Coverage Report

Created: 2025-11-28 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/half-2.5.0/src/binary16.rs
Line
Count
Source
1
#[cfg(all(feature = "serde", feature = "alloc"))]
2
#[allow(unused_imports)]
3
use alloc::string::ToString;
4
#[cfg(feature = "bytemuck")]
5
use bytemuck::{Pod, Zeroable};
6
use core::{
7
    cmp::Ordering,
8
    iter::{Product, Sum},
9
    num::FpCategory,
10
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
11
};
12
#[cfg(not(target_arch = "spirv"))]
13
use core::{
14
    fmt::{
15
        Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
16
    },
17
    num::ParseFloatError,
18
    str::FromStr,
19
};
20
#[cfg(feature = "serde")]
21
use serde::{Deserialize, Serialize};
22
#[cfg(feature = "zerocopy")]
23
use zerocopy::{FromBytes, IntoBytes};
24
25
pub(crate) mod arch;
26
27
/// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half"
28
/// format.
29
///
30
/// This 16-bit floating point type is intended for efficient storage where the full range and
31
/// precision of a larger floating point value is not required.
32
///
33
/// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
34
#[allow(non_camel_case_types)]
35
#[derive(Clone, Copy, Default)]
36
#[repr(transparent)]
37
#[cfg_attr(feature = "serde", derive(Serialize))]
38
#[cfg_attr(
39
    feature = "rkyv",
40
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
41
)]
42
#[cfg_attr(feature = "rkyv", rkyv(resolver = F16Resolver))]
43
#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
44
#[cfg_attr(feature = "zerocopy", derive(IntoBytes, FromBytes))]
45
#[cfg_attr(kani, derive(kani::Arbitrary))]
46
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
47
pub struct f16(u16);
48
49
impl f16 {
50
    /// Constructs a 16-bit floating point value from the raw bits.
51
    #[inline]
52
    #[must_use]
53
0
    pub const fn from_bits(bits: u16) -> f16 {
54
0
        f16(bits)
55
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_bits
Unexecuted instantiation: <half::binary16::f16>::from_bits
56
57
    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
58
    ///
59
    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
60
    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
61
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
62
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
63
    /// 16-bit value.
64
    #[inline]
65
    #[must_use]
66
0
    pub fn from_f32(value: f32) -> f16 {
67
0
        f16(arch::f32_to_f16(value))
68
0
    }
69
70
    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
71
    ///
72
    /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
73
    /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
74
    /// in any non-`const` context.
75
    ///
76
    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
77
    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
78
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
79
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
80
    /// 16-bit value.
81
    #[inline]
82
    #[must_use]
83
0
    pub const fn from_f32_const(value: f32) -> f16 {
84
0
        f16(arch::f32_to_f16_fallback(value))
85
0
    }
86
87
    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
88
    ///
89
    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
90
    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
91
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
92
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
93
    /// 16-bit value.
94
    #[inline]
95
    #[must_use]
96
0
    pub fn from_f64(value: f64) -> f16 {
97
0
        f16(arch::f64_to_f16(value))
98
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_f64
Unexecuted instantiation: <half::binary16::f16>::from_f64
99
100
    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
101
    ///
102
    /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
103
    /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
104
    /// in any non-`const` context.
105
    ///
106
    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
107
    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
108
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
109
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
110
    /// 16-bit value.
111
    #[inline]
112
    #[must_use]
113
0
    pub const fn from_f64_const(value: f64) -> f16 {
114
0
        f16(arch::f64_to_f16_fallback(value))
115
0
    }
116
117
    /// Converts a [`struct@f16`] into the underlying bit representation.
118
    #[inline]
119
    #[must_use]
120
0
    pub const fn to_bits(self) -> u16 {
121
0
        self.0
122
0
    }
123
124
    /// Returns the memory representation of the underlying bit representation as a byte array in
125
    /// little-endian byte order.
126
    ///
127
    /// # Examples
128
    ///
129
    /// ```rust
130
    /// # use half::prelude::*;
131
    /// let bytes = f16::from_f32(12.5).to_le_bytes();
132
    /// assert_eq!(bytes, [0x40, 0x4A]);
133
    /// ```
134
    #[inline]
135
    #[must_use]
136
0
    pub const fn to_le_bytes(self) -> [u8; 2] {
137
0
        self.0.to_le_bytes()
138
0
    }
139
140
    /// Returns the memory representation of the underlying bit representation as a byte array in
141
    /// big-endian (network) byte order.
142
    ///
143
    /// # Examples
144
    ///
145
    /// ```rust
146
    /// # use half::prelude::*;
147
    /// let bytes = f16::from_f32(12.5).to_be_bytes();
148
    /// assert_eq!(bytes, [0x4A, 0x40]);
149
    /// ```
150
    #[inline]
151
    #[must_use]
152
0
    pub const fn to_be_bytes(self) -> [u8; 2] {
153
0
        self.0.to_be_bytes()
154
0
    }
Unexecuted instantiation: <half::binary16::f16>::to_be_bytes
Unexecuted instantiation: <half::binary16::f16>::to_be_bytes
155
156
    /// Returns the memory representation of the underlying bit representation as a byte array in
157
    /// native byte order.
158
    ///
159
    /// As the target platform's native endianness is used, portable code should use
160
    /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
161
    /// instead.
162
    ///
163
    /// # Examples
164
    ///
165
    /// ```rust
166
    /// # use half::prelude::*;
167
    /// let bytes = f16::from_f32(12.5).to_ne_bytes();
168
    /// assert_eq!(bytes, if cfg!(target_endian = "big") {
169
    ///     [0x4A, 0x40]
170
    /// } else {
171
    ///     [0x40, 0x4A]
172
    /// });
173
    /// ```
174
    #[inline]
175
    #[must_use]
176
0
    pub const fn to_ne_bytes(self) -> [u8; 2] {
177
0
        self.0.to_ne_bytes()
178
0
    }
179
180
    /// Creates a floating point value from its representation as a byte array in little endian.
181
    ///
182
    /// # Examples
183
    ///
184
    /// ```rust
185
    /// # use half::prelude::*;
186
    /// let value = f16::from_le_bytes([0x40, 0x4A]);
187
    /// assert_eq!(value, f16::from_f32(12.5));
188
    /// ```
189
    #[inline]
190
    #[must_use]
191
0
    pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
192
0
        f16::from_bits(u16::from_le_bytes(bytes))
193
0
    }
194
195
    /// Creates a floating point value from its representation as a byte array in big endian.
196
    ///
197
    /// # Examples
198
    ///
199
    /// ```rust
200
    /// # use half::prelude::*;
201
    /// let value = f16::from_be_bytes([0x4A, 0x40]);
202
    /// assert_eq!(value, f16::from_f32(12.5));
203
    /// ```
204
    #[inline]
205
    #[must_use]
206
0
    pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
207
0
        f16::from_bits(u16::from_be_bytes(bytes))
208
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_be_bytes
Unexecuted instantiation: <half::binary16::f16>::from_be_bytes
209
210
    /// Creates a floating point value from its representation as a byte array in native endian.
211
    ///
212
    /// As the target platform's native endianness is used, portable code likely wants to use
213
    /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
214
    /// appropriate instead.
215
    ///
216
    /// # Examples
217
    ///
218
    /// ```rust
219
    /// # use half::prelude::*;
220
    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
221
    ///     [0x4A, 0x40]
222
    /// } else {
223
    ///     [0x40, 0x4A]
224
    /// });
225
    /// assert_eq!(value, f16::from_f32(12.5));
226
    /// ```
227
    #[inline]
228
    #[must_use]
229
0
    pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
230
0
        f16::from_bits(u16::from_ne_bytes(bytes))
231
0
    }
232
233
    /// Converts a [`struct@f16`] value into a `f32` value.
234
    ///
235
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
236
    /// in 32-bit floating point.
237
    #[inline]
238
    #[must_use]
239
0
    pub fn to_f32(self) -> f32 {
240
0
        arch::f16_to_f32(self.0)
241
0
    }
242
243
    /// Converts a [`struct@f16`] value into a `f32` value.
244
    ///
245
    /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
246
    /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
247
    /// in any non-`const` context.
248
    ///
249
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
250
    /// in 32-bit floating point.
251
    #[inline]
252
    #[must_use]
253
0
    pub const fn to_f32_const(self) -> f32 {
254
0
        arch::f16_to_f32_fallback(self.0)
255
0
    }
256
257
    /// Converts a [`struct@f16`] value into a `f64` value.
258
    ///
259
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
260
    /// in 64-bit floating point.
261
    #[inline]
262
    #[must_use]
263
0
    pub fn to_f64(self) -> f64 {
264
0
        arch::f16_to_f64(self.0)
265
0
    }
Unexecuted instantiation: <half::binary16::f16>::to_f64
Unexecuted instantiation: <half::binary16::f16>::to_f64
266
267
    /// Converts a [`struct@f16`] value into a `f64` value.
268
    ///
269
    /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
270
    /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
271
    /// in any non-`const` context.
272
    ///
273
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
274
    /// in 64-bit floating point.
275
    #[inline]
276
    #[must_use]
277
0
    pub const fn to_f64_const(self) -> f64 {
278
0
        arch::f16_to_f64_fallback(self.0)
279
0
    }
280
281
    /// Returns `true` if this value is `NaN` and `false` otherwise.
282
    ///
283
    /// # Examples
284
    ///
285
    /// ```rust
286
    /// # use half::prelude::*;
287
    ///
288
    /// let nan = f16::NAN;
289
    /// let f = f16::from_f32(7.0_f32);
290
    ///
291
    /// assert!(nan.is_nan());
292
    /// assert!(!f.is_nan());
293
    /// ```
294
    #[inline]
295
    #[must_use]
296
0
    pub const fn is_nan(self) -> bool {
297
0
        self.0 & 0x7FFFu16 > 0x7C00u16
298
0
    }
299
300
    /// Returns `true` if this value is ±∞ and `false`.
301
    /// otherwise.
302
    ///
303
    /// # Examples
304
    ///
305
    /// ```rust
306
    /// # use half::prelude::*;
307
    ///
308
    /// let f = f16::from_f32(7.0f32);
309
    /// let inf = f16::INFINITY;
310
    /// let neg_inf = f16::NEG_INFINITY;
311
    /// let nan = f16::NAN;
312
    ///
313
    /// assert!(!f.is_infinite());
314
    /// assert!(!nan.is_infinite());
315
    ///
316
    /// assert!(inf.is_infinite());
317
    /// assert!(neg_inf.is_infinite());
318
    /// ```
319
    #[inline]
320
    #[must_use]
321
0
    pub const fn is_infinite(self) -> bool {
322
0
        self.0 & 0x7FFFu16 == 0x7C00u16
323
0
    }
324
325
    /// Returns `true` if this number is neither infinite nor `NaN`.
326
    ///
327
    /// # Examples
328
    ///
329
    /// ```rust
330
    /// # use half::prelude::*;
331
    ///
332
    /// let f = f16::from_f32(7.0f32);
333
    /// let inf = f16::INFINITY;
334
    /// let neg_inf = f16::NEG_INFINITY;
335
    /// let nan = f16::NAN;
336
    ///
337
    /// assert!(f.is_finite());
338
    ///
339
    /// assert!(!nan.is_finite());
340
    /// assert!(!inf.is_finite());
341
    /// assert!(!neg_inf.is_finite());
342
    /// ```
343
    #[inline]
344
    #[must_use]
345
0
    pub const fn is_finite(self) -> bool {
346
0
        self.0 & 0x7C00u16 != 0x7C00u16
347
0
    }
348
349
    /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
350
    ///
351
    /// # Examples
352
    ///
353
    /// ```rust
354
    /// # use half::prelude::*;
355
    ///
356
    /// let min = f16::MIN_POSITIVE;
357
    /// let max = f16::MAX;
358
    /// let lower_than_min = f16::from_f32(1.0e-10_f32);
359
    /// let zero = f16::from_f32(0.0_f32);
360
    ///
361
    /// assert!(min.is_normal());
362
    /// assert!(max.is_normal());
363
    ///
364
    /// assert!(!zero.is_normal());
365
    /// assert!(!f16::NAN.is_normal());
366
    /// assert!(!f16::INFINITY.is_normal());
367
    /// // Values between `0` and `min` are Subnormal.
368
    /// assert!(!lower_than_min.is_normal());
369
    /// ```
370
    #[inline]
371
    #[must_use]
372
0
    pub const fn is_normal(self) -> bool {
373
0
        let exp = self.0 & 0x7C00u16;
374
0
        exp != 0x7C00u16 && exp != 0
375
0
    }
376
377
    /// Returns the floating point category of the number.
378
    ///
379
    /// If only one property is going to be tested, it is generally faster to use the specific
380
    /// predicate instead.
381
    ///
382
    /// # Examples
383
    ///
384
    /// ```rust
385
    /// use std::num::FpCategory;
386
    /// # use half::prelude::*;
387
    ///
388
    /// let num = f16::from_f32(12.4_f32);
389
    /// let inf = f16::INFINITY;
390
    ///
391
    /// assert_eq!(num.classify(), FpCategory::Normal);
392
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
393
    /// ```
394
    #[must_use]
395
0
    pub const fn classify(self) -> FpCategory {
396
0
        let exp = self.0 & 0x7C00u16;
397
0
        let man = self.0 & 0x03FFu16;
398
0
        match (exp, man) {
399
0
            (0, 0) => FpCategory::Zero,
400
0
            (0, _) => FpCategory::Subnormal,
401
0
            (0x7C00u16, 0) => FpCategory::Infinite,
402
0
            (0x7C00u16, _) => FpCategory::Nan,
403
0
            _ => FpCategory::Normal,
404
        }
405
0
    }
406
407
    /// Returns a number that represents the sign of `self`.
408
    ///
409
    /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
410
    /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
411
    /// * [`NAN`][f16::NAN] if the number is `NaN`
412
    ///
413
    /// # Examples
414
    ///
415
    /// ```rust
416
    /// # use half::prelude::*;
417
    ///
418
    /// let f = f16::from_f32(3.5_f32);
419
    ///
420
    /// assert_eq!(f.signum(), f16::from_f32(1.0));
421
    /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
422
    ///
423
    /// assert!(f16::NAN.signum().is_nan());
424
    /// ```
425
    #[must_use]
426
0
    pub const fn signum(self) -> f16 {
427
0
        if self.is_nan() {
428
0
            self
429
0
        } else if self.0 & 0x8000u16 != 0 {
430
0
            Self::NEG_ONE
431
        } else {
432
0
            Self::ONE
433
        }
434
0
    }
435
436
    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
437
    /// positive sign bit and +∞.
438
    ///
439
    /// # Examples
440
    ///
441
    /// ```rust
442
    /// # use half::prelude::*;
443
    ///
444
    /// let nan = f16::NAN;
445
    /// let f = f16::from_f32(7.0_f32);
446
    /// let g = f16::from_f32(-7.0_f32);
447
    ///
448
    /// assert!(f.is_sign_positive());
449
    /// assert!(!g.is_sign_positive());
450
    /// // `NaN` can be either positive or negative
451
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
452
    /// ```
453
    #[inline]
454
    #[must_use]
455
0
    pub const fn is_sign_positive(self) -> bool {
456
0
        self.0 & 0x8000u16 == 0
457
0
    }
458
459
    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
460
    /// negative sign bit and −∞.
461
    ///
462
    /// # Examples
463
    ///
464
    /// ```rust
465
    /// # use half::prelude::*;
466
    ///
467
    /// let nan = f16::NAN;
468
    /// let f = f16::from_f32(7.0f32);
469
    /// let g = f16::from_f32(-7.0f32);
470
    ///
471
    /// assert!(!f.is_sign_negative());
472
    /// assert!(g.is_sign_negative());
473
    /// // `NaN` can be either positive or negative
474
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
475
    /// ```
476
    #[inline]
477
    #[must_use]
478
0
    pub const fn is_sign_negative(self) -> bool {
479
0
        self.0 & 0x8000u16 != 0
480
0
    }
481
482
    /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
483
    ///
484
    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
485
    /// If `self` is NaN, then NaN with the sign of `sign` is returned.
486
    ///
487
    /// # Examples
488
    ///
489
    /// ```
490
    /// # use half::prelude::*;
491
    /// let f = f16::from_f32(3.5);
492
    ///
493
    /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
494
    /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
495
    /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
496
    /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
497
    ///
498
    /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
499
    /// ```
500
    #[inline]
501
    #[must_use]
502
0
    pub const fn copysign(self, sign: f16) -> f16 {
503
0
        f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
504
0
    }
505
506
    /// Returns the maximum of the two numbers.
507
    ///
508
    /// If one of the arguments is NaN, then the other argument is returned.
509
    ///
510
    /// # Examples
511
    ///
512
    /// ```
513
    /// # use half::prelude::*;
514
    /// let x = f16::from_f32(1.0);
515
    /// let y = f16::from_f32(2.0);
516
    ///
517
    /// assert_eq!(x.max(y), y);
518
    /// ```
519
    #[inline]
520
    #[must_use]
521
0
    pub fn max(self, other: f16) -> f16 {
522
0
        if other > self && !other.is_nan() {
523
0
            other
524
        } else {
525
0
            self
526
        }
527
0
    }
528
529
    /// Returns the minimum of the two numbers.
530
    ///
531
    /// If one of the arguments is NaN, then the other argument is returned.
532
    ///
533
    /// # Examples
534
    ///
535
    /// ```
536
    /// # use half::prelude::*;
537
    /// let x = f16::from_f32(1.0);
538
    /// let y = f16::from_f32(2.0);
539
    ///
540
    /// assert_eq!(x.min(y), x);
541
    /// ```
542
    #[inline]
543
    #[must_use]
544
0
    pub fn min(self, other: f16) -> f16 {
545
0
        if other < self && !other.is_nan() {
546
0
            other
547
        } else {
548
0
            self
549
        }
550
0
    }
551
552
    /// Restrict a value to a certain interval unless it is NaN.
553
    ///
554
    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
555
    /// Otherwise this returns `self`.
556
    ///
557
    /// Note that this function returns NaN if the initial value was NaN as well.
558
    ///
559
    /// # Panics
560
    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
561
    ///
562
    /// # Examples
563
    ///
564
    /// ```
565
    /// # use half::prelude::*;
566
    /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
567
    /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
568
    /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
569
    /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
570
    /// ```
571
    #[inline]
572
    #[must_use]
573
0
    pub fn clamp(self, min: f16, max: f16) -> f16 {
574
0
        assert!(min <= max);
575
0
        let mut x = self;
576
0
        if x < min {
577
0
            x = min;
578
0
        }
579
0
        if x > max {
580
0
            x = max;
581
0
        }
582
0
        x
583
0
    }
584
585
    /// Returns the ordering between `self` and `other`.
586
    ///
587
    /// Unlike the standard partial comparison between floating point numbers,
588
    /// this comparison always produces an ordering in accordance to
589
    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
590
    /// floating point standard. The values are ordered in the following sequence:
591
    ///
592
    /// - negative quiet NaN
593
    /// - negative signaling NaN
594
    /// - negative infinity
595
    /// - negative numbers
596
    /// - negative subnormal numbers
597
    /// - negative zero
598
    /// - positive zero
599
    /// - positive subnormal numbers
600
    /// - positive numbers
601
    /// - positive infinity
602
    /// - positive signaling NaN
603
    /// - positive quiet NaN.
604
    ///
605
    /// The ordering established by this function does not always agree with the
606
    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
607
    /// they consider negative and positive zero equal, while `total_cmp`
608
    /// doesn't.
609
    ///
610
    /// The interpretation of the signaling NaN bit follows the definition in
611
    /// the IEEE 754 standard, which may not match the interpretation by some of
612
    /// the older, non-conformant (e.g. MIPS) hardware implementations.
613
    ///
614
    /// # Examples
615
    /// ```
616
    /// # use half::f16;
617
    /// let mut v: Vec<f16> = vec![];
618
    /// v.push(f16::ONE);
619
    /// v.push(f16::INFINITY);
620
    /// v.push(f16::NEG_INFINITY);
621
    /// v.push(f16::NAN);
622
    /// v.push(f16::MAX_SUBNORMAL);
623
    /// v.push(-f16::MAX_SUBNORMAL);
624
    /// v.push(f16::ZERO);
625
    /// v.push(f16::NEG_ZERO);
626
    /// v.push(f16::NEG_ONE);
627
    /// v.push(f16::MIN_POSITIVE);
628
    ///
629
    /// v.sort_by(|a, b| a.total_cmp(&b));
630
    ///
631
    /// assert!(v
632
    ///     .into_iter()
633
    ///     .zip(
634
    ///         [
635
    ///             f16::NEG_INFINITY,
636
    ///             f16::NEG_ONE,
637
    ///             -f16::MAX_SUBNORMAL,
638
    ///             f16::NEG_ZERO,
639
    ///             f16::ZERO,
640
    ///             f16::MAX_SUBNORMAL,
641
    ///             f16::MIN_POSITIVE,
642
    ///             f16::ONE,
643
    ///             f16::INFINITY,
644
    ///             f16::NAN
645
    ///         ]
646
    ///         .iter()
647
    ///     )
648
    ///     .all(|(a, b)| a.to_bits() == b.to_bits()));
649
    /// ```
650
    // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
651
    #[inline]
652
    #[must_use]
653
0
    pub fn total_cmp(&self, other: &Self) -> Ordering {
654
0
        let mut left = self.to_bits() as i16;
655
0
        let mut right = other.to_bits() as i16;
656
0
        left ^= (((left >> 15) as u16) >> 1) as i16;
657
0
        right ^= (((right >> 15) as u16) >> 1) as i16;
658
0
        left.cmp(&right)
659
0
    }
660
661
    /// Alternate serialize adapter for serializing as a float.
662
    ///
663
    /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
664
    /// implementation that serializes as an [`f32`] value. It is designed for use with
665
    /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
666
    /// the default deserialize implementation.
667
    ///
668
    /// # Examples
669
    ///
670
    /// A demonstration on how to use this adapater:
671
    ///
672
    /// ```
673
    /// use serde::{Serialize, Deserialize};
674
    /// use half::f16;
675
    ///
676
    /// #[derive(Serialize, Deserialize)]
677
    /// struct MyStruct {
678
    ///     #[serde(serialize_with = "f16::serialize_as_f32")]
679
    ///     value: f16 // Will be serialized as f32 instead of u16
680
    /// }
681
    /// ```
682
    #[cfg(feature = "serde")]
683
    pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
684
        serializer.serialize_f32(self.to_f32())
685
    }
686
687
    /// Alternate serialize adapter for serializing as a string.
688
    ///
689
    /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
690
    /// implementation that serializes as a string value. It is designed for use with
691
    /// `serialize_with` serde attributes. Deserialization from string values is already supported
692
    /// by the default deserialize implementation.
693
    ///
694
    /// # Examples
695
    ///
696
    /// A demonstration on how to use this adapater:
697
    ///
698
    /// ```
699
    /// use serde::{Serialize, Deserialize};
700
    /// use half::f16;
701
    ///
702
    /// #[derive(Serialize, Deserialize)]
703
    /// struct MyStruct {
704
    ///     #[serde(serialize_with = "f16::serialize_as_string")]
705
    ///     value: f16 // Will be serialized as a string instead of u16
706
    /// }
707
    /// ```
708
    #[cfg(all(feature = "serde", feature = "alloc"))]
709
    pub fn serialize_as_string<S: serde::Serializer>(
710
        &self,
711
        serializer: S,
712
    ) -> Result<S::Ok, S::Error> {
713
        serializer.serialize_str(&self.to_string())
714
    }
715
716
    /// Approximate number of [`struct@f16`] significant digits in base 10
717
    pub const DIGITS: u32 = 3;
718
    /// [`struct@f16`]
719
    /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
720
    ///
721
    /// This is the difference between 1.0 and the next largest representable number.
722
    pub const EPSILON: f16 = f16(0x1400u16);
723
    /// [`struct@f16`] positive Infinity (+∞)
724
    pub const INFINITY: f16 = f16(0x7C00u16);
725
    /// Number of [`struct@f16`] significant digits in base 2
726
    pub const MANTISSA_DIGITS: u32 = 11;
727
    /// Largest finite [`struct@f16`] value
728
    pub const MAX: f16 = f16(0x7BFF);
729
    /// Maximum possible [`struct@f16`] power of 10 exponent
730
    pub const MAX_10_EXP: i32 = 4;
731
    /// Maximum possible [`struct@f16`] power of 2 exponent
732
    pub const MAX_EXP: i32 = 16;
733
    /// Smallest finite [`struct@f16`] value
734
    pub const MIN: f16 = f16(0xFBFF);
735
    /// Minimum possible normal [`struct@f16`] power of 10 exponent
736
    pub const MIN_10_EXP: i32 = -4;
737
    /// One greater than the minimum possible normal [`struct@f16`] power of 2 exponent
738
    pub const MIN_EXP: i32 = -13;
739
    /// Smallest positive normal [`struct@f16`] value
740
    pub const MIN_POSITIVE: f16 = f16(0x0400u16);
741
    /// [`struct@f16`] Not a Number (NaN)
742
    pub const NAN: f16 = f16(0x7E00u16);
743
    /// [`struct@f16`] negative infinity (-∞)
744
    pub const NEG_INFINITY: f16 = f16(0xFC00u16);
745
    /// The radix or base of the internal representation of [`struct@f16`]
746
    pub const RADIX: u32 = 2;
747
748
    /// Minimum positive subnormal [`struct@f16`] value
749
    pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
750
    /// Maximum subnormal [`struct@f16`] value
751
    pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
752
753
    /// [`struct@f16`] 1
754
    pub const ONE: f16 = f16(0x3C00u16);
755
    /// [`struct@f16`] 0
756
    pub const ZERO: f16 = f16(0x0000u16);
757
    /// [`struct@f16`] -0
758
    pub const NEG_ZERO: f16 = f16(0x8000u16);
759
    /// [`struct@f16`] -1
760
    pub const NEG_ONE: f16 = f16(0xBC00u16);
761
762
    /// [`struct@f16`] Euler's number (ℯ)
763
    pub const E: f16 = f16(0x4170u16);
764
    /// [`struct@f16`] Archimedes' constant (π)
765
    pub const PI: f16 = f16(0x4248u16);
766
    /// [`struct@f16`] 1/π
767
    pub const FRAC_1_PI: f16 = f16(0x3518u16);
768
    /// [`struct@f16`] 1/√2
769
    pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
770
    /// [`struct@f16`] 2/π
771
    pub const FRAC_2_PI: f16 = f16(0x3918u16);
772
    /// [`struct@f16`] 2/√π
773
    pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
774
    /// [`struct@f16`] π/2
775
    pub const FRAC_PI_2: f16 = f16(0x3E48u16);
776
    /// [`struct@f16`] π/3
777
    pub const FRAC_PI_3: f16 = f16(0x3C30u16);
778
    /// [`struct@f16`] π/4
779
    pub const FRAC_PI_4: f16 = f16(0x3A48u16);
780
    /// [`struct@f16`] π/6
781
    pub const FRAC_PI_6: f16 = f16(0x3830u16);
782
    /// [`struct@f16`] π/8
783
    pub const FRAC_PI_8: f16 = f16(0x3648u16);
784
    /// [`struct@f16`] 𝗅𝗇 10
785
    pub const LN_10: f16 = f16(0x409Bu16);
786
    /// [`struct@f16`] 𝗅𝗇 2
787
    pub const LN_2: f16 = f16(0x398Cu16);
788
    /// [`struct@f16`] 𝗅𝗈𝗀₁₀ℯ
789
    pub const LOG10_E: f16 = f16(0x36F3u16);
790
    /// [`struct@f16`] 𝗅𝗈𝗀₁₀2
791
    pub const LOG10_2: f16 = f16(0x34D1u16);
792
    /// [`struct@f16`] 𝗅𝗈𝗀₂ℯ
793
    pub const LOG2_E: f16 = f16(0x3DC5u16);
794
    /// [`struct@f16`] 𝗅𝗈𝗀₂10
795
    pub const LOG2_10: f16 = f16(0x42A5u16);
796
    /// [`struct@f16`] √2
797
    pub const SQRT_2: f16 = f16(0x3DA8u16);
798
}
799
800
impl From<f16> for f32 {
801
    #[inline]
802
0
    fn from(x: f16) -> f32 {
803
0
        x.to_f32()
804
0
    }
805
}
806
807
impl From<f16> for f64 {
808
    #[inline]
809
0
    fn from(x: f16) -> f64 {
810
0
        x.to_f64()
811
0
    }
Unexecuted instantiation: <f64 as core::convert::From<half::binary16::f16>>::from
Unexecuted instantiation: <f64 as core::convert::From<half::binary16::f16>>::from
812
}
813
814
impl From<i8> for f16 {
815
    #[inline]
816
0
    fn from(x: i8) -> f16 {
817
        // Convert to f32, then to f16
818
0
        f16::from_f32(f32::from(x))
819
0
    }
820
}
821
822
impl From<u8> for f16 {
823
    #[inline]
824
0
    fn from(x: u8) -> f16 {
825
        // Convert to f32, then to f16
826
0
        f16::from_f32(f32::from(x))
827
0
    }
828
}
829
830
impl PartialEq for f16 {
831
0
    fn eq(&self, other: &f16) -> bool {
832
0
        if self.is_nan() || other.is_nan() {
833
0
            false
834
        } else {
835
0
            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
836
        }
837
0
    }
838
}
839
840
impl PartialOrd for f16 {
841
0
    fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
842
0
        if self.is_nan() || other.is_nan() {
843
0
            None
844
        } else {
845
0
            let neg = self.0 & 0x8000u16 != 0;
846
0
            let other_neg = other.0 & 0x8000u16 != 0;
847
0
            match (neg, other_neg) {
848
0
                (false, false) => Some(self.0.cmp(&other.0)),
849
                (false, true) => {
850
0
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
851
0
                        Some(Ordering::Equal)
852
                    } else {
853
0
                        Some(Ordering::Greater)
854
                    }
855
                }
856
                (true, false) => {
857
0
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
858
0
                        Some(Ordering::Equal)
859
                    } else {
860
0
                        Some(Ordering::Less)
861
                    }
862
                }
863
0
                (true, true) => Some(other.0.cmp(&self.0)),
864
            }
865
        }
866
0
    }
867
868
0
    fn lt(&self, other: &f16) -> bool {
869
0
        if self.is_nan() || other.is_nan() {
870
0
            false
871
        } else {
872
0
            let neg = self.0 & 0x8000u16 != 0;
873
0
            let other_neg = other.0 & 0x8000u16 != 0;
874
0
            match (neg, other_neg) {
875
0
                (false, false) => self.0 < other.0,
876
0
                (false, true) => false,
877
0
                (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
878
0
                (true, true) => self.0 > other.0,
879
            }
880
        }
881
0
    }
882
883
0
    fn le(&self, other: &f16) -> bool {
884
0
        if self.is_nan() || other.is_nan() {
885
0
            false
886
        } else {
887
0
            let neg = self.0 & 0x8000u16 != 0;
888
0
            let other_neg = other.0 & 0x8000u16 != 0;
889
0
            match (neg, other_neg) {
890
0
                (false, false) => self.0 <= other.0,
891
0
                (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
892
0
                (true, false) => true,
893
0
                (true, true) => self.0 >= other.0,
894
            }
895
        }
896
0
    }
897
898
0
    fn gt(&self, other: &f16) -> bool {
899
0
        if self.is_nan() || other.is_nan() {
900
0
            false
901
        } else {
902
0
            let neg = self.0 & 0x8000u16 != 0;
903
0
            let other_neg = other.0 & 0x8000u16 != 0;
904
0
            match (neg, other_neg) {
905
0
                (false, false) => self.0 > other.0,
906
0
                (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
907
0
                (true, false) => false,
908
0
                (true, true) => self.0 < other.0,
909
            }
910
        }
911
0
    }
912
913
0
    fn ge(&self, other: &f16) -> bool {
914
0
        if self.is_nan() || other.is_nan() {
915
0
            false
916
        } else {
917
0
            let neg = self.0 & 0x8000u16 != 0;
918
0
            let other_neg = other.0 & 0x8000u16 != 0;
919
0
            match (neg, other_neg) {
920
0
                (false, false) => self.0 >= other.0,
921
0
                (false, true) => true,
922
0
                (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
923
0
                (true, true) => self.0 <= other.0,
924
            }
925
        }
926
0
    }
927
}
928
929
#[cfg(not(target_arch = "spirv"))]
930
impl FromStr for f16 {
931
    type Err = ParseFloatError;
932
0
    fn from_str(src: &str) -> Result<f16, ParseFloatError> {
933
0
        f32::from_str(src).map(f16::from_f32)
934
0
    }
935
}
936
937
#[cfg(not(target_arch = "spirv"))]
938
impl Debug for f16 {
939
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
940
0
        Debug::fmt(&self.to_f32(), f)
941
0
    }
942
}
943
944
#[cfg(not(target_arch = "spirv"))]
945
impl Display for f16 {
946
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
947
0
        Display::fmt(&self.to_f32(), f)
948
0
    }
949
}
950
951
#[cfg(not(target_arch = "spirv"))]
952
impl LowerExp for f16 {
953
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
954
0
        write!(f, "{:e}", self.to_f32())
955
0
    }
956
}
957
958
#[cfg(not(target_arch = "spirv"))]
959
impl UpperExp for f16 {
960
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
961
0
        write!(f, "{:E}", self.to_f32())
962
0
    }
963
}
964
965
#[cfg(not(target_arch = "spirv"))]
966
impl Binary for f16 {
967
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
968
0
        write!(f, "{:b}", self.0)
969
0
    }
970
}
971
972
#[cfg(not(target_arch = "spirv"))]
973
impl Octal for f16 {
974
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
975
0
        write!(f, "{:o}", self.0)
976
0
    }
977
}
978
979
#[cfg(not(target_arch = "spirv"))]
980
impl LowerHex for f16 {
981
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
982
0
        write!(f, "{:x}", self.0)
983
0
    }
984
}
985
986
#[cfg(not(target_arch = "spirv"))]
987
impl UpperHex for f16 {
988
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
989
0
        write!(f, "{:X}", self.0)
990
0
    }
991
}
992
993
impl Neg for f16 {
994
    type Output = Self;
995
996
    #[inline]
997
0
    fn neg(self) -> Self::Output {
998
0
        Self(self.0 ^ 0x8000)
999
0
    }
1000
}
1001
1002
impl Neg for &f16 {
1003
    type Output = <f16 as Neg>::Output;
1004
1005
    #[inline]
1006
0
    fn neg(self) -> Self::Output {
1007
0
        Neg::neg(*self)
1008
0
    }
1009
}
1010
1011
impl Add for f16 {
1012
    type Output = Self;
1013
1014
    #[inline]
1015
0
    fn add(self, rhs: Self) -> Self::Output {
1016
0
        f16(arch::add_f16(self.0, rhs.0))
1017
0
    }
1018
}
1019
1020
impl Add<&f16> for f16 {
1021
    type Output = <f16 as Add<f16>>::Output;
1022
1023
    #[inline]
1024
0
    fn add(self, rhs: &f16) -> Self::Output {
1025
0
        self.add(*rhs)
1026
0
    }
1027
}
1028
1029
impl Add<&f16> for &f16 {
1030
    type Output = <f16 as Add<f16>>::Output;
1031
1032
    #[inline]
1033
0
    fn add(self, rhs: &f16) -> Self::Output {
1034
0
        (*self).add(*rhs)
1035
0
    }
1036
}
1037
1038
impl Add<f16> for &f16 {
1039
    type Output = <f16 as Add<f16>>::Output;
1040
1041
    #[inline]
1042
0
    fn add(self, rhs: f16) -> Self::Output {
1043
0
        (*self).add(rhs)
1044
0
    }
1045
}
1046
1047
impl AddAssign for f16 {
1048
    #[inline]
1049
0
    fn add_assign(&mut self, rhs: Self) {
1050
0
        *self = (*self).add(rhs);
1051
0
    }
1052
}
1053
1054
impl AddAssign<&f16> for f16 {
1055
    #[inline]
1056
0
    fn add_assign(&mut self, rhs: &f16) {
1057
0
        *self = (*self).add(rhs);
1058
0
    }
1059
}
1060
1061
impl Sub for f16 {
1062
    type Output = Self;
1063
1064
    #[inline]
1065
0
    fn sub(self, rhs: Self) -> Self::Output {
1066
0
        f16(arch::subtract_f16(self.0, rhs.0))
1067
0
    }
1068
}
1069
1070
impl Sub<&f16> for f16 {
1071
    type Output = <f16 as Sub<f16>>::Output;
1072
1073
    #[inline]
1074
0
    fn sub(self, rhs: &f16) -> Self::Output {
1075
0
        self.sub(*rhs)
1076
0
    }
1077
}
1078
1079
impl Sub<&f16> for &f16 {
1080
    type Output = <f16 as Sub<f16>>::Output;
1081
1082
    #[inline]
1083
0
    fn sub(self, rhs: &f16) -> Self::Output {
1084
0
        (*self).sub(*rhs)
1085
0
    }
1086
}
1087
1088
impl Sub<f16> for &f16 {
1089
    type Output = <f16 as Sub<f16>>::Output;
1090
1091
    #[inline]
1092
0
    fn sub(self, rhs: f16) -> Self::Output {
1093
0
        (*self).sub(rhs)
1094
0
    }
1095
}
1096
1097
impl SubAssign for f16 {
1098
    #[inline]
1099
0
    fn sub_assign(&mut self, rhs: Self) {
1100
0
        *self = (*self).sub(rhs);
1101
0
    }
1102
}
1103
1104
impl SubAssign<&f16> for f16 {
1105
    #[inline]
1106
0
    fn sub_assign(&mut self, rhs: &f16) {
1107
0
        *self = (*self).sub(rhs);
1108
0
    }
1109
}
1110
1111
impl Mul for f16 {
1112
    type Output = Self;
1113
1114
    #[inline]
1115
0
    fn mul(self, rhs: Self) -> Self::Output {
1116
0
        f16(arch::multiply_f16(self.0, rhs.0))
1117
0
    }
1118
}
1119
1120
impl Mul<&f16> for f16 {
1121
    type Output = <f16 as Mul<f16>>::Output;
1122
1123
    #[inline]
1124
0
    fn mul(self, rhs: &f16) -> Self::Output {
1125
0
        self.mul(*rhs)
1126
0
    }
1127
}
1128
1129
impl Mul<&f16> for &f16 {
1130
    type Output = <f16 as Mul<f16>>::Output;
1131
1132
    #[inline]
1133
0
    fn mul(self, rhs: &f16) -> Self::Output {
1134
0
        (*self).mul(*rhs)
1135
0
    }
1136
}
1137
1138
impl Mul<f16> for &f16 {
1139
    type Output = <f16 as Mul<f16>>::Output;
1140
1141
    #[inline]
1142
0
    fn mul(self, rhs: f16) -> Self::Output {
1143
0
        (*self).mul(rhs)
1144
0
    }
1145
}
1146
1147
impl MulAssign for f16 {
1148
    #[inline]
1149
0
    fn mul_assign(&mut self, rhs: Self) {
1150
0
        *self = (*self).mul(rhs);
1151
0
    }
1152
}
1153
1154
impl MulAssign<&f16> for f16 {
1155
    #[inline]
1156
0
    fn mul_assign(&mut self, rhs: &f16) {
1157
0
        *self = (*self).mul(rhs);
1158
0
    }
1159
}
1160
1161
impl Div for f16 {
1162
    type Output = Self;
1163
1164
    #[inline]
1165
0
    fn div(self, rhs: Self) -> Self::Output {
1166
0
        f16(arch::divide_f16(self.0, rhs.0))
1167
0
    }
1168
}
1169
1170
impl Div<&f16> for f16 {
1171
    type Output = <f16 as Div<f16>>::Output;
1172
1173
    #[inline]
1174
0
    fn div(self, rhs: &f16) -> Self::Output {
1175
0
        self.div(*rhs)
1176
0
    }
1177
}
1178
1179
impl Div<&f16> for &f16 {
1180
    type Output = <f16 as Div<f16>>::Output;
1181
1182
    #[inline]
1183
0
    fn div(self, rhs: &f16) -> Self::Output {
1184
0
        (*self).div(*rhs)
1185
0
    }
1186
}
1187
1188
impl Div<f16> for &f16 {
1189
    type Output = <f16 as Div<f16>>::Output;
1190
1191
    #[inline]
1192
0
    fn div(self, rhs: f16) -> Self::Output {
1193
0
        (*self).div(rhs)
1194
0
    }
1195
}
1196
1197
impl DivAssign for f16 {
1198
    #[inline]
1199
0
    fn div_assign(&mut self, rhs: Self) {
1200
0
        *self = (*self).div(rhs);
1201
0
    }
1202
}
1203
1204
impl DivAssign<&f16> for f16 {
1205
    #[inline]
1206
0
    fn div_assign(&mut self, rhs: &f16) {
1207
0
        *self = (*self).div(rhs);
1208
0
    }
1209
}
1210
1211
impl Rem for f16 {
1212
    type Output = Self;
1213
1214
    #[inline]
1215
0
    fn rem(self, rhs: Self) -> Self::Output {
1216
0
        f16(arch::remainder_f16(self.0, rhs.0))
1217
0
    }
1218
}
1219
1220
impl Rem<&f16> for f16 {
1221
    type Output = <f16 as Rem<f16>>::Output;
1222
1223
    #[inline]
1224
0
    fn rem(self, rhs: &f16) -> Self::Output {
1225
0
        self.rem(*rhs)
1226
0
    }
1227
}
1228
1229
impl Rem<&f16> for &f16 {
1230
    type Output = <f16 as Rem<f16>>::Output;
1231
1232
    #[inline]
1233
0
    fn rem(self, rhs: &f16) -> Self::Output {
1234
0
        (*self).rem(*rhs)
1235
0
    }
1236
}
1237
1238
impl Rem<f16> for &f16 {
1239
    type Output = <f16 as Rem<f16>>::Output;
1240
1241
    #[inline]
1242
0
    fn rem(self, rhs: f16) -> Self::Output {
1243
0
        (*self).rem(rhs)
1244
0
    }
1245
}
1246
1247
impl RemAssign for f16 {
1248
    #[inline]
1249
0
    fn rem_assign(&mut self, rhs: Self) {
1250
0
        *self = (*self).rem(rhs);
1251
0
    }
1252
}
1253
1254
impl RemAssign<&f16> for f16 {
1255
    #[inline]
1256
0
    fn rem_assign(&mut self, rhs: &f16) {
1257
0
        *self = (*self).rem(rhs);
1258
0
    }
1259
}
1260
1261
impl Product for f16 {
1262
    #[inline]
1263
0
    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
1264
0
        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1265
0
    }
1266
}
1267
1268
impl<'a> Product<&'a f16> for f16 {
1269
    #[inline]
1270
0
    fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1271
0
        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1272
0
    }
1273
}
1274
1275
impl Sum for f16 {
1276
    #[inline]
1277
0
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
1278
0
        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1279
0
    }
1280
}
1281
1282
impl<'a> Sum<&'a f16> for f16 {
1283
    #[inline]
1284
0
    fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1285
0
        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1286
0
    }
1287
}
1288
1289
#[cfg(feature = "serde")]
1290
struct Visitor;
1291
1292
#[cfg(feature = "serde")]
1293
impl<'de> Deserialize<'de> for f16 {
1294
    fn deserialize<D>(deserializer: D) -> Result<f16, D::Error>
1295
    where
1296
        D: serde::de::Deserializer<'de>,
1297
    {
1298
        deserializer.deserialize_newtype_struct("f16", Visitor)
1299
    }
1300
}
1301
1302
#[cfg(feature = "serde")]
1303
impl<'de> serde::de::Visitor<'de> for Visitor {
1304
    type Value = f16;
1305
1306
    fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
1307
        write!(formatter, "tuple struct f16")
1308
    }
1309
1310
    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1311
    where
1312
        D: serde::Deserializer<'de>,
1313
    {
1314
        Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?))
1315
    }
1316
1317
    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1318
    where
1319
        E: serde::de::Error,
1320
    {
1321
        v.parse().map_err(|_| {
1322
            serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
1323
        })
1324
    }
1325
1326
    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1327
    where
1328
        E: serde::de::Error,
1329
    {
1330
        Ok(f16::from_f32(v))
1331
    }
1332
1333
    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1334
    where
1335
        E: serde::de::Error,
1336
    {
1337
        Ok(f16::from_f64(v))
1338
    }
1339
}
1340
1341
#[allow(
1342
    clippy::cognitive_complexity,
1343
    clippy::float_cmp,
1344
    clippy::neg_cmp_op_on_partial_ord
1345
)]
1346
#[cfg(test)]
1347
mod test {
1348
    use super::*;
1349
    #[allow(unused_imports)]
1350
    use core::cmp::Ordering;
1351
    #[cfg(feature = "num-traits")]
1352
    use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive};
1353
    use quickcheck_macros::quickcheck;
1354
1355
    #[cfg(feature = "num-traits")]
1356
    #[test]
1357
    fn as_primitive() {
1358
        let two = f16::from_f32(2.0);
1359
        assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
1360
        assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
1361
1362
        assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
1363
        assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
1364
1365
        assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
1366
        assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
1367
    }
1368
1369
    #[cfg(feature = "num-traits")]
1370
    #[test]
1371
    fn to_primitive() {
1372
        let two = f16::from_f32(2.0);
1373
        assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
1374
        assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
1375
        assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
1376
    }
1377
1378
    #[cfg(feature = "num-traits")]
1379
    #[test]
1380
    fn from_primitive() {
1381
        let two = f16::from_f32(2.0);
1382
        assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
1383
        assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
1384
        assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
1385
    }
1386
1387
    #[cfg(feature = "num-traits")]
1388
    #[test]
1389
    fn to_and_from_bytes() {
1390
        let two = f16::from_f32(2.0);
1391
        assert_eq!(<f16 as ToBytes>::to_le_bytes(&two), [0, 64]);
1392
        assert_eq!(<f16 as FromBytes>::from_le_bytes(&[0, 64]), two);
1393
        assert_eq!(<f16 as ToBytes>::to_be_bytes(&two), [64, 0]);
1394
        assert_eq!(<f16 as FromBytes>::from_be_bytes(&[64, 0]), two);
1395
    }
1396
1397
    #[test]
1398
    fn test_f16_consts() {
1399
        // DIGITS
1400
        let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1401
        assert_eq!(f16::DIGITS, digits);
1402
        // sanity check to show test is good
1403
        let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1404
        assert_eq!(core::f32::DIGITS, digits32);
1405
1406
        // EPSILON
1407
        let one = f16::from_f32(1.0);
1408
        let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
1409
        let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
1410
        assert_eq!(f16::EPSILON, epsilon);
1411
        // sanity check to show test is good
1412
        let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
1413
        let epsilon32 = one_plus_epsilon32 - 1f32;
1414
        assert_eq!(core::f32::EPSILON, epsilon32);
1415
1416
        // MAX, MIN and MIN_POSITIVE
1417
        let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
1418
        let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
1419
        let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
1420
        assert_eq!(f16::MAX, max);
1421
        assert_eq!(f16::MIN, min);
1422
        assert_eq!(f16::MIN_POSITIVE, min_pos);
1423
        // sanity check to show test is good
1424
        let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
1425
        let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
1426
        let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
1427
        assert_eq!(core::f32::MAX, max32);
1428
        assert_eq!(core::f32::MIN, min32);
1429
        assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
1430
1431
        // MIN_10_EXP and MAX_10_EXP
1432
        let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
1433
        assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
1434
        assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
1435
        let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
1436
        assert!(ten_to_max < f16::MAX.to_f32());
1437
        assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
1438
        // sanity check to show test is good
1439
        let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
1440
        assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
1441
        assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
1442
        let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
1443
        assert!(ten_to_max32 < f64::from(core::f32::MAX));
1444
        assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
1445
    }
1446
1447
    #[test]
1448
    fn test_f16_consts_from_f32() {
1449
        let one = f16::from_f32(1.0);
1450
        let zero = f16::from_f32(0.0);
1451
        let neg_zero = f16::from_f32(-0.0);
1452
        let neg_one = f16::from_f32(-1.0);
1453
        let inf = f16::from_f32(core::f32::INFINITY);
1454
        let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
1455
        let nan = f16::from_f32(core::f32::NAN);
1456
1457
        assert_eq!(f16::ONE, one);
1458
        assert_eq!(f16::ZERO, zero);
1459
        assert!(zero.is_sign_positive());
1460
        assert_eq!(f16::NEG_ZERO, neg_zero);
1461
        assert!(neg_zero.is_sign_negative());
1462
        assert_eq!(f16::NEG_ONE, neg_one);
1463
        assert!(neg_one.is_sign_negative());
1464
        assert_eq!(f16::INFINITY, inf);
1465
        assert_eq!(f16::NEG_INFINITY, neg_inf);
1466
        assert!(nan.is_nan());
1467
        assert!(f16::NAN.is_nan());
1468
1469
        let e = f16::from_f32(core::f32::consts::E);
1470
        let pi = f16::from_f32(core::f32::consts::PI);
1471
        let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
1472
        let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1473
        let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
1474
        let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1475
        let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
1476
        let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
1477
        let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
1478
        let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
1479
        let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
1480
        let ln_10 = f16::from_f32(core::f32::consts::LN_10);
1481
        let ln_2 = f16::from_f32(core::f32::consts::LN_2);
1482
        let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
1483
        // core::f32::consts::LOG10_2 requires rustc 1.43.0
1484
        let log10_2 = f16::from_f32(2f32.log10());
1485
        let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
1486
        // core::f32::consts::LOG2_10 requires rustc 1.43.0
1487
        let log2_10 = f16::from_f32(10f32.log2());
1488
        let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
1489
1490
        assert_eq!(f16::E, e);
1491
        assert_eq!(f16::PI, pi);
1492
        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1493
        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1494
        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1495
        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1496
        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1497
        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1498
        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1499
        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1500
        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1501
        assert_eq!(f16::LN_10, ln_10);
1502
        assert_eq!(f16::LN_2, ln_2);
1503
        assert_eq!(f16::LOG10_E, log10_e);
1504
        assert_eq!(f16::LOG10_2, log10_2);
1505
        assert_eq!(f16::LOG2_E, log2_e);
1506
        assert_eq!(f16::LOG2_10, log2_10);
1507
        assert_eq!(f16::SQRT_2, sqrt_2);
1508
    }
1509
1510
    #[test]
1511
    fn test_f16_consts_from_f64() {
1512
        let one = f16::from_f64(1.0);
1513
        let zero = f16::from_f64(0.0);
1514
        let neg_zero = f16::from_f64(-0.0);
1515
        let inf = f16::from_f64(core::f64::INFINITY);
1516
        let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
1517
        let nan = f16::from_f64(core::f64::NAN);
1518
1519
        assert_eq!(f16::ONE, one);
1520
        assert_eq!(f16::ZERO, zero);
1521
        assert!(zero.is_sign_positive());
1522
        assert_eq!(f16::NEG_ZERO, neg_zero);
1523
        assert!(neg_zero.is_sign_negative());
1524
        assert_eq!(f16::INFINITY, inf);
1525
        assert_eq!(f16::NEG_INFINITY, neg_inf);
1526
        assert!(nan.is_nan());
1527
        assert!(f16::NAN.is_nan());
1528
1529
        let e = f16::from_f64(core::f64::consts::E);
1530
        let pi = f16::from_f64(core::f64::consts::PI);
1531
        let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
1532
        let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1533
        let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
1534
        let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1535
        let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
1536
        let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
1537
        let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
1538
        let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
1539
        let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
1540
        let ln_10 = f16::from_f64(core::f64::consts::LN_10);
1541
        let ln_2 = f16::from_f64(core::f64::consts::LN_2);
1542
        let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
1543
        // core::f64::consts::LOG10_2 requires rustc 1.43.0
1544
        let log10_2 = f16::from_f64(2f64.log10());
1545
        let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
1546
        // core::f64::consts::LOG2_10 requires rustc 1.43.0
1547
        let log2_10 = f16::from_f64(10f64.log2());
1548
        let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
1549
1550
        assert_eq!(f16::E, e);
1551
        assert_eq!(f16::PI, pi);
1552
        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1553
        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1554
        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1555
        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1556
        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1557
        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1558
        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1559
        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1560
        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1561
        assert_eq!(f16::LN_10, ln_10);
1562
        assert_eq!(f16::LN_2, ln_2);
1563
        assert_eq!(f16::LOG10_E, log10_e);
1564
        assert_eq!(f16::LOG10_2, log10_2);
1565
        assert_eq!(f16::LOG2_E, log2_e);
1566
        assert_eq!(f16::LOG2_10, log2_10);
1567
        assert_eq!(f16::SQRT_2, sqrt_2);
1568
    }
1569
1570
    #[test]
1571
    fn test_nan_conversion_to_smaller() {
1572
        let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1573
        let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1574
        let nan32 = f32::from_bits(0x7F80_0001u32);
1575
        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1576
        let nan32_from_64 = nan64 as f32;
1577
        let neg_nan32_from_64 = neg_nan64 as f32;
1578
        let nan16_from_64 = f16::from_f64(nan64);
1579
        let neg_nan16_from_64 = f16::from_f64(neg_nan64);
1580
        let nan16_from_32 = f16::from_f32(nan32);
1581
        let neg_nan16_from_32 = f16::from_f32(neg_nan32);
1582
1583
        assert!(nan64.is_nan() && nan64.is_sign_positive());
1584
        assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1585
        assert!(nan32.is_nan() && nan32.is_sign_positive());
1586
        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1587
1588
        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1589
        assert!(nan32_from_64.is_nan());
1590
        assert!(neg_nan32_from_64.is_nan());
1591
        assert!(nan16_from_64.is_nan());
1592
        assert!(neg_nan16_from_64.is_nan());
1593
        assert!(nan16_from_32.is_nan());
1594
        assert!(neg_nan16_from_32.is_nan());
1595
    }
1596
1597
    #[test]
1598
    fn test_nan_conversion_to_larger() {
1599
        let nan16 = f16::from_bits(0x7C01u16);
1600
        let neg_nan16 = f16::from_bits(0xFC01u16);
1601
        let nan32 = f32::from_bits(0x7F80_0001u32);
1602
        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1603
        let nan32_from_16 = f32::from(nan16);
1604
        let neg_nan32_from_16 = f32::from(neg_nan16);
1605
        let nan64_from_16 = f64::from(nan16);
1606
        let neg_nan64_from_16 = f64::from(neg_nan16);
1607
        let nan64_from_32 = f64::from(nan32);
1608
        let neg_nan64_from_32 = f64::from(neg_nan32);
1609
1610
        assert!(nan16.is_nan() && nan16.is_sign_positive());
1611
        assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1612
        assert!(nan32.is_nan() && nan32.is_sign_positive());
1613
        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1614
1615
        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1616
        assert!(nan32_from_16.is_nan());
1617
        assert!(neg_nan32_from_16.is_nan());
1618
        assert!(nan64_from_16.is_nan());
1619
        assert!(neg_nan64_from_16.is_nan());
1620
        assert!(nan64_from_32.is_nan());
1621
        assert!(neg_nan64_from_32.is_nan());
1622
    }
1623
1624
    #[test]
1625
    fn test_f16_to_f32() {
1626
        let f = f16::from_f32(7.0);
1627
        assert_eq!(f.to_f32(), 7.0f32);
1628
1629
        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1630
        let f = f16::from_f32(7.1);
1631
        let diff = (f.to_f32() - 7.1f32).abs();
1632
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1633
        assert!(diff <= 4.0 * f16::EPSILON.to_f32());
1634
1635
        assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
1636
        assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
1637
1638
        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
1639
        assert_eq!(
1640
            f16::from_bits(0x0000_0005),
1641
            f16::from_f32(5.0 * 2.0f32.powi(-24))
1642
        );
1643
    }
1644
1645
    #[test]
1646
    fn test_f16_to_f64() {
1647
        let f = f16::from_f64(7.0);
1648
        assert_eq!(f.to_f64(), 7.0f64);
1649
1650
        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1651
        let f = f16::from_f64(7.1);
1652
        let diff = (f.to_f64() - 7.1f64).abs();
1653
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1654
        assert!(diff <= 4.0 * f16::EPSILON.to_f64());
1655
1656
        assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
1657
        assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
1658
1659
        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
1660
        assert_eq!(
1661
            f16::from_bits(0x0000_0005),
1662
            f16::from_f64(5.0 * 2.0f64.powi(-24))
1663
        );
1664
    }
1665
1666
    #[test]
1667
    fn test_comparisons() {
1668
        let zero = f16::from_f64(0.0);
1669
        let one = f16::from_f64(1.0);
1670
        let neg_zero = f16::from_f64(-0.0);
1671
        let neg_one = f16::from_f64(-1.0);
1672
1673
        assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1674
        assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1675
        assert!(zero == neg_zero);
1676
        assert!(neg_zero == zero);
1677
        assert!(!(zero != neg_zero));
1678
        assert!(!(neg_zero != zero));
1679
        assert!(!(zero < neg_zero));
1680
        assert!(!(neg_zero < zero));
1681
        assert!(zero <= neg_zero);
1682
        assert!(neg_zero <= zero);
1683
        assert!(!(zero > neg_zero));
1684
        assert!(!(neg_zero > zero));
1685
        assert!(zero >= neg_zero);
1686
        assert!(neg_zero >= zero);
1687
1688
        assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1689
        assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1690
        assert!(!(one == neg_zero));
1691
        assert!(!(neg_zero == one));
1692
        assert!(one != neg_zero);
1693
        assert!(neg_zero != one);
1694
        assert!(!(one < neg_zero));
1695
        assert!(neg_zero < one);
1696
        assert!(!(one <= neg_zero));
1697
        assert!(neg_zero <= one);
1698
        assert!(one > neg_zero);
1699
        assert!(!(neg_zero > one));
1700
        assert!(one >= neg_zero);
1701
        assert!(!(neg_zero >= one));
1702
1703
        assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1704
        assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1705
        assert!(!(one == neg_one));
1706
        assert!(!(neg_one == one));
1707
        assert!(one != neg_one);
1708
        assert!(neg_one != one);
1709
        assert!(!(one < neg_one));
1710
        assert!(neg_one < one);
1711
        assert!(!(one <= neg_one));
1712
        assert!(neg_one <= one);
1713
        assert!(one > neg_one);
1714
        assert!(!(neg_one > one));
1715
        assert!(one >= neg_one);
1716
        assert!(!(neg_one >= one));
1717
    }
1718
1719
    #[test]
1720
    #[allow(clippy::erasing_op, clippy::identity_op)]
1721
    fn round_to_even_f32() {
1722
        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1723
        let min_sub = f16::from_bits(1);
1724
        let min_sub_f = (-24f32).exp2();
1725
        assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1726
        assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1727
1728
        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1729
        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1730
        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1731
        assert_eq!(
1732
            f16::from_f32(min_sub_f * 0.49).to_bits(),
1733
            min_sub.to_bits() * 0
1734
        );
1735
        assert_eq!(
1736
            f16::from_f32(min_sub_f * 0.50).to_bits(),
1737
            min_sub.to_bits() * 0
1738
        );
1739
        assert_eq!(
1740
            f16::from_f32(min_sub_f * 0.51).to_bits(),
1741
            min_sub.to_bits() * 1
1742
        );
1743
1744
        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1745
        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1746
        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1747
        assert_eq!(
1748
            f16::from_f32(min_sub_f * 1.49).to_bits(),
1749
            min_sub.to_bits() * 1
1750
        );
1751
        assert_eq!(
1752
            f16::from_f32(min_sub_f * 1.50).to_bits(),
1753
            min_sub.to_bits() * 2
1754
        );
1755
        assert_eq!(
1756
            f16::from_f32(min_sub_f * 1.51).to_bits(),
1757
            min_sub.to_bits() * 2
1758
        );
1759
1760
        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1761
        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1762
        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1763
        assert_eq!(
1764
            f16::from_f32(min_sub_f * 2.49).to_bits(),
1765
            min_sub.to_bits() * 2
1766
        );
1767
        assert_eq!(
1768
            f16::from_f32(min_sub_f * 2.50).to_bits(),
1769
            min_sub.to_bits() * 2
1770
        );
1771
        assert_eq!(
1772
            f16::from_f32(min_sub_f * 2.51).to_bits(),
1773
            min_sub.to_bits() * 3
1774
        );
1775
1776
        assert_eq!(
1777
            f16::from_f32(2000.49f32).to_bits(),
1778
            f16::from_f32(2000.0).to_bits()
1779
        );
1780
        assert_eq!(
1781
            f16::from_f32(2000.50f32).to_bits(),
1782
            f16::from_f32(2000.0).to_bits()
1783
        );
1784
        assert_eq!(
1785
            f16::from_f32(2000.51f32).to_bits(),
1786
            f16::from_f32(2001.0).to_bits()
1787
        );
1788
        assert_eq!(
1789
            f16::from_f32(2001.49f32).to_bits(),
1790
            f16::from_f32(2001.0).to_bits()
1791
        );
1792
        assert_eq!(
1793
            f16::from_f32(2001.50f32).to_bits(),
1794
            f16::from_f32(2002.0).to_bits()
1795
        );
1796
        assert_eq!(
1797
            f16::from_f32(2001.51f32).to_bits(),
1798
            f16::from_f32(2002.0).to_bits()
1799
        );
1800
        assert_eq!(
1801
            f16::from_f32(2002.49f32).to_bits(),
1802
            f16::from_f32(2002.0).to_bits()
1803
        );
1804
        assert_eq!(
1805
            f16::from_f32(2002.50f32).to_bits(),
1806
            f16::from_f32(2002.0).to_bits()
1807
        );
1808
        assert_eq!(
1809
            f16::from_f32(2002.51f32).to_bits(),
1810
            f16::from_f32(2003.0).to_bits()
1811
        );
1812
    }
1813
1814
    #[test]
1815
    #[allow(clippy::erasing_op, clippy::identity_op)]
1816
    fn round_to_even_f64() {
1817
        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1818
        let min_sub = f16::from_bits(1);
1819
        let min_sub_f = (-24f64).exp2();
1820
        assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1821
        assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1822
1823
        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1824
        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1825
        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1826
        assert_eq!(
1827
            f16::from_f64(min_sub_f * 0.49).to_bits(),
1828
            min_sub.to_bits() * 0
1829
        );
1830
        assert_eq!(
1831
            f16::from_f64(min_sub_f * 0.50).to_bits(),
1832
            min_sub.to_bits() * 0
1833
        );
1834
        assert_eq!(
1835
            f16::from_f64(min_sub_f * 0.51).to_bits(),
1836
            min_sub.to_bits() * 1
1837
        );
1838
1839
        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1840
        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1841
        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1842
        assert_eq!(
1843
            f16::from_f64(min_sub_f * 1.49).to_bits(),
1844
            min_sub.to_bits() * 1
1845
        );
1846
        assert_eq!(
1847
            f16::from_f64(min_sub_f * 1.50).to_bits(),
1848
            min_sub.to_bits() * 2
1849
        );
1850
        assert_eq!(
1851
            f16::from_f64(min_sub_f * 1.51).to_bits(),
1852
            min_sub.to_bits() * 2
1853
        );
1854
1855
        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1856
        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1857
        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1858
        assert_eq!(
1859
            f16::from_f64(min_sub_f * 2.49).to_bits(),
1860
            min_sub.to_bits() * 2
1861
        );
1862
        assert_eq!(
1863
            f16::from_f64(min_sub_f * 2.50).to_bits(),
1864
            min_sub.to_bits() * 2
1865
        );
1866
        assert_eq!(
1867
            f16::from_f64(min_sub_f * 2.51).to_bits(),
1868
            min_sub.to_bits() * 3
1869
        );
1870
1871
        assert_eq!(
1872
            f16::from_f64(2000.49f64).to_bits(),
1873
            f16::from_f64(2000.0).to_bits()
1874
        );
1875
        assert_eq!(
1876
            f16::from_f64(2000.50f64).to_bits(),
1877
            f16::from_f64(2000.0).to_bits()
1878
        );
1879
        assert_eq!(
1880
            f16::from_f64(2000.51f64).to_bits(),
1881
            f16::from_f64(2001.0).to_bits()
1882
        );
1883
        assert_eq!(
1884
            f16::from_f64(2001.49f64).to_bits(),
1885
            f16::from_f64(2001.0).to_bits()
1886
        );
1887
        assert_eq!(
1888
            f16::from_f64(2001.50f64).to_bits(),
1889
            f16::from_f64(2002.0).to_bits()
1890
        );
1891
        assert_eq!(
1892
            f16::from_f64(2001.51f64).to_bits(),
1893
            f16::from_f64(2002.0).to_bits()
1894
        );
1895
        assert_eq!(
1896
            f16::from_f64(2002.49f64).to_bits(),
1897
            f16::from_f64(2002.0).to_bits()
1898
        );
1899
        assert_eq!(
1900
            f16::from_f64(2002.50f64).to_bits(),
1901
            f16::from_f64(2002.0).to_bits()
1902
        );
1903
        assert_eq!(
1904
            f16::from_f64(2002.51f64).to_bits(),
1905
            f16::from_f64(2003.0).to_bits()
1906
        );
1907
    }
1908
1909
    #[test]
1910
    fn arithmetic() {
1911
        assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.));
1912
        assert_eq!(f16::ONE - f16::ONE, f16::ZERO);
1913
        assert_eq!(f16::ONE * f16::ONE, f16::ONE);
1914
        assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.));
1915
        assert_eq!(f16::ONE / f16::ONE, f16::ONE);
1916
        assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.));
1917
        assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.));
1918
    }
1919
1920
    #[cfg(feature = "std")]
1921
    #[test]
1922
    fn formatting() {
1923
        let f = f16::from_f32(0.1152344);
1924
1925
        assert_eq!(format!("{:.3}", f), "0.115");
1926
        assert_eq!(format!("{:.4}", f), "0.1152");
1927
        assert_eq!(format!("{:+.4}", f), "+0.1152");
1928
        assert_eq!(format!("{:>+10.4}", f), "   +0.1152");
1929
1930
        assert_eq!(format!("{:.3?}", f), "0.115");
1931
        assert_eq!(format!("{:.4?}", f), "0.1152");
1932
        assert_eq!(format!("{:+.4?}", f), "+0.1152");
1933
        assert_eq!(format!("{:>+10.4?}", f), "   +0.1152");
1934
    }
1935
1936
    impl quickcheck::Arbitrary for f16 {
1937
        fn arbitrary(g: &mut quickcheck::Gen) -> Self {
1938
            f16(u16::arbitrary(g))
1939
        }
1940
    }
1941
1942
    #[quickcheck]
1943
    fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
1944
        let roundtrip = f16::from_f32(f.to_f32());
1945
        if f.is_nan() {
1946
            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1947
        } else {
1948
            f.0 == roundtrip.0
1949
        }
1950
    }
1951
1952
    #[quickcheck]
1953
    fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
1954
        let roundtrip = f16::from_f64(f.to_f64());
1955
        if f.is_nan() {
1956
            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1957
        } else {
1958
            f.0 == roundtrip.0
1959
        }
1960
    }
1961
}