!ConfGetInt("defrag.max-frags", &frag_pool_size) || frag_pool_size == 0) { |
173 | 33 | frag_pool_size = DEFAULT_DEFRAG_POOL_SIZE; |
174 | 33 | } |
175 | 33 | intmax_t frag_pool_prealloc = frag_pool_size / 2; |
176 | 33 | dc->frag_pool = PoolInit(frag_pool_size, frag_pool_prealloc, |
177 | 33 | sizeof(Frag), |
178 | 33 | NULL, DefragFragInit, dc, NULL, NULL); |
179 | 33 | if (dc->frag_pool == NULL) { |
180 | 0 | FatalError("Defrag: Failed to initialize fragment pool."); |
181 | 0 | } |
182 | 33 | if (SCMutexInit(&dc->frag_pool_lock, NULL) != 0) { |
183 | 0 | FatalError("Defrag: Failed to initialize frag pool mutex."); |
184 | 0 | } |
185 | | |
186 | | /* Set the default timeout. */ |
187 | 33 | intmax_t timeout; |
188 | 33 | if (!ConfGetInt("defrag.timeout", &timeout)) { |
189 | 33 | dc->timeout = TIMEOUT_DEFAULT; |
190 | 33 | } |
191 | 0 | else { |
192 | 0 | if (timeout < TIMEOUT_MIN) { |
193 | 0 | FatalError("defrag: Timeout less than minimum allowed value."); |
194 | 0 | } |
195 | 0 | else if (timeout > TIMEOUT_MAX) { |
196 | 0 | FatalError("defrag: Timeout greater than maximum allowed value."); |
197 | 0 | } |
198 | 0 | dc->timeout = timeout; |
199 | 0 | } |
200 | | |
201 | 33 | SCLogDebug("Defrag Initialized:"); |
202 | 33 | SCLogDebug("\tTimeout: %"PRIuMAX, (uintmax_t)dc->timeout); |
203 | 33 | SCLogDebug("\tMaximum defrag trackers: %"PRIuMAX, tracker_pool_size); |
204 | 33 | SCLogDebug("\tPreallocated defrag trackers: %"PRIuMAX, tracker_pool_size); |
205 | 33 | SCLogDebug("\tMaximum fragments: %"PRIuMAX, (uintmax_t)frag_pool_size); |
206 | 33 | SCLogDebug("\tPreallocated fragments: %"PRIuMAX, (uintmax_t)frag_pool_prealloc); |
207 | | |
208 | 33 | return dc; |
209 | 33 | } |
210 | | |
211 | | static void |
212 | | DefragContextDestroy(DefragContext *dc) |
213 | 0 | { |
214 | 0 | if (dc == NULL) |
215 | 0 | return; |
216 | | |
217 | 0 | PoolFree(dc->frag_pool); |
218 | 0 | SCFree(dc); |
219 | 0 | } |
220 | | |
221 | | /** |
222 | | * Attempt to re-assemble a packet. |
223 | | * |
224 | | * \param tracker The defragmentation tracker to reassemble from. |
225 | | */ |
226 | | static Packet * |
227 | | Defrag4Reassemble(ThreadVars *tv, DefragTracker *tracker, Packet *p) |
228 | 148k | { |
229 | 148k | Packet *rp = NULL; |
230 | | |
231 | | /* Should not be here unless we have seen the last fragment. */ |
232 | 148k | if (!tracker->seen_last) { |
233 | 0 | return NULL; |
234 | 0 | } |
235 | | |
236 | | /* Check that we have the first fragment and its of a valid size. */ |
237 | 148k | Frag *first = RB_MIN(IP_FRAGMENTS, &tracker->fragment_tree); |
238 | 148k | if (first == NULL) { |
239 | 0 | goto done; |
240 | 148k | } else if (first->offset != 0) { |
241 | | /* Still waiting for the first fragment. */ |
242 | 113k | goto done; |
243 | 113k | } else if (first->len < sizeof(IPV4Hdr)) { |
244 | | /* First fragment isn't enough for an IPv6 header. */ |
245 | 0 | goto error_remove_tracker; |
246 | 0 | } |
247 | | |
248 | | /* Check that we have all the data. Relies on the fact that |
249 | | * fragments are inserted in frag_offset order. */ |
250 | 34.9k | Frag *frag = NULL; |
251 | 34.9k | size_t len = 0; |
252 | 20.5M | RB_FOREACH_FROM(frag, IP_FRAGMENTS, first) { |
253 | 20.5M | if (frag->offset > len) { |
254 | | /* This fragment starts after the end of the previous |
255 | | * fragment. We have a hole. */ |
256 | 26.1k | goto done; |
257 | 26.1k | } |
258 | 20.5M | else { |
259 | | /* Update the packet length to the largest known data offset. */ |
260 | 20.5M | len = MAX(len, frag->offset + frag->data_len); |
261 | 20.5M | } |
262 | 20.5M | } |
263 | | |
264 | | /* Allocate a Packet for the reassembled packet. On failure we |
265 | | * SCFree all the resources held by this tracker. */ |
266 | 8.77k | rp = PacketDefragPktSetup(p, NULL, 0, IPV4_GET_IPPROTO(p)); |
267 | 8.77k | if (rp == NULL) { |
268 | 0 | goto error_remove_tracker; |
269 | 0 | } |
270 | 8.77k | PKT_SET_SRC(rp, PKT_SRC_DEFRAG); |
271 | 8.77k | rp->flags |= PKT_REBUILT_FRAGMENT; |
272 | 8.77k | rp->datalink = tracker->datalink; |
273 | | |
274 | 8.77k | int fragmentable_offset = 0; |
275 | 8.77k | uint16_t fragmentable_len = 0; |
276 | 8.77k | uint16_t hlen = 0; |
277 | 8.77k | int ip_hdr_offset = 0; |
278 | | |
279 | | /* Assume more frags. */ |
280 | 8.77k | uint16_t prev_offset = 0; |
281 | 8.77k | bool more_frags = 1; |
282 | | |
283 | 25.4k | RB_FOREACH(frag, IP_FRAGMENTS, &tracker->fragment_tree) { |
284 | 25.4k | SCLogDebug("frag %p, data_len %u, offset %u, pcap_cnt %"PRIu64, |
285 | 25.4k | frag, frag->data_len, frag->offset, frag->pcap_cnt); |
286 | | |
287 | | /* Previous fragment has no more fragments, and this packet |
288 | | * doesn't overlap. We're done. */ |
289 | 25.4k | if (!more_frags && frag->offset > prev_offset) { |
290 | 252 | break; |
291 | 252 | } |
292 | | |
293 | 25.2k | if (frag->skip) |
294 | 0 | continue; |
295 | 25.2k | if (frag->ltrim >= frag->data_len) |
296 | 522 | continue; |
297 | 24.6k | if (frag->offset == 0) { |
298 | | |
299 | 8.77k | if (PacketCopyData(rp, frag->pkt, frag->len) == -1) |
300 | 0 | goto error_remove_tracker; |
301 | | |
302 | 8.77k | hlen = frag->hlen; |
303 | 8.77k | ip_hdr_offset = frag->ip_hdr_offset; |
304 | | |
305 | | /* This is the start of the fragmentable portion of the |
306 | | * first packet. All fragment offsets are relative to |
307 | | * this. */ |
308 | 8.77k | fragmentable_offset = frag->ip_hdr_offset + frag->hlen; |
309 | 8.77k | fragmentable_len = frag->data_len; |
310 | 8.77k | } |
311 | 15.9k | else { |
312 | 15.9k | int pkt_end = fragmentable_offset + frag->offset + frag->data_len; |
313 | 15.9k | if (pkt_end > (int)MAX_PAYLOAD_SIZE) { |
314 | 0 | SCLogDebug("Failed re-assemble " |
315 | 0 | "fragmented packet, exceeds size of packet buffer."); |
316 | 0 | goto error_remove_tracker; |
317 | 0 | } |
318 | 15.9k | if (PacketCopyDataOffset(rp, |
319 | 15.9k | fragmentable_offset + frag->offset + frag->ltrim, |
320 | 15.9k | frag->pkt + frag->data_offset + frag->ltrim, |
321 | 15.9k | frag->data_len - frag->ltrim) == -1) { |
322 | 0 | goto error_remove_tracker; |
323 | 0 | } |
324 | 15.9k | if (frag->offset > UINT16_MAX - frag->data_len) { |
325 | 0 | SCLogDebug("Failed re-assemble " |
326 | 0 | "fragmentable_len exceeds UINT16_MAX"); |
327 | 0 | goto error_remove_tracker; |
328 | 0 | } |
329 | 15.9k | if (frag->offset + frag->data_len > fragmentable_len) |
330 | 13.1k | fragmentable_len = frag->offset + frag->data_len; |
331 | 15.9k | } |
332 | | |
333 | | /* Even if this fragment is flagged as having no more |
334 | | * fragments, still continue. The next fragment may have the |
335 | | * same offset with data that is preferred. |
336 | | * |
337 | | * For example, DefragBsdFragmentAfterNoMfIpv{4,6}Test |
338 | | * |
339 | | * This is due to not all fragments being completely trimmed, |
340 | | * but relying on the copy ordering. */ |
341 | 24.6k | more_frags = frag->more_frags; |
342 | 24.6k | prev_offset = frag->offset; |
343 | 24.6k | } |
344 | | |
345 | 8.77k | SCLogDebug("ip_hdr_offset %u, hlen %" PRIu16 ", fragmentable_len %" PRIu16, ip_hdr_offset, hlen, |
346 | 8.77k | fragmentable_len); |
347 | | |
348 | 8.77k | rp->ip4h = (IPV4Hdr *)(GET_PKT_DATA(rp) + ip_hdr_offset); |
349 | 8.77k | uint16_t old = rp->ip4h->ip_len + rp->ip4h->ip_off; |
350 | 8.77k | DEBUG_VALIDATE_BUG_ON(hlen > UINT16_MAX - fragmentable_len); |
351 | 8.77k | rp->ip4h->ip_len = htons(fragmentable_len + hlen); |
352 | 8.77k | rp->ip4h->ip_off = 0; |
353 | 8.77k | rp->ip4h->ip_csum = FixChecksum(rp->ip4h->ip_csum, |
354 | 8.77k | old, rp->ip4h->ip_len + rp->ip4h->ip_off); |
355 | 8.77k | SET_PKT_LEN(rp, ip_hdr_offset + hlen + fragmentable_len); |
356 | | |
357 | 8.77k | tracker->remove = 1; |
358 | 8.77k | DefragTrackerFreeFrags(tracker); |
359 | 148k | done: |
360 | 148k | return rp; |
361 | | |
362 | 0 | error_remove_tracker: |
363 | 0 | tracker->remove = 1; |
364 | 0 | DefragTrackerFreeFrags(tracker); |
365 | 0 | if (rp != NULL) |
366 | 0 | PacketFreeOrRelease(rp); |
367 | 0 | return NULL; |
368 | 8.77k | } |
369 | | |
370 | | /** |
371 | | * Attempt to re-assemble a packet. |
372 | | * |
373 | | * \param tracker The defragmentation tracker to reassemble from. |
374 | | */ |
375 | | static Packet * |
376 | | Defrag6Reassemble(ThreadVars *tv, DefragTracker *tracker, Packet *p) |
377 | 22.3k | { |
378 | 22.3k | Packet *rp = NULL; |
379 | | |
380 | | /* Should not be here unless we have seen the last fragment. */ |
381 | 22.3k | if (!tracker->seen_last) |
382 | 0 | return NULL; |
383 | | |
384 | | /* Check that we have the first fragment and its of a valid size. */ |
385 | 22.3k | Frag *first = RB_MIN(IP_FRAGMENTS, &tracker->fragment_tree); |
386 | 22.3k | if (first == NULL) { |
387 | 0 | goto done; |
388 | 22.3k | } else if (first->offset != 0) { |
389 | | /* Still waiting for the first fragment. */ |
390 | 3.37k | goto done; |
391 | 18.9k | } else if (first->len < sizeof(IPV6Hdr)) { |
392 | | /* First fragment isn't enough for an IPv6 header. */ |
393 | 0 | goto error_remove_tracker; |
394 | 0 | } |
395 | | |
396 | | /* Check that we have all the data. Relies on the fact that |
397 | | * fragments are inserted if frag_offset order. */ |
398 | 18.9k | size_t len = 0; |
399 | 18.9k | Frag *frag = NULL; |
400 | 30.1M | RB_FOREACH_FROM(frag, IP_FRAGMENTS, first) { |
401 | 30.1M | if (frag->skip) { |
402 | 0 | continue; |
403 | 0 | } |
404 | | |
405 | 30.1M | if (frag == first) { |
406 | 0 | if (frag->offset != 0) { |
407 | 0 | goto done; |
408 | 0 | } |
409 | 0 | len = frag->data_len; |
410 | 0 | } |
411 | 30.1M | else { |
412 | 30.1M | if (frag->offset > len) { |
413 | | /* This fragment starts after the end of the previous |
414 | | * fragment. We have a hole. */ |
415 | 15.3k | goto done; |
416 | 15.3k | } |
417 | 30.1M | else { |
418 | 30.1M | len = MAX(len, frag->offset + frag->data_len); |
419 | 30.1M | } |
420 | 30.1M | } |
421 | 30.1M | } |
422 | | |
423 | | /* Allocate a Packet for the reassembled packet. On failure we |
424 | | * SCFree all the resources held by this tracker. */ |
425 | 3.60k | rp = PacketDefragPktSetup(p, (uint8_t *)p->ip6h, |
426 | 3.60k | IPV6_GET_PLEN(p) + sizeof(IPV6Hdr), 0); |
427 | 3.60k | if (rp == NULL) { |
428 | 0 | goto error_remove_tracker; |
429 | 0 | } |
430 | 3.60k | PKT_SET_SRC(rp, PKT_SRC_DEFRAG); |
431 | 3.60k | rp->flags |= PKT_REBUILT_FRAGMENT; |
432 | 3.60k | rp->datalink = tracker->datalink; |
433 | | |
434 | 3.60k | uint16_t unfragmentable_len = 0; |
435 | 3.60k | int fragmentable_offset = 0; |
436 | 3.60k | uint16_t fragmentable_len = 0; |
437 | 3.60k | int ip_hdr_offset = 0; |
438 | 3.60k | uint8_t next_hdr = 0; |
439 | | |
440 | | /* Assume more frags. */ |
441 | 3.60k | uint16_t prev_offset = 0; |
442 | 3.60k | bool more_frags = 1; |
443 | | |
444 | 12.1k | RB_FOREACH(frag, IP_FRAGMENTS, &tracker->fragment_tree) { |
445 | 12.1k | if (!more_frags && frag->offset > prev_offset) { |
446 | 555 | break; |
447 | 555 | } |
448 | 11.5k | if (frag->skip) |
449 | 0 | continue; |
450 | 11.5k | if (frag->data_len - frag->ltrim <= 0) |
451 | 1.90k | continue; |
452 | 9.65k | if (frag->offset == 0) { |
453 | 3.60k | IPV6FragHdr *frag_hdr = (IPV6FragHdr *)(frag->pkt + |
454 | 3.60k | frag->frag_hdr_offset); |
455 | 3.60k | next_hdr = frag_hdr->ip6fh_nxt; |
456 | | |
457 | | /* This is the first packet, we use this packets link and |
458 | | * IPv6 headers. We also copy in its data, but remove the |
459 | | * fragmentation header. */ |
460 | 3.60k | if (PacketCopyData(rp, frag->pkt, frag->frag_hdr_offset) == -1) |
461 | 0 | goto error_remove_tracker; |
462 | 3.60k | if (PacketCopyDataOffset(rp, frag->frag_hdr_offset, |
463 | 3.60k | frag->pkt + frag->frag_hdr_offset + sizeof(IPV6FragHdr), |
464 | 3.60k | frag->data_len) == -1) |
465 | 0 | goto error_remove_tracker; |
466 | 3.60k | ip_hdr_offset = frag->ip_hdr_offset; |
467 | | |
468 | | /* This is the start of the fragmentable portion of the |
469 | | * first packet. All fragment offsets are relative to |
470 | | * this. */ |
471 | 3.60k | fragmentable_offset = frag->frag_hdr_offset; |
472 | 3.60k | fragmentable_len = frag->data_len; |
473 | | |
474 | | /* unfragmentable part is the part between the ipv6 header |
475 | | * and the frag header. */ |
476 | 3.60k | DEBUG_VALIDATE_BUG_ON(fragmentable_offset < ip_hdr_offset + IPV6_HEADER_LEN); |
477 | 3.60k | DEBUG_VALIDATE_BUG_ON( |
478 | 3.60k | fragmentable_offset - ip_hdr_offset - IPV6_HEADER_LEN > UINT16_MAX); |
479 | 3.60k | unfragmentable_len = (uint16_t)(fragmentable_offset - ip_hdr_offset - IPV6_HEADER_LEN); |
480 | 3.60k | if (unfragmentable_len >= fragmentable_offset) |
481 | 0 | goto error_remove_tracker; |
482 | 3.60k | } |
483 | 6.05k | else { |
484 | 6.05k | if (PacketCopyDataOffset(rp, fragmentable_offset + frag->offset + frag->ltrim, |
485 | 6.05k | frag->pkt + frag->data_offset + frag->ltrim, |
486 | 6.05k | frag->data_len - frag->ltrim) == -1) |
487 | 0 | goto error_remove_tracker; |
488 | 6.05k | if (frag->offset + frag->data_len > fragmentable_len) |
489 | 5.89k | fragmentable_len = frag->offset + frag->data_len; |
490 | 6.05k | } |
491 | | |
492 | | /* Even if this fragment is flagged as having no more |
493 | | * fragments, still continue. The next fragment may have the |
494 | | * same offset with data that is preferred. |
495 | | * |
496 | | * For example, DefragBsdFragmentAfterNoMfIpv{4,6}Test |
497 | | * |
498 | | * This is due to not all fragments being completely trimmed, |
499 | | * but relying on the copy ordering. */ |
500 | 9.65k | more_frags = frag->more_frags; |
501 | 9.65k | prev_offset = frag->offset; |
502 | 9.65k | } |
503 | | |
504 | 3.60k | rp->ip6h = (IPV6Hdr *)(GET_PKT_DATA(rp) + ip_hdr_offset); |
505 | 3.60k | DEBUG_VALIDATE_BUG_ON(unfragmentable_len > UINT16_MAX - fragmentable_len); |
506 | 3.60k | rp->ip6h->s_ip6_plen = htons(fragmentable_len + unfragmentable_len); |
507 | | /* if we have no unfragmentable part, so no ext hdrs before the frag |
508 | | * header, we need to update the ipv6 headers next header field. This |
509 | | * points to the frag header, and we will make it point to the layer |
510 | | * directly after the frag header. */ |
511 | 3.60k | if (unfragmentable_len == 0) |
512 | 2.21k | rp->ip6h->s_ip6_nxt = next_hdr; |
513 | 3.60k | SET_PKT_LEN(rp, ip_hdr_offset + sizeof(IPV6Hdr) + |
514 | 3.60k | unfragmentable_len + fragmentable_len); |
515 | | |
516 | 3.60k | tracker->remove = 1; |
517 | 3.60k | DefragTrackerFreeFrags(tracker); |
518 | 22.3k | done: |
519 | 22.3k | return rp; |
520 | | |
521 | 0 | error_remove_tracker: |
522 | 0 | tracker->remove = 1; |
523 | 0 | DefragTrackerFreeFrags(tracker); |
524 | 0 | if (rp != NULL) |
525 | 0 | PacketFreeOrRelease(rp); |
526 | 0 | return NULL; |
527 | 3.60k | } |
528 | | |
529 | | /** |
530 | | * The RB_TREE compare function for fragments. |
531 | | * |
532 | | * When it comes to adding fragments, we want subsequent ones with the |
533 | | * same offset to be treated as greater than, so we don't have an |
534 | | * equal return value here. |
535 | | */ |
536 | 3.67M | int DefragRbFragCompare(struct Frag_ *a, struct Frag_ *b) { |
537 | 3.67M | if (a->offset < b->offset) { |
538 | 1.11M | return -1; |
539 | 1.11M | } |
540 | 2.55M | return 1; |
541 | 3.67M | } |
542 | | |
543 | | /** |
544 | | * Insert a new IPv4/IPv6 fragment into a tracker. |
545 | | * |
546 | | * \todo Allocate packet buffers from a pool. |
547 | | */ |
548 | | static Packet * |
549 | | DefragInsertFrag(ThreadVars *tv, DecodeThreadVars *dtv, DefragTracker *tracker, Packet *p) |
550 | 308k | { |
551 | 308k | Packet *r = NULL; |
552 | 308k | uint16_t ltrim = 0; |
553 | | |
554 | 308k | uint8_t more_frags; |
555 | 308k | uint16_t frag_offset; |
556 | | |
557 | | /* IPv4 header length - IPv4 only. */ |
558 | 308k | uint8_t hlen = 0; |
559 | | |
560 | | /* This is the offset of the start of the data in the packet that |
561 | | * falls after the IP header. */ |
562 | 308k | uint16_t data_offset; |
563 | | |
564 | | /* The length of the (fragmented) data. This is the length of the |
565 | | * data that falls after the IP header. */ |
566 | 308k | uint16_t data_len; |
567 | | |
568 | | /* Where the fragment ends. */ |
569 | 308k | uint16_t frag_end; |
570 | | |
571 | | /* Offset in the packet to the IPv6 header. */ |
572 | 308k | uint16_t ip_hdr_offset; |
573 | | |
574 | | /* Offset in the packet to the IPv6 frag header. IPv6 only. */ |
575 | 308k | uint16_t frag_hdr_offset = 0; |
576 | | |
577 | | /* Address family */ |
578 | 308k | int af = tracker->af; |
579 | | |
580 | | /* settings for updating a payload when an ip6 fragment with |
581 | | * unfragmentable exthdrs are encountered. */ |
582 | 308k | uint32_t ip6_nh_set_offset = 0; |
583 | 308k | uint8_t ip6_nh_set_value = 0; |
584 | | |
585 | | #ifdef DEBUG |
586 | | uint64_t pcap_cnt = p->pcap_cnt; |
587 | | #endif |
588 | | |
589 | 308k | if (tracker->af == AF_INET) { |
590 | 129k | more_frags = IPV4_GET_MF(p); |
591 | 129k | frag_offset = (uint16_t)(IPV4_GET_IPOFFSET(p) << 3); |
592 | 129k | hlen = IPV4_GET_HLEN(p); |
593 | 129k | data_offset = (uint16_t)((uint8_t *)p->ip4h + hlen - GET_PKT_DATA(p)); |
594 | 129k | data_len = IPV4_GET_IPLEN(p) - hlen; |
595 | 129k | frag_end = frag_offset + data_len; |
596 | 129k | ip_hdr_offset = (uint16_t)((uint8_t *)p->ip4h - GET_PKT_DATA(p)); |
597 | | |
598 | | /* Ignore fragment if the end of packet extends past the |
599 | | * maximum size of a packet. */ |
600 | 129k | if (IPV4_HEADER_LEN + frag_offset + data_len > IPV4_MAXPACKET_LEN) { |
601 | 6.61k | ENGINE_SET_EVENT(p, IPV4_FRAG_PKT_TOO_LARGE); |
602 | 6.61k | return NULL; |
603 | 6.61k | } |
604 | 129k | } |
605 | 179k | else if (tracker->af == AF_INET6) { |
606 | 179k | more_frags = IPV6_EXTHDR_GET_FH_FLAG(p); |
607 | 179k | frag_offset = IPV6_EXTHDR_GET_FH_OFFSET(p); |
608 | 179k | data_offset = p->ip6eh.fh_data_offset; |
609 | 179k | data_len = p->ip6eh.fh_data_len; |
610 | 179k | frag_end = frag_offset + data_len; |
611 | 179k | ip_hdr_offset = (uint16_t)((uint8_t *)p->ip6h - GET_PKT_DATA(p)); |
612 | 179k | frag_hdr_offset = p->ip6eh.fh_header_offset; |
613 | | |
614 | 179k | SCLogDebug("mf %s frag_offset %u data_offset %u, data_len %u, " |
615 | 179k | "frag_end %u, ip_hdr_offset %u, frag_hdr_offset %u", |
616 | 179k | more_frags ? "true" : "false", frag_offset, data_offset, |
617 | 179k | data_len, frag_end, ip_hdr_offset, frag_hdr_offset); |
618 | | |
619 | | /* handle unfragmentable exthdrs */ |
620 | 179k | if (ip_hdr_offset + IPV6_HEADER_LEN < frag_hdr_offset) { |
621 | 169k | SCLogDebug("we have exthdrs before fraghdr %u bytes", |
622 | 169k | (uint32_t)(frag_hdr_offset - (ip_hdr_offset + IPV6_HEADER_LEN))); |
623 | | |
624 | | /* get the offset of the 'next' field in exthdr before the FH, |
625 | | * relative to the buffer start */ |
626 | | |
627 | | /* store offset and FH 'next' value for updating frag buffer below */ |
628 | 169k | ip6_nh_set_offset = p->ip6eh.fh_prev_hdr_offset; |
629 | 169k | ip6_nh_set_value = IPV6_EXTHDR_GET_FH_NH(p); |
630 | 169k | SCLogDebug("offset %d, value %u", ip6_nh_set_offset, ip6_nh_set_value); |
631 | 169k | } |
632 | | |
633 | | /* Ignore fragment if the end of packet extends past the |
634 | | * maximum size of a packet. */ |
635 | 179k | if (frag_offset + data_len > IPV6_MAXPACKET) { |
636 | 1.03k | ENGINE_SET_EVENT(p, IPV6_FRAG_PKT_TOO_LARGE); |
637 | 1.03k | return NULL; |
638 | 1.03k | } |
639 | 179k | } |
640 | 0 | else { |
641 | 0 | DEBUG_VALIDATE_BUG_ON(1); |
642 | 0 | return NULL; |
643 | 0 | } |
644 | | |
645 | | /* Update timeout. */ |
646 | 300k | tracker->timeout = SCTIME_FROM_SECS(SCTIME_SECS(p->ts) + tracker->host_timeout); |
647 | | |
648 | 300k | Frag *prev = NULL, *next = NULL; |
649 | 300k | bool overlap = false; |
650 | 300k | ltrim = 0; |
651 | | |
652 | 300k | if (!RB_EMPTY(&tracker->fragment_tree)) { |
653 | 263k | Frag key = { |
654 | 263k | .offset = frag_offset - 1, |
655 | 263k | }; |
656 | 263k | next = RB_NFIND(IP_FRAGMENTS, &tracker->fragment_tree, &key); |
657 | 263k | if (next == NULL) { |
658 | 144k | prev = RB_MIN(IP_FRAGMENTS, &tracker->fragment_tree); |
659 | 144k | next = IP_FRAGMENTS_RB_NEXT(prev); |
660 | 144k | } else { |
661 | 119k | prev = IP_FRAGMENTS_RB_PREV(next); |
662 | 119k | if (prev == NULL) { |
663 | 64.5k | prev = next; |
664 | 64.5k | next = IP_FRAGMENTS_RB_NEXT(prev); |
665 | 64.5k | } |
666 | 119k | } |
667 | 833k | while (prev != NULL) { |
668 | 830k | if (prev->skip) { |
669 | 0 | goto next; |
670 | 0 | } |
671 | 830k | if (frag_offset < prev->offset + prev->data_len && prev->offset < frag_end) { |
672 | 260k | overlap = true; |
673 | 260k | } |
674 | | |
675 | 830k | switch (tracker->policy) { |
676 | 830k | case DEFRAG_POLICY_BSD: |
677 | 830k | if (frag_offset < prev->offset + prev->data_len) { |
678 | 260k | if (prev->offset <= frag_offset) { |
679 | | /* We prefer the data from the previous |
680 | | * fragment, so trim off the data in the new |
681 | | * fragment that exists in the previous |
682 | | * fragment. */ |
683 | 258k | uint16_t prev_end = prev->offset + prev->data_len; |
684 | 258k | if (prev_end > frag_end) { |
685 | | /* Just skip. */ |
686 | | /* TODO: Set overlap flag. */ |
687 | 3.45k | goto done; |
688 | 3.45k | } |
689 | 254k | ltrim = prev_end - frag_offset; |
690 | | |
691 | 254k | if ((next != NULL) && (frag_end > next->offset)) { |
692 | 45.0k | next->ltrim = frag_end - next->offset; |
693 | 45.0k | } |
694 | | |
695 | 254k | goto insert; |
696 | 258k | } |
697 | | |
698 | | /* If the end of this fragment overlaps the start |
699 | | * of the previous fragment, then trim up the |
700 | | * start of previous fragment so this fragment is |
701 | | * used. |
702 | | * |
703 | | * See: |
704 | | * DefragBsdSubsequentOverlapsStartOfOriginal. |
705 | | */ |
706 | 2.74k | if (frag_offset <= prev->offset && frag_end > prev->offset + prev->ltrim) { |
707 | 1.12k | uint16_t prev_ltrim = frag_end - prev->offset; |
708 | 1.12k | if (prev_ltrim > prev->ltrim) { |
709 | 1.12k | prev->ltrim = prev_ltrim; |
710 | 1.12k | } |
711 | 1.12k | } |
712 | | |
713 | 2.74k | if ((next != NULL) && (frag_end > next->offset)) { |
714 | 1.19k | next->ltrim = frag_end - next->offset; |
715 | 1.19k | } |
716 | | |
717 | 2.74k | goto insert; |
718 | 260k | } |
719 | 569k | break; |
720 | 569k | case DEFRAG_POLICY_LINUX: |
721 | | /* Check if new fragment overlaps the end of previous |
722 | | * fragment, if it does, trim the new fragment. |
723 | | * |
724 | | * Old: AAAAAAAA AAAAAAAA AAAAAAAA |
725 | | * New: BBBBBBBB BBBBBBBB BBBBBBBB |
726 | | * Res: AAAAAAAA AAAAAAAA AAAAAAAA BBBBBBBB |
727 | | */ |
728 | 0 | if (prev->offset + prev->ltrim < frag_offset + ltrim && |
729 | 0 | prev->offset + prev->data_len > frag_offset + ltrim) { |
730 | 0 | ltrim += prev->offset + prev->data_len - frag_offset; |
731 | 0 | } |
732 | | |
733 | | /* Check if new fragment overlaps the beginning of |
734 | | * previous fragment, if it does, tim the previous |
735 | | * fragment. |
736 | | * |
737 | | * Old: AAAAAAAA AAAAAAAA |
738 | | * New: BBBBBBBB BBBBBBBB BBBBBBBB |
739 | | * Res: BBBBBBBB BBBBBBBB BBBBBBBB |
740 | | */ |
741 | 0 | if (frag_offset + ltrim < prev->offset + prev->ltrim && |
742 | 0 | frag_end > prev->offset + prev->ltrim) { |
743 | 0 | prev->ltrim += frag_end - (prev->offset + prev->ltrim); |
744 | 0 | goto insert; |
745 | 0 | } |
746 | | |
747 | | /* If the new fragment completely overlaps the |
748 | | * previous fragment, mark the previous to be |
749 | | * skipped. Re-assembly would succeed without doing |
750 | | * this, but this will prevent the bytes from being |
751 | | * copied just to be overwritten. */ |
752 | 0 | if (frag_offset + ltrim <= prev->offset + prev->ltrim && |
753 | 0 | frag_end >= prev->offset + prev->data_len) { |
754 | 0 | prev->skip = 1; |
755 | 0 | goto insert; |
756 | 0 | } |
757 | | |
758 | 0 | break; |
759 | 0 | case DEFRAG_POLICY_WINDOWS: |
760 | | /* If new fragment fits inside a previous fragment, drop it. */ |
761 | 0 | if (frag_offset + ltrim >= prev->offset + ltrim && |
762 | 0 | frag_end <= prev->offset + prev->data_len) { |
763 | 0 | goto done; |
764 | 0 | } |
765 | | |
766 | | /* If new fragment starts before and ends after |
767 | | * previous fragment, drop the previous fragment. */ |
768 | 0 | if (frag_offset + ltrim < prev->offset + ltrim && |
769 | 0 | frag_end > prev->offset + prev->data_len) { |
770 | 0 | prev->skip = 1; |
771 | 0 | goto insert; |
772 | 0 | } |
773 | | |
774 | | /* Check if new fragment overlaps the end of previous |
775 | | * fragment, if it does, trim the new fragment. |
776 | | * |
777 | | * Old: AAAAAAAA AAAAAAAA AAAAAAAA |
778 | | * New: BBBBBBBB BBBBBBBB BBBBBBBB |
779 | | * Res: AAAAAAAA AAAAAAAA AAAAAAAA BBBBBBBB |
780 | | */ |
781 | 0 | if (frag_offset + ltrim > prev->offset + prev->ltrim && |
782 | 0 | frag_offset + ltrim < prev->offset + prev->data_len) { |
783 | 0 | ltrim += prev->offset + prev->data_len - frag_offset; |
784 | 0 | goto insert; |
785 | 0 | } |
786 | | |
787 | | /* If new fragment starts at same offset as an |
788 | | * existing fragment, but ends after it, trim the new |
789 | | * fragment. */ |
790 | 0 | if (frag_offset + ltrim == prev->offset + ltrim && |
791 | 0 | frag_end > prev->offset + prev->data_len) { |
792 | 0 | ltrim += prev->offset + prev->data_len - frag_offset; |
793 | 0 | goto insert; |
794 | 0 | } |
795 | 0 | break; |
796 | 0 | case DEFRAG_POLICY_SOLARIS: |
797 | 0 | if (frag_offset < prev->offset + prev->data_len) { |
798 | 0 | if (frag_offset >= prev->offset) { |
799 | 0 | ltrim = prev->offset + prev->data_len - frag_offset; |
800 | 0 | } |
801 | 0 | if ((frag_offset < prev->offset) && |
802 | 0 | (frag_end >= prev->offset + prev->data_len)) { |
803 | 0 | prev->skip = 1; |
804 | 0 | } |
805 | 0 | goto insert; |
806 | 0 | } |
807 | 0 | break; |
808 | 0 | case DEFRAG_POLICY_FIRST: |
809 | 0 | if ((frag_offset >= prev->offset) && |
810 | 0 | (frag_end <= prev->offset + prev->data_len)) { |
811 | 0 | goto done; |
812 | 0 | } |
813 | 0 | if (frag_offset < prev->offset) { |
814 | 0 | goto insert; |
815 | 0 | } |
816 | 0 | if (frag_offset < prev->offset + prev->data_len) { |
817 | 0 | ltrim = prev->offset + prev->data_len - frag_offset; |
818 | 0 | goto insert; |
819 | 0 | } |
820 | 0 | break; |
821 | 0 | case DEFRAG_POLICY_LAST: |
822 | 0 | if (frag_offset <= prev->offset) { |
823 | 0 | if (frag_end > prev->offset) { |
824 | 0 | prev->ltrim = frag_end - prev->offset; |
825 | 0 | } |
826 | 0 | goto insert; |
827 | 0 | } |
828 | 0 | break; |
829 | 0 | default: |
830 | 0 | break; |
831 | 830k | } |
832 | | |
833 | 569k | next: |
834 | 569k | prev = next; |
835 | 569k | if (next != NULL) { |
836 | 567k | next = IP_FRAGMENTS_RB_NEXT(next); |
837 | 567k | } |
838 | 569k | continue; |
839 | | |
840 | 257k | insert: |
841 | | /* If existing fragment has been trimmed up completely |
842 | | * (complete overlap), remove it now instead of holding |
843 | | * onto it. */ |
844 | 257k | if (prev->skip || prev->ltrim >= prev->data_len) { |
845 | 2.31k | RB_REMOVE(IP_FRAGMENTS, &tracker->fragment_tree, prev); |
846 | 2.31k | DefragFragReset(prev); |
847 | 2.31k | SCMutexLock(&defrag_context->frag_pool_lock); |
848 | 2.31k | PoolReturn(defrag_context->frag_pool, prev); |
849 | 2.31k | SCMutexUnlock(&defrag_context->frag_pool_lock); |
850 | 2.31k | } |
851 | 257k | break; |
852 | 830k | } |
853 | 263k | } |
854 | | |
855 | 297k | if (ltrim >= data_len) { |
856 | | /* Full packet has been trimmed due to the overlap policy. Overlap |
857 | | * already set. */ |
858 | 235k | goto done; |
859 | 235k | } |
860 | | |
861 | | /* Allocate fragment and insert. */ |
862 | 62.4k | SCMutexLock(&defrag_context->frag_pool_lock); |
863 | 62.4k | Frag *new = PoolGet(defrag_context->frag_pool); |
864 | 62.4k | SCMutexUnlock(&defrag_context->frag_pool_lock); |
865 | 62.4k | if (new == NULL) { |
866 | 0 | if (af == AF_INET) { |
867 | 0 | ENGINE_SET_EVENT(p, IPV4_FRAG_IGNORED); |
868 | 0 | } else { |
869 | 0 | ENGINE_SET_EVENT(p, IPV6_FRAG_IGNORED); |
870 | 0 | } |
871 | 0 | goto done; |
872 | 0 | } |
873 | 62.4k | new->pkt = SCMalloc(GET_PKT_LEN(p)); |
874 | 62.4k | if (new->pkt == NULL) { |
875 | 0 | SCMutexLock(&defrag_context->frag_pool_lock); |
876 | 0 | PoolReturn(defrag_context->frag_pool, new); |
877 | 0 | SCMutexUnlock(&defrag_context->frag_pool_lock); |
878 | 0 | if (af == AF_INET) { |
879 | 0 | ENGINE_SET_EVENT(p, IPV4_FRAG_IGNORED); |
880 | 0 | } else { |
881 | 0 | ENGINE_SET_EVENT(p, IPV6_FRAG_IGNORED); |
882 | 0 | } |
883 | 0 | goto done; |
884 | 0 | } |
885 | 62.4k | memcpy(new->pkt, GET_PKT_DATA(p) + ltrim, GET_PKT_LEN(p) - ltrim); |
886 | 62.4k | new->len = (GET_PKT_LEN(p) - ltrim); |
887 | | /* in case of unfragmentable exthdrs, update the 'next hdr' field |
888 | | * in the raw buffer so the reassembled packet will point to the |
889 | | * correct next header after stripping the frag header */ |
890 | 62.4k | if (ip6_nh_set_offset > 0 && frag_offset == 0 && ltrim == 0) { |
891 | 13.9k | if (new->len > ip6_nh_set_offset) { |
892 | 13.9k | SCLogDebug("updating frag to have 'correct' nh value: %u -> %u", |
893 | 13.9k | new->pkt[ip6_nh_set_offset], ip6_nh_set_value); |
894 | 13.9k | new->pkt[ip6_nh_set_offset] = ip6_nh_set_value; |
895 | 13.9k | } |
896 | 13.9k | } |
897 | | |
898 | 62.4k | new->hlen = hlen; |
899 | 62.4k | new->offset = frag_offset + ltrim; |
900 | 62.4k | new->data_offset = data_offset; |
901 | 62.4k | new->data_len = data_len - ltrim; |
902 | 62.4k | new->ip_hdr_offset = ip_hdr_offset; |
903 | 62.4k | new->frag_hdr_offset = frag_hdr_offset; |
904 | 62.4k | new->more_frags = more_frags; |
905 | | #ifdef DEBUG |
906 | | new->pcap_cnt = pcap_cnt; |
907 | | #endif |
908 | 62.4k | if (frag_offset == 0) { |
909 | 20.7k | tracker->datalink = p->datalink; |
910 | 20.7k | } |
911 | | |
912 | 62.4k | IP_FRAGMENTS_RB_INSERT(&tracker->fragment_tree, new); |
913 | | |
914 | 62.4k | if (!more_frags) { |
915 | 33.6k | tracker->seen_last = 1; |
916 | 33.6k | } |
917 | | |
918 | 62.4k | if (tracker->seen_last) { |
919 | 43.2k | if (tracker->af == AF_INET) { |
920 | 29.6k | r = Defrag4Reassemble(tv, tracker, p); |
921 | 29.6k | if (r != NULL && tv != NULL && dtv != NULL) { |
922 | 824 | StatsIncr(tv, dtv->counter_defrag_ipv4_reassembled); |
923 | 824 | if (DecodeIPV4(tv, dtv, r, (void *)r->ip4h, |
924 | 824 | IPV4_GET_IPLEN(r)) != TM_ECODE_OK) { |
925 | |
|
926 | 0 | UNSET_TUNNEL_PKT(r); |
927 | 0 | r->root = NULL; |
928 | 0 | TmqhOutputPacketpool(tv, r); |
929 | 0 | r = NULL; |
930 | 824 | } else { |
931 | 824 | PacketDefragPktSetupParent(p); |
932 | 824 | } |
933 | 824 | } |
934 | 29.6k | } |
935 | 13.5k | else if (tracker->af == AF_INET6) { |
936 | 13.5k | r = Defrag6Reassemble(tv, tracker, p); |
937 | 13.5k | if (r != NULL && tv != NULL && dtv != NULL) { |
938 | 1.03k | StatsIncr(tv, dtv->counter_defrag_ipv6_reassembled); |
939 | 1.03k | if (DecodeIPV6(tv, dtv, r, (uint8_t *)r->ip6h, |
940 | 1.03k | IPV6_GET_PLEN(r) + IPV6_HEADER_LEN) |
941 | 1.03k | != TM_ECODE_OK) { |
942 | |
|
943 | 0 | UNSET_TUNNEL_PKT(r); |
944 | 0 | r->root = NULL; |
945 | 0 | TmqhOutputPacketpool(tv, r); |
946 | 0 | r = NULL; |
947 | 1.03k | } else { |
948 | 1.03k | PacketDefragPktSetupParent(p); |
949 | 1.03k | } |
950 | 1.03k | } |
951 | 13.5k | } |
952 | 43.2k | } |
953 | | |
954 | | |
955 | 300k | done: |
956 | 300k | if (overlap) { |
957 | 260k | if (af == AF_INET) { |
958 | 113k | ENGINE_SET_EVENT(p, IPV4_FRAG_OVERLAP); |
959 | 113k | } |
960 | 146k | else { |
961 | 146k | ENGINE_SET_EVENT(p, IPV6_FRAG_OVERLAP); |
962 | 146k | } |
963 | 260k | } |
964 | 300k | return r; |
965 | 62.4k | } |
966 | | |
967 | | /** |
968 | | * \brief Get the defrag policy based on the destination address of |
969 | | * the packet. |
970 | | * |
971 | | * \param p The packet used to get the destination address. |
972 | | * |
973 | | * \retval The defrag policy to use. |
974 | | */ |
975 | | uint8_t |
976 | | DefragGetOsPolicy(Packet *p) |
977 | 20.8k | { |
978 | 20.8k | int policy = -1; |
979 | | |
980 | 20.8k | if (PKT_IS_IPV4(p)) { |
981 | 5.00k | policy = SCHInfoGetIPv4HostOSFlavour((uint8_t *)GET_IPV4_DST_ADDR_PTR(p)); |
982 | 5.00k | } |
983 | 15.8k | else if (PKT_IS_IPV6(p)) { |
984 | 15.8k | policy = SCHInfoGetIPv6HostOSFlavour((uint8_t *)GET_IPV6_DST_ADDR(p)); |
985 | 15.8k | } |
986 | | |
987 | 20.8k | if (policy == -1) { |
988 | 20.8k | return default_policy; |
989 | 20.8k | } |
990 | | |
991 | | /* Map the OS policies returned from the configured host info to |
992 | | * defrag specific policies. */ |
993 | 0 | switch (policy) { |
994 | | /* BSD. */ |
995 | 0 | case OS_POLICY_BSD: |
996 | 0 | case OS_POLICY_HPUX10: |
997 | 0 | case OS_POLICY_IRIX: |
998 | 0 | return DEFRAG_POLICY_BSD; |
999 | | |
1000 | | /* BSD-Right. */ |
1001 | 0 | case OS_POLICY_BSD_RIGHT: |
1002 | 0 | return DEFRAG_POLICY_BSD_RIGHT; |
1003 | | |
1004 | | /* Linux. */ |
1005 | 0 | case OS_POLICY_OLD_LINUX: |
1006 | 0 | case OS_POLICY_LINUX: |
1007 | 0 | return DEFRAG_POLICY_LINUX; |
1008 | | |
1009 | | /* First. */ |
1010 | 0 | case OS_POLICY_OLD_SOLARIS: |
1011 | 0 | case OS_POLICY_HPUX11: |
1012 | 0 | case OS_POLICY_MACOS: |
1013 | 0 | case OS_POLICY_FIRST: |
1014 | 0 | return DEFRAG_POLICY_FIRST; |
1015 | | |
1016 | | /* Solaris. */ |
1017 | 0 | case OS_POLICY_SOLARIS: |
1018 | 0 | return DEFRAG_POLICY_SOLARIS; |
1019 | | |
1020 | | /* Windows. */ |
1021 | 0 | case OS_POLICY_WINDOWS: |
1022 | 0 | case OS_POLICY_VISTA: |
1023 | 0 | case OS_POLICY_WINDOWS2K3: |
1024 | 0 | return DEFRAG_POLICY_WINDOWS; |
1025 | | |
1026 | | /* Last. */ |
1027 | 0 | case OS_POLICY_LAST: |
1028 | 0 | return DEFRAG_POLICY_LAST; |
1029 | | |
1030 | 0 | default: |
1031 | 0 | return default_policy; |
1032 | 0 | } |
1033 | 0 | } |
1034 | | |
1035 | | /** \internal |
1036 | | * |
1037 | | * \retval NULL or a *LOCKED* tracker */ |
1038 | | static DefragTracker * |
1039 | | DefragGetTracker(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p) |
1040 | 698k | { |
1041 | 698k | return DefragGetTrackerFromHash(tv, dtv, p); |
1042 | 698k | } |
1043 | | |
1044 | | /** |
1045 | | * \brief Entry point for IPv4 and IPv6 fragments. |
1046 | | * |
1047 | | * \param tv ThreadVars for the calling decoder. |
1048 | | * \param p The packet fragment. |
1049 | | * |
1050 | | * \retval A new Packet resembling the re-assembled packet if the most |
1051 | | * recent fragment allowed the packet to be re-assembled, otherwise |
1052 | | * NULL is returned. |
1053 | | */ |
1054 | | Packet * |
1055 | | Defrag(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p) |
1056 | 318k | { |
1057 | 318k | uint16_t frag_offset; |
1058 | 318k | uint8_t more_frags; |
1059 | 318k | DefragTracker *tracker; |
1060 | 318k | int af; |
1061 | | |
1062 | 318k | if (PKT_IS_IPV4(p)) { |
1063 | 129k | af = AF_INET; |
1064 | 129k | more_frags = IPV4_GET_MF(p); |
1065 | 129k | frag_offset = IPV4_GET_IPOFFSET(p); |
1066 | 129k | } |
1067 | 189k | else if (PKT_IS_IPV6(p)) { |
1068 | 189k | af = AF_INET6; |
1069 | 189k | frag_offset = IPV6_EXTHDR_GET_FH_OFFSET(p); |
1070 | 189k | more_frags = IPV6_EXTHDR_GET_FH_FLAG(p); |
1071 | 189k | } |
1072 | 0 | else { |
1073 | 0 | return NULL; |
1074 | 0 | } |
1075 | | |
1076 | 318k | if (frag_offset == 0 && more_frags == 0) { |
1077 | 10.0k | return NULL; |
1078 | 10.0k | } |
1079 | | |
1080 | 308k | if (tv != NULL && dtv != NULL) { |
1081 | 308k | if (af == AF_INET) { |
1082 | 129k | StatsIncr(tv, dtv->counter_defrag_ipv4_fragments); |
1083 | 129k | } |
1084 | 179k | else if (af == AF_INET6) { |
1085 | 179k | StatsIncr(tv, dtv->counter_defrag_ipv6_fragments); |
1086 | 179k | } |
1087 | 308k | } |
1088 | | |
1089 | | /* return a locked tracker or NULL */ |
1090 | 308k | tracker = DefragGetTracker(tv, dtv, p); |
1091 | 308k | if (tracker == NULL) { |
1092 | 0 | if (tv != NULL && dtv != NULL) { |
1093 | 0 | StatsIncr(tv, dtv->counter_defrag_max_hit); |
1094 | 0 | } |
1095 | 0 | return NULL; |
1096 | 0 | } |
1097 | | |
1098 | 308k | Packet *rp = DefragInsertFrag(tv, dtv, tracker, p); |
1099 | 308k | DefragTrackerRelease(tracker); |
1100 | | |
1101 | 308k | return rp; |
1102 | 308k | } |
1103 | | |
1104 | | void |
1105 | | DefragInit(void) |
1106 | 71 | { |
1107 | 71 | intmax_t tracker_pool_size; |
1108 | 71 | if (!ConfGetInt("defrag.trackers", &tracker_pool_size)) { |
1109 | 71 | tracker_pool_size = DEFAULT_DEFRAG_HASH_SIZE; |
1110 | 71 | } |
1111 | | |
1112 | | /* Load the defrag-per-host lookup. */ |
1113 | 71 | DefragPolicyLoadFromConfig(); |
1114 | | |
1115 | | /* Allocate the DefragContext. */ |
1116 | 71 | defrag_context = DefragContextNew(); |
1117 | 71 | if (defrag_context == NULL) { |
1118 | 0 | FatalError("Failed to allocate memory for the Defrag module."); |
1119 | 0 | } |
1120 | | |
1121 | 71 | DefragSetDefaultTimeout(defrag_context->timeout); |
1122 | 71 | DefragInitConfig(false); |
1123 | 71 | } |
1124 | | |
1125 | | void DefragDestroy(void) |
1126 | 0 | { |
1127 | 0 | DefragHashShutdown(); |
1128 | 0 | DefragContextDestroy(defrag_context); |
1129 | 0 | defrag_context = NULL; |
1130 | 0 | DefragTreeDestroy(); |
1131 | 0 | } |
1132 | | |
1133 | | #ifdef UNITTESTS |
1134 | | #include "util-unittest-helper.h" |
1135 | | #include "packet.h" |
1136 | | |
1137 | | #define IP_MF 0x2000 |
1138 | | |
1139 | | /** |
1140 | | * Allocate a test packet. Nothing to fancy, just a simple IP packet |
1141 | | * with some payload of no particular protocol. |
1142 | | */ |
1143 | | static Packet *BuildIpv4TestPacket( |
1144 | | uint8_t proto, uint16_t id, uint16_t off, int mf, const char content, int content_len) |
1145 | | { |
1146 | | Packet *p = NULL; |
1147 | | int hlen = 20; |
1148 | | int ttl = 64; |
1149 | | uint8_t *pcontent; |
1150 | | IPV4Hdr ip4h; |
1151 | | |
1152 | | p = SCCalloc(1, sizeof(*p) + default_packet_size); |
1153 | | if (unlikely(p == NULL)) |
1154 | | return NULL; |
1155 | | |
1156 | | PacketInit(p); |
1157 | | |
1158 | | struct timeval tval; |
1159 | | gettimeofday(&tval, NULL); |
1160 | | p->ts = SCTIME_FROM_TIMEVAL(&tval); |
1161 | | //p->ip4h = (IPV4Hdr *)GET_PKT_DATA(p); |
1162 | | ip4h.ip_verhl = 4 << 4; |
1163 | | ip4h.ip_verhl |= hlen >> 2; |
1164 | | ip4h.ip_len = htons(hlen + content_len); |
1165 | | ip4h.ip_id = htons(id); |
1166 | | if (mf) |
1167 | | ip4h.ip_off = htons(IP_MF | off); |
1168 | | else |
1169 | | ip4h.ip_off = htons(off); |
1170 | | ip4h.ip_ttl = ttl; |
1171 | | ip4h.ip_proto = proto; |
1172 | | |
1173 | | ip4h.s_ip_src.s_addr = 0x01010101; /* 1.1.1.1 */ |
1174 | | ip4h.s_ip_dst.s_addr = 0x02020202; /* 2.2.2.2 */ |
1175 | | |
1176 | | /* copy content_len crap, we need full length */ |
1177 | | PacketCopyData(p, (uint8_t *)&ip4h, sizeof(ip4h)); |
1178 | | p->ip4h = (IPV4Hdr *)GET_PKT_DATA(p); |
1179 | | SET_IPV4_SRC_ADDR(p, &p->src); |
1180 | | SET_IPV4_DST_ADDR(p, &p->dst); |
1181 | | |
1182 | | pcontent = SCCalloc(1, content_len); |
1183 | | if (unlikely(pcontent == NULL)) |
1184 | | return NULL; |
1185 | | memset(pcontent, content, content_len); |
1186 | | PacketCopyDataOffset(p, hlen, pcontent, content_len); |
1187 | | SET_PKT_LEN(p, hlen + content_len); |
1188 | | SCFree(pcontent); |
1189 | | |
1190 | | p->ip4h->ip_csum = IPV4Checksum((uint16_t *)GET_PKT_DATA(p), hlen, 0); |
1191 | | |
1192 | | /* Self test. */ |
1193 | | if (IPV4_GET_VER(p) != 4) |
1194 | | goto error; |
1195 | | if (IPV4_GET_HLEN(p) != hlen) |
1196 | | goto error; |
1197 | | if (IPV4_GET_IPLEN(p) != hlen + content_len) |
1198 | | goto error; |
1199 | | if (IPV4_GET_IPID(p) != id) |
1200 | | goto error; |
1201 | | if (IPV4_GET_IPOFFSET(p) != off) |
1202 | | goto error; |
1203 | | if (IPV4_GET_MF(p) != mf) |
1204 | | goto error; |
1205 | | if (IPV4_GET_IPTTL(p) != ttl) |
1206 | | goto error; |
1207 | | if (IPV4_GET_IPPROTO(p) != proto) |
1208 | | goto error; |
1209 | | |
1210 | | return p; |
1211 | | error: |
1212 | | if (p != NULL) |
1213 | | SCFree(p); |
1214 | | return NULL; |
1215 | | } |
1216 | | |
1217 | | /** |
1218 | | * Allocate a test packet, much like BuildIpv4TestPacket, but with |
1219 | | * the full content provided by the caller. |
1220 | | */ |
1221 | | static Packet *BuildIpv4TestPacketWithContent( |
1222 | | uint8_t proto, uint16_t id, uint16_t off, int mf, const uint8_t *content, int content_len) |
1223 | | { |
1224 | | Packet *p = NULL; |
1225 | | int hlen = 20; |
1226 | | int ttl = 64; |
1227 | | IPV4Hdr ip4h; |
1228 | | |
1229 | | p = SCCalloc(1, sizeof(*p) + default_packet_size); |
1230 | | if (unlikely(p == NULL)) |
1231 | | return NULL; |
1232 | | |
1233 | | PacketInit(p); |
1234 | | |
1235 | | struct timeval tval; |
1236 | | gettimeofday(&tval, NULL); |
1237 | | p->ts = SCTIME_FROM_TIMEVAL(&tval); |
1238 | | ip4h.ip_verhl = 4 << 4; |
1239 | | ip4h.ip_verhl |= hlen >> 2; |
1240 | | ip4h.ip_len = htons(hlen + content_len); |
1241 | | ip4h.ip_id = htons(id); |
1242 | | if (mf) |
1243 | | ip4h.ip_off = htons(IP_MF | off); |
1244 | | else |
1245 | | ip4h.ip_off = htons(off); |
1246 | | ip4h.ip_ttl = ttl; |
1247 | | ip4h.ip_proto = proto; |
1248 | | |
1249 | | ip4h.s_ip_src.s_addr = 0x01010101; /* 1.1.1.1 */ |
1250 | | ip4h.s_ip_dst.s_addr = 0x02020202; /* 2.2.2.2 */ |
1251 | | |
1252 | | /* copy content_len crap, we need full length */ |
1253 | | PacketCopyData(p, (uint8_t *)&ip4h, sizeof(ip4h)); |
1254 | | p->ip4h = (IPV4Hdr *)GET_PKT_DATA(p); |
1255 | | SET_IPV4_SRC_ADDR(p, &p->src); |
1256 | | SET_IPV4_DST_ADDR(p, &p->dst); |
1257 | | |
1258 | | PacketCopyDataOffset(p, hlen, content, content_len); |
1259 | | SET_PKT_LEN(p, hlen + content_len); |
1260 | | |
1261 | | p->ip4h->ip_csum = IPV4Checksum((uint16_t *)GET_PKT_DATA(p), hlen, 0); |
1262 | | |
1263 | | /* Self test. */ |
1264 | | if (IPV4_GET_VER(p) != 4) |
1265 | | goto error; |
1266 | | if (IPV4_GET_HLEN(p) != hlen) |
1267 | | goto error; |
1268 | | if (IPV4_GET_IPLEN(p) != hlen + content_len) |
1269 | | goto error; |
1270 | | if (IPV4_GET_IPID(p) != id) |
1271 | | goto error; |
1272 | | if (IPV4_GET_IPOFFSET(p) != off) |
1273 | | goto error; |
1274 | | if (IPV4_GET_MF(p) != mf) |
1275 | | goto error; |
1276 | | if (IPV4_GET_IPTTL(p) != ttl) |
1277 | | goto error; |
1278 | | if (IPV4_GET_IPPROTO(p) != proto) |
1279 | | goto error; |
1280 | | |
1281 | | return p; |
1282 | | error: |
1283 | | if (p != NULL) |
1284 | | SCFree(p); |
1285 | | return NULL; |
1286 | | } |
1287 | | |
1288 | | static Packet *BuildIpv6TestPacket( |
1289 | | uint8_t proto, uint32_t id, uint16_t off, int mf, const uint8_t content, int content_len) |
1290 | | { |
1291 | | Packet *p = NULL; |
1292 | | uint8_t *pcontent; |
1293 | | IPV6Hdr ip6h; |
1294 | | |
1295 | | p = SCCalloc(1, sizeof(*p) + default_packet_size); |
1296 | | if (unlikely(p == NULL)) |
1297 | | return NULL; |
1298 | | |
1299 | | PacketInit(p); |
1300 | | |
1301 | | struct timeval tval; |
1302 | | gettimeofday(&tval, NULL); |
1303 | | p->ts = SCTIME_FROM_TIMEVAL(&tval); |
1304 | | |
1305 | | ip6h.s_ip6_nxt = 44; |
1306 | | ip6h.s_ip6_hlim = 2; |
1307 | | |
1308 | | /* Source and dest address - very bogus addresses. */ |
1309 | | ip6h.s_ip6_src[0] = 0x01010101; |
1310 | | ip6h.s_ip6_src[1] = 0x01010101; |
1311 | | ip6h.s_ip6_src[2] = 0x01010101; |
1312 | | ip6h.s_ip6_src[3] = 0x01010101; |
1313 | | ip6h.s_ip6_dst[0] = 0x02020202; |
1314 | | ip6h.s_ip6_dst[1] = 0x02020202; |
1315 | | ip6h.s_ip6_dst[2] = 0x02020202; |
1316 | | ip6h.s_ip6_dst[3] = 0x02020202; |
1317 | | |
1318 | | /* copy content_len crap, we need full length */ |
1319 | | PacketCopyData(p, (uint8_t *)&ip6h, sizeof(IPV6Hdr)); |
1320 | | |
1321 | | p->ip6h = (IPV6Hdr *)GET_PKT_DATA(p); |
1322 | | IPV6_SET_RAW_VER(p->ip6h, 6); |
1323 | | /* Fragmentation header. */ |
1324 | | IPV6FragHdr *fh = (IPV6FragHdr *)(GET_PKT_DATA(p) + sizeof(IPV6Hdr)); |
1325 | | fh->ip6fh_nxt = proto; |
1326 | | fh->ip6fh_ident = htonl(id); |
1327 | | fh->ip6fh_offlg = htons((off << 3) | mf); |
1328 | | |
1329 | | DecodeIPV6FragHeader(p, (uint8_t *)fh, 8, 8 + content_len, 0); |
1330 | | |
1331 | | pcontent = SCCalloc(1, content_len); |
1332 | | if (unlikely(pcontent == NULL)) |
1333 | | return NULL; |
1334 | | memset(pcontent, content, content_len); |
1335 | | PacketCopyDataOffset(p, sizeof(IPV6Hdr) + sizeof(IPV6FragHdr), pcontent, content_len); |
1336 | | SET_PKT_LEN(p, sizeof(IPV6Hdr) + sizeof(IPV6FragHdr) + content_len); |
1337 | | SCFree(pcontent); |
1338 | | |
1339 | | p->ip6h->s_ip6_plen = htons(sizeof(IPV6FragHdr) + content_len); |
1340 | | |
1341 | | SET_IPV6_SRC_ADDR(p, &p->src); |
1342 | | SET_IPV6_DST_ADDR(p, &p->dst); |
1343 | | |
1344 | | /* Self test. */ |
1345 | | if (IPV6_GET_VER(p) != 6) |
1346 | | goto error; |
1347 | | if (IPV6_GET_NH(p) != 44) |
1348 | | goto error; |
1349 | | if (IPV6_GET_PLEN(p) != sizeof(IPV6FragHdr) + content_len) |
1350 | | goto error; |
1351 | | |
1352 | | return p; |
1353 | | error: |
1354 | | if (p != NULL) |
1355 | | SCFree(p); |
1356 | | return NULL; |
1357 | | } |
1358 | | |
1359 | | static Packet *BuildIpv6TestPacketWithContent( |
1360 | | uint8_t proto, uint32_t id, uint16_t off, int mf, const uint8_t *content, int content_len) |
1361 | | { |
1362 | | Packet *p = NULL; |
1363 | | IPV6Hdr ip6h; |
1364 | | |
1365 | | p = SCCalloc(1, sizeof(*p) + default_packet_size); |
1366 | | if (unlikely(p == NULL)) |
1367 | | return NULL; |
1368 | | |
1369 | | PacketInit(p); |
1370 | | |
1371 | | struct timeval tval; |
1372 | | gettimeofday(&tval, NULL); |
1373 | | p->ts = SCTIME_FROM_TIMEVAL(&tval); |
1374 | | |
1375 | | ip6h.s_ip6_nxt = 44; |
1376 | | ip6h.s_ip6_hlim = 2; |
1377 | | |
1378 | | /* Source and dest address - very bogus addresses. */ |
1379 | | ip6h.s_ip6_src[0] = 0x01010101; |
1380 | | ip6h.s_ip6_src[1] = 0x01010101; |
1381 | | ip6h.s_ip6_src[2] = 0x01010101; |
1382 | | ip6h.s_ip6_src[3] = 0x01010101; |
1383 | | ip6h.s_ip6_dst[0] = 0x02020202; |
1384 | | ip6h.s_ip6_dst[1] = 0x02020202; |
1385 | | ip6h.s_ip6_dst[2] = 0x02020202; |
1386 | | ip6h.s_ip6_dst[3] = 0x02020202; |
1387 | | |
1388 | | /* copy content_len crap, we need full length */ |
1389 | | PacketCopyData(p, (uint8_t *)&ip6h, sizeof(IPV6Hdr)); |
1390 | | |
1391 | | p->ip6h = (IPV6Hdr *)GET_PKT_DATA(p); |
1392 | | IPV6_SET_RAW_VER(p->ip6h, 6); |
1393 | | /* Fragmentation header. */ |
1394 | | IPV6FragHdr *fh = (IPV6FragHdr *)(GET_PKT_DATA(p) + sizeof(IPV6Hdr)); |
1395 | | fh->ip6fh_nxt = proto; |
1396 | | fh->ip6fh_ident = htonl(id); |
1397 | | fh->ip6fh_offlg = htons((off << 3) | mf); |
1398 | | |
1399 | | DecodeIPV6FragHeader(p, (uint8_t *)fh, 8, 8 + content_len, 0); |
1400 | | |
1401 | | PacketCopyDataOffset(p, sizeof(IPV6Hdr) + sizeof(IPV6FragHdr), content, content_len); |
1402 | | SET_PKT_LEN(p, sizeof(IPV6Hdr) + sizeof(IPV6FragHdr) + content_len); |
1403 | | |
1404 | | p->ip6h->s_ip6_plen = htons(sizeof(IPV6FragHdr) + content_len); |
1405 | | |
1406 | | SET_IPV6_SRC_ADDR(p, &p->src); |
1407 | | SET_IPV6_DST_ADDR(p, &p->dst); |
1408 | | |
1409 | | /* Self test. */ |
1410 | | if (IPV6_GET_VER(p) != 6) |
1411 | | goto error; |
1412 | | if (IPV6_GET_NH(p) != 44) |
1413 | | goto error; |
1414 | | if (IPV6_GET_PLEN(p) != sizeof(IPV6FragHdr) + content_len) |
1415 | | goto error; |
1416 | | |
1417 | | return p; |
1418 | | error: |
1419 | | if (p != NULL) |
1420 | | SCFree(p); |
1421 | | return NULL; |
1422 | | } |
1423 | | |
1424 | | /** |
1425 | | * Test the simplest possible re-assembly scenario. All packet in |
1426 | | * order and no overlaps. |
1427 | | */ |
1428 | | static int DefragInOrderSimpleTest(void) |
1429 | | { |
1430 | | Packet *p1 = NULL, *p2 = NULL, *p3 = NULL; |
1431 | | Packet *reassembled = NULL; |
1432 | | int id = 12; |
1433 | | int i; |
1434 | | |
1435 | | DefragInit(); |
1436 | | |
1437 | | p1 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 0, 1, 'A', 8); |
1438 | | FAIL_IF_NULL(p1); |
1439 | | p2 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 1, 1, 'B', 8); |
1440 | | FAIL_IF_NULL(p2); |
1441 | | p3 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 2, 0, 'C', 3); |
1442 | | FAIL_IF_NULL(p3); |
1443 | | |
1444 | | FAIL_IF(Defrag(NULL, NULL, p1) != NULL); |
1445 | | FAIL_IF(Defrag(NULL, NULL, p2) != NULL); |
1446 | | |
1447 | | reassembled = Defrag(NULL, NULL, p3); |
1448 | | FAIL_IF_NULL(reassembled); |
1449 | | |
1450 | | FAIL_IF(IPV4_GET_HLEN(reassembled) != 20); |
1451 | | FAIL_IF(IPV4_GET_IPLEN(reassembled) != 39); |
1452 | | |
1453 | | /* 20 bytes in we should find 8 bytes of A. */ |
1454 | | for (i = 20; i < 20 + 8; i++) { |
1455 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'A'); |
1456 | | } |
1457 | | |
1458 | | /* 28 bytes in we should find 8 bytes of B. */ |
1459 | | for (i = 28; i < 28 + 8; i++) { |
1460 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'B'); |
1461 | | } |
1462 | | |
1463 | | /* And 36 bytes in we should find 3 bytes of C. */ |
1464 | | for (i = 36; i < 36 + 3; i++) { |
1465 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'C'); |
1466 | | } |
1467 | | |
1468 | | SCFree(p1); |
1469 | | SCFree(p2); |
1470 | | SCFree(p3); |
1471 | | SCFree(reassembled); |
1472 | | |
1473 | | DefragDestroy(); |
1474 | | PASS; |
1475 | | } |
1476 | | |
1477 | | /** |
1478 | | * Simple fragmented packet in reverse order. |
1479 | | */ |
1480 | | static int DefragReverseSimpleTest(void) |
1481 | | { |
1482 | | Packet *p1 = NULL, *p2 = NULL, *p3 = NULL; |
1483 | | Packet *reassembled = NULL; |
1484 | | int id = 12; |
1485 | | int i; |
1486 | | |
1487 | | DefragInit(); |
1488 | | |
1489 | | p1 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 0, 1, 'A', 8); |
1490 | | FAIL_IF_NULL(p1); |
1491 | | p2 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 1, 1, 'B', 8); |
1492 | | FAIL_IF_NULL(p2); |
1493 | | p3 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 2, 0, 'C', 3); |
1494 | | FAIL_IF_NULL(p3); |
1495 | | |
1496 | | FAIL_IF(Defrag(NULL, NULL, p3) != NULL); |
1497 | | FAIL_IF(Defrag(NULL, NULL, p2) != NULL); |
1498 | | |
1499 | | reassembled = Defrag(NULL, NULL, p1); |
1500 | | FAIL_IF_NULL(reassembled); |
1501 | | |
1502 | | FAIL_IF(IPV4_GET_HLEN(reassembled) != 20); |
1503 | | FAIL_IF(IPV4_GET_IPLEN(reassembled) != 39); |
1504 | | |
1505 | | /* 20 bytes in we should find 8 bytes of A. */ |
1506 | | for (i = 20; i < 20 + 8; i++) { |
1507 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'A'); |
1508 | | } |
1509 | | |
1510 | | /* 28 bytes in we should find 8 bytes of B. */ |
1511 | | for (i = 28; i < 28 + 8; i++) { |
1512 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'B'); |
1513 | | } |
1514 | | |
1515 | | /* And 36 bytes in we should find 3 bytes of C. */ |
1516 | | for (i = 36; i < 36 + 3; i++) { |
1517 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'C'); |
1518 | | } |
1519 | | |
1520 | | SCFree(p1); |
1521 | | SCFree(p2); |
1522 | | SCFree(p3); |
1523 | | SCFree(reassembled); |
1524 | | |
1525 | | DefragDestroy(); |
1526 | | PASS; |
1527 | | } |
1528 | | |
1529 | | /** |
1530 | | * Test the simplest possible re-assembly scenario. All packet in |
1531 | | * order and no overlaps. |
1532 | | */ |
1533 | | static int DefragInOrderSimpleIpv6Test(void) |
1534 | | { |
1535 | | Packet *p1 = NULL, *p2 = NULL, *p3 = NULL; |
1536 | | Packet *reassembled = NULL; |
1537 | | int id = 12; |
1538 | | int i; |
1539 | | |
1540 | | DefragInit(); |
1541 | | |
1542 | | p1 = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 0, 1, 'A', 8); |
1543 | | FAIL_IF_NULL(p1); |
1544 | | p2 = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 1, 1, 'B', 8); |
1545 | | FAIL_IF_NULL(p2); |
1546 | | p3 = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 2, 0, 'C', 3); |
1547 | | FAIL_IF_NULL(p3); |
1548 | | |
1549 | | FAIL_IF(Defrag(NULL, NULL, p1) != NULL); |
1550 | | FAIL_IF(Defrag(NULL, NULL, p2) != NULL); |
1551 | | reassembled = Defrag(NULL, NULL, p3); |
1552 | | FAIL_IF_NULL(reassembled); |
1553 | | |
1554 | | FAIL_IF(IPV6_GET_PLEN(reassembled) != 19); |
1555 | | |
1556 | | /* 40 bytes in we should find 8 bytes of A. */ |
1557 | | for (i = 40; i < 40 + 8; i++) { |
1558 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'A'); |
1559 | | } |
1560 | | |
1561 | | /* 28 bytes in we should find 8 bytes of B. */ |
1562 | | for (i = 48; i < 48 + 8; i++) { |
1563 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'B'); |
1564 | | } |
1565 | | |
1566 | | /* And 36 bytes in we should find 3 bytes of C. */ |
1567 | | for (i = 56; i < 56 + 3; i++) { |
1568 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'C'); |
1569 | | } |
1570 | | |
1571 | | SCFree(p1); |
1572 | | SCFree(p2); |
1573 | | SCFree(p3); |
1574 | | SCFree(reassembled); |
1575 | | |
1576 | | DefragDestroy(); |
1577 | | PASS; |
1578 | | } |
1579 | | |
1580 | | static int DefragReverseSimpleIpv6Test(void) |
1581 | | { |
1582 | | DefragContext *dc = NULL; |
1583 | | Packet *p1 = NULL, *p2 = NULL, *p3 = NULL; |
1584 | | Packet *reassembled = NULL; |
1585 | | int id = 12; |
1586 | | int i; |
1587 | | |
1588 | | DefragInit(); |
1589 | | |
1590 | | dc = DefragContextNew(); |
1591 | | FAIL_IF_NULL(dc); |
1592 | | |
1593 | | p1 = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 0, 1, 'A', 8); |
1594 | | FAIL_IF_NULL(p1); |
1595 | | p2 = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 1, 1, 'B', 8); |
1596 | | FAIL_IF_NULL(p2); |
1597 | | p3 = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 2, 0, 'C', 3); |
1598 | | FAIL_IF_NULL(p3); |
1599 | | |
1600 | | FAIL_IF(Defrag(NULL, NULL, p3) != NULL); |
1601 | | FAIL_IF(Defrag(NULL, NULL, p2) != NULL); |
1602 | | reassembled = Defrag(NULL, NULL, p1); |
1603 | | FAIL_IF_NULL(reassembled); |
1604 | | |
1605 | | /* 40 bytes in we should find 8 bytes of A. */ |
1606 | | for (i = 40; i < 40 + 8; i++) { |
1607 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'A'); |
1608 | | } |
1609 | | |
1610 | | /* 28 bytes in we should find 8 bytes of B. */ |
1611 | | for (i = 48; i < 48 + 8; i++) { |
1612 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'B'); |
1613 | | } |
1614 | | |
1615 | | /* And 36 bytes in we should find 3 bytes of C. */ |
1616 | | for (i = 56; i < 56 + 3; i++) { |
1617 | | FAIL_IF(GET_PKT_DATA(reassembled)[i] != 'C'); |
1618 | | } |
1619 | | |
1620 | | DefragContextDestroy(dc); |
1621 | | SCFree(p1); |
1622 | | SCFree(p2); |
1623 | | SCFree(p3); |
1624 | | SCFree(reassembled); |
1625 | | |
1626 | | DefragDestroy(); |
1627 | | PASS; |
1628 | | } |
1629 | | |
1630 | | static int DefragDoSturgesNovakTest(int policy, uint8_t *expected, size_t expected_len) |
1631 | | { |
1632 | | int i; |
1633 | | |
1634 | | DefragInit(); |
1635 | | |
1636 | | /* |
1637 | | * Build the packets. |
1638 | | */ |
1639 | | |
1640 | | int id = 1; |
1641 | | Packet *packets[17]; |
1642 | | memset(packets, 0x00, sizeof(packets)); |
1643 | | |
1644 | | /* |
1645 | | * Original fragments. |
1646 | | */ |
1647 | | |
1648 | | /* <1> A*24 at 0. */ |
1649 | | packets[0] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 0, 1, 'A', 24); |
1650 | | |
1651 | | /* <2> B*16 at 32. */ |
1652 | | packets[1] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 32 >> 3, 1, 'B', 16); |
1653 | | |
1654 | | /* <3> C*24 at 48. */ |
1655 | | packets[2] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 48 >> 3, 1, 'C', 24); |
1656 | | |
1657 | | /* <3_1> D*8 at 80. */ |
1658 | | packets[3] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 80 >> 3, 1, 'D', 8); |
1659 | | |
1660 | | /* <3_2> E*16 at 104. */ |
1661 | | packets[4] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 104 >> 3, 1, 'E', 16); |
1662 | | |
1663 | | /* <3_3> F*24 at 120. */ |
1664 | | packets[5] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 120 >> 3, 1, 'F', 24); |
1665 | | |
1666 | | /* <3_4> G*16 at 144. */ |
1667 | | packets[6] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 144 >> 3, 1, 'G', 16); |
1668 | | |
1669 | | /* <3_5> H*16 at 160. */ |
1670 | | packets[7] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 160 >> 3, 1, 'H', 16); |
1671 | | |
1672 | | /* <3_6> I*8 at 176. */ |
1673 | | packets[8] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 176 >> 3, 1, 'I', 8); |
1674 | | |
1675 | | /* |
1676 | | * Overlapping subsequent fragments. |
1677 | | */ |
1678 | | |
1679 | | /* <4> J*32 at 8. */ |
1680 | | packets[9] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 8 >> 3, 1, 'J', 32); |
1681 | | |
1682 | | /* <5> K*24 at 48. */ |
1683 | | packets[10] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 48 >> 3, 1, 'K', 24); |
1684 | | |
1685 | | /* <6> L*24 at 72. */ |
1686 | | packets[11] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 72 >> 3, 1, 'L', 24); |
1687 | | |
1688 | | /* <7> M*24 at 96. */ |
1689 | | packets[12] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 96 >> 3, 1, 'M', 24); |
1690 | | |
1691 | | /* <8> N*8 at 128. */ |
1692 | | packets[13] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 128 >> 3, 1, 'N', 8); |
1693 | | |
1694 | | /* <9> O*8 at 152. */ |
1695 | | packets[14] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 152 >> 3, 1, 'O', 8); |
1696 | | |
1697 | | /* <10> P*8 at 160. */ |
1698 | | packets[15] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 160 >> 3, 1, 'P', 8); |
1699 | | |
1700 | | /* <11> Q*16 at 176. */ |
1701 | | packets[16] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 176 >> 3, 0, 'Q', 16); |
1702 | | |
1703 | | default_policy = policy; |
1704 | | |
1705 | | /* Send all but the last. */ |
1706 | | for (i = 0; i < 9; i++) { |
1707 | | Packet *tp = Defrag(NULL, NULL, packets[i]); |
1708 | | FAIL_IF_NOT_NULL(tp); |
1709 | | FAIL_IF(ENGINE_ISSET_EVENT(packets[i], IPV4_FRAG_OVERLAP)); |
1710 | | } |
1711 | | int overlap = 0; |
1712 | | for (; i < 16; i++) { |
1713 | | Packet *tp = Defrag(NULL, NULL, packets[i]); |
1714 | | FAIL_IF_NOT_NULL(tp); |
1715 | | if (ENGINE_ISSET_EVENT(packets[i], IPV4_FRAG_OVERLAP)) { |
1716 | | overlap++; |
1717 | | } |
1718 | | } |
1719 | | FAIL_IF_NOT(overlap); |
1720 | | |
1721 | | /* And now the last one. */ |
1722 | | Packet *reassembled = Defrag(NULL, NULL, packets[16]); |
1723 | | FAIL_IF_NULL(reassembled); |
1724 | | |
1725 | | FAIL_IF(IPV4_GET_HLEN(reassembled) != 20); |
1726 | | FAIL_IF(IPV4_GET_IPLEN(reassembled) != 20 + 192); |
1727 | | FAIL_IF(expected_len != 192); |
1728 | | |
1729 | | if (memcmp(expected, GET_PKT_DATA(reassembled) + 20, expected_len) != 0) { |
1730 | | printf("Expected:\n"); |
1731 | | PrintRawDataFp(stdout, expected, expected_len); |
1732 | | printf("Got:\n"); |
1733 | | PrintRawDataFp(stdout, GET_PKT_DATA(reassembled) + 20, GET_PKT_LEN(reassembled) - 20); |
1734 | | FAIL; |
1735 | | } |
1736 | | SCFree(reassembled); |
1737 | | |
1738 | | /* Make sure all frags were returned back to the pool. */ |
1739 | | FAIL_IF(defrag_context->frag_pool->outstanding != 0); |
1740 | | |
1741 | | for (i = 0; i < 17; i++) { |
1742 | | SCFree(packets[i]); |
1743 | | } |
1744 | | DefragDestroy(); |
1745 | | PASS; |
1746 | | } |
1747 | | |
1748 | | static int DefragDoSturgesNovakIpv6Test(int policy, uint8_t *expected, size_t expected_len) |
1749 | | { |
1750 | | int i; |
1751 | | |
1752 | | DefragInit(); |
1753 | | |
1754 | | /* |
1755 | | * Build the packets. |
1756 | | */ |
1757 | | |
1758 | | int id = 1; |
1759 | | Packet *packets[17]; |
1760 | | memset(packets, 0x00, sizeof(packets)); |
1761 | | |
1762 | | /* |
1763 | | * Original fragments. |
1764 | | */ |
1765 | | |
1766 | | /* <1> A*24 at 0. */ |
1767 | | packets[0] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 0, 1, 'A', 24); |
1768 | | |
1769 | | /* <2> B*16 at 32. */ |
1770 | | packets[1] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 32 >> 3, 1, 'B', 16); |
1771 | | |
1772 | | /* <3> C*24 at 48. */ |
1773 | | packets[2] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 48 >> 3, 1, 'C', 24); |
1774 | | |
1775 | | /* <3_1> D*8 at 80. */ |
1776 | | packets[3] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 80 >> 3, 1, 'D', 8); |
1777 | | |
1778 | | /* <3_2> E*16 at 104. */ |
1779 | | packets[4] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 104 >> 3, 1, 'E', 16); |
1780 | | |
1781 | | /* <3_3> F*24 at 120. */ |
1782 | | packets[5] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 120 >> 3, 1, 'F', 24); |
1783 | | |
1784 | | /* <3_4> G*16 at 144. */ |
1785 | | packets[6] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 144 >> 3, 1, 'G', 16); |
1786 | | |
1787 | | /* <3_5> H*16 at 160. */ |
1788 | | packets[7] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 160 >> 3, 1, 'H', 16); |
1789 | | |
1790 | | /* <3_6> I*8 at 176. */ |
1791 | | packets[8] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 176 >> 3, 1, 'I', 8); |
1792 | | |
1793 | | /* |
1794 | | * Overlapping subsequent fragments. |
1795 | | */ |
1796 | | |
1797 | | /* <4> J*32 at 8. */ |
1798 | | packets[9] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 8 >> 3, 1, 'J', 32); |
1799 | | |
1800 | | /* <5> K*24 at 48. */ |
1801 | | packets[10] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 48 >> 3, 1, 'K', 24); |
1802 | | |
1803 | | /* <6> L*24 at 72. */ |
1804 | | packets[11] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 72 >> 3, 1, 'L', 24); |
1805 | | |
1806 | | /* <7> M*24 at 96. */ |
1807 | | packets[12] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 96 >> 3, 1, 'M', 24); |
1808 | | |
1809 | | /* <8> N*8 at 128. */ |
1810 | | packets[13] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 128 >> 3, 1, 'N', 8); |
1811 | | |
1812 | | /* <9> O*8 at 152. */ |
1813 | | packets[14] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 152 >> 3, 1, 'O', 8); |
1814 | | |
1815 | | /* <10> P*8 at 160. */ |
1816 | | packets[15] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 160 >> 3, 1, 'P', 8); |
1817 | | |
1818 | | /* <11> Q*16 at 176. */ |
1819 | | packets[16] = BuildIpv6TestPacket(IPPROTO_ICMPV6, id, 176 >> 3, 0, 'Q', 16); |
1820 | | |
1821 | | default_policy = policy; |
1822 | | |
1823 | | /* Send all but the last. */ |
1824 | | for (i = 0; i < 9; i++) { |
1825 | | Packet *tp = Defrag(NULL, NULL, packets[i]); |
1826 | | FAIL_IF_NOT_NULL(tp); |
1827 | | FAIL_IF(ENGINE_ISSET_EVENT(packets[i], IPV6_FRAG_OVERLAP)); |
1828 | | } |
1829 | | int overlap = 0; |
1830 | | for (; i < 16; i++) { |
1831 | | Packet *tp = Defrag(NULL, NULL, packets[i]); |
1832 | | FAIL_IF_NOT_NULL(tp); |
1833 | | if (ENGINE_ISSET_EVENT(packets[i], IPV6_FRAG_OVERLAP)) { |
1834 | | overlap++; |
1835 | | } |
1836 | | } |
1837 | | FAIL_IF_NOT(overlap); |
1838 | | |
1839 | | /* And now the last one. */ |
1840 | | Packet *reassembled = Defrag(NULL, NULL, packets[16]); |
1841 | | FAIL_IF_NULL(reassembled); |
1842 | | FAIL_IF(memcmp(GET_PKT_DATA(reassembled) + 40, expected, expected_len) != 0); |
1843 | | |
1844 | | FAIL_IF(IPV6_GET_PLEN(reassembled) != 192); |
1845 | | |
1846 | | SCFree(reassembled); |
1847 | | |
1848 | | /* Make sure all frags were returned to the pool. */ |
1849 | | FAIL_IF(defrag_context->frag_pool->outstanding != 0); |
1850 | | |
1851 | | for (i = 0; i < 17; i++) { |
1852 | | SCFree(packets[i]); |
1853 | | } |
1854 | | DefragDestroy(); |
1855 | | PASS; |
1856 | | } |
1857 | | |
1858 | | /* Define data that matches the naming "Target-Based Fragmentation |
1859 | | * Reassembly". |
1860 | | * |
1861 | | * For example, the data refers to a fragment of data as <1>, or <3_6> |
1862 | | * and uses these to diagram the input fragments and the resulting |
1863 | | * policies. We build test cases for the papers scenario but assign |
1864 | | * specific values to each segment. |
1865 | | */ |
1866 | | #define D_1 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A' |
1867 | | #define D_2 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' |
1868 | | #define D_3 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C' |
1869 | | #define D_3_1 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D' |
1870 | | #define D_3_2 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E' |
1871 | | #define D_3_3 'F', 'F', 'F', 'F', 'F', 'F', 'F', 'F' |
1872 | | #define D_3_4 'G', 'G', 'G', 'G', 'G', 'G', 'G', 'G' |
1873 | | #define D_3_5 'H', 'H', 'H', 'H', 'H', 'H', 'H', 'H' |
1874 | | #define D_3_6 'I', 'I', 'I', 'I', 'I', 'I', 'I', 'I' |
1875 | | #define D_4 'J', 'J', 'J', 'J', 'J', 'J', 'J', 'J' |
1876 | | #define D_5 'K', 'K', 'K', 'K', 'K', 'K', 'K', 'K' |
1877 | | #define D_6 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L' |
1878 | | #define D_7 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M' |
1879 | | #define D_8 'N', 'N', 'N', 'N', 'N', 'N', 'N', 'N' |
1880 | | #define D_9 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O' |
1881 | | #define D_10 'P', 'P', 'P', 'P', 'P', 'P', 'P', 'P' |
1882 | | #define D_11 'Q', 'Q', 'Q', 'Q', 'Q', 'Q', 'Q', 'Q' |
1883 | | |
1884 | | static int |
1885 | | DefragSturgesNovakBsdTest(void) |
1886 | | { |
1887 | | /* Expected data. */ |
1888 | | uint8_t expected[] = { |
1889 | | D_1, |
1890 | | D_1, |
1891 | | D_1, |
1892 | | D_4, |
1893 | | D_4, |
1894 | | D_2, |
1895 | | D_3, |
1896 | | D_3, |
1897 | | D_3, |
1898 | | D_6, |
1899 | | D_6, |
1900 | | D_6, |
1901 | | D_7, |
1902 | | D_7, |
1903 | | D_7, |
1904 | | D_3_3, |
1905 | | D_3_3, |
1906 | | D_3_3, |
1907 | | D_3_4, |
1908 | | D_3_4, |
1909 | | D_3_5, |
1910 | | D_3_5, |
1911 | | D_3_6, |
1912 | | D_11, |
1913 | | }; |
1914 | | |
1915 | | FAIL_IF_NOT(DefragDoSturgesNovakTest(DEFRAG_POLICY_BSD, expected, |
1916 | | sizeof(expected))); |
1917 | | PASS; |
1918 | | } |
1919 | | |
1920 | | static int DefragSturgesNovakBsdIpv6Test(void) |
1921 | | { |
1922 | | /* Expected data. */ |
1923 | | uint8_t expected[] = { |
1924 | | D_1, |
1925 | | D_1, |
1926 | | D_1, |
1927 | | D_4, |
1928 | | D_4, |
1929 | | D_2, |
1930 | | D_3, |
1931 | | D_3, |
1932 | | D_3, |
1933 | | D_6, |
1934 | | D_6, |
1935 | | D_6, |
1936 | | D_7, |
1937 | | D_7, |
1938 | | D_7, |
1939 | | D_3_3, |
1940 | | D_3_3, |
1941 | | D_3_3, |
1942 | | D_3_4, |
1943 | | D_3_4, |
1944 | | D_3_5, |
1945 | | D_3_5, |
1946 | | D_3_6, |
1947 | | D_11, |
1948 | | }; |
1949 | | |
1950 | | FAIL_IF_NOT(DefragDoSturgesNovakIpv6Test(DEFRAG_POLICY_BSD, expected, sizeof(expected))); |
1951 | | PASS; |
1952 | | } |
1953 | | |
1954 | | static int DefragSturgesNovakLinuxIpv4Test(void) |
1955 | | { |
1956 | | /* Expected data. */ |
1957 | | uint8_t expected[] = { |
1958 | | D_1, |
1959 | | D_1, |
1960 | | D_1, |
1961 | | D_4, |
1962 | | D_4, |
1963 | | D_2, |
1964 | | D_5, |
1965 | | D_5, |
1966 | | D_5, |
1967 | | D_6, |
1968 | | D_6, |
1969 | | D_6, |
1970 | | D_7, |
1971 | | D_7, |
1972 | | D_7, |
1973 | | D_3_3, |
1974 | | D_3_3, |
1975 | | D_3_3, |
1976 | | D_3_4, |
1977 | | D_3_4, |
1978 | | D_10, |
1979 | | D_3_5, |
1980 | | D_11, |
1981 | | D_11, |
1982 | | }; |
1983 | | |
1984 | | FAIL_IF_NOT(DefragDoSturgesNovakTest(DEFRAG_POLICY_LINUX, expected, |
1985 | | sizeof(expected))); |
1986 | | PASS; |
1987 | | } |
1988 | | |
1989 | | static int DefragSturgesNovakLinuxIpv6Test(void) |
1990 | | { |
1991 | | /* Expected data. */ |
1992 | | uint8_t expected[] = { |
1993 | | D_1, |
1994 | | D_1, |
1995 | | D_1, |
1996 | | D_4, |
1997 | | D_4, |
1998 | | D_2, |
1999 | | D_5, |
2000 | | D_5, |
2001 | | D_5, |
2002 | | D_6, |
2003 | | D_6, |
2004 | | D_6, |
2005 | | D_7, |
2006 | | D_7, |
2007 | | D_7, |
2008 | | D_3_3, |
2009 | | D_3_3, |
2010 | | D_3_3, |
2011 | | D_3_4, |
2012 | | D_3_4, |
2013 | | D_10, |
2014 | | D_3_5, |
2015 | | D_11, |
2016 | | D_11, |
2017 | | }; |
2018 | | |
2019 | | FAIL_IF_NOT(DefragDoSturgesNovakIpv6Test(DEFRAG_POLICY_LINUX, expected, sizeof(expected))); |
2020 | | PASS; |
2021 | | } |
2022 | | |
2023 | | static int DefragSturgesNovakWindowsIpv4Test(void) |
2024 | | { |
2025 | | /* Expected data. */ |
2026 | | uint8_t expected[] = { |
2027 | | D_1, |
2028 | | D_1, |
2029 | | D_1, |
2030 | | D_4, |
2031 | | D_2, |
2032 | | D_2, |
2033 | | D_3, |
2034 | | D_3, |
2035 | | D_3, |
2036 | | D_6, |
2037 | | D_6, |
2038 | | D_6, |
2039 | | D_7, |
2040 | | D_3_2, |
2041 | | D_3_2, |
2042 | | D_3_3, |
2043 | | D_3_3, |
2044 | | D_3_3, |
2045 | | D_3_4, |
2046 | | D_3_4, |
2047 | | D_3_5, |
2048 | | D_3_5, |
2049 | | D_3_6, |
2050 | | D_11, |
2051 | | }; |
2052 | | |
2053 | | FAIL_IF_NOT(DefragDoSturgesNovakTest(DEFRAG_POLICY_WINDOWS, expected, |
2054 | | sizeof(expected))); |
2055 | | PASS; |
2056 | | } |
2057 | | |
2058 | | static int DefragSturgesNovakWindowsIpv6Test(void) |
2059 | | { |
2060 | | /* Expected data. */ |
2061 | | uint8_t expected[] = { |
2062 | | D_1, |
2063 | | D_1, |
2064 | | D_1, |
2065 | | D_4, |
2066 | | D_2, |
2067 | | D_2, |
2068 | | D_3, |
2069 | | D_3, |
2070 | | D_3, |
2071 | | D_6, |
2072 | | D_6, |
2073 | | D_6, |
2074 | | D_7, |
2075 | | D_3_2, |
2076 | | D_3_2, |
2077 | | D_3_3, |
2078 | | D_3_3, |
2079 | | D_3_3, |
2080 | | D_3_4, |
2081 | | D_3_4, |
2082 | | D_3_5, |
2083 | | D_3_5, |
2084 | | D_3_6, |
2085 | | D_11, |
2086 | | }; |
2087 | | |
2088 | | FAIL_IF_NOT(DefragDoSturgesNovakIpv6Test(DEFRAG_POLICY_WINDOWS, expected, sizeof(expected))); |
2089 | | PASS; |
2090 | | } |
2091 | | |
2092 | | static int DefragSturgesNovakSolarisTest(void) |
2093 | | { |
2094 | | /* Expected data. */ |
2095 | | uint8_t expected[] = { |
2096 | | D_1, |
2097 | | D_1, |
2098 | | D_1, |
2099 | | D_4, |
2100 | | D_2, |
2101 | | D_2, |
2102 | | D_3, |
2103 | | D_3, |
2104 | | D_3, |
2105 | | D_6, |
2106 | | D_6, |
2107 | | D_6, |
2108 | | D_7, |
2109 | | D_7, |
2110 | | D_7, |
2111 | | D_3_3, |
2112 | | D_3_3, |
2113 | | D_3_3, |
2114 | | D_3_4, |
2115 | | D_3_4, |
2116 | | D_3_5, |
2117 | | D_3_5, |
2118 | | D_3_6, |
2119 | | D_11, |
2120 | | }; |
2121 | | |
2122 | | FAIL_IF_NOT(DefragDoSturgesNovakTest(DEFRAG_POLICY_SOLARIS, expected, |
2123 | | sizeof(expected))); |
2124 | | PASS; |
2125 | | } |
2126 | | |
2127 | | static int DefragSturgesNovakSolarisIpv6Test(void) |
2128 | | { |
2129 | | /* Expected data. */ |
2130 | | uint8_t expected[] = { |
2131 | | D_1, |
2132 | | D_1, |
2133 | | D_1, |
2134 | | D_4, |
2135 | | D_2, |
2136 | | D_2, |
2137 | | D_3, |
2138 | | D_3, |
2139 | | D_3, |
2140 | | D_6, |
2141 | | D_6, |
2142 | | D_6, |
2143 | | D_7, |
2144 | | D_7, |
2145 | | D_7, |
2146 | | D_3_3, |
2147 | | D_3_3, |
2148 | | D_3_3, |
2149 | | D_3_4, |
2150 | | D_3_4, |
2151 | | D_3_5, |
2152 | | D_3_5, |
2153 | | D_3_6, |
2154 | | D_11, |
2155 | | }; |
2156 | | |
2157 | | FAIL_IF_NOT(DefragDoSturgesNovakIpv6Test(DEFRAG_POLICY_SOLARIS, expected, sizeof(expected))); |
2158 | | PASS; |
2159 | | } |
2160 | | |
2161 | | static int DefragSturgesNovakFirstTest(void) |
2162 | | { |
2163 | | /* Expected data. */ |
2164 | | uint8_t expected[] = { |
2165 | | D_1, |
2166 | | D_1, |
2167 | | D_1, |
2168 | | D_4, |
2169 | | D_2, |
2170 | | D_2, |
2171 | | D_3, |
2172 | | D_3, |
2173 | | D_3, |
2174 | | D_6, |
2175 | | D_3_1, |
2176 | | D_6, |
2177 | | D_7, |
2178 | | D_3_2, |
2179 | | D_3_2, |
2180 | | D_3_3, |
2181 | | D_3_3, |
2182 | | D_3_3, |
2183 | | D_3_4, |
2184 | | D_3_4, |
2185 | | D_3_5, |
2186 | | D_3_5, |
2187 | | D_3_6, |
2188 | | D_11, |
2189 | | }; |
2190 | | |
2191 | | FAIL_IF_NOT(DefragDoSturgesNovakTest(DEFRAG_POLICY_FIRST, expected, |
2192 | | sizeof(expected))); |
2193 | | PASS; |
2194 | | } |
2195 | | |
2196 | | static int DefragSturgesNovakFirstIpv6Test(void) |
2197 | | { |
2198 | | /* Expected data. */ |
2199 | | uint8_t expected[] = { |
2200 | | D_1, |
2201 | | D_1, |
2202 | | D_1, |
2203 | | D_4, |
2204 | | D_2, |
2205 | | D_2, |
2206 | | D_3, |
2207 | | D_3, |
2208 | | D_3, |
2209 | | D_6, |
2210 | | D_3_1, |
2211 | | D_6, |
2212 | | D_7, |
2213 | | D_3_2, |
2214 | | D_3_2, |
2215 | | D_3_3, |
2216 | | D_3_3, |
2217 | | D_3_3, |
2218 | | D_3_4, |
2219 | | D_3_4, |
2220 | | D_3_5, |
2221 | | D_3_5, |
2222 | | D_3_6, |
2223 | | D_11, |
2224 | | }; |
2225 | | |
2226 | | return DefragDoSturgesNovakIpv6Test(DEFRAG_POLICY_FIRST, expected, sizeof(expected)); |
2227 | | } |
2228 | | |
2229 | | static int |
2230 | | DefragSturgesNovakLastTest(void) |
2231 | | { |
2232 | | /* Expected data. */ |
2233 | | uint8_t expected[] = { |
2234 | | D_1, |
2235 | | D_4, |
2236 | | D_4, |
2237 | | D_4, |
2238 | | D_4, |
2239 | | D_2, |
2240 | | D_5, |
2241 | | D_5, |
2242 | | D_5, |
2243 | | D_6, |
2244 | | D_6, |
2245 | | D_6, |
2246 | | D_7, |
2247 | | D_7, |
2248 | | D_7, |
2249 | | D_3_3, |
2250 | | D_8, |
2251 | | D_3_3, |
2252 | | D_3_4, |
2253 | | D_9, |
2254 | | D_10, |
2255 | | D_3_5, |
2256 | | D_11, |
2257 | | D_11, |
2258 | | }; |
2259 | | |
2260 | | FAIL_IF_NOT(DefragDoSturgesNovakTest(DEFRAG_POLICY_LAST, expected, |
2261 | | sizeof(expected))); |
2262 | | PASS; |
2263 | | } |
2264 | | |
2265 | | static int DefragSturgesNovakLastIpv6Test(void) |
2266 | | { |
2267 | | /* Expected data. */ |
2268 | | uint8_t expected[] = { |
2269 | | D_1, |
2270 | | D_4, |
2271 | | D_4, |
2272 | | D_4, |
2273 | | D_4, |
2274 | | D_2, |
2275 | | D_5, |
2276 | | D_5, |
2277 | | D_5, |
2278 | | D_6, |
2279 | | D_6, |
2280 | | D_6, |
2281 | | D_7, |
2282 | | D_7, |
2283 | | D_7, |
2284 | | D_3_3, |
2285 | | D_8, |
2286 | | D_3_3, |
2287 | | D_3_4, |
2288 | | D_9, |
2289 | | D_10, |
2290 | | D_3_5, |
2291 | | D_11, |
2292 | | D_11, |
2293 | | }; |
2294 | | |
2295 | | FAIL_IF_NOT(DefragDoSturgesNovakIpv6Test(DEFRAG_POLICY_LAST, expected, sizeof(expected))); |
2296 | | PASS; |
2297 | | } |
2298 | | |
2299 | | static int DefragTimeoutTest(void) |
2300 | | { |
2301 | | int i; |
2302 | | |
2303 | | /* Setup a small number of trackers. */ |
2304 | | FAIL_IF_NOT(ConfSet("defrag.trackers", "16")); |
2305 | | |
2306 | | DefragInit(); |
2307 | | |
2308 | | /* Load in 16 packets. */ |
2309 | | for (i = 0; i < 16; i++) { |
2310 | | Packet *p = BuildIpv4TestPacket(IPPROTO_ICMP, i, 0, 1, 'A' + i, 16); |
2311 | | FAIL_IF_NULL(p); |
2312 | | |
2313 | | Packet *tp = Defrag(NULL, NULL, p); |
2314 | | SCFree(p); |
2315 | | FAIL_IF_NOT_NULL(tp); |
2316 | | } |
2317 | | |
2318 | | /* Build a new packet but push the timestamp out by our timeout. |
2319 | | * This should force our previous fragments to be timed out. */ |
2320 | | Packet *p = BuildIpv4TestPacket(IPPROTO_ICMP, 99, 0, 1, 'A' + i, 16); |
2321 | | FAIL_IF_NULL(p); |
2322 | | |
2323 | | p->ts = SCTIME_ADD_SECS(p->ts, defrag_context->timeout + 1); |
2324 | | Packet *tp = Defrag(NULL, NULL, p); |
2325 | | FAIL_IF_NOT_NULL(tp); |
2326 | | |
2327 | | DefragTracker *tracker = DefragLookupTrackerFromHash(p); |
2328 | | FAIL_IF_NULL(tracker); |
2329 | | |
2330 | | FAIL_IF(tracker->id != 99); |
2331 | | |
2332 | | SCMutexUnlock(&tracker->lock); |
2333 | | SCFree(p); |
2334 | | |
2335 | | DefragDestroy(); |
2336 | | PASS; |
2337 | | } |
2338 | | |
2339 | | /** |
2340 | | * QA found that if you send a packet where more frags is 0, offset is |
2341 | | * > 0 and there is no data in the packet that the re-assembler will |
2342 | | * fail. The fix was simple, but this unit test is just to make sure |
2343 | | * its not introduced. |
2344 | | */ |
2345 | | static int DefragNoDataIpv4Test(void) |
2346 | | { |
2347 | | DefragContext *dc = NULL; |
2348 | | Packet *p = NULL; |
2349 | | int id = 12; |
2350 | | |
2351 | | DefragInit(); |
2352 | | |
2353 | | dc = DefragContextNew(); |
2354 | | FAIL_IF_NULL(dc); |
2355 | | |
2356 | | /* This packet has an offset > 0, more frags set to 0 and no data. */ |
2357 | | p = BuildIpv4TestPacket(IPPROTO_ICMP, id, 1, 0, 'A', 0); |
2358 | | FAIL_IF_NULL(p); |
2359 | | |
2360 | | /* We do not expect a packet returned. */ |
2361 | | FAIL_IF(Defrag(NULL, NULL, p) != NULL); |
2362 | | |
2363 | | /* The fragment should have been ignored so no fragments should |
2364 | | * have been allocated from the pool. */ |
2365 | | FAIL_IF(dc->frag_pool->outstanding != 0); |
2366 | | |
2367 | | DefragContextDestroy(dc); |
2368 | | SCFree(p); |
2369 | | |
2370 | | DefragDestroy(); |
2371 | | PASS; |
2372 | | } |
2373 | | |
2374 | | static int DefragTooLargeIpv4Test(void) |
2375 | | { |
2376 | | DefragContext *dc = NULL; |
2377 | | Packet *p = NULL; |
2378 | | |
2379 | | DefragInit(); |
2380 | | |
2381 | | dc = DefragContextNew(); |
2382 | | FAIL_IF_NULL(dc); |
2383 | | |
2384 | | /* Create a fragment that would extend past the max allowable size |
2385 | | * for an IPv4 packet. */ |
2386 | | p = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 8183, 0, 'A', 71); |
2387 | | FAIL_IF_NULL(p); |
2388 | | |
2389 | | /* We do not expect a packet returned. */ |
2390 | | FAIL_IF(Defrag(NULL, NULL, p) != NULL); |
2391 | | |
2392 | | /* We do expect an event. */ |
2393 | | FAIL_IF_NOT(ENGINE_ISSET_EVENT(p, IPV4_FRAG_PKT_TOO_LARGE)); |
2394 | | |
2395 | | /* The fragment should have been ignored so no fragments should have |
2396 | | * been allocated from the pool. */ |
2397 | | FAIL_IF(dc->frag_pool->outstanding != 0); |
2398 | | |
2399 | | DefragContextDestroy(dc); |
2400 | | SCFree(p); |
2401 | | |
2402 | | DefragDestroy(); |
2403 | | PASS; |
2404 | | } |
2405 | | |
2406 | | /** |
2407 | | * Test that fragments in different VLANs that would otherwise be |
2408 | | * re-assembled, are not re-assembled. Just use simple in-order |
2409 | | * fragments. |
2410 | | */ |
2411 | | static int DefragVlanTest(void) |
2412 | | { |
2413 | | Packet *p1 = NULL, *p2 = NULL, *r = NULL; |
2414 | | |
2415 | | DefragInit(); |
2416 | | |
2417 | | p1 = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 0, 1, 'A', 8); |
2418 | | FAIL_IF_NULL(p1); |
2419 | | p2 = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 1, 0, 'B', 8); |
2420 | | FAIL_IF_NULL(p2); |
2421 | | |
2422 | | /* With no VLAN IDs set, packets should re-assemble. */ |
2423 | | FAIL_IF((r = Defrag(NULL, NULL, p1)) != NULL); |
2424 | | FAIL_IF((r = Defrag(NULL, NULL, p2)) == NULL); |
2425 | | SCFree(r); |
2426 | | |
2427 | | /* With mismatched VLANs, packets should not re-assemble. */ |
2428 | | p1->vlan_id[0] = 1; |
2429 | | p2->vlan_id[0] = 2; |
2430 | | FAIL_IF((r = Defrag(NULL, NULL, p1)) != NULL); |
2431 | | FAIL_IF((r = Defrag(NULL, NULL, p2)) != NULL); |
2432 | | |
2433 | | SCFree(p1); |
2434 | | SCFree(p2); |
2435 | | DefragDestroy(); |
2436 | | |
2437 | | PASS; |
2438 | | } |
2439 | | |
2440 | | /** |
2441 | | * Like DefragVlanTest, but for QinQ, testing the second level VLAN ID. |
2442 | | */ |
2443 | | static int DefragVlanQinQTest(void) |
2444 | | { |
2445 | | Packet *p1 = NULL, *p2 = NULL, *r = NULL; |
2446 | | |
2447 | | DefragInit(); |
2448 | | |
2449 | | p1 = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 0, 1, 'A', 8); |
2450 | | FAIL_IF_NULL(p1); |
2451 | | p2 = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 1, 0, 'B', 8); |
2452 | | FAIL_IF_NULL(p2); |
2453 | | |
2454 | | /* With no VLAN IDs set, packets should re-assemble. */ |
2455 | | FAIL_IF((r = Defrag(NULL, NULL, p1)) != NULL); |
2456 | | FAIL_IF((r = Defrag(NULL, NULL, p2)) == NULL); |
2457 | | SCFree(r); |
2458 | | |
2459 | | /* With mismatched VLANs, packets should not re-assemble. */ |
2460 | | p1->vlan_id[0] = 1; |
2461 | | p2->vlan_id[0] = 1; |
2462 | | p1->vlan_id[1] = 1; |
2463 | | p2->vlan_id[1] = 2; |
2464 | | FAIL_IF((r = Defrag(NULL, NULL, p1)) != NULL); |
2465 | | FAIL_IF((r = Defrag(NULL, NULL, p2)) != NULL); |
2466 | | |
2467 | | SCFree(p1); |
2468 | | SCFree(p2); |
2469 | | DefragDestroy(); |
2470 | | |
2471 | | PASS; |
2472 | | } |
2473 | | |
2474 | | /** |
2475 | | * Like DefragVlanTest, but for QinQinQ, testing the third level VLAN ID. |
2476 | | */ |
2477 | | static int DefragVlanQinQinQTest(void) |
2478 | | { |
2479 | | Packet *r = NULL; |
2480 | | |
2481 | | DefragInit(); |
2482 | | |
2483 | | Packet *p1 = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 0, 1, 'A', 8); |
2484 | | FAIL_IF_NULL(p1); |
2485 | | Packet *p2 = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 1, 0, 'B', 8); |
2486 | | FAIL_IF_NULL(p2); |
2487 | | |
2488 | | /* With no VLAN IDs set, packets should re-assemble. */ |
2489 | | FAIL_IF((r = Defrag(NULL, NULL, p1)) != NULL); |
2490 | | FAIL_IF((r = Defrag(NULL, NULL, p2)) == NULL); |
2491 | | SCFree(r); |
2492 | | |
2493 | | /* With mismatched VLANs, packets should not re-assemble. */ |
2494 | | p1->vlan_id[0] = 1; |
2495 | | p2->vlan_id[0] = 1; |
2496 | | p1->vlan_id[1] = 2; |
2497 | | p2->vlan_id[1] = 2; |
2498 | | p1->vlan_id[2] = 3; |
2499 | | p2->vlan_id[2] = 4; |
2500 | | FAIL_IF((r = Defrag(NULL, NULL, p1)) != NULL); |
2501 | | FAIL_IF((r = Defrag(NULL, NULL, p2)) != NULL); |
2502 | | |
2503 | | PacketFree(p1); |
2504 | | PacketFree(p2); |
2505 | | DefragDestroy(); |
2506 | | |
2507 | | PASS; |
2508 | | } |
2509 | | static int DefragTrackerReuseTest(void) |
2510 | | { |
2511 | | int id = 1; |
2512 | | Packet *p1 = NULL; |
2513 | | DefragTracker *tracker1 = NULL, *tracker2 = NULL; |
2514 | | |
2515 | | DefragInit(); |
2516 | | |
2517 | | /* Build a packet, its not a fragment but shouldn't matter for |
2518 | | * this test. */ |
2519 | | p1 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 0, 0, 'A', 8); |
2520 | | FAIL_IF_NULL(p1); |
2521 | | |
2522 | | /* Get a tracker. It shouldn't look like its already in use. */ |
2523 | | tracker1 = DefragGetTracker(NULL, NULL, p1); |
2524 | | FAIL_IF_NULL(tracker1); |
2525 | | FAIL_IF(tracker1->seen_last); |
2526 | | FAIL_IF(tracker1->remove); |
2527 | | DefragTrackerRelease(tracker1); |
2528 | | |
2529 | | /* Get a tracker again, it should be the same one. */ |
2530 | | tracker2 = DefragGetTracker(NULL, NULL, p1); |
2531 | | FAIL_IF_NULL(tracker2); |
2532 | | FAIL_IF(tracker2 != tracker1); |
2533 | | DefragTrackerRelease(tracker1); |
2534 | | |
2535 | | /* Now mark the tracker for removal. It should not be returned |
2536 | | * when we get a tracker for a packet that may have the same |
2537 | | * attributes. */ |
2538 | | tracker1->remove = 1; |
2539 | | |
2540 | | tracker2 = DefragGetTracker(NULL, NULL, p1); |
2541 | | FAIL_IF_NULL(tracker2); |
2542 | | FAIL_IF(tracker2 == tracker1); |
2543 | | FAIL_IF(tracker2->remove); |
2544 | | |
2545 | | SCFree(p1); |
2546 | | DefragDestroy(); |
2547 | | PASS; |
2548 | | } |
2549 | | |
2550 | | /** |
2551 | | * IPV4: Test the case where you have a packet fragmented in 3 parts |
2552 | | * and send like: |
2553 | | * - Offset: 2; MF: 1 |
2554 | | * - Offset: 0; MF: 1 |
2555 | | * - Offset: 1; MF: 0 |
2556 | | * |
2557 | | * Only the fragments with offset 0 and 1 should be reassembled. |
2558 | | */ |
2559 | | static int DefragMfIpv4Test(void) |
2560 | | { |
2561 | | int ip_id = 9; |
2562 | | Packet *p = NULL; |
2563 | | |
2564 | | DefragInit(); |
2565 | | |
2566 | | Packet *p1 = BuildIpv4TestPacket(IPPROTO_ICMP, ip_id, 2, 1, 'C', 8); |
2567 | | Packet *p2 = BuildIpv4TestPacket(IPPROTO_ICMP, ip_id, 0, 1, 'A', 8); |
2568 | | Packet *p3 = BuildIpv4TestPacket(IPPROTO_ICMP, ip_id, 1, 0, 'B', 8); |
2569 | | FAIL_IF(p1 == NULL || p2 == NULL || p3 == NULL); |
2570 | | |
2571 | | p = Defrag(NULL, NULL, p1); |
2572 | | FAIL_IF_NOT_NULL(p); |
2573 | | |
2574 | | p = Defrag(NULL, NULL, p2); |
2575 | | FAIL_IF_NOT_NULL(p); |
2576 | | |
2577 | | /* This should return a packet as MF=0. */ |
2578 | | p = Defrag(NULL, NULL, p3); |
2579 | | FAIL_IF_NULL(p); |
2580 | | |
2581 | | /* Expected IP length is 20 + 8 + 8 = 36 as only 2 of the |
2582 | | * fragments should be in the re-assembled packet. */ |
2583 | | FAIL_IF(IPV4_GET_IPLEN(p) != 36); |
2584 | | |
2585 | | /* Verify the payload of the IPv4 packet. */ |
2586 | | uint8_t expected_payload[] = "AAAAAAAABBBBBBBB"; |
2587 | | FAIL_IF(memcmp(GET_PKT_DATA(p) + sizeof(IPV4Hdr), expected_payload, sizeof(expected_payload))); |
2588 | | |
2589 | | SCFree(p1); |
2590 | | SCFree(p2); |
2591 | | SCFree(p3); |
2592 | | SCFree(p); |
2593 | | DefragDestroy(); |
2594 | | PASS; |
2595 | | } |
2596 | | |
2597 | | /** |
2598 | | * IPV6: Test the case where you have a packet fragmented in 3 parts |
2599 | | * and send like: |
2600 | | * - Offset: 2; MF: 1 |
2601 | | * - Offset: 0; MF: 1 |
2602 | | * - Offset: 1; MF: 0 |
2603 | | * |
2604 | | * Only the fragments with offset 0 and 1 should be reassembled. |
2605 | | */ |
2606 | | static int DefragMfIpv6Test(void) |
2607 | | { |
2608 | | int ip_id = 9; |
2609 | | Packet *p = NULL; |
2610 | | |
2611 | | DefragInit(); |
2612 | | |
2613 | | Packet *p1 = BuildIpv6TestPacket(IPPROTO_ICMPV6, ip_id, 2, 1, 'C', 8); |
2614 | | Packet *p2 = BuildIpv6TestPacket(IPPROTO_ICMPV6, ip_id, 0, 1, 'A', 8); |
2615 | | Packet *p3 = BuildIpv6TestPacket(IPPROTO_ICMPV6, ip_id, 1, 0, 'B', 8); |
2616 | | FAIL_IF(p1 == NULL || p2 == NULL || p3 == NULL); |
2617 | | |
2618 | | p = Defrag(NULL, NULL, p1); |
2619 | | FAIL_IF_NOT_NULL(p); |
2620 | | |
2621 | | p = Defrag(NULL, NULL, p2); |
2622 | | FAIL_IF_NOT_NULL(p); |
2623 | | |
2624 | | /* This should return a packet as MF=0. */ |
2625 | | p = Defrag(NULL, NULL, p3); |
2626 | | FAIL_IF_NULL(p); |
2627 | | |
2628 | | /* For IPv6 the expected length is just the length of the payload |
2629 | | * of 2 fragments, so 16. */ |
2630 | | FAIL_IF(IPV6_GET_PLEN(p) != 16); |
2631 | | |
2632 | | /* Verify the payload of the IPv4 packet. */ |
2633 | | uint8_t expected_payload[] = "AAAAAAAABBBBBBBB"; |
2634 | | FAIL_IF(memcmp(GET_PKT_DATA(p) + sizeof(IPV6Hdr), expected_payload, sizeof(expected_payload))); |
2635 | | |
2636 | | SCFree(p1); |
2637 | | SCFree(p2); |
2638 | | SCFree(p3); |
2639 | | SCFree(p); |
2640 | | DefragDestroy(); |
2641 | | PASS; |
2642 | | } |
2643 | | |
2644 | | /** |
2645 | | * \brief Test that fragments that match other than the proto don't |
2646 | | * actually get matched. |
2647 | | */ |
2648 | | static int DefragTestBadProto(void) |
2649 | | { |
2650 | | Packet *p1 = NULL, *p2 = NULL, *p3 = NULL; |
2651 | | int id = 12; |
2652 | | |
2653 | | DefragInit(); |
2654 | | |
2655 | | p1 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 0, 1, 'A', 8); |
2656 | | FAIL_IF_NULL(p1); |
2657 | | p2 = BuildIpv4TestPacket(IPPROTO_UDP, id, 1, 1, 'B', 8); |
2658 | | FAIL_IF_NULL(p2); |
2659 | | p3 = BuildIpv4TestPacket(IPPROTO_ICMP, id, 2, 0, 'C', 3); |
2660 | | FAIL_IF_NULL(p3); |
2661 | | |
2662 | | FAIL_IF_NOT_NULL(Defrag(NULL, NULL, p1)); |
2663 | | FAIL_IF_NOT_NULL(Defrag(NULL, NULL, p2)); |
2664 | | FAIL_IF_NOT_NULL(Defrag(NULL, NULL, p3)); |
2665 | | |
2666 | | SCFree(p1); |
2667 | | SCFree(p2); |
2668 | | SCFree(p3); |
2669 | | |
2670 | | DefragDestroy(); |
2671 | | PASS; |
2672 | | } |
2673 | | |
2674 | | /** |
2675 | | * \test Test a report Linux overlap issue that doesn't appear to be |
2676 | | * covered by the Sturges/Novak tests above. |
2677 | | */ |
2678 | | static int DefragTestJeremyLinux(void) |
2679 | | { |
2680 | | uint8_t expected[] = "AAAAAAAA" |
2681 | | "AAAAAAAA" |
2682 | | "AAAAAAAA" |
2683 | | "CCCCCCCC" |
2684 | | "CCCCCCCC" |
2685 | | "CCCCCCCC" |
2686 | | "CCCCCCCC" |
2687 | | "CCCCCCCC" |
2688 | | "CCCCCCCC" |
2689 | | "BBBBBBBB" |
2690 | | "BBBBBBBB" |
2691 | | "DDDDDDDD" |
2692 | | "DDDDDD"; |
2693 | | |
2694 | | DefragInit(); |
2695 | | default_policy = DEFRAG_POLICY_LINUX; |
2696 | | |
2697 | | int id = 1; |
2698 | | Packet *packets[4]; |
2699 | | int i = 0; |
2700 | | |
2701 | | packets[0] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 0, 1, 'A', 24); |
2702 | | packets[1] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 40 >> 3, 1, 'B', 48); |
2703 | | packets[2] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 24 >> 3, 1, 'C', 48); |
2704 | | packets[3] = BuildIpv4TestPacket(IPPROTO_ICMP, id, 88 >> 3, 0, 'D', 14); |
2705 | | |
2706 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2707 | | FAIL_IF_NOT_NULL(r); |
2708 | | |
2709 | | r = Defrag(NULL, NULL, packets[1]); |
2710 | | FAIL_IF_NOT_NULL(r); |
2711 | | |
2712 | | r = Defrag(NULL, NULL, packets[2]); |
2713 | | FAIL_IF_NOT_NULL(r); |
2714 | | |
2715 | | r = Defrag(NULL, NULL, packets[3]); |
2716 | | FAIL_IF_NULL(r); |
2717 | | |
2718 | | FAIL_IF(memcmp(expected, GET_PKT_DATA(r) + 20, sizeof(expected)) != 0); |
2719 | | |
2720 | | for (i = 0; i < 4; i++) { |
2721 | | SCFree(packets[i]); |
2722 | | } |
2723 | | SCFree(r); |
2724 | | |
2725 | | DefragDestroy(); |
2726 | | PASS; |
2727 | | } |
2728 | | |
2729 | | /** |
2730 | | * | 0 | 8 | 16 | 24 | 32 | |
2731 | | * |----------|----------|----------|----------|----------| |
2732 | | * | AAAAAAAA | AAAAAAAA | |
2733 | | * | | BBBBBBBB | BBBBBBBB | | | |
2734 | | * | | | CCCCCCCC | CCCCCCCC | | |
2735 | | * | DDDDDDDD | | | | | |
2736 | | * |
2737 | | * | DDDDDDDD | BBBBBBBB | BBBBBBBB | CCCCCCCC | AAAAAAAA | |
2738 | | */ |
2739 | | static int DefragBsdFragmentAfterNoMfIpv4Test(void) |
2740 | | { |
2741 | | DefragInit(); |
2742 | | default_policy = DEFRAG_POLICY_BSD; |
2743 | | Packet *packets[4]; |
2744 | | |
2745 | | packets[0] = BuildIpv4TestPacket(IPPROTO_ICMP, 0x96, 24 >> 3, 0, 'A', 16); |
2746 | | packets[1] = BuildIpv4TestPacket(IPPROTO_ICMP, 0x96, 8 >> 3, 1, 'B', 16); |
2747 | | packets[2] = BuildIpv4TestPacket(IPPROTO_ICMP, 0x96, 16 >> 3, 1, 'C', 16); |
2748 | | packets[3] = BuildIpv4TestPacket(IPPROTO_ICMP, 0x96, 0, 1, 'D', 8); |
2749 | | |
2750 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2751 | | FAIL_IF_NOT_NULL(r); |
2752 | | |
2753 | | r = Defrag(NULL, NULL, packets[1]); |
2754 | | FAIL_IF_NOT_NULL(r); |
2755 | | |
2756 | | r = Defrag(NULL, NULL, packets[2]); |
2757 | | FAIL_IF_NOT_NULL(r); |
2758 | | |
2759 | | r = Defrag(NULL, NULL, packets[3]); |
2760 | | FAIL_IF_NULL(r); |
2761 | | |
2762 | | // clang-format off |
2763 | | uint8_t expected[] = { |
2764 | | 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', |
2765 | | 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', |
2766 | | 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', |
2767 | | 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', |
2768 | | 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', |
2769 | | }; |
2770 | | // clang-format on |
2771 | | |
2772 | | if (memcmp(expected, GET_PKT_DATA(r) + 20, sizeof(expected)) != 0) { |
2773 | | printf("Expected:\n"); |
2774 | | PrintRawDataFp(stdout, expected, sizeof(expected)); |
2775 | | printf("Got:\n"); |
2776 | | PrintRawDataFp(stdout, GET_PKT_DATA(r) + 20, GET_PKT_LEN(r) - 20); |
2777 | | FAIL; |
2778 | | } |
2779 | | |
2780 | | DefragDestroy(); |
2781 | | PASS; |
2782 | | } |
2783 | | |
2784 | | static int DefragBsdFragmentAfterNoMfIpv6Test(void) |
2785 | | { |
2786 | | DefragInit(); |
2787 | | default_policy = DEFRAG_POLICY_BSD; |
2788 | | Packet *packets[4]; |
2789 | | |
2790 | | packets[0] = BuildIpv6TestPacket(IPPROTO_ICMP, 0x96, 24 >> 3, 0, 'A', 16); |
2791 | | packets[1] = BuildIpv6TestPacket(IPPROTO_ICMP, 0x96, 8 >> 3, 1, 'B', 16); |
2792 | | packets[2] = BuildIpv6TestPacket(IPPROTO_ICMP, 0x96, 16 >> 3, 1, 'C', 16); |
2793 | | packets[3] = BuildIpv6TestPacket(IPPROTO_ICMP, 0x96, 0, 1, 'D', 8); |
2794 | | |
2795 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2796 | | FAIL_IF_NOT_NULL(r); |
2797 | | |
2798 | | r = Defrag(NULL, NULL, packets[1]); |
2799 | | FAIL_IF_NOT_NULL(r); |
2800 | | |
2801 | | r = Defrag(NULL, NULL, packets[2]); |
2802 | | FAIL_IF_NOT_NULL(r); |
2803 | | |
2804 | | r = Defrag(NULL, NULL, packets[3]); |
2805 | | FAIL_IF_NULL(r); |
2806 | | |
2807 | | // clang-format off |
2808 | | uint8_t expected[] = { |
2809 | | 'D', 'D', 'D', 'D', 'D', 'D', 'D', 'D', |
2810 | | 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', |
2811 | | 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', |
2812 | | 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', |
2813 | | 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', |
2814 | | }; |
2815 | | // clang-format on |
2816 | | |
2817 | | if (memcmp(expected, GET_PKT_DATA(r) + 40, sizeof(expected)) != 0) { |
2818 | | printf("Expected:\n"); |
2819 | | PrintRawDataFp(stdout, expected, sizeof(expected)); |
2820 | | printf("Got:\n"); |
2821 | | PrintRawDataFp(stdout, GET_PKT_DATA(r) + 40, GET_PKT_LEN(r) - 40); |
2822 | | FAIL; |
2823 | | } |
2824 | | |
2825 | | DefragDestroy(); |
2826 | | PASS; |
2827 | | } |
2828 | | |
2829 | | static int DefragBsdSubsequentOverlapsStartOfOriginalIpv4Test_2(void) |
2830 | | { |
2831 | | DefragInit(); |
2832 | | default_policy = DEFRAG_POLICY_BSD; |
2833 | | Packet *packets[4]; |
2834 | | |
2835 | | /* Packet 1: off=16, mf=1 */ |
2836 | | packets[0] = BuildIpv4TestPacketWithContent( |
2837 | | IPPROTO_ICMP, 6, 16 >> 3, 1, (uint8_t *)"AABBCCDDAABBDDCC", 16); |
2838 | | |
2839 | | /* Packet 2: off=8, mf=1 */ |
2840 | | packets[1] = BuildIpv4TestPacketWithContent( |
2841 | | IPPROTO_ICMP, 6, 8 >> 3, 1, (uint8_t *)"AACCBBDDAACCDDBB", 16); |
2842 | | |
2843 | | /* Packet 3: off=0, mf=1: IP and ICMP header. */ |
2844 | | packets[2] = BuildIpv4TestPacketWithContent(IPPROTO_ICMP, 6, 0, 1, (uint8_t *)"ZZZZZZZZ", 8); |
2845 | | |
2846 | | /* Packet 4: off=8, mf=1 */ |
2847 | | packets[3] = |
2848 | | BuildIpv4TestPacketWithContent(IPPROTO_ICMP, 6, 32 >> 3, 0, (uint8_t *)"DDCCBBAA", 8); |
2849 | | |
2850 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2851 | | FAIL_IF_NOT_NULL(r); |
2852 | | |
2853 | | r = Defrag(NULL, NULL, packets[1]); |
2854 | | FAIL_IF_NOT_NULL(r); |
2855 | | |
2856 | | r = Defrag(NULL, NULL, packets[2]); |
2857 | | FAIL_IF_NOT_NULL(r); |
2858 | | |
2859 | | r = Defrag(NULL, NULL, packets[3]); |
2860 | | FAIL_IF_NULL(r); |
2861 | | |
2862 | | // clang-format off |
2863 | | const uint8_t expected[] = { |
2864 | | // AACCBBDD |
2865 | | // AACCDDBB |
2866 | | // AABBDDCC |
2867 | | // DDCCBBAA |
2868 | | 'A', 'A', 'C', 'C', 'B', 'B', 'D', 'D', |
2869 | | 'A', 'A', 'C', 'C', 'D', 'D', 'B', 'B', |
2870 | | 'A', 'A', 'B', 'B', 'D', 'D', 'C', 'C', |
2871 | | 'D', 'D', 'C', 'C', 'B', 'B', 'A', 'A', |
2872 | | }; |
2873 | | // clang-format on |
2874 | | |
2875 | | FAIL_IF(memcmp(expected, GET_PKT_DATA(r) + 20 + 8, sizeof(expected)) != 0); |
2876 | | |
2877 | | DefragDestroy(); |
2878 | | PASS; |
2879 | | } |
2880 | | |
2881 | | static int DefragBsdSubsequentOverlapsStartOfOriginalIpv6Test_2(void) |
2882 | | { |
2883 | | DefragInit(); |
2884 | | default_policy = DEFRAG_POLICY_BSD; |
2885 | | Packet *packets[4]; |
2886 | | |
2887 | | /* Packet 1: off=16, mf=1 */ |
2888 | | packets[0] = BuildIpv6TestPacketWithContent( |
2889 | | IPPROTO_ICMP, 6, 16 >> 3, 1, (uint8_t *)"AABBCCDDAABBDDCC", 16); |
2890 | | |
2891 | | /* Packet 2: off=8, mf=1 */ |
2892 | | packets[1] = BuildIpv6TestPacketWithContent( |
2893 | | IPPROTO_ICMP, 6, 8 >> 3, 1, (uint8_t *)"AACCBBDDAACCDDBB", 16); |
2894 | | |
2895 | | /* Packet 3: off=0, mf=1: IP and ICMP header. */ |
2896 | | packets[2] = BuildIpv6TestPacketWithContent(IPPROTO_ICMP, 6, 0, 1, (uint8_t *)"ZZZZZZZZ", 8); |
2897 | | |
2898 | | /* Packet 4: off=8, mf=1 */ |
2899 | | packets[3] = |
2900 | | BuildIpv6TestPacketWithContent(IPPROTO_ICMP, 6, 32 >> 3, 0, (uint8_t *)"DDCCBBAA", 8); |
2901 | | |
2902 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2903 | | FAIL_IF_NOT_NULL(r); |
2904 | | |
2905 | | r = Defrag(NULL, NULL, packets[1]); |
2906 | | FAIL_IF_NOT_NULL(r); |
2907 | | |
2908 | | r = Defrag(NULL, NULL, packets[2]); |
2909 | | FAIL_IF_NOT_NULL(r); |
2910 | | |
2911 | | r = Defrag(NULL, NULL, packets[3]); |
2912 | | FAIL_IF_NULL(r); |
2913 | | |
2914 | | // clang-format off |
2915 | | const uint8_t expected[] = { |
2916 | | // AACCBBDD |
2917 | | // AACCDDBB |
2918 | | // AABBDDCC |
2919 | | // DDCCBBAA |
2920 | | 'A', 'A', 'C', 'C', 'B', 'B', 'D', 'D', |
2921 | | 'A', 'A', 'C', 'C', 'D', 'D', 'B', 'B', |
2922 | | 'A', 'A', 'B', 'B', 'D', 'D', 'C', 'C', |
2923 | | 'D', 'D', 'C', 'C', 'B', 'B', 'A', 'A', |
2924 | | }; |
2925 | | // clang-format on |
2926 | | |
2927 | | FAIL_IF(memcmp(expected, GET_PKT_DATA(r) + 40 + 8, sizeof(expected)) != 0); |
2928 | | |
2929 | | DefragDestroy(); |
2930 | | PASS; |
2931 | | } |
2932 | | |
2933 | | /** |
2934 | | * #### Input |
2935 | | * |
2936 | | * | 96 (0) | 104 (8) | 112 (16) | 120 (24) | |
2937 | | * |----------|----------|----------|----------| |
2938 | | * | | EEEEEEEE | EEEEEEEE | EEEEEEEE | |
2939 | | * | MMMMMMMM | MMMMMMMM | MMMMMMMM | | |
2940 | | * |
2941 | | * #### Expected Output |
2942 | | * |
2943 | | * | MMMMMMMM | MMMMMMMM | MMMMMMMM | EEEEEEEE | |
2944 | | */ |
2945 | | static int DefragBsdSubsequentOverlapsStartOfOriginalIpv4Test(void) |
2946 | | { |
2947 | | DefragInit(); |
2948 | | default_policy = DEFRAG_POLICY_BSD; |
2949 | | Packet *packets[2]; |
2950 | | |
2951 | | packets[0] = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 8 >> 3, 0, 'E', 24); |
2952 | | packets[1] = BuildIpv4TestPacket(IPPROTO_ICMP, 1, 0, 1, 'M', 24); |
2953 | | |
2954 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2955 | | FAIL_IF_NOT_NULL(r); |
2956 | | |
2957 | | r = Defrag(NULL, NULL, packets[1]); |
2958 | | FAIL_IF_NULL(r); |
2959 | | |
2960 | | // clang-format off |
2961 | | const uint8_t expected[] = { |
2962 | | 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', |
2963 | | 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', |
2964 | | 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', |
2965 | | 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', |
2966 | | }; |
2967 | | // clang-format on |
2968 | | |
2969 | | if (memcmp(expected, GET_PKT_DATA(r) + 20, sizeof(expected)) != 0) { |
2970 | | printf("Expected:\n"); |
2971 | | PrintRawDataFp(stdout, expected, sizeof(expected)); |
2972 | | printf("Got:\n"); |
2973 | | PrintRawDataFp(stdout, GET_PKT_DATA(r) + 20, GET_PKT_LEN(r) - 20); |
2974 | | FAIL; |
2975 | | } |
2976 | | |
2977 | | PASS; |
2978 | | } |
2979 | | |
2980 | | static int DefragBsdSubsequentOverlapsStartOfOriginalIpv6Test(void) |
2981 | | { |
2982 | | DefragInit(); |
2983 | | default_policy = DEFRAG_POLICY_BSD; |
2984 | | Packet *packets[2]; |
2985 | | |
2986 | | packets[0] = BuildIpv6TestPacket(IPPROTO_ICMP, 1, 8 >> 3, 0, 'E', 24); |
2987 | | packets[1] = BuildIpv6TestPacket(IPPROTO_ICMP, 1, 0, 1, 'M', 24); |
2988 | | |
2989 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
2990 | | FAIL_IF_NOT_NULL(r); |
2991 | | |
2992 | | r = Defrag(NULL, NULL, packets[1]); |
2993 | | FAIL_IF_NULL(r); |
2994 | | |
2995 | | // clang-format off |
2996 | | const uint8_t expected[] = { |
2997 | | 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', |
2998 | | 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', |
2999 | | 'M', 'M', 'M', 'M', 'M', 'M', 'M', 'M', |
3000 | | 'E', 'E', 'E', 'E', 'E', 'E', 'E', 'E', |
3001 | | }; |
3002 | | // clang-format on |
3003 | | |
3004 | | if (memcmp(expected, GET_PKT_DATA(r) + 40, sizeof(expected)) != 0) { |
3005 | | printf("Expected:\n"); |
3006 | | PrintRawDataFp(stdout, expected, sizeof(expected)); |
3007 | | printf("Got:\n"); |
3008 | | PrintRawDataFp(stdout, GET_PKT_DATA(r) + 40, GET_PKT_LEN(r) - 40); |
3009 | | FAIL; |
3010 | | } |
3011 | | |
3012 | | PASS; |
3013 | | } |
3014 | | |
3015 | | /** |
3016 | | * Reassembly should fail. |
3017 | | * |
3018 | | * |0 |8 |16 |24 |32 |40 |48 | |
3019 | | * |========|========|========|========|========|========|========| |
3020 | | * | | |AABBCCDD|AABBDDCC| | | | |
3021 | | * | | | | | |AACCBBDD| | |
3022 | | * | |AACCDDBB|AADDBBCC| | | | | |
3023 | | * |ZZZZZZZZ| | | | | | | |
3024 | | * | | | | | | |DDCCBBAA| |
3025 | | */ |
3026 | | static int DefragBsdMissingFragmentIpv4Test(void) |
3027 | | { |
3028 | | DefragInit(); |
3029 | | default_policy = DEFRAG_POLICY_BSD; |
3030 | | Packet *packets[5]; |
3031 | | |
3032 | | packets[0] = BuildIpv4TestPacketWithContent( |
3033 | | IPPROTO_ICMP, 189, 16 >> 3, 1, (uint8_t *)"AABBCCDDAABBDDCC", 16); |
3034 | | |
3035 | | packets[1] = |
3036 | | BuildIpv4TestPacketWithContent(IPPROTO_ICMP, 189, 40 >> 3, 1, (uint8_t *)"AACCBBDD", 8); |
3037 | | |
3038 | | packets[2] = BuildIpv4TestPacketWithContent( |
3039 | | IPPROTO_ICMP, 189, 8 >> 3, 1, (uint8_t *)"AACCDDBBAADDBBCC", 16); |
3040 | | |
3041 | | /* ICMP header. */ |
3042 | | packets[3] = BuildIpv4TestPacketWithContent(IPPROTO_ICMP, 189, 0, 1, (uint8_t *)"ZZZZZZZZ", 8); |
3043 | | |
3044 | | packets[4] = |
3045 | | BuildIpv4TestPacketWithContent(IPPROTO_ICMP, 189, 48 >> 3, 0, (uint8_t *)"DDCCBBAA", 8); |
3046 | | |
3047 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
3048 | | FAIL_IF_NOT_NULL(r); |
3049 | | |
3050 | | r = Defrag(NULL, NULL, packets[1]); |
3051 | | FAIL_IF_NOT_NULL(r); |
3052 | | |
3053 | | r = Defrag(NULL, NULL, packets[2]); |
3054 | | FAIL_IF_NOT_NULL(r); |
3055 | | |
3056 | | r = Defrag(NULL, NULL, packets[3]); |
3057 | | FAIL_IF_NOT_NULL(r); |
3058 | | |
3059 | | r = Defrag(NULL, NULL, packets[4]); |
3060 | | FAIL_IF_NOT_NULL(r); |
3061 | | |
3062 | | #if 0 |
3063 | | PrintRawDataFp(stdout, GET_PKT_DATA(r) + 20, GET_PKT_LEN(r) - 20); |
3064 | | #endif |
3065 | | |
3066 | | for (int i = 0; i < 5; i++) { |
3067 | | SCFree(packets[i]); |
3068 | | } |
3069 | | |
3070 | | DefragDestroy(); |
3071 | | |
3072 | | PASS; |
3073 | | } |
3074 | | |
3075 | | static int DefragBsdMissingFragmentIpv6Test(void) |
3076 | | { |
3077 | | DefragInit(); |
3078 | | default_policy = DEFRAG_POLICY_BSD; |
3079 | | Packet *packets[5]; |
3080 | | |
3081 | | packets[0] = BuildIpv6TestPacketWithContent( |
3082 | | IPPROTO_ICMP, 189, 16 >> 3, 1, (uint8_t *)"AABBCCDDAABBDDCC", 16); |
3083 | | |
3084 | | packets[1] = |
3085 | | BuildIpv6TestPacketWithContent(IPPROTO_ICMP, 189, 40 >> 3, 1, (uint8_t *)"AACCBBDD", 8); |
3086 | | |
3087 | | packets[2] = BuildIpv6TestPacketWithContent( |
3088 | | IPPROTO_ICMP, 189, 8 >> 3, 1, (uint8_t *)"AACCDDBBAADDBBCC", 16); |
3089 | | |
3090 | | /* ICMP header. */ |
3091 | | packets[3] = BuildIpv6TestPacketWithContent(IPPROTO_ICMP, 189, 0, 1, (uint8_t *)"ZZZZZZZZ", 8); |
3092 | | |
3093 | | packets[4] = |
3094 | | BuildIpv6TestPacketWithContent(IPPROTO_ICMP, 189, 48 >> 3, 0, (uint8_t *)"DDCCBBAA", 8); |
3095 | | |
3096 | | Packet *r = Defrag(NULL, NULL, packets[0]); |
3097 | | FAIL_IF_NOT_NULL(r); |
3098 | | |
3099 | | r = Defrag(NULL, NULL, packets[1]); |
3100 | | FAIL_IF_NOT_NULL(r); |
3101 | | |
3102 | | r = Defrag(NULL, NULL, packets[2]); |
3103 | | FAIL_IF_NOT_NULL(r); |
3104 | | |
3105 | | r = Defrag(NULL, NULL, packets[3]); |
3106 | | FAIL_IF_NOT_NULL(r); |
3107 | | |
3108 | | r = Defrag(NULL, NULL, packets[4]); |
3109 | | FAIL_IF_NOT_NULL(r); |
3110 | | |
3111 | | #if 0 |
3112 | | PrintRawDataFp(stdout, GET_PKT_DATA(r) + 40, GET_PKT_LEN(r) - 40); |
3113 | | #endif |
3114 | | |
3115 | | for (int i = 0; i < 5; i++) { |
3116 | | SCFree(packets[i]); |
3117 | | } |
3118 | | |
3119 | | DefragDestroy(); |
3120 | | |
3121 | | PASS; |
3122 | | } |
3123 | | |
3124 | | #endif /* UNITTESTS */ |
3125 | | |
3126 | | void DefragRegisterTests(void) |
3127 | 0 | { |
3128 | | #ifdef UNITTESTS |
3129 | | UtRegisterTest("DefragInOrderSimpleTest", DefragInOrderSimpleTest); |
3130 | | UtRegisterTest("DefragReverseSimpleTest", DefragReverseSimpleTest); |
3131 | | UtRegisterTest("DefragSturgesNovakBsdTest", DefragSturgesNovakBsdTest); |
3132 | | UtRegisterTest("DefragSturgesNovakLinuxIpv4Test", |
3133 | | DefragSturgesNovakLinuxIpv4Test); |
3134 | | UtRegisterTest("DefragSturgesNovakWindowsIpv4Test", |
3135 | | DefragSturgesNovakWindowsIpv4Test); |
3136 | | UtRegisterTest("DefragSturgesNovakSolarisTest", |
3137 | | DefragSturgesNovakSolarisTest); |
3138 | | UtRegisterTest("DefragSturgesNovakFirstTest", DefragSturgesNovakFirstTest); |
3139 | | UtRegisterTest("DefragSturgesNovakLastTest", DefragSturgesNovakLastTest); |
3140 | | |
3141 | | UtRegisterTest("DefragNoDataIpv4Test", DefragNoDataIpv4Test); |
3142 | | UtRegisterTest("DefragTooLargeIpv4Test", DefragTooLargeIpv4Test); |
3143 | | |
3144 | | UtRegisterTest("DefragInOrderSimpleIpv6Test", DefragInOrderSimpleIpv6Test); |
3145 | | UtRegisterTest("DefragReverseSimpleIpv6Test", DefragReverseSimpleIpv6Test); |
3146 | | UtRegisterTest("DefragSturgesNovakBsdIpv6Test", DefragSturgesNovakBsdIpv6Test); |
3147 | | UtRegisterTest("DefragSturgesNovakLinuxIpv6Test", DefragSturgesNovakLinuxIpv6Test); |
3148 | | UtRegisterTest("DefragSturgesNovakWindowsIpv6Test", DefragSturgesNovakWindowsIpv6Test); |
3149 | | UtRegisterTest("DefragSturgesNovakSolarisIpv6Test", DefragSturgesNovakSolarisIpv6Test); |
3150 | | UtRegisterTest("DefragSturgesNovakFirstIpv6Test", DefragSturgesNovakFirstIpv6Test); |
3151 | | UtRegisterTest("DefragSturgesNovakLastIpv6Test", DefragSturgesNovakLastIpv6Test); |
3152 | | |
3153 | | UtRegisterTest("DefragVlanTest", DefragVlanTest); |
3154 | | UtRegisterTest("DefragVlanQinQTest", DefragVlanQinQTest); |
3155 | | UtRegisterTest("DefragVlanQinQinQTest", DefragVlanQinQinQTest); |
3156 | | UtRegisterTest("DefragTrackerReuseTest", DefragTrackerReuseTest); |
3157 | | UtRegisterTest("DefragTimeoutTest", DefragTimeoutTest); |
3158 | | UtRegisterTest("DefragMfIpv4Test", DefragMfIpv4Test); |
3159 | | UtRegisterTest("DefragMfIpv6Test", DefragMfIpv6Test); |
3160 | | UtRegisterTest("DefragTestBadProto", DefragTestBadProto); |
3161 | | |
3162 | | UtRegisterTest("DefragTestJeremyLinux", DefragTestJeremyLinux); |
3163 | | |
3164 | | UtRegisterTest("DefragBsdFragmentAfterNoMfIpv4Test", DefragBsdFragmentAfterNoMfIpv4Test); |
3165 | | UtRegisterTest("DefragBsdFragmentAfterNoMfIpv6Test", DefragBsdFragmentAfterNoMfIpv6Test); |
3166 | | UtRegisterTest("DefragBsdSubsequentOverlapsStartOfOriginalIpv4Test", |
3167 | | DefragBsdSubsequentOverlapsStartOfOriginalIpv4Test); |
3168 | | UtRegisterTest("DefragBsdSubsequentOverlapsStartOfOriginalIpv6Test", |
3169 | | DefragBsdSubsequentOverlapsStartOfOriginalIpv6Test); |
3170 | | UtRegisterTest("DefragBsdSubsequentOverlapsStartOfOriginalIpv4Test_2", |
3171 | | DefragBsdSubsequentOverlapsStartOfOriginalIpv4Test_2); |
3172 | | UtRegisterTest("DefragBsdSubsequentOverlapsStartOfOriginalIpv6Test_2", |
3173 | | DefragBsdSubsequentOverlapsStartOfOriginalIpv6Test_2); |
3174 | | UtRegisterTest("DefragBsdMissingFragmentIpv4Test", DefragBsdMissingFragmentIpv4Test); |
3175 | | UtRegisterTest("DefragBsdMissingFragmentIpv6Test", DefragBsdMissingFragmentIpv6Test); |
3176 | | #endif /* UNITTESTS */ |
3177 | 0 | } |