Coverage Report

Created: 2025-02-21 07:11

/rust/registry/src/index.crates.io-6f17d22bba15001f/libm-0.2.11/src/math/log1p.rs
Line
Count
Source (jump to first uncovered line)
1
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
/* double log1p(double x)
13
 * Return the natural logarithm of 1+x.
14
 *
15
 * Method :
16
 *   1. Argument Reduction: find k and f such that
17
 *                      1+x = 2^k * (1+f),
18
 *         where  sqrt(2)/2 < 1+f < sqrt(2) .
19
 *
20
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
21
 *      may not be representable exactly. In that case, a correction
22
 *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23
 *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24
 *      and add back the correction term c/u.
25
 *      (Note: when x > 2**53, one can simply return log(x))
26
 *
27
 *   2. Approximation of log(1+f): See log.c
28
 *
29
 *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
30
 *
31
 * Special cases:
32
 *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
33
 *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
34
 *      log1p(NaN) is that NaN with no signal.
35
 *
36
 * Accuracy:
37
 *      according to an error analysis, the error is always less than
38
 *      1 ulp (unit in the last place).
39
 *
40
 * Constants:
41
 * The hexadecimal values are the intended ones for the following
42
 * constants. The decimal values may be used, provided that the
43
 * compiler will convert from decimal to binary accurately enough
44
 * to produce the hexadecimal values shown.
45
 *
46
 * Note: Assuming log() return accurate answer, the following
47
 *       algorithm can be used to compute log1p(x) to within a few ULP:
48
 *
49
 *              u = 1+x;
50
 *              if(u==1.0) return x ; else
51
 *                         return log(u)*(x/(u-1.0));
52
 *
53
 *       See HP-15C Advanced Functions Handbook, p.193.
54
 */
55
56
use core::f64;
57
58
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
59
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
60
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
61
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
62
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
63
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
64
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
65
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
66
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
67
68
/// The natural logarithm of 1+`x` (f64).
69
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
70
0
pub fn log1p(x: f64) -> f64 {
71
0
    let mut ui: u64 = x.to_bits();
72
0
    let hfsq: f64;
73
0
    let mut f: f64 = 0.;
74
0
    let mut c: f64 = 0.;
75
0
    let s: f64;
76
0
    let z: f64;
77
0
    let r: f64;
78
0
    let w: f64;
79
0
    let t1: f64;
80
0
    let t2: f64;
81
0
    let dk: f64;
82
0
    let hx: u32;
83
0
    let mut hu: u32;
84
0
    let mut k: i32;
85
0
86
0
    hx = (ui >> 32) as u32;
87
0
    k = 1;
88
0
    if hx < 0x3fda827a || (hx >> 31) > 0 {
89
        /* 1+x < sqrt(2)+ */
90
0
        if hx >= 0xbff00000 {
91
            /* x <= -1.0 */
92
0
            if x == -1. {
93
0
                return x / 0.0; /* log1p(-1) = -inf */
94
0
            }
95
0
            return (x - x) / 0.0; /* log1p(x<-1) = NaN */
96
0
        }
97
0
        if hx << 1 < 0x3ca00000 << 1 {
98
            /* |x| < 2**-53 */
99
            /* underflow if subnormal */
100
0
            if (hx & 0x7ff00000) == 0 {
101
0
                force_eval!(x as f32);
102
0
            }
103
0
            return x;
104
0
        }
105
0
        if hx <= 0xbfd2bec4 {
106
0
            /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
107
0
            k = 0;
108
0
            c = 0.;
109
0
            f = x;
110
0
        }
111
0
    } else if hx >= 0x7ff00000 {
112
0
        return x;
113
0
    }
114
0
    if k > 0 {
115
0
        ui = (1. + x).to_bits();
116
0
        hu = (ui >> 32) as u32;
117
0
        hu += 0x3ff00000 - 0x3fe6a09e;
118
0
        k = (hu >> 20) as i32 - 0x3ff;
119
0
        /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
120
0
        if k < 54 {
121
0
            c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) };
122
0
            c /= f64::from_bits(ui);
123
0
        } else {
124
0
            c = 0.;
125
0
        }
126
        /* reduce u into [sqrt(2)/2, sqrt(2)] */
127
0
        hu = (hu & 0x000fffff) + 0x3fe6a09e;
128
0
        ui = (hu as u64) << 32 | (ui & 0xffffffff);
129
0
        f = f64::from_bits(ui) - 1.;
130
0
    }
131
0
    hfsq = 0.5 * f * f;
132
0
    s = f / (2.0 + f);
133
0
    z = s * s;
134
0
    w = z * z;
135
0
    t1 = w * (LG2 + w * (LG4 + w * LG6));
136
0
    t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
137
0
    r = t2 + t1;
138
0
    dk = k as f64;
139
0
    s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
140
0
}