/src/suricata7/src/util-hash-lookup3.c
Line | Count | Source |
1 | | /* |
2 | | ------------------------------------------------------------------------------- |
3 | | lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
4 | | |
5 | | These are functions for producing 32-bit hashes for hash table lookup. |
6 | | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
7 | | are externally useful functions. Routines to test the hash are included |
8 | | if SELF_TEST is defined. You can use this free for any purpose. It's in |
9 | | the public domain. It has no warranty. |
10 | | |
11 | | You probably want to use hashlittle(). hashlittle() and hashbig() |
12 | | hash byte arrays. hashlittle() is is faster than hashbig() on |
13 | | little-endian machines. Intel and AMD are little-endian machines. |
14 | | On second thought, you probably want hashlittle2(), which is identical to |
15 | | hashlittle() except it returns two 32-bit hashes for the price of one. |
16 | | You could implement hashbig2() if you wanted but I haven't bothered here. |
17 | | |
18 | | If you want to find a hash of, say, exactly 7 integers, do |
19 | | a = i1; b = i2; c = i3; |
20 | | mix(a,b,c); |
21 | | a += i4; b += i5; c += i6; |
22 | | mix(a,b,c); |
23 | | a += i7; |
24 | | final(a,b,c); |
25 | | then use c as the hash value. If you have a variable length array of |
26 | | 4-byte integers to hash, use hashword(). If you have a byte array (like |
27 | | a character string), use hashlittle(). If you have several byte arrays, or |
28 | | a mix of things, see the comments above hashlittle(). |
29 | | |
30 | | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
31 | | then mix those integers. This is fast (you can do a lot more thorough |
32 | | mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
33 | | on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
34 | | ------------------------------------------------------------------------------- |
35 | | */ |
36 | | //#define SELF_TEST 1 |
37 | | |
38 | | #include <stdio.h> /* defines printf for tests */ |
39 | | #include <time.h> /* defines time_t for timings in the test */ |
40 | | #include <stdint.h> /* defines uint32_t etc */ |
41 | | #include <sys/param.h> /* attempt to define endianness */ |
42 | | #ifdef linux |
43 | | # include <endian.h> /* attempt to define endianness */ |
44 | | #endif |
45 | | #include "util-hash-lookup3.h" |
46 | | |
47 | | /* |
48 | | * My best guess at if you are big-endian or little-endian. This may |
49 | | * need adjustment. |
50 | | */ |
51 | | #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
52 | | __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
53 | | (defined(i386) || defined(__i386__) || defined(__i486__) || \ |
54 | | defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) |
55 | 191M | # define HASH_LITTLE_ENDIAN 1 |
56 | 0 | # define HASH_BIG_ENDIAN 0 |
57 | | #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
58 | | __BYTE_ORDER == __BIG_ENDIAN) || \ |
59 | | (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
60 | | # define HASH_LITTLE_ENDIAN 0 |
61 | | # define HASH_BIG_ENDIAN 1 |
62 | | #else |
63 | | # define HASH_LITTLE_ENDIAN 0 |
64 | | # define HASH_BIG_ENDIAN 0 |
65 | | #endif |
66 | | |
67 | | #define hashsize(n) ((uint32_t)1<<(n)) |
68 | | #define hashmask(n) (hashsize(n)-1) |
69 | 2.24G | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
70 | | |
71 | | /* |
72 | | ------------------------------------------------------------------------------- |
73 | | mix -- mix 3 32-bit values reversibly. |
74 | | |
75 | | This is reversible, so any information in (a,b,c) before mix() is |
76 | | still in (a,b,c) after mix(). |
77 | | |
78 | | If four pairs of (a,b,c) inputs are run through mix(), or through |
79 | | mix() in reverse, there are at least 32 bits of the output that |
80 | | are sometimes the same for one pair and different for another pair. |
81 | | This was tested for: |
82 | | * pairs that differed by one bit, by two bits, in any combination |
83 | | of top bits of (a,b,c), or in any combination of bottom bits of |
84 | | (a,b,c). |
85 | | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
86 | | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
87 | | is commonly produced by subtraction) look like a single 1-bit |
88 | | difference. |
89 | | * the base values were pseudorandom, all zero but one bit set, or |
90 | | all zero plus a counter that starts at zero. |
91 | | |
92 | | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
93 | | satisfy this are |
94 | | 4 6 8 16 19 4 |
95 | | 9 15 3 18 27 15 |
96 | | 14 9 3 7 17 3 |
97 | | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
98 | | for "differ" defined as + with a one-bit base and a two-bit delta. I |
99 | | used http://burtleburtle.net/bob/hash/avalanche.html to choose |
100 | | the operations, constants, and arrangements of the variables. |
101 | | |
102 | | This does not achieve avalanche. There are input bits of (a,b,c) |
103 | | that fail to affect some output bits of (a,b,c), especially of a. The |
104 | | most thoroughly mixed value is c, but it doesn't really even achieve |
105 | | avalanche in c. |
106 | | |
107 | | This allows some parallelism. Read-after-writes are good at doubling |
108 | | the number of bits affected, so the goal of mixing pulls in the opposite |
109 | | direction as the goal of parallelism. I did what I could. Rotates |
110 | | seem to cost as much as shifts on every machine I could lay my hands |
111 | | on, and rotates are much kinder to the top and bottom bits, so I used |
112 | | rotates. |
113 | | ------------------------------------------------------------------------------- |
114 | | */ |
115 | 243M | #define mix(a,b,c) \ |
116 | 243M | { \ |
117 | 243M | a -= c; a ^= rot(c, 4); c += b; \ |
118 | 243M | b -= a; b ^= rot(a, 6); a += c; \ |
119 | 243M | c -= b; c ^= rot(b, 8); b += a; \ |
120 | 243M | a -= c; a ^= rot(c,16); c += b; \ |
121 | 243M | b -= a; b ^= rot(a,19); a += c; \ |
122 | 243M | c -= b; c ^= rot(b, 4); b += a; \ |
123 | 243M | } |
124 | | |
125 | | /* |
126 | | ------------------------------------------------------------------------------- |
127 | | final -- final mixing of 3 32-bit values (a,b,c) into c |
128 | | |
129 | | Pairs of (a,b,c) values differing in only a few bits will usually |
130 | | produce values of c that look totally different. This was tested for |
131 | | * pairs that differed by one bit, by two bits, in any combination |
132 | | of top bits of (a,b,c), or in any combination of bottom bits of |
133 | | (a,b,c). |
134 | | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
135 | | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
136 | | is commonly produced by subtraction) look like a single 1-bit |
137 | | difference. |
138 | | * the base values were pseudorandom, all zero but one bit set, or |
139 | | all zero plus a counter that starts at zero. |
140 | | |
141 | | These constants passed: |
142 | | 14 11 25 16 4 14 24 |
143 | | 12 14 25 16 4 14 24 |
144 | | and these came close: |
145 | | 4 8 15 26 3 22 24 |
146 | | 10 8 15 26 3 22 24 |
147 | | 11 8 15 26 3 22 24 |
148 | | ------------------------------------------------------------------------------- |
149 | | */ |
150 | 111M | #define final(a,b,c) \ |
151 | 111M | { \ |
152 | 111M | c ^= b; c -= rot(b,14); \ |
153 | 111M | a ^= c; a -= rot(c,11); \ |
154 | 111M | b ^= a; b -= rot(a,25); \ |
155 | 111M | c ^= b; c -= rot(b,16); \ |
156 | 111M | a ^= c; a -= rot(c,4); \ |
157 | 111M | b ^= a; b -= rot(a,14); \ |
158 | 111M | c ^= b; c -= rot(b,24); \ |
159 | 111M | } |
160 | | |
161 | | /* |
162 | | -------------------------------------------------------------------- |
163 | | This works on all machines. To be useful, it requires |
164 | | -- that the key be an array of uint32_t's, and |
165 | | -- that the length be the number of uint32_t's in the key |
166 | | |
167 | | The function hashword() is identical to hashlittle() on little-endian |
168 | | machines, and identical to hashbig() on big-endian machines, |
169 | | except that the length has to be measured in uint32_ts rather than in |
170 | | bytes. hashlittle() is more complicated than hashword() only because |
171 | | hashlittle() has to dance around fitting the key bytes into registers. |
172 | | -------------------------------------------------------------------- |
173 | | */ |
174 | | uint32_t hashword( |
175 | | const uint32_t *k, /* the key, an array of uint32_t values */ |
176 | | size_t length, /* the length of the key, in uint32_ts */ |
177 | | uint32_t initval) /* the previous hash, or an arbitrary value */ |
178 | 15.7M | { |
179 | 15.7M | uint32_t a,b,c; |
180 | | |
181 | | /* Set up the internal state */ |
182 | 15.7M | a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; |
183 | | |
184 | | /*------------------------------------------------- handle most of the key */ |
185 | 33.5M | while (length > 3) |
186 | 17.7M | { |
187 | 17.7M | a += k[0]; |
188 | 17.7M | b += k[1]; |
189 | 17.7M | c += k[2]; |
190 | 17.7M | mix(a,b,c); |
191 | 17.7M | length -= 3; |
192 | 17.7M | k += 3; |
193 | 17.7M | } |
194 | | |
195 | | /*------------------------------------------- handle the last 3 uint32_t's */ |
196 | 15.7M | switch(length) /* all the case statements fall through */ |
197 | 15.7M | { |
198 | 14.9M | case 3 : c+=k[2]; /* fall through */ |
199 | 15.6M | case 2 : b+=k[1]; /* fall through */ |
200 | 15.7M | case 1 : a+=k[0]; |
201 | 15.7M | final(a,b,c); /* fall through */ |
202 | 15.7M | case 0: /* case 0: nothing left to add */ |
203 | 15.7M | break; |
204 | 15.7M | } |
205 | | /*------------------------------------------------------ report the result */ |
206 | 15.7M | return c; |
207 | 15.7M | } |
208 | | |
209 | | |
210 | | /* |
211 | | -------------------------------------------------------------------- |
212 | | hashword2() -- same as hashword(), but take two seeds and return two |
213 | | 32-bit values. pc and pb must both be nonnull, and *pc and *pb must |
214 | | both be initialized with seeds. If you pass in (*pb)==0, the output |
215 | | (*pc) will be the same as the return value from hashword(). |
216 | | -------------------------------------------------------------------- |
217 | | */ |
218 | | void hashword2 ( |
219 | | const uint32_t *k, /* the key, an array of uint32_t values */ |
220 | | size_t length, /* the length of the key, in uint32_ts */ |
221 | | uint32_t *pc, /* IN: seed OUT: primary hash value */ |
222 | | uint32_t *pb) /* IN: more seed OUT: secondary hash value */ |
223 | 0 | { |
224 | 0 | uint32_t a,b,c; |
225 | | |
226 | | /* Set up the internal state */ |
227 | 0 | a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; |
228 | 0 | c += *pb; |
229 | | |
230 | | /*------------------------------------------------- handle most of the key */ |
231 | 0 | while (length > 3) |
232 | 0 | { |
233 | 0 | a += k[0]; |
234 | 0 | b += k[1]; |
235 | 0 | c += k[2]; |
236 | 0 | mix(a,b,c); |
237 | 0 | length -= 3; |
238 | 0 | k += 3; |
239 | 0 | } |
240 | | |
241 | | /*------------------------------------------- handle the last 3 uint32_t's */ |
242 | 0 | switch(length) /* all the case statements fall through */ |
243 | 0 | { |
244 | 0 | case 3 : c+=k[2]; /* fall through */ |
245 | 0 | case 2 : b+=k[1]; /* fall through */ |
246 | 0 | case 1 : a+=k[0]; |
247 | 0 | final(a,b,c); /* fall through */ |
248 | 0 | case 0: /* case 0: nothing left to add */ |
249 | 0 | break; |
250 | 0 | } |
251 | | /*------------------------------------------------------ report the result */ |
252 | 0 | *pc=c; *pb=b; |
253 | 0 | } |
254 | | |
255 | | |
256 | | /* |
257 | | ------------------------------------------------------------------------------- |
258 | | hashlittle() -- hash a variable-length key into a 32-bit value |
259 | | k : the key (the unaligned variable-length array of bytes) |
260 | | length : the length of the key, counting by bytes |
261 | | initval : can be any 4-byte value |
262 | | Returns a 32-bit value. Every bit of the key affects every bit of |
263 | | the return value. Two keys differing by one or two bits will have |
264 | | totally different hash values. |
265 | | |
266 | | The best hash table sizes are powers of 2. There is no need to do |
267 | | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
268 | | use a bitmask. For example, if you need only 10 bits, do |
269 | | h = (h & hashmask(10)); |
270 | | In which case, the hash table should have hashsize(10) elements. |
271 | | |
272 | | If you are hashing n strings (uint8_t **)k, do it like this: |
273 | | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
274 | | |
275 | | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
276 | | code any way you wish, private, educational, or commercial. It's free. |
277 | | |
278 | | Use for hash table lookup, or anything where one collision in 2^^32 is |
279 | | acceptable. Do NOT use for cryptographic purposes. |
280 | | ------------------------------------------------------------------------------- |
281 | | */ |
282 | | |
283 | | uint32_t hashlittle( const void *key, size_t length, uint32_t initval) |
284 | 0 | { |
285 | 0 | uint32_t a,b,c; /* internal state */ |
286 | 0 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
287 | | |
288 | | /* Set up the internal state */ |
289 | 0 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
290 | |
|
291 | 0 | u.ptr = key; |
292 | 0 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
293 | 0 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
294 | | |
295 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
296 | 0 | while (length > 12) |
297 | 0 | { |
298 | 0 | a += k[0]; |
299 | 0 | b += k[1]; |
300 | 0 | c += k[2]; |
301 | 0 | mix(a,b,c); |
302 | 0 | length -= 12; |
303 | 0 | k += 3; |
304 | 0 | } |
305 | | |
306 | | /*----------------------------- handle the last (probably partial) block */ |
307 | | /* |
308 | | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
309 | | * then masks off the part it's not allowed to read. Because the |
310 | | * string is aligned, the masked-off tail is in the same word as the |
311 | | * rest of the string. Every machine with memory protection I've seen |
312 | | * does it on word boundaries, so is OK with this. But VALGRIND will |
313 | | * still catch it and complain. The masking trick does make the hash |
314 | | * noticeably faster for short strings (like English words). |
315 | | */ |
316 | 0 | #ifndef VALGRIND |
317 | |
|
318 | 0 | switch(length) |
319 | 0 | { |
320 | 0 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
321 | 0 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
322 | 0 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
323 | 0 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
324 | 0 | case 8 : b+=k[1]; a+=k[0]; break; |
325 | 0 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
326 | 0 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
327 | 0 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
328 | 0 | case 4 : a+=k[0]; break; |
329 | 0 | case 3 : a+=k[0]&0xffffff; break; |
330 | 0 | case 2 : a+=k[0]&0xffff; break; |
331 | 0 | case 1 : a+=k[0]&0xff; break; |
332 | 0 | case 0 : return c; /* zero length strings require no mixing */ |
333 | 0 | } |
334 | |
|
335 | | #else /* make valgrind happy */ |
336 | | |
337 | | const uint8_t *k8 = (const uint8_t *)k; |
338 | | |
339 | | switch(length) |
340 | | { |
341 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
342 | | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
343 | | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
344 | | case 9 : c+=k8[8]; /* fall through */ |
345 | | case 8 : b+=k[1]; a+=k[0]; break; |
346 | | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
347 | | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
348 | | case 5 : b+=k8[4]; /* fall through */ |
349 | | case 4 : a+=k[0]; break; |
350 | | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
351 | | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
352 | | case 1 : a+=k8[0]; break; |
353 | | case 0 : return c; |
354 | | } |
355 | | |
356 | | #endif /* !valgrind */ |
357 | |
|
358 | 0 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
359 | 0 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
360 | 0 | const uint8_t *k8; |
361 | | |
362 | | /*--------------- all but last block: aligned reads and different mixing */ |
363 | 0 | while (length > 12) |
364 | 0 | { |
365 | 0 | a += k[0] + (((uint32_t)k[1])<<16); |
366 | 0 | b += k[2] + (((uint32_t)k[3])<<16); |
367 | 0 | c += k[4] + (((uint32_t)k[5])<<16); |
368 | 0 | mix(a,b,c); |
369 | 0 | length -= 12; |
370 | 0 | k += 6; |
371 | 0 | } |
372 | | |
373 | | /*----------------------------- handle the last (probably partial) block */ |
374 | 0 | k8 = (const uint8_t *)k; |
375 | 0 | switch(length) |
376 | 0 | { |
377 | 0 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
378 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
379 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
380 | 0 | break; |
381 | 0 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
382 | 0 | case 10: c+=k[4]; |
383 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
384 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
385 | 0 | break; |
386 | 0 | case 9 : c+=k8[8]; /* fall through */ |
387 | 0 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
388 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
389 | 0 | break; |
390 | 0 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
391 | 0 | case 6 : b+=k[2]; |
392 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
393 | 0 | break; |
394 | 0 | case 5 : b+=k8[4]; /* fall through */ |
395 | 0 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
396 | 0 | break; |
397 | 0 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
398 | 0 | case 2 : a+=k[0]; |
399 | 0 | break; |
400 | 0 | case 1 : a+=k8[0]; |
401 | 0 | break; |
402 | 0 | case 0 : return c; /* zero length requires no mixing */ |
403 | 0 | } |
404 | |
|
405 | 0 | } else { /* need to read the key one byte at a time */ |
406 | 0 | const uint8_t *k = (const uint8_t *)key; |
407 | | |
408 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
409 | 0 | while (length > 12) |
410 | 0 | { |
411 | 0 | a += k[0]; |
412 | 0 | a += ((uint32_t)k[1])<<8; |
413 | 0 | a += ((uint32_t)k[2])<<16; |
414 | 0 | a += ((uint32_t)k[3])<<24; |
415 | 0 | b += k[4]; |
416 | 0 | b += ((uint32_t)k[5])<<8; |
417 | 0 | b += ((uint32_t)k[6])<<16; |
418 | 0 | b += ((uint32_t)k[7])<<24; |
419 | 0 | c += k[8]; |
420 | 0 | c += ((uint32_t)k[9])<<8; |
421 | 0 | c += ((uint32_t)k[10])<<16; |
422 | 0 | c += ((uint32_t)k[11])<<24; |
423 | 0 | mix(a,b,c); |
424 | 0 | length -= 12; |
425 | 0 | k += 12; |
426 | 0 | } |
427 | | |
428 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
429 | 0 | switch(length) /* all the case statements fall through */ |
430 | 0 | { |
431 | 0 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */ |
432 | 0 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */ |
433 | 0 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */ |
434 | 0 | case 9 : c+=k[8]; /* fall through */ |
435 | 0 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */ |
436 | 0 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */ |
437 | 0 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */ |
438 | 0 | case 5 : b+=k[4]; /* fall through */ |
439 | 0 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */ |
440 | 0 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */ |
441 | 0 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */ |
442 | 0 | case 1 : a+=k[0]; |
443 | 0 | break; |
444 | 0 | case 0 : return c; |
445 | 0 | } |
446 | 0 | } |
447 | | |
448 | 0 | final(a,b,c); |
449 | 0 | return c; |
450 | 0 | } |
451 | | |
452 | | |
453 | | /* |
454 | | ------------------------------------------------------------------------------- |
455 | | hashlittle_safe() -- hash a variable-length key into a 32-bit value |
456 | | k : the key (the unaligned variable-length array of bytes) |
457 | | length : the length of the key, counting by bytes |
458 | | initval : can be any 4-byte value |
459 | | Returns a 32-bit value. Every bit of the key affects every bit of |
460 | | the return value. Two keys differing by one or two bits will have |
461 | | totally different hash values. |
462 | | |
463 | | The best hash table sizes are powers of 2. There is no need to do |
464 | | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
465 | | use a bitmask. For example, if you need only 10 bits, do |
466 | | h = (h & hashmask(10)); |
467 | | In which case, the hash table should have hashsize(10) elements. |
468 | | |
469 | | If you are hashing n strings (uint8_t **)k, do it like this: |
470 | | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
471 | | |
472 | | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
473 | | code any way you wish, private, educational, or commercial. It's free. |
474 | | |
475 | | This version has been modified from hashlittle() above to avoid accesses beyond |
476 | | the last byte of the key, which causes warnings from Valgrind and Address |
477 | | Sanitizer. |
478 | | |
479 | | Use for hash table lookup, or anything where one collision in 2^^32 is |
480 | | acceptable. Do NOT use for cryptographic purposes. |
481 | | ------------------------------------------------------------------------------- |
482 | | */ |
483 | | |
484 | | uint32_t hashlittle_safe(const void *key, size_t length, uint32_t initval) |
485 | 95.8M | { |
486 | 95.8M | uint32_t a,b,c; /* internal state */ |
487 | 95.8M | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
488 | | |
489 | | /* Set up the internal state */ |
490 | 95.8M | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
491 | | |
492 | 95.8M | u.ptr = key; |
493 | 95.8M | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
494 | 95.8M | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
495 | | |
496 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
497 | 321M | while (length > 12) |
498 | 225M | { |
499 | 225M | a += k[0]; |
500 | 225M | b += k[1]; |
501 | 225M | c += k[2]; |
502 | 225M | mix(a,b,c); |
503 | 225M | length -= 12; |
504 | 225M | k += 3; |
505 | 225M | } |
506 | | |
507 | | /*----------------------------- handle the last (probably partial) block */ |
508 | | /* |
509 | | * Note that unlike hashlittle() above, we use the "safe" version of this |
510 | | * block that is #ifdef VALGRIND above, in order to avoid warnings from |
511 | | * Valgrind or Address Sanitizer. |
512 | | */ |
513 | | |
514 | 95.8M | const uint8_t *k8 = (const uint8_t *)k; |
515 | | |
516 | 95.8M | switch(length) |
517 | 95.8M | { |
518 | 11.3M | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
519 | 3.12M | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
520 | 6.51M | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
521 | 10.8M | case 9 : c+=k8[8]; /* fall through */ |
522 | 14.7M | case 8 : b+=k[1]; a+=k[0]; break; |
523 | 2.89M | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
524 | 6.79M | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
525 | 13.0M | case 5 : b+=k8[4]; /* fall through */ |
526 | 56.2M | case 4 : a+=k[0]; break; |
527 | 8.79M | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
528 | 11.1M | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
529 | 13.5M | case 1 : a+=k8[0]; break; |
530 | 989 | case 0 : return c; |
531 | 95.8M | } |
532 | 95.8M | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
533 | 0 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
534 | 0 | const uint8_t *k8; |
535 | | |
536 | | /*--------------- all but last block: aligned reads and different mixing */ |
537 | 0 | while (length > 12) |
538 | 0 | { |
539 | 0 | a += k[0] + (((uint32_t)k[1])<<16); |
540 | 0 | b += k[2] + (((uint32_t)k[3])<<16); |
541 | 0 | c += k[4] + (((uint32_t)k[5])<<16); |
542 | 0 | mix(a,b,c); |
543 | 0 | length -= 12; |
544 | 0 | k += 6; |
545 | 0 | } |
546 | | |
547 | | /*----------------------------- handle the last (probably partial) block */ |
548 | 0 | k8 = (const uint8_t *)k; |
549 | 0 | switch(length) |
550 | 0 | { |
551 | 0 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
552 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
553 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
554 | 0 | break; |
555 | 0 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
556 | 0 | case 10: c+=k[4]; |
557 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
558 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
559 | 0 | break; |
560 | 0 | case 9 : c+=k8[8]; /* fall through */ |
561 | 0 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
562 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
563 | 0 | break; |
564 | 0 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
565 | 0 | case 6 : b+=k[2]; |
566 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
567 | 0 | break; |
568 | 0 | case 5 : b+=k8[4]; /* fall through */ |
569 | 0 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
570 | 0 | break; |
571 | 0 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
572 | 0 | case 2 : a+=k[0]; |
573 | 0 | break; |
574 | 0 | case 1 : a+=k8[0]; |
575 | 0 | break; |
576 | 0 | case 0 : return c; /* zero length requires no mixing */ |
577 | 0 | } |
578 | |
|
579 | 1.63k | } else { /* need to read the key one byte at a time */ |
580 | 1.63k | const uint8_t *k = (const uint8_t *)key; |
581 | | |
582 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
583 | 1.63k | while (length > 12) |
584 | 0 | { |
585 | 0 | a += k[0]; |
586 | 0 | a += ((uint32_t)k[1])<<8; |
587 | 0 | a += ((uint32_t)k[2])<<16; |
588 | 0 | a += ((uint32_t)k[3])<<24; |
589 | 0 | b += k[4]; |
590 | 0 | b += ((uint32_t)k[5])<<8; |
591 | 0 | b += ((uint32_t)k[6])<<16; |
592 | 0 | b += ((uint32_t)k[7])<<24; |
593 | 0 | c += k[8]; |
594 | 0 | c += ((uint32_t)k[9])<<8; |
595 | 0 | c += ((uint32_t)k[10])<<16; |
596 | 0 | c += ((uint32_t)k[11])<<24; |
597 | 0 | mix(a,b,c); |
598 | 0 | length -= 12; |
599 | 0 | k += 12; |
600 | 0 | } |
601 | | |
602 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
603 | 1.63k | switch(length) /* all the case statements fall through */ |
604 | 1.63k | { |
605 | 0 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */ |
606 | 0 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */ |
607 | 0 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */ |
608 | 0 | case 9 : c+=k[8]; /* fall through */ |
609 | 0 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */ |
610 | 0 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */ |
611 | 0 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */ |
612 | 0 | case 5 : b+=k[4]; /* fall through */ |
613 | 0 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */ |
614 | 0 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */ |
615 | 0 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */ |
616 | 0 | case 1 : a+=k[0]; |
617 | 0 | break; |
618 | 1.63k | case 0 : return c; |
619 | 1.63k | } |
620 | 1.63k | } |
621 | | |
622 | 95.8M | final(a,b,c); |
623 | 95.8M | return c; |
624 | 95.8M | } |
625 | | |
626 | | |
627 | | /* |
628 | | * hashlittle2: return 2 32-bit hash values |
629 | | * |
630 | | * This is identical to hashlittle(), except it returns two 32-bit hash |
631 | | * values instead of just one. This is good enough for hash table |
632 | | * lookup with 2^^64 buckets, or if you want a second hash if you're not |
633 | | * happy with the first, or if you want a probably-unique 64-bit ID for |
634 | | * the key. *pc is better mixed than *pb, so use *pc first. If you want |
635 | | * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". |
636 | | */ |
637 | | void hashlittle2( |
638 | | const void *key, /* the key to hash */ |
639 | | size_t length, /* length of the key */ |
640 | | uint32_t *pc, /* IN: primary initval, OUT: primary hash */ |
641 | | uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ |
642 | 0 | { |
643 | 0 | uint32_t a,b,c; /* internal state */ |
644 | 0 | union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
645 | | |
646 | | /* Set up the internal state */ |
647 | 0 | a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; |
648 | 0 | c += *pb; |
649 | |
|
650 | 0 | u.ptr = key; |
651 | 0 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
652 | 0 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
653 | | |
654 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
655 | 0 | while (length > 12) |
656 | 0 | { |
657 | 0 | a += k[0]; |
658 | 0 | b += k[1]; |
659 | 0 | c += k[2]; |
660 | 0 | mix(a,b,c); |
661 | 0 | length -= 12; |
662 | 0 | k += 3; |
663 | 0 | } |
664 | | |
665 | | /*----------------------------- handle the last (probably partial) block */ |
666 | | /* |
667 | | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
668 | | * then masks off the part it's not allowed to read. Because the |
669 | | * string is aligned, the masked-off tail is in the same word as the |
670 | | * rest of the string. Every machine with memory protection I've seen |
671 | | * does it on word boundaries, so is OK with this. But VALGRIND will |
672 | | * still catch it and complain. The masking trick does make the hash |
673 | | * noticeably faster for short strings (like English words). |
674 | | */ |
675 | 0 | #ifndef VALGRIND |
676 | |
|
677 | 0 | switch(length) |
678 | 0 | { |
679 | 0 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
680 | 0 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
681 | 0 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
682 | 0 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
683 | 0 | case 8 : b+=k[1]; a+=k[0]; break; |
684 | 0 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
685 | 0 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
686 | 0 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
687 | 0 | case 4 : a+=k[0]; break; |
688 | 0 | case 3 : a+=k[0]&0xffffff; break; |
689 | 0 | case 2 : a+=k[0]&0xffff; break; |
690 | 0 | case 1 : a+=k[0]&0xff; break; |
691 | 0 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
692 | 0 | } |
693 | |
|
694 | | #else /* make valgrind happy */ |
695 | | |
696 | | const uint8_t *k8 = (const uint8_t *)k; |
697 | | switch(length) |
698 | | { |
699 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
700 | | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
701 | | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
702 | | case 9 : c+=k8[8]; /* fall through */ |
703 | | case 8 : b+=k[1]; a+=k[0]; break; |
704 | | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
705 | | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
706 | | case 5 : b+=k8[4]; /* fall through */ |
707 | | case 4 : a+=k[0]; break; |
708 | | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
709 | | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
710 | | case 1 : a+=k8[0]; break; |
711 | | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
712 | | } |
713 | | |
714 | | #endif /* !valgrind */ |
715 | |
|
716 | 0 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
717 | 0 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
718 | 0 | const uint8_t *k8; |
719 | | |
720 | | /*--------------- all but last block: aligned reads and different mixing */ |
721 | 0 | while (length > 12) |
722 | 0 | { |
723 | 0 | a += k[0] + (((uint32_t)k[1])<<16); |
724 | 0 | b += k[2] + (((uint32_t)k[3])<<16); |
725 | 0 | c += k[4] + (((uint32_t)k[5])<<16); |
726 | 0 | mix(a,b,c); |
727 | 0 | length -= 12; |
728 | 0 | k += 6; |
729 | 0 | } |
730 | | |
731 | | /*----------------------------- handle the last (probably partial) block */ |
732 | 0 | k8 = (const uint8_t *)k; |
733 | 0 | switch(length) |
734 | 0 | { |
735 | 0 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
736 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
737 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
738 | 0 | break; |
739 | 0 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
740 | 0 | case 10: c+=k[4]; |
741 | 0 | b+=k[2]+(((uint32_t)k[3])<<16); |
742 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
743 | 0 | break; |
744 | 0 | case 9 : c+=k8[8]; /* fall through */ |
745 | 0 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
746 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
747 | 0 | break; |
748 | 0 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
749 | 0 | case 6 : b+=k[2]; |
750 | 0 | a+=k[0]+(((uint32_t)k[1])<<16); |
751 | 0 | break; |
752 | 0 | case 5 : b+=k8[4]; /* fall through */ |
753 | 0 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
754 | 0 | break; |
755 | 0 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
756 | 0 | case 2 : a+=k[0]; |
757 | 0 | break; |
758 | 0 | case 1 : a+=k8[0]; |
759 | 0 | break; |
760 | 0 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
761 | 0 | } |
762 | |
|
763 | 0 | } else { /* need to read the key one byte at a time */ |
764 | 0 | const uint8_t *k = (const uint8_t *)key; |
765 | | |
766 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
767 | 0 | while (length > 12) |
768 | 0 | { |
769 | 0 | a += k[0]; |
770 | 0 | a += ((uint32_t)k[1])<<8; |
771 | 0 | a += ((uint32_t)k[2])<<16; |
772 | 0 | a += ((uint32_t)k[3])<<24; |
773 | 0 | b += k[4]; |
774 | 0 | b += ((uint32_t)k[5])<<8; |
775 | 0 | b += ((uint32_t)k[6])<<16; |
776 | 0 | b += ((uint32_t)k[7])<<24; |
777 | 0 | c += k[8]; |
778 | 0 | c += ((uint32_t)k[9])<<8; |
779 | 0 | c += ((uint32_t)k[10])<<16; |
780 | 0 | c += ((uint32_t)k[11])<<24; |
781 | 0 | mix(a,b,c); |
782 | 0 | length -= 12; |
783 | 0 | k += 12; |
784 | 0 | } |
785 | | |
786 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
787 | 0 | switch(length) /* all the case statements fall through */ |
788 | 0 | { |
789 | 0 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */ |
790 | 0 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */ |
791 | 0 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */ |
792 | 0 | case 9 : c+=k[8]; /* fall through */ |
793 | 0 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */ |
794 | 0 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */ |
795 | 0 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */ |
796 | 0 | case 5 : b+=k[4]; /* fall through */ |
797 | 0 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */ |
798 | 0 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */ |
799 | 0 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */ |
800 | 0 | case 1 : a+=k[0]; |
801 | 0 | break; |
802 | 0 | case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ |
803 | 0 | } |
804 | 0 | } |
805 | | |
806 | 0 | final(a,b,c); |
807 | 0 | *pc=c; *pb=b; |
808 | 0 | } |
809 | | |
810 | | |
811 | | |
812 | | /* |
813 | | * hashbig(): |
814 | | * This is the same as hashword() on big-endian machines. It is different |
815 | | * from hashlittle() on all machines. hashbig() takes advantage of |
816 | | * big-endian byte ordering. |
817 | | */ |
818 | | uint32_t hashbig( const void *key, size_t length, uint32_t initval) |
819 | 0 | { |
820 | 0 | uint32_t a,b,c; |
821 | 0 | union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ |
822 | | |
823 | | /* Set up the internal state */ |
824 | 0 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
825 | |
|
826 | 0 | u.ptr = key; |
827 | 0 | if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { |
828 | 0 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
829 | | |
830 | | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
831 | 0 | while (length > 12) |
832 | 0 | { |
833 | 0 | a += k[0]; |
834 | 0 | b += k[1]; |
835 | 0 | c += k[2]; |
836 | 0 | mix(a,b,c); |
837 | 0 | length -= 12; |
838 | 0 | k += 3; |
839 | 0 | } |
840 | | |
841 | | /*----------------------------- handle the last (probably partial) block */ |
842 | | /* |
843 | | * "k[2]<<8" actually reads beyond the end of the string, but |
844 | | * then shifts out the part it's not allowed to read. Because the |
845 | | * string is aligned, the illegal read is in the same word as the |
846 | | * rest of the string. Every machine with memory protection I've seen |
847 | | * does it on word boundaries, so is OK with this. But VALGRIND will |
848 | | * still catch it and complain. The masking trick does make the hash |
849 | | * noticeably faster for short strings (like English words). |
850 | | */ |
851 | 0 | #ifndef VALGRIND |
852 | |
|
853 | 0 | switch(length) |
854 | 0 | { |
855 | 0 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
856 | 0 | case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; |
857 | 0 | case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; |
858 | 0 | case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; |
859 | 0 | case 8 : b+=k[1]; a+=k[0]; break; |
860 | 0 | case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; |
861 | 0 | case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; |
862 | 0 | case 5 : b+=k[1]&0xff000000; a+=k[0]; break; |
863 | 0 | case 4 : a+=k[0]; break; |
864 | 0 | case 3 : a+=k[0]&0xffffff00; break; |
865 | 0 | case 2 : a+=k[0]&0xffff0000; break; |
866 | 0 | case 1 : a+=k[0]&0xff000000; break; |
867 | 0 | case 0 : return c; /* zero length strings require no mixing */ |
868 | 0 | } |
869 | |
|
870 | | #else /* make valgrind happy */ |
871 | | |
872 | | const uint8_t *k8 = (const uint8_t *)k; |
873 | | switch(length) /* all the case statements fall through */ |
874 | | { |
875 | | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
876 | | case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ |
877 | | case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ |
878 | | case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ |
879 | | case 8 : b+=k[1]; a+=k[0]; break; |
880 | | case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ |
881 | | case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ |
882 | | case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ |
883 | | case 4 : a+=k[0]; break; |
884 | | case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ |
885 | | case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ |
886 | | case 1 : a+=((uint32_t)k8[0])<<24; break; |
887 | | case 0 : return c; |
888 | | } |
889 | | |
890 | | #endif /* !VALGRIND */ |
891 | |
|
892 | 0 | } else { /* need to read the key one byte at a time */ |
893 | 0 | const uint8_t *k = (const uint8_t *)key; |
894 | | |
895 | | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
896 | 0 | while (length > 12) |
897 | 0 | { |
898 | 0 | a += ((uint32_t)k[0])<<24; |
899 | 0 | a += ((uint32_t)k[1])<<16; |
900 | 0 | a += ((uint32_t)k[2])<<8; |
901 | 0 | a += ((uint32_t)k[3]); |
902 | 0 | b += ((uint32_t)k[4])<<24; |
903 | 0 | b += ((uint32_t)k[5])<<16; |
904 | 0 | b += ((uint32_t)k[6])<<8; |
905 | 0 | b += ((uint32_t)k[7]); |
906 | 0 | c += ((uint32_t)k[8])<<24; |
907 | 0 | c += ((uint32_t)k[9])<<16; |
908 | 0 | c += ((uint32_t)k[10])<<8; |
909 | 0 | c += ((uint32_t)k[11]); |
910 | 0 | mix(a,b,c); |
911 | 0 | length -= 12; |
912 | 0 | k += 12; |
913 | 0 | } |
914 | | |
915 | | /*-------------------------------- last block: affect all 32 bits of (c) */ |
916 | 0 | switch(length) /* all the case statements fall through */ |
917 | 0 | { |
918 | 0 | case 12: c+=k[11]; /* fall through */ |
919 | 0 | case 11: c+=((uint32_t)k[10])<<8; /* fall through */ |
920 | 0 | case 10: c+=((uint32_t)k[9])<<16; /* fall through */ |
921 | 0 | case 9 : c+=((uint32_t)k[8])<<24; /* fall through */ |
922 | 0 | case 8 : b+=k[7]; /* fall through */ |
923 | 0 | case 7 : b+=((uint32_t)k[6])<<8; /* fall through */ |
924 | 0 | case 6 : b+=((uint32_t)k[5])<<16; /* fall through */ |
925 | 0 | case 5 : b+=((uint32_t)k[4])<<24; /* fall through */ |
926 | 0 | case 4 : a+=k[3]; /* fall through */ |
927 | 0 | case 3 : a+=((uint32_t)k[2])<<8; /* fall through */ |
928 | 0 | case 2 : a+=((uint32_t)k[1])<<16; /* fall through */ |
929 | 0 | case 1 : a+=((uint32_t)k[0])<<24; |
930 | 0 | break; |
931 | 0 | case 0 : return c; |
932 | 0 | } |
933 | 0 | } |
934 | | |
935 | 0 | final(a,b,c); |
936 | 0 | return c; |
937 | 0 | } |
938 | | |
939 | | |
940 | | #ifdef SELF_TEST |
941 | | |
942 | | /* used for timings */ |
943 | | void driver1(void) |
944 | | { |
945 | | uint8_t buf[256]; |
946 | | uint32_t i; |
947 | | uint32_t h=0; |
948 | | time_t a,z; |
949 | | |
950 | | time(&a); |
951 | | for (i=0; i<256; ++i) buf[i] = 'x'; |
952 | | for (i=0; i<1; ++i) |
953 | | { |
954 | | h = hashlittle(&buf[0],1,h); |
955 | | } |
956 | | time(&z); |
957 | | if (z-a > 0) printf("time %d %.8x\n", z-a, h); |
958 | | } |
959 | | |
960 | | /* check that every input bit changes every output bit half the time */ |
961 | | #define HASHSTATE 1 |
962 | | #define HASHLEN 1 |
963 | | #define MAXPAIR 60 |
964 | | #define MAXLEN 70 |
965 | | void driver2(void) |
966 | | { |
967 | | uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; |
968 | | uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; |
969 | | uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; |
970 | | uint32_t x[HASHSTATE],y[HASHSTATE]; |
971 | | uint32_t hlen; |
972 | | |
973 | | printf("No more than %d trials should ever be needed \n",MAXPAIR/2); |
974 | | for (hlen=0; hlen < MAXLEN; ++hlen) |
975 | | { |
976 | | z=0; |
977 | | for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */ |
978 | | { |
979 | | for (j=0; j<8; ++j) /*------------------------ for each input bit, */ |
980 | | { |
981 | | for (m = 1; m < 8; ++m) /*------------ for several possible initvals, */ |
982 | | { |
983 | | for (l = 0; l < HASHSTATE; ++l) |
984 | | e[l] = f[l] = g[l] = h[l] = x[l] = y[l] = ~((uint32_t)0); |
985 | | |
986 | | /*---- check that every output bit is affected by that input bit */ |
987 | | for (k = 0; k < MAXPAIR; k += 2) { |
988 | | uint32_t finished = 1; |
989 | | /* keys have one bit different */ |
990 | | for (l = 0; l < hlen + 1; ++l) { |
991 | | a[l] = b[l] = (uint8_t)0; |
992 | | } |
993 | | /* have a and b be two keys differing in only one bit */ |
994 | | a[i] ^= (k << j); |
995 | | a[i] ^= (k >> (8 - j)); |
996 | | c[0] = hashlittle(a, hlen, m); |
997 | | b[i] ^= ((k + 1) << j); |
998 | | b[i] ^= ((k + 1) >> (8 - j)); |
999 | | d[0] = hashlittle(b, hlen, m); |
1000 | | /* check every bit is 1, 0, set, and not set at least once */ |
1001 | | for (l = 0; l < HASHSTATE; ++l) { |
1002 | | e[l] &= (c[l] ^ d[l]); |
1003 | | f[l] &= ~(c[l] ^ d[l]); |
1004 | | g[l] &= c[l]; |
1005 | | h[l] &= ~c[l]; |
1006 | | x[l] &= d[l]; |
1007 | | y[l] &= ~d[l]; |
1008 | | if (e[l] | f[l] | g[l] | h[l] | x[l] | y[l]) |
1009 | | finished = 0; |
1010 | | } |
1011 | | if (finished) |
1012 | | break; |
1013 | | } |
1014 | | if (k > z) |
1015 | | z = k; |
1016 | | if (k == MAXPAIR) { |
1017 | | printf("Some bit didn't change: "); |
1018 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x ", e[0], f[0], g[0], h[0], x[0], y[0]); |
1019 | | printf("i %d j %d m %d len %d\n", i, j, m, hlen); |
1020 | | } |
1021 | | if (z == MAXPAIR) |
1022 | | goto done; |
1023 | | } |
1024 | | } |
1025 | | } |
1026 | | done: |
1027 | | if (z < MAXPAIR) |
1028 | | { |
1029 | | printf("Mix success %2d bytes %2d initvals ",i,m); |
1030 | | printf("required %d trials\n", z/2); |
1031 | | } |
1032 | | } |
1033 | | printf("\n"); |
1034 | | } |
1035 | | |
1036 | | /* Check for reading beyond the end of the buffer and alignment problems */ |
1037 | | void driver3(void) |
1038 | | { |
1039 | | uint8_t buf[MAXLEN+20], *b; |
1040 | | uint32_t len; |
1041 | | uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; |
1042 | | uint32_t h; |
1043 | | uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; |
1044 | | uint32_t i; |
1045 | | uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; |
1046 | | uint32_t j; |
1047 | | uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; |
1048 | | uint32_t ref,x,y; |
1049 | | uint8_t *p; |
1050 | | |
1051 | | printf("Endianness. These lines should all be the same (for values filled in):\n"); |
1052 | | printf("%.8x %.8x %.8x\n", |
1053 | | hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13), |
1054 | | hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13), |
1055 | | hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13)); |
1056 | | p = q; |
1057 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1058 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1059 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1060 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1061 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1062 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1063 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1064 | | p = &qq[1]; |
1065 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1066 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1067 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1068 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1069 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1070 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1071 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1072 | | p = &qqq[2]; |
1073 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1074 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1075 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1076 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1077 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1078 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1079 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1080 | | p = &qqqq[3]; |
1081 | | printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
1082 | | hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), |
1083 | | hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), |
1084 | | hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), |
1085 | | hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), |
1086 | | hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), |
1087 | | hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); |
1088 | | printf("\n"); |
1089 | | |
1090 | | /* check that hashlittle2 and hashlittle produce the same results */ |
1091 | | i=47; j=0; |
1092 | | hashlittle2(q, sizeof(q), &i, &j); |
1093 | | if (hashlittle(q, sizeof(q), 47) != i) |
1094 | | printf("hashlittle2 and hashlittle mismatch\n"); |
1095 | | |
1096 | | /* check that hashword2 and hashword produce the same results */ |
1097 | | len = 0xdeadbeef; |
1098 | | i=47, j=0; |
1099 | | hashword2(&len, 1, &i, &j); |
1100 | | if (hashword(&len, 1, 47) != i) |
1101 | | printf("hashword2 and hashword mismatch %x %x\n", |
1102 | | i, hashword(&len, 1, 47)); |
1103 | | |
1104 | | /* check hashlittle doesn't read before or after the ends of the string */ |
1105 | | for (h=0, b=buf+1; h<8; ++h, ++b) |
1106 | | { |
1107 | | for (i=0; i<MAXLEN; ++i) |
1108 | | { |
1109 | | len = i; |
1110 | | for (j=0; j<i; ++j) *(b+j)=0; |
1111 | | |
1112 | | /* these should all be equal */ |
1113 | | ref = hashlittle(b, len, (uint32_t)1); |
1114 | | *(b+i)=(uint8_t)~0; |
1115 | | *(b-1)=(uint8_t)~0; |
1116 | | x = hashlittle(b, len, (uint32_t)1); |
1117 | | y = hashlittle(b, len, (uint32_t)1); |
1118 | | if ((ref != x) || (ref != y)) |
1119 | | { |
1120 | | printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, |
1121 | | h, i); |
1122 | | } |
1123 | | } |
1124 | | } |
1125 | | } |
1126 | | |
1127 | | /* check for problems with nulls */ |
1128 | | void driver4(void) |
1129 | | { |
1130 | | uint8_t buf[1]; |
1131 | | uint32_t h,i,state[HASHSTATE]; |
1132 | | |
1133 | | |
1134 | | buf[0] = ~0; |
1135 | | for (i=0; i<HASHSTATE; ++i) state[i] = 1; |
1136 | | printf("These should all be different\n"); |
1137 | | for (i=0, h=0; i<8; ++i) |
1138 | | { |
1139 | | h = hashlittle(buf, 0, h); |
1140 | | printf("%2ld 0-byte strings, hash is %.8x\n", i, h); |
1141 | | } |
1142 | | } |
1143 | | |
1144 | | void driver5(void) |
1145 | | { |
1146 | | uint32_t b,c; |
1147 | | b=0, c=0, hashlittle2("", 0, &c, &b); |
1148 | | printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */ |
1149 | | b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b); |
1150 | | printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */ |
1151 | | b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b); |
1152 | | printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */ |
1153 | | b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); |
1154 | | printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */ |
1155 | | b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b); |
1156 | | printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */ |
1157 | | b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b); |
1158 | | printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */ |
1159 | | c = hashlittle("Four score and seven years ago", 30, 0); |
1160 | | printf("hash is %.8lx\n", c); /* 17770551 */ |
1161 | | c = hashlittle("Four score and seven years ago", 30, 1); |
1162 | | printf("hash is %.8lx\n", c); /* cd628161 */ |
1163 | | } |
1164 | | |
1165 | | int main(void) |
1166 | | { |
1167 | | driver1(); /* test that the key is hashed: used for timings */ |
1168 | | driver2(); /* test that whole key is hashed thoroughly */ |
1169 | | driver3(); /* test that nothing but the key is hashed */ |
1170 | | driver4(); /* test hashing multiple buffers (all buffers are null) */ |
1171 | | driver5(); /* test the hash against known vectors */ |
1172 | | return 1; |
1173 | | } |
1174 | | |
1175 | | #endif /* SELF_TEST */ |