/rust/registry/src/index.crates.io-1949cf8c6b5b557f/num-complex-0.4.6/src/lib.rs
Line | Count | Source |
1 | | // Copyright 2013 The Rust Project Developers. See the COPYRIGHT |
2 | | // file at the top-level directory of this distribution and at |
3 | | // http://rust-lang.org/COPYRIGHT. |
4 | | // |
5 | | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | | // option. This file may not be copied, modified, or distributed |
9 | | // except according to those terms. |
10 | | |
11 | | //! Complex numbers. |
12 | | //! |
13 | | //! ## Compatibility |
14 | | //! |
15 | | //! The `num-complex` crate is tested for rustc 1.60 and greater. |
16 | | |
17 | | #![doc(html_root_url = "https://docs.rs/num-complex/0.4")] |
18 | | #![no_std] |
19 | | |
20 | | #[cfg(any(test, feature = "std"))] |
21 | | #[cfg_attr(test, macro_use)] |
22 | | extern crate std; |
23 | | |
24 | | use core::fmt; |
25 | | #[cfg(test)] |
26 | | use core::hash; |
27 | | use core::iter::{Product, Sum}; |
28 | | use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; |
29 | | use core::str::FromStr; |
30 | | #[cfg(feature = "std")] |
31 | | use std::error::Error; |
32 | | |
33 | | use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero}; |
34 | | |
35 | | use num_traits::float::FloatCore; |
36 | | #[cfg(any(feature = "std", feature = "libm"))] |
37 | | use num_traits::float::{Float, FloatConst}; |
38 | | |
39 | | mod cast; |
40 | | mod pow; |
41 | | |
42 | | #[cfg(any(feature = "std", feature = "libm"))] |
43 | | mod complex_float; |
44 | | #[cfg(any(feature = "std", feature = "libm"))] |
45 | | pub use crate::complex_float::ComplexFloat; |
46 | | |
47 | | #[cfg(feature = "rand")] |
48 | | mod crand; |
49 | | #[cfg(feature = "rand")] |
50 | | pub use crate::crand::ComplexDistribution; |
51 | | |
52 | | // FIXME #1284: handle complex NaN & infinity etc. This |
53 | | // probably doesn't map to C's _Complex correctly. |
54 | | |
55 | | /// A complex number in Cartesian form. |
56 | | /// |
57 | | /// ## Representation and Foreign Function Interface Compatibility |
58 | | /// |
59 | | /// `Complex<T>` is memory layout compatible with an array `[T; 2]`. |
60 | | /// |
61 | | /// Note that `Complex<F>` where F is a floating point type is **only** memory |
62 | | /// layout compatible with C's complex types, **not** necessarily calling |
63 | | /// convention compatible. This means that for FFI you can only pass |
64 | | /// `Complex<F>` behind a pointer, not as a value. |
65 | | /// |
66 | | /// ## Examples |
67 | | /// |
68 | | /// Example of extern function declaration. |
69 | | /// |
70 | | /// ``` |
71 | | /// use num_complex::Complex; |
72 | | /// use std::os::raw::c_int; |
73 | | /// |
74 | | /// extern "C" { |
75 | | /// fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>, |
76 | | /// x: *const Complex<f64>, incx: *const c_int, |
77 | | /// y: *mut Complex<f64>, incy: *const c_int); |
78 | | /// } |
79 | | /// ``` |
80 | | #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] |
81 | | #[repr(C)] |
82 | | #[cfg_attr( |
83 | | feature = "rkyv", |
84 | | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
85 | | )] |
86 | | #[cfg_attr(feature = "rkyv", archive(as = "Complex<T::Archived>"))] |
87 | | #[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))] |
88 | | pub struct Complex<T> { |
89 | | /// Real portion of the complex number |
90 | | pub re: T, |
91 | | /// Imaginary portion of the complex number |
92 | | pub im: T, |
93 | | } |
94 | | |
95 | | /// Alias for a [`Complex<f32>`] |
96 | | pub type Complex32 = Complex<f32>; |
97 | | |
98 | | /// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`]. |
99 | | /// |
100 | | /// ``` |
101 | | /// use num_complex::{c32, Complex32}; |
102 | | /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0)); |
103 | | /// ``` |
104 | | /// |
105 | | /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement |
106 | | /// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a |
107 | | /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type. |
108 | | /// |
109 | | /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions |
110 | | #[inline] |
111 | 0 | pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 { |
112 | 0 | Complex::new(re.into(), im.into()) |
113 | 0 | } |
114 | | |
115 | | /// Alias for a [`Complex<f64>`] |
116 | | pub type Complex64 = Complex<f64>; |
117 | | |
118 | | /// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`]. |
119 | | /// |
120 | | /// ``` |
121 | | /// use num_complex::{c64, Complex64}; |
122 | | /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0)); |
123 | | /// ``` |
124 | | #[inline] |
125 | 0 | pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 { |
126 | 0 | Complex::new(re.into(), im.into()) |
127 | 0 | } |
128 | | |
129 | | impl<T> Complex<T> { |
130 | | /// Create a new `Complex` |
131 | | #[inline] |
132 | 0 | pub const fn new(re: T, im: T) -> Self { |
133 | 0 | Complex { re, im } |
134 | 0 | } |
135 | | } |
136 | | |
137 | | impl<T: Clone + Num> Complex<T> { |
138 | | /// Returns the imaginary unit. |
139 | | /// |
140 | | /// See also [`Complex::I`]. |
141 | | #[inline] |
142 | 0 | pub fn i() -> Self { |
143 | 0 | Self::new(T::zero(), T::one()) |
144 | 0 | } |
145 | | |
146 | | /// Returns the square of the norm (since `T` doesn't necessarily |
147 | | /// have a sqrt function), i.e. `re^2 + im^2`. |
148 | | #[inline] |
149 | 0 | pub fn norm_sqr(&self) -> T { |
150 | 0 | self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() |
151 | 0 | } |
152 | | |
153 | | /// Multiplies `self` by the scalar `t`. |
154 | | #[inline] |
155 | 0 | pub fn scale(&self, t: T) -> Self { |
156 | 0 | Self::new(self.re.clone() * t.clone(), self.im.clone() * t) |
157 | 0 | } |
158 | | |
159 | | /// Divides `self` by the scalar `t`. |
160 | | #[inline] |
161 | 0 | pub fn unscale(&self, t: T) -> Self { |
162 | 0 | Self::new(self.re.clone() / t.clone(), self.im.clone() / t) |
163 | 0 | } |
164 | | |
165 | | /// Raises `self` to an unsigned integer power. |
166 | | #[inline] |
167 | 0 | pub fn powu(&self, exp: u32) -> Self { |
168 | 0 | Pow::pow(self, exp) |
169 | 0 | } |
170 | | } |
171 | | |
172 | | impl<T: Clone + Num + Neg<Output = T>> Complex<T> { |
173 | | /// Returns the complex conjugate. i.e. `re - i im` |
174 | | #[inline] |
175 | 0 | pub fn conj(&self) -> Self { |
176 | 0 | Self::new(self.re.clone(), -self.im.clone()) |
177 | 0 | } |
178 | | |
179 | | /// Returns `1/self` |
180 | | #[inline] |
181 | 0 | pub fn inv(&self) -> Self { |
182 | 0 | let norm_sqr = self.norm_sqr(); |
183 | 0 | Self::new( |
184 | 0 | self.re.clone() / norm_sqr.clone(), |
185 | 0 | -self.im.clone() / norm_sqr, |
186 | | ) |
187 | 0 | } |
188 | | |
189 | | /// Raises `self` to a signed integer power. |
190 | | #[inline] |
191 | 0 | pub fn powi(&self, exp: i32) -> Self { |
192 | 0 | Pow::pow(self, exp) |
193 | 0 | } |
194 | | } |
195 | | |
196 | | impl<T: Clone + Signed> Complex<T> { |
197 | | /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. |
198 | | /// |
199 | | /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry |
200 | | #[inline] |
201 | 0 | pub fn l1_norm(&self) -> T { |
202 | 0 | self.re.abs() + self.im.abs() |
203 | 0 | } |
204 | | } |
205 | | |
206 | | #[cfg(any(feature = "std", feature = "libm"))] |
207 | | impl<T: Float> Complex<T> { |
208 | | /// Create a new Complex with a given phase: `exp(i * phase)`. |
209 | | /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)). |
210 | | #[inline] |
211 | | pub fn cis(phase: T) -> Self { |
212 | | Self::new(phase.cos(), phase.sin()) |
213 | | } |
214 | | |
215 | | /// Calculate |self| |
216 | | #[inline] |
217 | | pub fn norm(self) -> T { |
218 | | self.re.hypot(self.im) |
219 | | } |
220 | | /// Calculate the principal Arg of self. |
221 | | #[inline] |
222 | | pub fn arg(self) -> T { |
223 | | self.im.atan2(self.re) |
224 | | } |
225 | | /// Convert to polar form (r, theta), such that |
226 | | /// `self = r * exp(i * theta)` |
227 | | #[inline] |
228 | | pub fn to_polar(self) -> (T, T) { |
229 | | (self.norm(), self.arg()) |
230 | | } |
231 | | /// Convert a polar representation into a complex number. |
232 | | #[inline] |
233 | | pub fn from_polar(r: T, theta: T) -> Self { |
234 | | Self::new(r * theta.cos(), r * theta.sin()) |
235 | | } |
236 | | |
237 | | /// Computes `e^(self)`, where `e` is the base of the natural logarithm. |
238 | | #[inline] |
239 | | pub fn exp(self) -> Self { |
240 | | // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b) |
241 | | |
242 | | let Complex { re, mut im } = self; |
243 | | // Treat the corner cases +∞, -∞, and NaN |
244 | | if re.is_infinite() { |
245 | | if re < T::zero() { |
246 | | if !im.is_finite() { |
247 | | return Self::new(T::zero(), T::zero()); |
248 | | } |
249 | | } else if im == T::zero() || !im.is_finite() { |
250 | | if im.is_infinite() { |
251 | | im = T::nan(); |
252 | | } |
253 | | return Self::new(re, im); |
254 | | } |
255 | | } else if re.is_nan() && im == T::zero() { |
256 | | return self; |
257 | | } |
258 | | |
259 | | Self::from_polar(re.exp(), im) |
260 | | } |
261 | | |
262 | | /// Computes the principal value of natural logarithm of `self`. |
263 | | /// |
264 | | /// This function has one branch cut: |
265 | | /// |
266 | | /// * `(-∞, 0]`, continuous from above. |
267 | | /// |
268 | | /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. |
269 | | #[inline] |
270 | | pub fn ln(self) -> Self { |
271 | | // formula: ln(z) = ln|z| + i*arg(z) |
272 | | let (r, theta) = self.to_polar(); |
273 | | Self::new(r.ln(), theta) |
274 | | } |
275 | | |
276 | | /// Computes the principal value of the square root of `self`. |
277 | | /// |
278 | | /// This function has one branch cut: |
279 | | /// |
280 | | /// * `(-∞, 0)`, continuous from above. |
281 | | /// |
282 | | /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. |
283 | | #[inline] |
284 | | pub fn sqrt(self) -> Self { |
285 | | if self.im.is_zero() { |
286 | | if self.re.is_sign_positive() { |
287 | | // simple positive real √r, and copy `im` for its sign |
288 | | Self::new(self.re.sqrt(), self.im) |
289 | | } else { |
290 | | // √(r e^(iπ)) = √r e^(iπ/2) = i√r |
291 | | // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r |
292 | | let re = T::zero(); |
293 | | let im = (-self.re).sqrt(); |
294 | | if self.im.is_sign_positive() { |
295 | | Self::new(re, im) |
296 | | } else { |
297 | | Self::new(re, -im) |
298 | | } |
299 | | } |
300 | | } else if self.re.is_zero() { |
301 | | // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2) |
302 | | // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2) |
303 | | let one = T::one(); |
304 | | let two = one + one; |
305 | | let x = (self.im.abs() / two).sqrt(); |
306 | | if self.im.is_sign_positive() { |
307 | | Self::new(x, x) |
308 | | } else { |
309 | | Self::new(x, -x) |
310 | | } |
311 | | } else { |
312 | | // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) |
313 | | let one = T::one(); |
314 | | let two = one + one; |
315 | | let (r, theta) = self.to_polar(); |
316 | | Self::from_polar(r.sqrt(), theta / two) |
317 | | } |
318 | | } |
319 | | |
320 | | /// Computes the principal value of the cube root of `self`. |
321 | | /// |
322 | | /// This function has one branch cut: |
323 | | /// |
324 | | /// * `(-∞, 0)`, continuous from above. |
325 | | /// |
326 | | /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`. |
327 | | /// |
328 | | /// Note that this does not match the usual result for the cube root of |
329 | | /// negative real numbers. For example, the real cube root of `-8` is `-2`, |
330 | | /// but the principal complex cube root of `-8` is `1 + i√3`. |
331 | | #[inline] |
332 | | pub fn cbrt(self) -> Self { |
333 | | if self.im.is_zero() { |
334 | | if self.re.is_sign_positive() { |
335 | | // simple positive real ∛r, and copy `im` for its sign |
336 | | Self::new(self.re.cbrt(), self.im) |
337 | | } else { |
338 | | // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2 |
339 | | // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2 |
340 | | let one = T::one(); |
341 | | let two = one + one; |
342 | | let three = two + one; |
343 | | let re = (-self.re).cbrt() / two; |
344 | | let im = three.sqrt() * re; |
345 | | if self.im.is_sign_positive() { |
346 | | Self::new(re, im) |
347 | | } else { |
348 | | Self::new(re, -im) |
349 | | } |
350 | | } |
351 | | } else if self.re.is_zero() { |
352 | | // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2 |
353 | | // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2 |
354 | | let one = T::one(); |
355 | | let two = one + one; |
356 | | let three = two + one; |
357 | | let im = self.im.abs().cbrt() / two; |
358 | | let re = three.sqrt() * im; |
359 | | if self.im.is_sign_positive() { |
360 | | Self::new(re, im) |
361 | | } else { |
362 | | Self::new(re, -im) |
363 | | } |
364 | | } else { |
365 | | // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3) |
366 | | let one = T::one(); |
367 | | let three = one + one + one; |
368 | | let (r, theta) = self.to_polar(); |
369 | | Self::from_polar(r.cbrt(), theta / three) |
370 | | } |
371 | | } |
372 | | |
373 | | /// Raises `self` to a floating point power. |
374 | | #[inline] |
375 | | pub fn powf(self, exp: T) -> Self { |
376 | | if exp.is_zero() { |
377 | | return Self::one(); |
378 | | } |
379 | | // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) |
380 | | // = from_polar(ρ^y, θ y) |
381 | | let (r, theta) = self.to_polar(); |
382 | | Self::from_polar(r.powf(exp), theta * exp) |
383 | | } |
384 | | |
385 | | /// Returns the logarithm of `self` with respect to an arbitrary base. |
386 | | #[inline] |
387 | | pub fn log(self, base: T) -> Self { |
388 | | // formula: log_y(x) = log_y(ρ e^(i θ)) |
389 | | // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) |
390 | | // = log_y(ρ) + i θ / ln(y) |
391 | | let (r, theta) = self.to_polar(); |
392 | | Self::new(r.log(base), theta / base.ln()) |
393 | | } |
394 | | |
395 | | /// Raises `self` to a complex power. |
396 | | #[inline] |
397 | | pub fn powc(self, exp: Self) -> Self { |
398 | | if exp.is_zero() { |
399 | | return Self::one(); |
400 | | } |
401 | | // formula: x^y = exp(y * ln(x)) |
402 | | (exp * self.ln()).exp() |
403 | | } |
404 | | |
405 | | /// Raises a floating point number to the complex power `self`. |
406 | | #[inline] |
407 | | pub fn expf(self, base: T) -> Self { |
408 | | // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) |
409 | | // = from_polar(x^a, b ln(x)) |
410 | | Self::from_polar(base.powf(self.re), self.im * base.ln()) |
411 | | } |
412 | | |
413 | | /// Computes the sine of `self`. |
414 | | #[inline] |
415 | | pub fn sin(self) -> Self { |
416 | | // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) |
417 | | Self::new( |
418 | | self.re.sin() * self.im.cosh(), |
419 | | self.re.cos() * self.im.sinh(), |
420 | | ) |
421 | | } |
422 | | |
423 | | /// Computes the cosine of `self`. |
424 | | #[inline] |
425 | | pub fn cos(self) -> Self { |
426 | | // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) |
427 | | Self::new( |
428 | | self.re.cos() * self.im.cosh(), |
429 | | -self.re.sin() * self.im.sinh(), |
430 | | ) |
431 | | } |
432 | | |
433 | | /// Computes the tangent of `self`. |
434 | | #[inline] |
435 | | pub fn tan(self) -> Self { |
436 | | // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) |
437 | | let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
438 | | Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) |
439 | | } |
440 | | |
441 | | /// Computes the principal value of the inverse sine of `self`. |
442 | | /// |
443 | | /// This function has two branch cuts: |
444 | | /// |
445 | | /// * `(-∞, -1)`, continuous from above. |
446 | | /// * `(1, ∞)`, continuous from below. |
447 | | /// |
448 | | /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. |
449 | | #[inline] |
450 | | pub fn asin(self) -> Self { |
451 | | // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) |
452 | | let i = Self::i(); |
453 | | -i * ((Self::one() - self * self).sqrt() + i * self).ln() |
454 | | } |
455 | | |
456 | | /// Computes the principal value of the inverse cosine of `self`. |
457 | | /// |
458 | | /// This function has two branch cuts: |
459 | | /// |
460 | | /// * `(-∞, -1)`, continuous from above. |
461 | | /// * `(1, ∞)`, continuous from below. |
462 | | /// |
463 | | /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. |
464 | | #[inline] |
465 | | pub fn acos(self) -> Self { |
466 | | // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) |
467 | | let i = Self::i(); |
468 | | -i * (i * (Self::one() - self * self).sqrt() + self).ln() |
469 | | } |
470 | | |
471 | | /// Computes the principal value of the inverse tangent of `self`. |
472 | | /// |
473 | | /// This function has two branch cuts: |
474 | | /// |
475 | | /// * `(-∞i, -i]`, continuous from the left. |
476 | | /// * `[i, ∞i)`, continuous from the right. |
477 | | /// |
478 | | /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. |
479 | | #[inline] |
480 | | pub fn atan(self) -> Self { |
481 | | // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) |
482 | | let i = Self::i(); |
483 | | let one = Self::one(); |
484 | | let two = one + one; |
485 | | if self == i { |
486 | | return Self::new(T::zero(), T::infinity()); |
487 | | } else if self == -i { |
488 | | return Self::new(T::zero(), -T::infinity()); |
489 | | } |
490 | | ((one + i * self).ln() - (one - i * self).ln()) / (two * i) |
491 | | } |
492 | | |
493 | | /// Computes the hyperbolic sine of `self`. |
494 | | #[inline] |
495 | | pub fn sinh(self) -> Self { |
496 | | // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) |
497 | | Self::new( |
498 | | self.re.sinh() * self.im.cos(), |
499 | | self.re.cosh() * self.im.sin(), |
500 | | ) |
501 | | } |
502 | | |
503 | | /// Computes the hyperbolic cosine of `self`. |
504 | | #[inline] |
505 | | pub fn cosh(self) -> Self { |
506 | | // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) |
507 | | Self::new( |
508 | | self.re.cosh() * self.im.cos(), |
509 | | self.re.sinh() * self.im.sin(), |
510 | | ) |
511 | | } |
512 | | |
513 | | /// Computes the hyperbolic tangent of `self`. |
514 | | #[inline] |
515 | | pub fn tanh(self) -> Self { |
516 | | // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) |
517 | | let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
518 | | Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) |
519 | | } |
520 | | |
521 | | /// Computes the principal value of inverse hyperbolic sine of `self`. |
522 | | /// |
523 | | /// This function has two branch cuts: |
524 | | /// |
525 | | /// * `(-∞i, -i)`, continuous from the left. |
526 | | /// * `(i, ∞i)`, continuous from the right. |
527 | | /// |
528 | | /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. |
529 | | #[inline] |
530 | | pub fn asinh(self) -> Self { |
531 | | // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) |
532 | | let one = Self::one(); |
533 | | (self + (one + self * self).sqrt()).ln() |
534 | | } |
535 | | |
536 | | /// Computes the principal value of inverse hyperbolic cosine of `self`. |
537 | | /// |
538 | | /// This function has one branch cut: |
539 | | /// |
540 | | /// * `(-∞, 1)`, continuous from above. |
541 | | /// |
542 | | /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. |
543 | | #[inline] |
544 | | pub fn acosh(self) -> Self { |
545 | | // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) |
546 | | let one = Self::one(); |
547 | | let two = one + one; |
548 | | two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln() |
549 | | } |
550 | | |
551 | | /// Computes the principal value of inverse hyperbolic tangent of `self`. |
552 | | /// |
553 | | /// This function has two branch cuts: |
554 | | /// |
555 | | /// * `(-∞, -1]`, continuous from above. |
556 | | /// * `[1, ∞)`, continuous from below. |
557 | | /// |
558 | | /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. |
559 | | #[inline] |
560 | | pub fn atanh(self) -> Self { |
561 | | // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 |
562 | | let one = Self::one(); |
563 | | let two = one + one; |
564 | | if self == one { |
565 | | return Self::new(T::infinity(), T::zero()); |
566 | | } else if self == -one { |
567 | | return Self::new(-T::infinity(), T::zero()); |
568 | | } |
569 | | ((one + self).ln() - (one - self).ln()) / two |
570 | | } |
571 | | |
572 | | /// Returns `1/self` using floating-point operations. |
573 | | /// |
574 | | /// This may be more accurate than the generic `self.inv()` in cases |
575 | | /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0. |
576 | | /// |
577 | | /// # Examples |
578 | | /// |
579 | | /// ``` |
580 | | /// use num_complex::Complex64; |
581 | | /// let c = Complex64::new(1e300, 1e300); |
582 | | /// |
583 | | /// // The generic `inv()` will overflow. |
584 | | /// assert!(!c.inv().is_normal()); |
585 | | /// |
586 | | /// // But we can do better for `Float` types. |
587 | | /// let inv = c.finv(); |
588 | | /// assert!(inv.is_normal()); |
589 | | /// println!("{:e}", inv); |
590 | | /// |
591 | | /// let expected = Complex64::new(5e-301, -5e-301); |
592 | | /// assert!((inv - expected).norm() < 1e-315); |
593 | | /// ``` |
594 | | #[inline] |
595 | | pub fn finv(self) -> Complex<T> { |
596 | | let norm = self.norm(); |
597 | | self.conj() / norm / norm |
598 | | } |
599 | | |
600 | | /// Returns `self/other` using floating-point operations. |
601 | | /// |
602 | | /// This may be more accurate than the generic `Div` implementation in cases |
603 | | /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0. |
604 | | /// |
605 | | /// # Examples |
606 | | /// |
607 | | /// ``` |
608 | | /// use num_complex::Complex64; |
609 | | /// let a = Complex64::new(2.0, 3.0); |
610 | | /// let b = Complex64::new(1e300, 1e300); |
611 | | /// |
612 | | /// // Generic division will overflow. |
613 | | /// assert!(!(a / b).is_normal()); |
614 | | /// |
615 | | /// // But we can do better for `Float` types. |
616 | | /// let quotient = a.fdiv(b); |
617 | | /// assert!(quotient.is_normal()); |
618 | | /// println!("{:e}", quotient); |
619 | | /// |
620 | | /// let expected = Complex64::new(2.5e-300, 5e-301); |
621 | | /// assert!((quotient - expected).norm() < 1e-315); |
622 | | /// ``` |
623 | | #[inline] |
624 | | pub fn fdiv(self, other: Complex<T>) -> Complex<T> { |
625 | | self * other.finv() |
626 | | } |
627 | | } |
628 | | |
629 | | #[cfg(any(feature = "std", feature = "libm"))] |
630 | | impl<T: Float + FloatConst> Complex<T> { |
631 | | /// Computes `2^(self)`. |
632 | | #[inline] |
633 | | pub fn exp2(self) -> Self { |
634 | | // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2)) |
635 | | // = from_polar(2^a, b*log2) |
636 | | Self::from_polar(self.re.exp2(), self.im * T::LN_2()) |
637 | | } |
638 | | |
639 | | /// Computes the principal value of log base 2 of `self`. |
640 | | #[inline] |
641 | | pub fn log2(self) -> Self { |
642 | | Self::ln(self) / T::LN_2() |
643 | | } |
644 | | |
645 | | /// Computes the principal value of log base 10 of `self`. |
646 | | #[inline] |
647 | | pub fn log10(self) -> Self { |
648 | | Self::ln(self) / T::LN_10() |
649 | | } |
650 | | } |
651 | | |
652 | | impl<T: FloatCore> Complex<T> { |
653 | | /// Checks if the given complex number is NaN |
654 | | #[inline] |
655 | 0 | pub fn is_nan(self) -> bool { |
656 | 0 | self.re.is_nan() || self.im.is_nan() |
657 | 0 | } |
658 | | |
659 | | /// Checks if the given complex number is infinite |
660 | | #[inline] |
661 | 0 | pub fn is_infinite(self) -> bool { |
662 | 0 | !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) |
663 | 0 | } |
664 | | |
665 | | /// Checks if the given complex number is finite |
666 | | #[inline] |
667 | 0 | pub fn is_finite(self) -> bool { |
668 | 0 | self.re.is_finite() && self.im.is_finite() |
669 | 0 | } |
670 | | |
671 | | /// Checks if the given complex number is normal |
672 | | #[inline] |
673 | 0 | pub fn is_normal(self) -> bool { |
674 | 0 | self.re.is_normal() && self.im.is_normal() |
675 | 0 | } |
676 | | } |
677 | | |
678 | | // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
679 | | // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`, |
680 | | // `Complex<T>` is also `Zeroable` |
681 | | #[cfg(feature = "bytemuck")] |
682 | | unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {} |
683 | | |
684 | | // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
685 | | // can guarantee it contains no *added* padding. Thus, if `T: Pod`, |
686 | | // `Complex<T>` is also `Pod` |
687 | | #[cfg(feature = "bytemuck")] |
688 | | unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {} |
689 | | |
690 | | impl<T: Clone + Num> From<T> for Complex<T> { |
691 | | #[inline] |
692 | 0 | fn from(re: T) -> Self { |
693 | 0 | Self::new(re, T::zero()) |
694 | 0 | } |
695 | | } |
696 | | |
697 | | impl<'a, T: Clone + Num> From<&'a T> for Complex<T> { |
698 | | #[inline] |
699 | 0 | fn from(re: &T) -> Self { |
700 | 0 | From::from(re.clone()) |
701 | 0 | } |
702 | | } |
703 | | |
704 | | macro_rules! forward_ref_ref_binop { |
705 | | (impl $imp:ident, $method:ident) => { |
706 | | impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> { |
707 | | type Output = Complex<T>; |
708 | | |
709 | | #[inline] |
710 | 0 | fn $method(self, other: &Complex<T>) -> Self::Output { |
711 | 0 | self.clone().$method(other.clone()) |
712 | 0 | } Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem>::rem Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add>::add Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub>::sub Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul>::mul Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div>::div |
713 | | } |
714 | | }; |
715 | | } |
716 | | |
717 | | macro_rules! forward_ref_val_binop { |
718 | | (impl $imp:ident, $method:ident) => { |
719 | | impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> { |
720 | | type Output = Complex<T>; |
721 | | |
722 | | #[inline] |
723 | 0 | fn $method(self, other: Complex<T>) -> Self::Output { |
724 | 0 | self.clone().$method(other) |
725 | 0 | } Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem<num_complex::Complex<_>>>::rem Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add<num_complex::Complex<_>>>::add Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub<num_complex::Complex<_>>>::sub Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul<num_complex::Complex<_>>>::mul Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div<num_complex::Complex<_>>>::div |
726 | | } |
727 | | }; |
728 | | } |
729 | | |
730 | | macro_rules! forward_val_ref_binop { |
731 | | (impl $imp:ident, $method:ident) => { |
732 | | impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> { |
733 | | type Output = Complex<T>; |
734 | | |
735 | | #[inline] |
736 | 0 | fn $method(self, other: &Complex<T>) -> Self::Output { |
737 | 0 | self.$method(other.clone()) |
738 | 0 | } Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Div<&num_complex::Complex<_>>>::div Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Rem<&num_complex::Complex<_>>>::rem Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Add<&num_complex::Complex<_>>>::add Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Sub<&num_complex::Complex<_>>>::sub Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Mul<&num_complex::Complex<_>>>::mul |
739 | | } |
740 | | }; |
741 | | } |
742 | | |
743 | | macro_rules! forward_all_binop { |
744 | | (impl $imp:ident, $method:ident) => { |
745 | | forward_ref_ref_binop!(impl $imp, $method); |
746 | | forward_ref_val_binop!(impl $imp, $method); |
747 | | forward_val_ref_binop!(impl $imp, $method); |
748 | | }; |
749 | | } |
750 | | |
751 | | // arithmetic |
752 | | forward_all_binop!(impl Add, add); |
753 | | |
754 | | // (a + i b) + (c + i d) == (a + c) + i (b + d) |
755 | | impl<T: Clone + Num> Add<Complex<T>> for Complex<T> { |
756 | | type Output = Self; |
757 | | |
758 | | #[inline] |
759 | 0 | fn add(self, other: Self) -> Self::Output { |
760 | 0 | Self::Output::new(self.re + other.re, self.im + other.im) |
761 | 0 | } |
762 | | } |
763 | | |
764 | | forward_all_binop!(impl Sub, sub); |
765 | | |
766 | | // (a + i b) - (c + i d) == (a - c) + i (b - d) |
767 | | impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> { |
768 | | type Output = Self; |
769 | | |
770 | | #[inline] |
771 | 0 | fn sub(self, other: Self) -> Self::Output { |
772 | 0 | Self::Output::new(self.re - other.re, self.im - other.im) |
773 | 0 | } |
774 | | } |
775 | | |
776 | | forward_all_binop!(impl Mul, mul); |
777 | | |
778 | | // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
779 | | impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> { |
780 | | type Output = Self; |
781 | | |
782 | | #[inline] |
783 | 0 | fn mul(self, other: Self) -> Self::Output { |
784 | 0 | let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); |
785 | 0 | let im = self.re * other.im + self.im * other.re; |
786 | 0 | Self::Output::new(re, im) |
787 | 0 | } |
788 | | } |
789 | | |
790 | | // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f)) |
791 | | impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> { |
792 | | type Output = Complex<T>; |
793 | | |
794 | | #[inline] |
795 | 0 | fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> { |
796 | 0 | let re = self.re.clone().mul_add(other.re.clone(), add.re) |
797 | 0 | - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust |
798 | 0 | let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im)); |
799 | 0 | Complex::new(re, im) |
800 | 0 | } |
801 | | } |
802 | | impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> { |
803 | | type Output = Complex<T>; |
804 | | |
805 | | #[inline] |
806 | 0 | fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> { |
807 | 0 | self.clone().mul_add(other.clone(), add.clone()) |
808 | 0 | } |
809 | | } |
810 | | |
811 | | forward_all_binop!(impl Div, div); |
812 | | |
813 | | // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
814 | | // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
815 | | impl<T: Clone + Num> Div<Complex<T>> for Complex<T> { |
816 | | type Output = Self; |
817 | | |
818 | | #[inline] |
819 | 0 | fn div(self, other: Self) -> Self::Output { |
820 | 0 | let norm_sqr = other.norm_sqr(); |
821 | 0 | let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); |
822 | 0 | let im = self.im * other.re - self.re * other.im; |
823 | 0 | Self::Output::new(re / norm_sqr.clone(), im / norm_sqr) |
824 | 0 | } |
825 | | } |
826 | | |
827 | | forward_all_binop!(impl Rem, rem); |
828 | | |
829 | | impl<T: Clone + Num> Complex<T> { |
830 | | /// Find the gaussian integer corresponding to the true ratio rounded towards zero. |
831 | 0 | fn div_trunc(&self, divisor: &Self) -> Self { |
832 | 0 | let Complex { re, im } = self / divisor; |
833 | 0 | Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one()) |
834 | 0 | } |
835 | | } |
836 | | |
837 | | impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> { |
838 | | type Output = Self; |
839 | | |
840 | | #[inline] |
841 | 0 | fn rem(self, modulus: Self) -> Self::Output { |
842 | 0 | let gaussian = self.div_trunc(&modulus); |
843 | 0 | self - modulus * gaussian |
844 | 0 | } |
845 | | } |
846 | | |
847 | | // Op Assign |
848 | | |
849 | | mod opassign { |
850 | | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
851 | | |
852 | | use num_traits::{MulAddAssign, NumAssign}; |
853 | | |
854 | | use crate::Complex; |
855 | | |
856 | | impl<T: Clone + NumAssign> AddAssign for Complex<T> { |
857 | 0 | fn add_assign(&mut self, other: Self) { |
858 | 0 | self.re += other.re; |
859 | 0 | self.im += other.im; |
860 | 0 | } |
861 | | } |
862 | | |
863 | | impl<T: Clone + NumAssign> SubAssign for Complex<T> { |
864 | 0 | fn sub_assign(&mut self, other: Self) { |
865 | 0 | self.re -= other.re; |
866 | 0 | self.im -= other.im; |
867 | 0 | } |
868 | | } |
869 | | |
870 | | // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
871 | | impl<T: Clone + NumAssign> MulAssign for Complex<T> { |
872 | 0 | fn mul_assign(&mut self, other: Self) { |
873 | 0 | let a = self.re.clone(); |
874 | | |
875 | 0 | self.re *= other.re.clone(); |
876 | 0 | self.re -= self.im.clone() * other.im.clone(); |
877 | | |
878 | 0 | self.im *= other.re; |
879 | 0 | self.im += a * other.im; |
880 | 0 | } |
881 | | } |
882 | | |
883 | | // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f)) |
884 | | impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> { |
885 | 0 | fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) { |
886 | 0 | let a = self.re.clone(); |
887 | | |
888 | 0 | self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e) |
889 | 0 | self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d) |
890 | | |
891 | 0 | let mut adf = a; |
892 | 0 | adf.mul_add_assign(other.im, add.im); // (a*d + f) |
893 | 0 | self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f)) |
894 | 0 | } |
895 | | } |
896 | | |
897 | | impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>> |
898 | | for Complex<T> |
899 | | { |
900 | 0 | fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) { |
901 | 0 | self.mul_add_assign(other.clone(), add.clone()); |
902 | 0 | } |
903 | | } |
904 | | |
905 | | // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
906 | | // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
907 | | impl<T: Clone + NumAssign> DivAssign for Complex<T> { |
908 | 0 | fn div_assign(&mut self, other: Self) { |
909 | 0 | let a = self.re.clone(); |
910 | 0 | let norm_sqr = other.norm_sqr(); |
911 | | |
912 | 0 | self.re *= other.re.clone(); |
913 | 0 | self.re += self.im.clone() * other.im.clone(); |
914 | 0 | self.re /= norm_sqr.clone(); |
915 | | |
916 | 0 | self.im *= other.re; |
917 | 0 | self.im -= a * other.im; |
918 | 0 | self.im /= norm_sqr; |
919 | 0 | } |
920 | | } |
921 | | |
922 | | impl<T: Clone + NumAssign> RemAssign for Complex<T> { |
923 | 0 | fn rem_assign(&mut self, modulus: Self) { |
924 | 0 | let gaussian = self.div_trunc(&modulus); |
925 | 0 | *self -= modulus * gaussian; |
926 | 0 | } |
927 | | } |
928 | | |
929 | | impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> { |
930 | 0 | fn add_assign(&mut self, other: T) { |
931 | 0 | self.re += other; |
932 | 0 | } |
933 | | } |
934 | | |
935 | | impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> { |
936 | 0 | fn sub_assign(&mut self, other: T) { |
937 | 0 | self.re -= other; |
938 | 0 | } |
939 | | } |
940 | | |
941 | | impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> { |
942 | 0 | fn mul_assign(&mut self, other: T) { |
943 | 0 | self.re *= other.clone(); |
944 | 0 | self.im *= other; |
945 | 0 | } |
946 | | } |
947 | | |
948 | | impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> { |
949 | 0 | fn div_assign(&mut self, other: T) { |
950 | 0 | self.re /= other.clone(); |
951 | 0 | self.im /= other; |
952 | 0 | } |
953 | | } |
954 | | |
955 | | impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> { |
956 | 0 | fn rem_assign(&mut self, other: T) { |
957 | 0 | self.re %= other.clone(); |
958 | 0 | self.im %= other; |
959 | 0 | } |
960 | | } |
961 | | |
962 | | macro_rules! forward_op_assign { |
963 | | (impl $imp:ident, $method:ident) => { |
964 | | impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> { |
965 | | #[inline] |
966 | 0 | fn $method(&mut self, other: &Self) { |
967 | 0 | self.$method(other.clone()) |
968 | 0 | } Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::AddAssign<&num_complex::Complex<_>>>::add_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::SubAssign<&num_complex::Complex<_>>>::sub_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::MulAssign<&num_complex::Complex<_>>>::mul_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::DivAssign<&num_complex::Complex<_>>>::div_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::RemAssign<&num_complex::Complex<_>>>::rem_assign |
969 | | } |
970 | | impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> { |
971 | | #[inline] |
972 | 0 | fn $method(&mut self, other: &T) { |
973 | 0 | self.$method(other.clone()) |
974 | 0 | } Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::AddAssign<&_>>::add_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::SubAssign<&_>>::sub_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::MulAssign<&_>>::mul_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::DivAssign<&_>>::div_assign Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::RemAssign<&_>>::rem_assign |
975 | | } |
976 | | }; |
977 | | } |
978 | | |
979 | | forward_op_assign!(impl AddAssign, add_assign); |
980 | | forward_op_assign!(impl SubAssign, sub_assign); |
981 | | forward_op_assign!(impl MulAssign, mul_assign); |
982 | | forward_op_assign!(impl DivAssign, div_assign); |
983 | | forward_op_assign!(impl RemAssign, rem_assign); |
984 | | } |
985 | | |
986 | | impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> { |
987 | | type Output = Self; |
988 | | |
989 | | #[inline] |
990 | 0 | fn neg(self) -> Self::Output { |
991 | 0 | Self::Output::new(-self.re, -self.im) |
992 | 0 | } |
993 | | } |
994 | | |
995 | | impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> { |
996 | | type Output = Complex<T>; |
997 | | |
998 | | #[inline] |
999 | 0 | fn neg(self) -> Self::Output { |
1000 | 0 | -self.clone() |
1001 | 0 | } |
1002 | | } |
1003 | | |
1004 | | impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> { |
1005 | | type Output = Self; |
1006 | | |
1007 | | #[inline] |
1008 | 0 | fn inv(self) -> Self::Output { |
1009 | 0 | Complex::inv(&self) |
1010 | 0 | } |
1011 | | } |
1012 | | |
1013 | | impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> { |
1014 | | type Output = Complex<T>; |
1015 | | |
1016 | | #[inline] |
1017 | 0 | fn inv(self) -> Self::Output { |
1018 | 0 | Complex::inv(self) |
1019 | 0 | } |
1020 | | } |
1021 | | |
1022 | | macro_rules! real_arithmetic { |
1023 | | (@forward $imp:ident::$method:ident for $($real:ident),*) => ( |
1024 | | impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> { |
1025 | | type Output = Complex<T>; |
1026 | | |
1027 | | #[inline] |
1028 | 0 | fn $method(self, other: &T) -> Self::Output { |
1029 | 0 | self.$method(other.clone()) |
1030 | 0 | } Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Sub<&_>>::sub Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Add<&_>>::add Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Mul<&_>>::mul Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Div<&_>>::div Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Rem<&_>>::rem |
1031 | | } |
1032 | | impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> { |
1033 | | type Output = Complex<T>; |
1034 | | |
1035 | | #[inline] |
1036 | 0 | fn $method(self, other: T) -> Self::Output { |
1037 | 0 | self.clone().$method(other) |
1038 | 0 | } Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub<_>>::sub Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add<_>>::add Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul<_>>::mul Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div<_>>::div Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem<_>>::rem |
1039 | | } |
1040 | | impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> { |
1041 | | type Output = Complex<T>; |
1042 | | |
1043 | | #[inline] |
1044 | 0 | fn $method(self, other: &T) -> Self::Output { |
1045 | 0 | self.clone().$method(other.clone()) |
1046 | 0 | } Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub<&_>>::sub Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add<&_>>::add Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul<&_>>::mul Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div<&_>>::div Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem<&_>>::rem |
1047 | | } |
1048 | | $( |
1049 | | impl<'a> $imp<&'a Complex<$real>> for $real { |
1050 | | type Output = Complex<$real>; |
1051 | | |
1052 | | #[inline] |
1053 | 0 | fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
1054 | 0 | self.$method(other.clone()) |
1055 | 0 | } Unexecuted instantiation: <i8 as core::ops::arith::Add<&num_complex::Complex<i8>>>::add Unexecuted instantiation: <i16 as core::ops::arith::Add<&num_complex::Complex<i16>>>::add Unexecuted instantiation: <i32 as core::ops::arith::Add<&num_complex::Complex<i32>>>::add Unexecuted instantiation: <i64 as core::ops::arith::Add<&num_complex::Complex<i64>>>::add Unexecuted instantiation: <i128 as core::ops::arith::Add<&num_complex::Complex<i128>>>::add Unexecuted instantiation: <f32 as core::ops::arith::Add<&num_complex::Complex<f32>>>::add Unexecuted instantiation: <f64 as core::ops::arith::Add<&num_complex::Complex<f64>>>::add Unexecuted instantiation: <usize as core::ops::arith::Sub<&num_complex::Complex<usize>>>::sub Unexecuted instantiation: <usize as core::ops::arith::Add<&num_complex::Complex<usize>>>::add Unexecuted instantiation: <u8 as core::ops::arith::Add<&num_complex::Complex<u8>>>::add Unexecuted instantiation: <u16 as core::ops::arith::Add<&num_complex::Complex<u16>>>::add Unexecuted instantiation: <u32 as core::ops::arith::Add<&num_complex::Complex<u32>>>::add Unexecuted instantiation: <u64 as core::ops::arith::Add<&num_complex::Complex<u64>>>::add Unexecuted instantiation: <u128 as core::ops::arith::Add<&num_complex::Complex<u128>>>::add Unexecuted instantiation: <isize as core::ops::arith::Add<&num_complex::Complex<isize>>>::add Unexecuted instantiation: <u8 as core::ops::arith::Sub<&num_complex::Complex<u8>>>::sub Unexecuted instantiation: <u16 as core::ops::arith::Sub<&num_complex::Complex<u16>>>::sub Unexecuted instantiation: <u32 as core::ops::arith::Sub<&num_complex::Complex<u32>>>::sub Unexecuted instantiation: <f64 as core::ops::arith::Sub<&num_complex::Complex<f64>>>::sub Unexecuted instantiation: <usize as core::ops::arith::Mul<&num_complex::Complex<usize>>>::mul Unexecuted instantiation: <u8 as core::ops::arith::Mul<&num_complex::Complex<u8>>>::mul Unexecuted instantiation: <u16 as core::ops::arith::Mul<&num_complex::Complex<u16>>>::mul Unexecuted instantiation: <u32 as core::ops::arith::Mul<&num_complex::Complex<u32>>>::mul Unexecuted instantiation: <u64 as core::ops::arith::Mul<&num_complex::Complex<u64>>>::mul Unexecuted instantiation: <u128 as core::ops::arith::Mul<&num_complex::Complex<u128>>>::mul Unexecuted instantiation: <isize as core::ops::arith::Mul<&num_complex::Complex<isize>>>::mul Unexecuted instantiation: <u64 as core::ops::arith::Sub<&num_complex::Complex<u64>>>::sub Unexecuted instantiation: <u128 as core::ops::arith::Sub<&num_complex::Complex<u128>>>::sub Unexecuted instantiation: <isize as core::ops::arith::Sub<&num_complex::Complex<isize>>>::sub Unexecuted instantiation: <i8 as core::ops::arith::Sub<&num_complex::Complex<i8>>>::sub Unexecuted instantiation: <i16 as core::ops::arith::Sub<&num_complex::Complex<i16>>>::sub Unexecuted instantiation: <i32 as core::ops::arith::Sub<&num_complex::Complex<i32>>>::sub Unexecuted instantiation: <i64 as core::ops::arith::Sub<&num_complex::Complex<i64>>>::sub Unexecuted instantiation: <i128 as core::ops::arith::Sub<&num_complex::Complex<i128>>>::sub Unexecuted instantiation: <f32 as core::ops::arith::Sub<&num_complex::Complex<f32>>>::sub Unexecuted instantiation: <i8 as core::ops::arith::Mul<&num_complex::Complex<i8>>>::mul Unexecuted instantiation: <i16 as core::ops::arith::Mul<&num_complex::Complex<i16>>>::mul Unexecuted instantiation: <i32 as core::ops::arith::Mul<&num_complex::Complex<i32>>>::mul Unexecuted instantiation: <u64 as core::ops::arith::Div<&num_complex::Complex<u64>>>::div Unexecuted instantiation: <u128 as core::ops::arith::Div<&num_complex::Complex<u128>>>::div Unexecuted instantiation: <isize as core::ops::arith::Div<&num_complex::Complex<isize>>>::div Unexecuted instantiation: <i8 as core::ops::arith::Div<&num_complex::Complex<i8>>>::div Unexecuted instantiation: <i16 as core::ops::arith::Div<&num_complex::Complex<i16>>>::div Unexecuted instantiation: <i32 as core::ops::arith::Div<&num_complex::Complex<i32>>>::div Unexecuted instantiation: <i64 as core::ops::arith::Div<&num_complex::Complex<i64>>>::div Unexecuted instantiation: <i128 as core::ops::arith::Div<&num_complex::Complex<i128>>>::div Unexecuted instantiation: <i64 as core::ops::arith::Mul<&num_complex::Complex<i64>>>::mul Unexecuted instantiation: <i128 as core::ops::arith::Mul<&num_complex::Complex<i128>>>::mul Unexecuted instantiation: <f32 as core::ops::arith::Mul<&num_complex::Complex<f32>>>::mul Unexecuted instantiation: <f64 as core::ops::arith::Mul<&num_complex::Complex<f64>>>::mul Unexecuted instantiation: <usize as core::ops::arith::Div<&num_complex::Complex<usize>>>::div Unexecuted instantiation: <u8 as core::ops::arith::Div<&num_complex::Complex<u8>>>::div Unexecuted instantiation: <u16 as core::ops::arith::Div<&num_complex::Complex<u16>>>::div Unexecuted instantiation: <u32 as core::ops::arith::Div<&num_complex::Complex<u32>>>::div Unexecuted instantiation: <f32 as core::ops::arith::Div<&num_complex::Complex<f32>>>::div Unexecuted instantiation: <f64 as core::ops::arith::Div<&num_complex::Complex<f64>>>::div Unexecuted instantiation: <usize as core::ops::arith::Rem<&num_complex::Complex<usize>>>::rem Unexecuted instantiation: <i32 as core::ops::arith::Rem<&num_complex::Complex<i32>>>::rem Unexecuted instantiation: <i64 as core::ops::arith::Rem<&num_complex::Complex<i64>>>::rem Unexecuted instantiation: <i128 as core::ops::arith::Rem<&num_complex::Complex<i128>>>::rem Unexecuted instantiation: <f32 as core::ops::arith::Rem<&num_complex::Complex<f32>>>::rem Unexecuted instantiation: <f64 as core::ops::arith::Rem<&num_complex::Complex<f64>>>::rem Unexecuted instantiation: <u8 as core::ops::arith::Rem<&num_complex::Complex<u8>>>::rem Unexecuted instantiation: <u16 as core::ops::arith::Rem<&num_complex::Complex<u16>>>::rem Unexecuted instantiation: <u32 as core::ops::arith::Rem<&num_complex::Complex<u32>>>::rem Unexecuted instantiation: <u64 as core::ops::arith::Rem<&num_complex::Complex<u64>>>::rem Unexecuted instantiation: <u128 as core::ops::arith::Rem<&num_complex::Complex<u128>>>::rem Unexecuted instantiation: <isize as core::ops::arith::Rem<&num_complex::Complex<isize>>>::rem Unexecuted instantiation: <i8 as core::ops::arith::Rem<&num_complex::Complex<i8>>>::rem Unexecuted instantiation: <i16 as core::ops::arith::Rem<&num_complex::Complex<i16>>>::rem |
1056 | | } |
1057 | | impl<'a> $imp<Complex<$real>> for &'a $real { |
1058 | | type Output = Complex<$real>; |
1059 | | |
1060 | | #[inline] |
1061 | 0 | fn $method(self, other: Complex<$real>) -> Complex<$real> { |
1062 | 0 | self.clone().$method(other) |
1063 | 0 | } Unexecuted instantiation: <&i8 as core::ops::arith::Add<num_complex::Complex<i8>>>::add Unexecuted instantiation: <&i16 as core::ops::arith::Add<num_complex::Complex<i16>>>::add Unexecuted instantiation: <&i32 as core::ops::arith::Add<num_complex::Complex<i32>>>::add Unexecuted instantiation: <&i64 as core::ops::arith::Add<num_complex::Complex<i64>>>::add Unexecuted instantiation: <&i128 as core::ops::arith::Add<num_complex::Complex<i128>>>::add Unexecuted instantiation: <&f32 as core::ops::arith::Add<num_complex::Complex<f32>>>::add Unexecuted instantiation: <&f64 as core::ops::arith::Add<num_complex::Complex<f64>>>::add Unexecuted instantiation: <&usize as core::ops::arith::Sub<num_complex::Complex<usize>>>::sub Unexecuted instantiation: <&usize as core::ops::arith::Add<num_complex::Complex<usize>>>::add Unexecuted instantiation: <&u8 as core::ops::arith::Add<num_complex::Complex<u8>>>::add Unexecuted instantiation: <&u16 as core::ops::arith::Add<num_complex::Complex<u16>>>::add Unexecuted instantiation: <&u32 as core::ops::arith::Add<num_complex::Complex<u32>>>::add Unexecuted instantiation: <&u64 as core::ops::arith::Add<num_complex::Complex<u64>>>::add Unexecuted instantiation: <&u128 as core::ops::arith::Add<num_complex::Complex<u128>>>::add Unexecuted instantiation: <&isize as core::ops::arith::Add<num_complex::Complex<isize>>>::add Unexecuted instantiation: <&u8 as core::ops::arith::Sub<num_complex::Complex<u8>>>::sub Unexecuted instantiation: <&u16 as core::ops::arith::Sub<num_complex::Complex<u16>>>::sub Unexecuted instantiation: <&u32 as core::ops::arith::Sub<num_complex::Complex<u32>>>::sub Unexecuted instantiation: <&f64 as core::ops::arith::Sub<num_complex::Complex<f64>>>::sub Unexecuted instantiation: <&usize as core::ops::arith::Mul<num_complex::Complex<usize>>>::mul Unexecuted instantiation: <&u8 as core::ops::arith::Mul<num_complex::Complex<u8>>>::mul Unexecuted instantiation: <&u16 as core::ops::arith::Mul<num_complex::Complex<u16>>>::mul Unexecuted instantiation: <&u32 as core::ops::arith::Mul<num_complex::Complex<u32>>>::mul Unexecuted instantiation: <&u64 as core::ops::arith::Mul<num_complex::Complex<u64>>>::mul Unexecuted instantiation: <&u128 as core::ops::arith::Mul<num_complex::Complex<u128>>>::mul Unexecuted instantiation: <&u64 as core::ops::arith::Sub<num_complex::Complex<u64>>>::sub Unexecuted instantiation: <&u128 as core::ops::arith::Sub<num_complex::Complex<u128>>>::sub Unexecuted instantiation: <&isize as core::ops::arith::Sub<num_complex::Complex<isize>>>::sub Unexecuted instantiation: <&i8 as core::ops::arith::Sub<num_complex::Complex<i8>>>::sub Unexecuted instantiation: <&i16 as core::ops::arith::Sub<num_complex::Complex<i16>>>::sub Unexecuted instantiation: <&i32 as core::ops::arith::Sub<num_complex::Complex<i32>>>::sub Unexecuted instantiation: <&i64 as core::ops::arith::Sub<num_complex::Complex<i64>>>::sub Unexecuted instantiation: <&i128 as core::ops::arith::Sub<num_complex::Complex<i128>>>::sub Unexecuted instantiation: <&f32 as core::ops::arith::Sub<num_complex::Complex<f32>>>::sub Unexecuted instantiation: <&isize as core::ops::arith::Mul<num_complex::Complex<isize>>>::mul Unexecuted instantiation: <&i8 as core::ops::arith::Mul<num_complex::Complex<i8>>>::mul Unexecuted instantiation: <&i16 as core::ops::arith::Mul<num_complex::Complex<i16>>>::mul Unexecuted instantiation: <&i32 as core::ops::arith::Mul<num_complex::Complex<i32>>>::mul Unexecuted instantiation: <&u32 as core::ops::arith::Div<num_complex::Complex<u32>>>::div Unexecuted instantiation: <&u64 as core::ops::arith::Div<num_complex::Complex<u64>>>::div Unexecuted instantiation: <&u128 as core::ops::arith::Div<num_complex::Complex<u128>>>::div Unexecuted instantiation: <&isize as core::ops::arith::Div<num_complex::Complex<isize>>>::div Unexecuted instantiation: <&i8 as core::ops::arith::Div<num_complex::Complex<i8>>>::div Unexecuted instantiation: <&i16 as core::ops::arith::Div<num_complex::Complex<i16>>>::div Unexecuted instantiation: <&i32 as core::ops::arith::Div<num_complex::Complex<i32>>>::div Unexecuted instantiation: <&i64 as core::ops::arith::Div<num_complex::Complex<i64>>>::div Unexecuted instantiation: <&i128 as core::ops::arith::Div<num_complex::Complex<i128>>>::div Unexecuted instantiation: <&i64 as core::ops::arith::Mul<num_complex::Complex<i64>>>::mul Unexecuted instantiation: <&i128 as core::ops::arith::Mul<num_complex::Complex<i128>>>::mul Unexecuted instantiation: <&f32 as core::ops::arith::Mul<num_complex::Complex<f32>>>::mul Unexecuted instantiation: <&f64 as core::ops::arith::Mul<num_complex::Complex<f64>>>::mul Unexecuted instantiation: <&usize as core::ops::arith::Div<num_complex::Complex<usize>>>::div Unexecuted instantiation: <&u8 as core::ops::arith::Div<num_complex::Complex<u8>>>::div Unexecuted instantiation: <&u16 as core::ops::arith::Div<num_complex::Complex<u16>>>::div Unexecuted instantiation: <&f32 as core::ops::arith::Div<num_complex::Complex<f32>>>::div Unexecuted instantiation: <&f64 as core::ops::arith::Div<num_complex::Complex<f64>>>::div Unexecuted instantiation: <&i32 as core::ops::arith::Rem<num_complex::Complex<i32>>>::rem Unexecuted instantiation: <&i64 as core::ops::arith::Rem<num_complex::Complex<i64>>>::rem Unexecuted instantiation: <&i128 as core::ops::arith::Rem<num_complex::Complex<i128>>>::rem Unexecuted instantiation: <&f32 as core::ops::arith::Rem<num_complex::Complex<f32>>>::rem Unexecuted instantiation: <&f64 as core::ops::arith::Rem<num_complex::Complex<f64>>>::rem Unexecuted instantiation: <&usize as core::ops::arith::Rem<num_complex::Complex<usize>>>::rem Unexecuted instantiation: <&u8 as core::ops::arith::Rem<num_complex::Complex<u8>>>::rem Unexecuted instantiation: <&u16 as core::ops::arith::Rem<num_complex::Complex<u16>>>::rem Unexecuted instantiation: <&u32 as core::ops::arith::Rem<num_complex::Complex<u32>>>::rem Unexecuted instantiation: <&u64 as core::ops::arith::Rem<num_complex::Complex<u64>>>::rem Unexecuted instantiation: <&u128 as core::ops::arith::Rem<num_complex::Complex<u128>>>::rem Unexecuted instantiation: <&isize as core::ops::arith::Rem<num_complex::Complex<isize>>>::rem Unexecuted instantiation: <&i8 as core::ops::arith::Rem<num_complex::Complex<i8>>>::rem Unexecuted instantiation: <&i16 as core::ops::arith::Rem<num_complex::Complex<i16>>>::rem |
1064 | | } |
1065 | | impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { |
1066 | | type Output = Complex<$real>; |
1067 | | |
1068 | | #[inline] |
1069 | 0 | fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
1070 | 0 | self.clone().$method(other.clone()) |
1071 | 0 | } Unexecuted instantiation: <&i8 as core::ops::arith::Add<&num_complex::Complex<i8>>>::add Unexecuted instantiation: <&i16 as core::ops::arith::Add<&num_complex::Complex<i16>>>::add Unexecuted instantiation: <&i32 as core::ops::arith::Add<&num_complex::Complex<i32>>>::add Unexecuted instantiation: <&i64 as core::ops::arith::Add<&num_complex::Complex<i64>>>::add Unexecuted instantiation: <&i128 as core::ops::arith::Add<&num_complex::Complex<i128>>>::add Unexecuted instantiation: <&f32 as core::ops::arith::Add<&num_complex::Complex<f32>>>::add Unexecuted instantiation: <&f64 as core::ops::arith::Add<&num_complex::Complex<f64>>>::add Unexecuted instantiation: <&usize as core::ops::arith::Add<&num_complex::Complex<usize>>>::add Unexecuted instantiation: <&u8 as core::ops::arith::Add<&num_complex::Complex<u8>>>::add Unexecuted instantiation: <&u16 as core::ops::arith::Add<&num_complex::Complex<u16>>>::add Unexecuted instantiation: <&u32 as core::ops::arith::Add<&num_complex::Complex<u32>>>::add Unexecuted instantiation: <&u64 as core::ops::arith::Add<&num_complex::Complex<u64>>>::add Unexecuted instantiation: <&u128 as core::ops::arith::Add<&num_complex::Complex<u128>>>::add Unexecuted instantiation: <&isize as core::ops::arith::Add<&num_complex::Complex<isize>>>::add Unexecuted instantiation: <&usize as core::ops::arith::Sub<&num_complex::Complex<usize>>>::sub Unexecuted instantiation: <&u8 as core::ops::arith::Sub<&num_complex::Complex<u8>>>::sub Unexecuted instantiation: <&u16 as core::ops::arith::Sub<&num_complex::Complex<u16>>>::sub Unexecuted instantiation: <&u32 as core::ops::arith::Sub<&num_complex::Complex<u32>>>::sub Unexecuted instantiation: <&f32 as core::ops::arith::Sub<&num_complex::Complex<f32>>>::sub Unexecuted instantiation: <&f64 as core::ops::arith::Sub<&num_complex::Complex<f64>>>::sub Unexecuted instantiation: <&usize as core::ops::arith::Mul<&num_complex::Complex<usize>>>::mul Unexecuted instantiation: <&u8 as core::ops::arith::Mul<&num_complex::Complex<u8>>>::mul Unexecuted instantiation: <&u16 as core::ops::arith::Mul<&num_complex::Complex<u16>>>::mul Unexecuted instantiation: <&u32 as core::ops::arith::Mul<&num_complex::Complex<u32>>>::mul Unexecuted instantiation: <&u64 as core::ops::arith::Mul<&num_complex::Complex<u64>>>::mul Unexecuted instantiation: <&u128 as core::ops::arith::Mul<&num_complex::Complex<u128>>>::mul Unexecuted instantiation: <&u64 as core::ops::arith::Sub<&num_complex::Complex<u64>>>::sub Unexecuted instantiation: <&u128 as core::ops::arith::Sub<&num_complex::Complex<u128>>>::sub Unexecuted instantiation: <&isize as core::ops::arith::Sub<&num_complex::Complex<isize>>>::sub Unexecuted instantiation: <&i8 as core::ops::arith::Sub<&num_complex::Complex<i8>>>::sub Unexecuted instantiation: <&i16 as core::ops::arith::Sub<&num_complex::Complex<i16>>>::sub Unexecuted instantiation: <&i32 as core::ops::arith::Sub<&num_complex::Complex<i32>>>::sub Unexecuted instantiation: <&i64 as core::ops::arith::Sub<&num_complex::Complex<i64>>>::sub Unexecuted instantiation: <&i128 as core::ops::arith::Sub<&num_complex::Complex<i128>>>::sub Unexecuted instantiation: <&isize as core::ops::arith::Mul<&num_complex::Complex<isize>>>::mul Unexecuted instantiation: <&i8 as core::ops::arith::Mul<&num_complex::Complex<i8>>>::mul Unexecuted instantiation: <&i16 as core::ops::arith::Mul<&num_complex::Complex<i16>>>::mul Unexecuted instantiation: <&u32 as core::ops::arith::Div<&num_complex::Complex<u32>>>::div Unexecuted instantiation: <&u64 as core::ops::arith::Div<&num_complex::Complex<u64>>>::div Unexecuted instantiation: <&u128 as core::ops::arith::Div<&num_complex::Complex<u128>>>::div Unexecuted instantiation: <&isize as core::ops::arith::Div<&num_complex::Complex<isize>>>::div Unexecuted instantiation: <&i8 as core::ops::arith::Div<&num_complex::Complex<i8>>>::div Unexecuted instantiation: <&i16 as core::ops::arith::Div<&num_complex::Complex<i16>>>::div Unexecuted instantiation: <&i32 as core::ops::arith::Div<&num_complex::Complex<i32>>>::div Unexecuted instantiation: <&i64 as core::ops::arith::Div<&num_complex::Complex<i64>>>::div Unexecuted instantiation: <&i128 as core::ops::arith::Div<&num_complex::Complex<i128>>>::div Unexecuted instantiation: <&i32 as core::ops::arith::Mul<&num_complex::Complex<i32>>>::mul Unexecuted instantiation: <&i64 as core::ops::arith::Mul<&num_complex::Complex<i64>>>::mul Unexecuted instantiation: <&i128 as core::ops::arith::Mul<&num_complex::Complex<i128>>>::mul Unexecuted instantiation: <&f32 as core::ops::arith::Mul<&num_complex::Complex<f32>>>::mul Unexecuted instantiation: <&f64 as core::ops::arith::Mul<&num_complex::Complex<f64>>>::mul Unexecuted instantiation: <&usize as core::ops::arith::Div<&num_complex::Complex<usize>>>::div Unexecuted instantiation: <&u8 as core::ops::arith::Div<&num_complex::Complex<u8>>>::div Unexecuted instantiation: <&u16 as core::ops::arith::Div<&num_complex::Complex<u16>>>::div Unexecuted instantiation: <&f32 as core::ops::arith::Div<&num_complex::Complex<f32>>>::div Unexecuted instantiation: <&f64 as core::ops::arith::Div<&num_complex::Complex<f64>>>::div Unexecuted instantiation: <&i32 as core::ops::arith::Rem<&num_complex::Complex<i32>>>::rem Unexecuted instantiation: <&i64 as core::ops::arith::Rem<&num_complex::Complex<i64>>>::rem Unexecuted instantiation: <&i128 as core::ops::arith::Rem<&num_complex::Complex<i128>>>::rem Unexecuted instantiation: <&f32 as core::ops::arith::Rem<&num_complex::Complex<f32>>>::rem Unexecuted instantiation: <&f64 as core::ops::arith::Rem<&num_complex::Complex<f64>>>::rem Unexecuted instantiation: <&usize as core::ops::arith::Rem<&num_complex::Complex<usize>>>::rem Unexecuted instantiation: <&u8 as core::ops::arith::Rem<&num_complex::Complex<u8>>>::rem Unexecuted instantiation: <&u16 as core::ops::arith::Rem<&num_complex::Complex<u16>>>::rem Unexecuted instantiation: <&u32 as core::ops::arith::Rem<&num_complex::Complex<u32>>>::rem Unexecuted instantiation: <&u64 as core::ops::arith::Rem<&num_complex::Complex<u64>>>::rem Unexecuted instantiation: <&u128 as core::ops::arith::Rem<&num_complex::Complex<u128>>>::rem Unexecuted instantiation: <&isize as core::ops::arith::Rem<&num_complex::Complex<isize>>>::rem Unexecuted instantiation: <&i8 as core::ops::arith::Rem<&num_complex::Complex<i8>>>::rem Unexecuted instantiation: <&i16 as core::ops::arith::Rem<&num_complex::Complex<i16>>>::rem |
1072 | | } |
1073 | | )* |
1074 | | ); |
1075 | | ($($real:ident),*) => ( |
1076 | | real_arithmetic!(@forward Add::add for $($real),*); |
1077 | | real_arithmetic!(@forward Sub::sub for $($real),*); |
1078 | | real_arithmetic!(@forward Mul::mul for $($real),*); |
1079 | | real_arithmetic!(@forward Div::div for $($real),*); |
1080 | | real_arithmetic!(@forward Rem::rem for $($real),*); |
1081 | | |
1082 | | $( |
1083 | | impl Add<Complex<$real>> for $real { |
1084 | | type Output = Complex<$real>; |
1085 | | |
1086 | | #[inline] |
1087 | 0 | fn add(self, other: Complex<$real>) -> Self::Output { |
1088 | 0 | Self::Output::new(self + other.re, other.im) |
1089 | 0 | } Unexecuted instantiation: <usize as core::ops::arith::Add<num_complex::Complex<usize>>>::add Unexecuted instantiation: <u8 as core::ops::arith::Add<num_complex::Complex<u8>>>::add Unexecuted instantiation: <i8 as core::ops::arith::Add<num_complex::Complex<i8>>>::add Unexecuted instantiation: <i16 as core::ops::arith::Add<num_complex::Complex<i16>>>::add Unexecuted instantiation: <i32 as core::ops::arith::Add<num_complex::Complex<i32>>>::add Unexecuted instantiation: <i64 as core::ops::arith::Add<num_complex::Complex<i64>>>::add Unexecuted instantiation: <i128 as core::ops::arith::Add<num_complex::Complex<i128>>>::add Unexecuted instantiation: <u16 as core::ops::arith::Add<num_complex::Complex<u16>>>::add Unexecuted instantiation: <u32 as core::ops::arith::Add<num_complex::Complex<u32>>>::add Unexecuted instantiation: <u64 as core::ops::arith::Add<num_complex::Complex<u64>>>::add Unexecuted instantiation: <u128 as core::ops::arith::Add<num_complex::Complex<u128>>>::add Unexecuted instantiation: <isize as core::ops::arith::Add<num_complex::Complex<isize>>>::add Unexecuted instantiation: <f32 as core::ops::arith::Add<num_complex::Complex<f32>>>::add Unexecuted instantiation: <f64 as core::ops::arith::Add<num_complex::Complex<f64>>>::add |
1090 | | } |
1091 | | |
1092 | | impl Sub<Complex<$real>> for $real { |
1093 | | type Output = Complex<$real>; |
1094 | | |
1095 | | #[inline] |
1096 | 0 | fn sub(self, other: Complex<$real>) -> Self::Output { |
1097 | 0 | Self::Output::new(self - other.re, $real::zero() - other.im) |
1098 | 0 | } Unexecuted instantiation: <usize as core::ops::arith::Sub<num_complex::Complex<usize>>>::sub Unexecuted instantiation: <i8 as core::ops::arith::Sub<num_complex::Complex<i8>>>::sub Unexecuted instantiation: <i16 as core::ops::arith::Sub<num_complex::Complex<i16>>>::sub Unexecuted instantiation: <i32 as core::ops::arith::Sub<num_complex::Complex<i32>>>::sub Unexecuted instantiation: <i64 as core::ops::arith::Sub<num_complex::Complex<i64>>>::sub Unexecuted instantiation: <i128 as core::ops::arith::Sub<num_complex::Complex<i128>>>::sub Unexecuted instantiation: <u8 as core::ops::arith::Sub<num_complex::Complex<u8>>>::sub Unexecuted instantiation: <u16 as core::ops::arith::Sub<num_complex::Complex<u16>>>::sub Unexecuted instantiation: <u32 as core::ops::arith::Sub<num_complex::Complex<u32>>>::sub Unexecuted instantiation: <u64 as core::ops::arith::Sub<num_complex::Complex<u64>>>::sub Unexecuted instantiation: <u128 as core::ops::arith::Sub<num_complex::Complex<u128>>>::sub Unexecuted instantiation: <isize as core::ops::arith::Sub<num_complex::Complex<isize>>>::sub Unexecuted instantiation: <f32 as core::ops::arith::Sub<num_complex::Complex<f32>>>::sub Unexecuted instantiation: <f64 as core::ops::arith::Sub<num_complex::Complex<f64>>>::sub |
1099 | | } |
1100 | | |
1101 | | impl Mul<Complex<$real>> for $real { |
1102 | | type Output = Complex<$real>; |
1103 | | |
1104 | | #[inline] |
1105 | 0 | fn mul(self, other: Complex<$real>) -> Self::Output { |
1106 | 0 | Self::Output::new(self * other.re, self * other.im) |
1107 | 0 | } Unexecuted instantiation: <usize as core::ops::arith::Mul<num_complex::Complex<usize>>>::mul Unexecuted instantiation: <isize as core::ops::arith::Mul<num_complex::Complex<isize>>>::mul Unexecuted instantiation: <i8 as core::ops::arith::Mul<num_complex::Complex<i8>>>::mul Unexecuted instantiation: <i16 as core::ops::arith::Mul<num_complex::Complex<i16>>>::mul Unexecuted instantiation: <i32 as core::ops::arith::Mul<num_complex::Complex<i32>>>::mul Unexecuted instantiation: <i64 as core::ops::arith::Mul<num_complex::Complex<i64>>>::mul Unexecuted instantiation: <i128 as core::ops::arith::Mul<num_complex::Complex<i128>>>::mul Unexecuted instantiation: <u8 as core::ops::arith::Mul<num_complex::Complex<u8>>>::mul Unexecuted instantiation: <u16 as core::ops::arith::Mul<num_complex::Complex<u16>>>::mul Unexecuted instantiation: <u32 as core::ops::arith::Mul<num_complex::Complex<u32>>>::mul Unexecuted instantiation: <u64 as core::ops::arith::Mul<num_complex::Complex<u64>>>::mul Unexecuted instantiation: <u128 as core::ops::arith::Mul<num_complex::Complex<u128>>>::mul Unexecuted instantiation: <f32 as core::ops::arith::Mul<num_complex::Complex<f32>>>::mul Unexecuted instantiation: <f64 as core::ops::arith::Mul<num_complex::Complex<f64>>>::mul |
1108 | | } |
1109 | | |
1110 | | impl Div<Complex<$real>> for $real { |
1111 | | type Output = Complex<$real>; |
1112 | | |
1113 | | #[inline] |
1114 | 0 | fn div(self, other: Complex<$real>) -> Self::Output { |
1115 | | // a / (c + i d) == [a * (c - i d)] / (c*c + d*d) |
1116 | 0 | let norm_sqr = other.norm_sqr(); |
1117 | 0 | Self::Output::new(self * other.re / norm_sqr.clone(), |
1118 | 0 | $real::zero() - self * other.im / norm_sqr) |
1119 | 0 | } Unexecuted instantiation: <usize as core::ops::arith::Div<num_complex::Complex<usize>>>::div Unexecuted instantiation: <isize as core::ops::arith::Div<num_complex::Complex<isize>>>::div Unexecuted instantiation: <i8 as core::ops::arith::Div<num_complex::Complex<i8>>>::div Unexecuted instantiation: <i16 as core::ops::arith::Div<num_complex::Complex<i16>>>::div Unexecuted instantiation: <i32 as core::ops::arith::Div<num_complex::Complex<i32>>>::div Unexecuted instantiation: <i64 as core::ops::arith::Div<num_complex::Complex<i64>>>::div Unexecuted instantiation: <u8 as core::ops::arith::Div<num_complex::Complex<u8>>>::div Unexecuted instantiation: <u16 as core::ops::arith::Div<num_complex::Complex<u16>>>::div Unexecuted instantiation: <u32 as core::ops::arith::Div<num_complex::Complex<u32>>>::div Unexecuted instantiation: <u64 as core::ops::arith::Div<num_complex::Complex<u64>>>::div Unexecuted instantiation: <u128 as core::ops::arith::Div<num_complex::Complex<u128>>>::div Unexecuted instantiation: <i128 as core::ops::arith::Div<num_complex::Complex<i128>>>::div Unexecuted instantiation: <f32 as core::ops::arith::Div<num_complex::Complex<f32>>>::div Unexecuted instantiation: <f64 as core::ops::arith::Div<num_complex::Complex<f64>>>::div |
1120 | | } |
1121 | | |
1122 | | impl Rem<Complex<$real>> for $real { |
1123 | | type Output = Complex<$real>; |
1124 | | |
1125 | | #[inline] |
1126 | 0 | fn rem(self, other: Complex<$real>) -> Self::Output { |
1127 | 0 | Self::Output::new(self, Self::zero()) % other |
1128 | 0 | } Unexecuted instantiation: <usize as core::ops::arith::Rem<num_complex::Complex<usize>>>::rem Unexecuted instantiation: <isize as core::ops::arith::Rem<num_complex::Complex<isize>>>::rem Unexecuted instantiation: <i8 as core::ops::arith::Rem<num_complex::Complex<i8>>>::rem Unexecuted instantiation: <i16 as core::ops::arith::Rem<num_complex::Complex<i16>>>::rem Unexecuted instantiation: <i32 as core::ops::arith::Rem<num_complex::Complex<i32>>>::rem Unexecuted instantiation: <i64 as core::ops::arith::Rem<num_complex::Complex<i64>>>::rem Unexecuted instantiation: <u8 as core::ops::arith::Rem<num_complex::Complex<u8>>>::rem Unexecuted instantiation: <u16 as core::ops::arith::Rem<num_complex::Complex<u16>>>::rem Unexecuted instantiation: <u32 as core::ops::arith::Rem<num_complex::Complex<u32>>>::rem Unexecuted instantiation: <u64 as core::ops::arith::Rem<num_complex::Complex<u64>>>::rem Unexecuted instantiation: <u128 as core::ops::arith::Rem<num_complex::Complex<u128>>>::rem Unexecuted instantiation: <i128 as core::ops::arith::Rem<num_complex::Complex<i128>>>::rem Unexecuted instantiation: <f32 as core::ops::arith::Rem<num_complex::Complex<f32>>>::rem Unexecuted instantiation: <f64 as core::ops::arith::Rem<num_complex::Complex<f64>>>::rem |
1129 | | } |
1130 | | )* |
1131 | | ); |
1132 | | } |
1133 | | |
1134 | | impl<T: Clone + Num> Add<T> for Complex<T> { |
1135 | | type Output = Complex<T>; |
1136 | | |
1137 | | #[inline] |
1138 | 0 | fn add(self, other: T) -> Self::Output { |
1139 | 0 | Self::Output::new(self.re + other, self.im) |
1140 | 0 | } |
1141 | | } |
1142 | | |
1143 | | impl<T: Clone + Num> Sub<T> for Complex<T> { |
1144 | | type Output = Complex<T>; |
1145 | | |
1146 | | #[inline] |
1147 | 0 | fn sub(self, other: T) -> Self::Output { |
1148 | 0 | Self::Output::new(self.re - other, self.im) |
1149 | 0 | } |
1150 | | } |
1151 | | |
1152 | | impl<T: Clone + Num> Mul<T> for Complex<T> { |
1153 | | type Output = Complex<T>; |
1154 | | |
1155 | | #[inline] |
1156 | 0 | fn mul(self, other: T) -> Self::Output { |
1157 | 0 | Self::Output::new(self.re * other.clone(), self.im * other) |
1158 | 0 | } |
1159 | | } |
1160 | | |
1161 | | impl<T: Clone + Num> Div<T> for Complex<T> { |
1162 | | type Output = Self; |
1163 | | |
1164 | | #[inline] |
1165 | 0 | fn div(self, other: T) -> Self::Output { |
1166 | 0 | Self::Output::new(self.re / other.clone(), self.im / other) |
1167 | 0 | } |
1168 | | } |
1169 | | |
1170 | | impl<T: Clone + Num> Rem<T> for Complex<T> { |
1171 | | type Output = Complex<T>; |
1172 | | |
1173 | | #[inline] |
1174 | 0 | fn rem(self, other: T) -> Self::Output { |
1175 | 0 | Self::Output::new(self.re % other.clone(), self.im % other) |
1176 | 0 | } |
1177 | | } |
1178 | | |
1179 | | real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64); |
1180 | | |
1181 | | // constants |
1182 | | impl<T: ConstZero> Complex<T> { |
1183 | | /// A constant `Complex` 0. |
1184 | | pub const ZERO: Self = Self::new(T::ZERO, T::ZERO); |
1185 | | } |
1186 | | |
1187 | | impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> { |
1188 | | const ZERO: Self = Self::ZERO; |
1189 | | } |
1190 | | |
1191 | | impl<T: Clone + Num> Zero for Complex<T> { |
1192 | | #[inline] |
1193 | 0 | fn zero() -> Self { |
1194 | 0 | Self::new(Zero::zero(), Zero::zero()) |
1195 | 0 | } |
1196 | | |
1197 | | #[inline] |
1198 | 0 | fn is_zero(&self) -> bool { |
1199 | 0 | self.re.is_zero() && self.im.is_zero() |
1200 | 0 | } |
1201 | | |
1202 | | #[inline] |
1203 | 0 | fn set_zero(&mut self) { |
1204 | 0 | self.re.set_zero(); |
1205 | 0 | self.im.set_zero(); |
1206 | 0 | } |
1207 | | } |
1208 | | |
1209 | | impl<T: ConstOne + ConstZero> Complex<T> { |
1210 | | /// A constant `Complex` 1. |
1211 | | pub const ONE: Self = Self::new(T::ONE, T::ZERO); |
1212 | | |
1213 | | /// A constant `Complex` _i_, the imaginary unit. |
1214 | | pub const I: Self = Self::new(T::ZERO, T::ONE); |
1215 | | } |
1216 | | |
1217 | | impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> { |
1218 | | const ONE: Self = Self::ONE; |
1219 | | } |
1220 | | |
1221 | | impl<T: Clone + Num> One for Complex<T> { |
1222 | | #[inline] |
1223 | 0 | fn one() -> Self { |
1224 | 0 | Self::new(One::one(), Zero::zero()) |
1225 | 0 | } |
1226 | | |
1227 | | #[inline] |
1228 | 0 | fn is_one(&self) -> bool { |
1229 | 0 | self.re.is_one() && self.im.is_zero() |
1230 | 0 | } |
1231 | | |
1232 | | #[inline] |
1233 | 0 | fn set_one(&mut self) { |
1234 | 0 | self.re.set_one(); |
1235 | 0 | self.im.set_zero(); |
1236 | 0 | } |
1237 | | } |
1238 | | |
1239 | | macro_rules! write_complex { |
1240 | | ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ |
1241 | | let abs_re = if $re < Zero::zero() { |
1242 | | $T::zero() - $re.clone() |
1243 | | } else { |
1244 | | $re.clone() |
1245 | | }; |
1246 | | let abs_im = if $im < Zero::zero() { |
1247 | | $T::zero() - $im.clone() |
1248 | | } else { |
1249 | | $im.clone() |
1250 | | }; |
1251 | | |
1252 | | return if let Some(prec) = $f.precision() { |
1253 | | fmt_re_im( |
1254 | | $f, |
1255 | | $re < $T::zero(), |
1256 | | $im < $T::zero(), |
1257 | | format_args!(concat!("{:.1$", $t, "}"), abs_re, prec), |
1258 | | format_args!(concat!("{:.1$", $t, "}"), abs_im, prec), |
1259 | | ) |
1260 | | } else { |
1261 | | fmt_re_im( |
1262 | | $f, |
1263 | | $re < $T::zero(), |
1264 | | $im < $T::zero(), |
1265 | | format_args!(concat!("{:", $t, "}"), abs_re), |
1266 | | format_args!(concat!("{:", $t, "}"), abs_im), |
1267 | | ) |
1268 | | }; |
1269 | | |
1270 | 0 | fn fmt_re_im( |
1271 | 0 | f: &mut fmt::Formatter<'_>, |
1272 | 0 | re_neg: bool, |
1273 | 0 | im_neg: bool, |
1274 | 0 | real: fmt::Arguments<'_>, |
1275 | 0 | imag: fmt::Arguments<'_>, |
1276 | 0 | ) -> fmt::Result { |
1277 | 0 | let prefix = if f.alternate() { $prefix } else { "" }; |
1278 | 0 | let sign = if re_neg { |
1279 | 0 | "-" |
1280 | 0 | } else if f.sign_plus() { |
1281 | 0 | "+" |
1282 | | } else { |
1283 | 0 | "" |
1284 | | }; |
1285 | | |
1286 | 0 | if im_neg { |
1287 | 0 | fmt_complex( |
1288 | 0 | f, |
1289 | 0 | format_args!( |
1290 | 0 | "{}{pre}{re}-{pre}{im}i", |
1291 | | sign, |
1292 | | re = real, |
1293 | | im = imag, |
1294 | | pre = prefix |
1295 | | ), |
1296 | | ) |
1297 | | } else { |
1298 | 0 | fmt_complex( |
1299 | 0 | f, |
1300 | 0 | format_args!( |
1301 | 0 | "{}{pre}{re}+{pre}{im}i", |
1302 | | sign, |
1303 | | re = real, |
1304 | | im = imag, |
1305 | | pre = prefix |
1306 | | ), |
1307 | | ) |
1308 | | } |
1309 | 0 | } Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Display>::fmt::fmt_re_im Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerExp>::fmt::fmt_re_im Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperExp>::fmt::fmt_re_im Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerHex>::fmt::fmt_re_im Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperHex>::fmt::fmt_re_im Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Octal>::fmt::fmt_re_im Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Binary>::fmt::fmt_re_im |
1310 | | |
1311 | | #[cfg(feature = "std")] |
1312 | | // Currently, we can only apply width using an intermediate `String` (and thus `std`) |
1313 | | fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
1314 | | use std::string::ToString; |
1315 | | if let Some(width) = f.width() { |
1316 | | write!(f, "{0: >1$}", complex.to_string(), width) |
1317 | | } else { |
1318 | | write!(f, "{}", complex) |
1319 | | } |
1320 | | } |
1321 | | |
1322 | | #[cfg(not(feature = "std"))] |
1323 | 0 | fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
1324 | 0 | write!(f, "{}", complex) |
1325 | 0 | } Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Display>::fmt::fmt_complex Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerExp>::fmt::fmt_complex Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperExp>::fmt::fmt_complex Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerHex>::fmt::fmt_complex Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperHex>::fmt::fmt_complex Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Octal>::fmt::fmt_complex Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Binary>::fmt::fmt_complex |
1326 | | }}; |
1327 | | } |
1328 | | |
1329 | | // string conversions |
1330 | | impl<T> fmt::Display for Complex<T> |
1331 | | where |
1332 | | T: fmt::Display + Num + PartialOrd + Clone, |
1333 | | { |
1334 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1335 | 0 | write_complex!(f, "", "", self.re, self.im, T) |
1336 | 0 | } |
1337 | | } |
1338 | | |
1339 | | impl<T> fmt::LowerExp for Complex<T> |
1340 | | where |
1341 | | T: fmt::LowerExp + Num + PartialOrd + Clone, |
1342 | | { |
1343 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1344 | 0 | write_complex!(f, "e", "", self.re, self.im, T) |
1345 | 0 | } |
1346 | | } |
1347 | | |
1348 | | impl<T> fmt::UpperExp for Complex<T> |
1349 | | where |
1350 | | T: fmt::UpperExp + Num + PartialOrd + Clone, |
1351 | | { |
1352 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1353 | 0 | write_complex!(f, "E", "", self.re, self.im, T) |
1354 | 0 | } |
1355 | | } |
1356 | | |
1357 | | impl<T> fmt::LowerHex for Complex<T> |
1358 | | where |
1359 | | T: fmt::LowerHex + Num + PartialOrd + Clone, |
1360 | | { |
1361 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1362 | 0 | write_complex!(f, "x", "0x", self.re, self.im, T) |
1363 | 0 | } |
1364 | | } |
1365 | | |
1366 | | impl<T> fmt::UpperHex for Complex<T> |
1367 | | where |
1368 | | T: fmt::UpperHex + Num + PartialOrd + Clone, |
1369 | | { |
1370 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1371 | 0 | write_complex!(f, "X", "0x", self.re, self.im, T) |
1372 | 0 | } |
1373 | | } |
1374 | | |
1375 | | impl<T> fmt::Octal for Complex<T> |
1376 | | where |
1377 | | T: fmt::Octal + Num + PartialOrd + Clone, |
1378 | | { |
1379 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1380 | 0 | write_complex!(f, "o", "0o", self.re, self.im, T) |
1381 | 0 | } |
1382 | | } |
1383 | | |
1384 | | impl<T> fmt::Binary for Complex<T> |
1385 | | where |
1386 | | T: fmt::Binary + Num + PartialOrd + Clone, |
1387 | | { |
1388 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1389 | 0 | write_complex!(f, "b", "0b", self.re, self.im, T) |
1390 | 0 | } |
1391 | | } |
1392 | | |
1393 | 0 | fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>> |
1394 | 0 | where |
1395 | 0 | F: Fn(&str) -> Result<T, E>, |
1396 | 0 | T: Clone + Num, |
1397 | | { |
1398 | 0 | let imag = match s.rfind('j') { |
1399 | 0 | None => 'i', |
1400 | 0 | _ => 'j', |
1401 | | }; |
1402 | | |
1403 | 0 | let mut neg_b = false; |
1404 | 0 | let mut a = s; |
1405 | 0 | let mut b = ""; |
1406 | | |
1407 | 0 | for (i, w) in s.as_bytes().windows(2).enumerate() { |
1408 | 0 | let p = w[0]; |
1409 | 0 | let c = w[1]; |
1410 | | |
1411 | | // ignore '+'/'-' if part of an exponent |
1412 | 0 | if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') { |
1413 | | // trim whitespace around the separator |
1414 | 0 | a = s[..=i].trim_end_matches(char::is_whitespace); |
1415 | 0 | b = s[i + 2..].trim_start_matches(char::is_whitespace); |
1416 | 0 | neg_b = c == b'-'; |
1417 | | |
1418 | 0 | if b.is_empty() || (neg_b && b.starts_with('-')) { |
1419 | 0 | return Err(ParseComplexError::expr_error()); |
1420 | 0 | } |
1421 | 0 | break; |
1422 | 0 | } |
1423 | | } |
1424 | | |
1425 | | // split off real and imaginary parts |
1426 | 0 | if b.is_empty() { |
1427 | | // input was either pure real or pure imaginary |
1428 | 0 | b = if a.ends_with(imag) { "0" } else { "0i" }; |
1429 | 0 | } |
1430 | | |
1431 | | let re; |
1432 | | let neg_re; |
1433 | | let im; |
1434 | | let neg_im; |
1435 | 0 | if a.ends_with(imag) { |
1436 | 0 | im = a; |
1437 | 0 | neg_im = false; |
1438 | 0 | re = b; |
1439 | 0 | neg_re = neg_b; |
1440 | 0 | } else if b.ends_with(imag) { |
1441 | 0 | re = a; |
1442 | 0 | neg_re = false; |
1443 | 0 | im = b; |
1444 | 0 | neg_im = neg_b; |
1445 | 0 | } else { |
1446 | 0 | return Err(ParseComplexError::expr_error()); |
1447 | | } |
1448 | | |
1449 | | // parse re |
1450 | 0 | let re = from(re).map_err(ParseComplexError::from_error)?; |
1451 | 0 | let re = if neg_re { T::zero() - re } else { re }; |
1452 | | |
1453 | | // pop imaginary unit off |
1454 | 0 | let mut im = &im[..im.len() - 1]; |
1455 | | // handle im == "i" or im == "-i" |
1456 | 0 | if im.is_empty() || im == "+" { |
1457 | 0 | im = "1"; |
1458 | 0 | } else if im == "-" { |
1459 | 0 | im = "-1"; |
1460 | 0 | } |
1461 | | |
1462 | | // parse im |
1463 | 0 | let im = from(im).map_err(ParseComplexError::from_error)?; |
1464 | 0 | let im = if neg_im { T::zero() - im } else { im }; |
1465 | | |
1466 | 0 | Ok(Complex::new(re, im)) |
1467 | 0 | } |
1468 | | |
1469 | | impl<T> FromStr for Complex<T> |
1470 | | where |
1471 | | T: FromStr + Num + Clone, |
1472 | | { |
1473 | | type Err = ParseComplexError<T::Err>; |
1474 | | |
1475 | | /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
1476 | 0 | fn from_str(s: &str) -> Result<Self, Self::Err> { |
1477 | 0 | from_str_generic(s, T::from_str) |
1478 | 0 | } |
1479 | | } |
1480 | | |
1481 | | impl<T: Num + Clone> Num for Complex<T> { |
1482 | | type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>; |
1483 | | |
1484 | | /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
1485 | | /// |
1486 | | /// `radix` must be <= 18; larger radix would include *i* and *j* as digits, |
1487 | | /// which cannot be supported. |
1488 | | /// |
1489 | | /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36. |
1490 | | /// |
1491 | | /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors |
1492 | | /// (or panics) from that are reflected here as well. |
1493 | 0 | fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
1494 | 0 | assert!( |
1495 | 0 | radix <= 36, |
1496 | 0 | "from_str_radix: radix is too high (maximum 36)" |
1497 | | ); |
1498 | | |
1499 | | // larger radix would include 'i' and 'j' as digits, which cannot be supported |
1500 | 0 | if radix > 18 { |
1501 | 0 | return Err(ParseComplexError::unsupported_radix()); |
1502 | 0 | } |
1503 | | |
1504 | 0 | from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> { |
1505 | 0 | T::from_str_radix(x, radix) |
1506 | 0 | }) |
1507 | 0 | } |
1508 | | } |
1509 | | |
1510 | | impl<T: Num + Clone> Sum for Complex<T> { |
1511 | 0 | fn sum<I>(iter: I) -> Self |
1512 | 0 | where |
1513 | 0 | I: Iterator<Item = Self>, |
1514 | | { |
1515 | 0 | iter.fold(Self::zero(), |acc, c| acc + c) |
1516 | 0 | } |
1517 | | } |
1518 | | |
1519 | | impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> { |
1520 | 0 | fn sum<I>(iter: I) -> Self |
1521 | 0 | where |
1522 | 0 | I: Iterator<Item = &'a Complex<T>>, |
1523 | | { |
1524 | 0 | iter.fold(Self::zero(), |acc, c| acc + c) |
1525 | 0 | } |
1526 | | } |
1527 | | |
1528 | | impl<T: Num + Clone> Product for Complex<T> { |
1529 | 0 | fn product<I>(iter: I) -> Self |
1530 | 0 | where |
1531 | 0 | I: Iterator<Item = Self>, |
1532 | | { |
1533 | 0 | iter.fold(Self::one(), |acc, c| acc * c) |
1534 | 0 | } |
1535 | | } |
1536 | | |
1537 | | impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> { |
1538 | 0 | fn product<I>(iter: I) -> Self |
1539 | 0 | where |
1540 | 0 | I: Iterator<Item = &'a Complex<T>>, |
1541 | | { |
1542 | 0 | iter.fold(Self::one(), |acc, c| acc * c) |
1543 | 0 | } |
1544 | | } |
1545 | | |
1546 | | #[cfg(feature = "serde")] |
1547 | | impl<T> serde::Serialize for Complex<T> |
1548 | | where |
1549 | | T: serde::Serialize, |
1550 | | { |
1551 | | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
1552 | | where |
1553 | | S: serde::Serializer, |
1554 | | { |
1555 | | (&self.re, &self.im).serialize(serializer) |
1556 | | } |
1557 | | } |
1558 | | |
1559 | | #[cfg(feature = "serde")] |
1560 | | impl<'de, T> serde::Deserialize<'de> for Complex<T> |
1561 | | where |
1562 | | T: serde::Deserialize<'de>, |
1563 | | { |
1564 | | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1565 | | where |
1566 | | D: serde::Deserializer<'de>, |
1567 | | { |
1568 | | let (re, im) = serde::Deserialize::deserialize(deserializer)?; |
1569 | | Ok(Self::new(re, im)) |
1570 | | } |
1571 | | } |
1572 | | |
1573 | | #[derive(Debug, PartialEq)] |
1574 | | pub struct ParseComplexError<E> { |
1575 | | kind: ComplexErrorKind<E>, |
1576 | | } |
1577 | | |
1578 | | #[derive(Debug, PartialEq)] |
1579 | | enum ComplexErrorKind<E> { |
1580 | | ParseError(E), |
1581 | | ExprError, |
1582 | | UnsupportedRadix, |
1583 | | } |
1584 | | |
1585 | | impl<E> ParseComplexError<E> { |
1586 | 0 | fn expr_error() -> Self { |
1587 | 0 | ParseComplexError { |
1588 | 0 | kind: ComplexErrorKind::ExprError, |
1589 | 0 | } |
1590 | 0 | } |
1591 | | |
1592 | 0 | fn unsupported_radix() -> Self { |
1593 | 0 | ParseComplexError { |
1594 | 0 | kind: ComplexErrorKind::UnsupportedRadix, |
1595 | 0 | } |
1596 | 0 | } |
1597 | | |
1598 | 0 | fn from_error(error: E) -> Self { |
1599 | 0 | ParseComplexError { |
1600 | 0 | kind: ComplexErrorKind::ParseError(error), |
1601 | 0 | } |
1602 | 0 | } |
1603 | | } |
1604 | | |
1605 | | #[cfg(feature = "std")] |
1606 | | impl<E: Error> Error for ParseComplexError<E> { |
1607 | | #[allow(deprecated)] |
1608 | | fn description(&self) -> &str { |
1609 | | match self.kind { |
1610 | | ComplexErrorKind::ParseError(ref e) => e.description(), |
1611 | | ComplexErrorKind::ExprError => "invalid or unsupported complex expression", |
1612 | | ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion", |
1613 | | } |
1614 | | } |
1615 | | } |
1616 | | |
1617 | | impl<E: fmt::Display> fmt::Display for ParseComplexError<E> { |
1618 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1619 | 0 | match self.kind { |
1620 | 0 | ComplexErrorKind::ParseError(ref e) => e.fmt(f), |
1621 | 0 | ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f), |
1622 | 0 | ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f), |
1623 | | } |
1624 | 0 | } |
1625 | | } |
1626 | | |
1627 | | #[cfg(test)] |
1628 | | fn hash<T: hash::Hash>(x: &T) -> u64 { |
1629 | | use std::collections::hash_map::RandomState; |
1630 | | use std::hash::{BuildHasher, Hasher}; |
1631 | | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
1632 | | x.hash(&mut hasher); |
1633 | | hasher.finish() |
1634 | | } |
1635 | | |
1636 | | #[cfg(test)] |
1637 | | pub(crate) mod test { |
1638 | | #![allow(non_upper_case_globals)] |
1639 | | |
1640 | | use super::{Complex, Complex64}; |
1641 | | use super::{ComplexErrorKind, ParseComplexError}; |
1642 | | use core::f64; |
1643 | | use core::str::FromStr; |
1644 | | |
1645 | | use std::string::{String, ToString}; |
1646 | | |
1647 | | use num_traits::{Num, One, Zero}; |
1648 | | |
1649 | | pub const _0_0i: Complex64 = Complex::new(0.0, 0.0); |
1650 | | pub const _1_0i: Complex64 = Complex::new(1.0, 0.0); |
1651 | | pub const _1_1i: Complex64 = Complex::new(1.0, 1.0); |
1652 | | pub const _0_1i: Complex64 = Complex::new(0.0, 1.0); |
1653 | | pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0); |
1654 | | pub const _05_05i: Complex64 = Complex::new(0.5, 0.5); |
1655 | | pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; |
1656 | | pub const _4_2i: Complex64 = Complex::new(4.0, 2.0); |
1657 | | pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY); |
1658 | | pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY); |
1659 | | pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN); |
1660 | | pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN); |
1661 | | pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0); |
1662 | | pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0); |
1663 | | pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0); |
1664 | | pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0); |
1665 | | pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0); |
1666 | | pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY); |
1667 | | pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY); |
1668 | | pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN); |
1669 | | pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN); |
1670 | | pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0); |
1671 | | pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0); |
1672 | | pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0); |
1673 | | pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN); |
1674 | | |
1675 | | #[test] |
1676 | | fn test_consts() { |
1677 | | // check our constants are what Complex::new creates |
1678 | | fn test(c: Complex64, r: f64, i: f64) { |
1679 | | assert_eq!(c, Complex::new(r, i)); |
1680 | | } |
1681 | | test(_0_0i, 0.0, 0.0); |
1682 | | test(_1_0i, 1.0, 0.0); |
1683 | | test(_1_1i, 1.0, 1.0); |
1684 | | test(_neg1_1i, -1.0, 1.0); |
1685 | | test(_05_05i, 0.5, 0.5); |
1686 | | |
1687 | | assert_eq!(_0_0i, Zero::zero()); |
1688 | | assert_eq!(_1_0i, One::one()); |
1689 | | } |
1690 | | |
1691 | | #[test] |
1692 | | fn test_scale_unscale() { |
1693 | | assert_eq!(_05_05i.scale(2.0), _1_1i); |
1694 | | assert_eq!(_1_1i.unscale(2.0), _05_05i); |
1695 | | for &c in all_consts.iter() { |
1696 | | assert_eq!(c.scale(2.0).unscale(2.0), c); |
1697 | | } |
1698 | | } |
1699 | | |
1700 | | #[test] |
1701 | | fn test_conj() { |
1702 | | for &c in all_consts.iter() { |
1703 | | assert_eq!(c.conj(), Complex::new(c.re, -c.im)); |
1704 | | assert_eq!(c.conj().conj(), c); |
1705 | | } |
1706 | | } |
1707 | | |
1708 | | #[test] |
1709 | | fn test_inv() { |
1710 | | assert_eq!(_1_1i.inv(), _05_05i.conj()); |
1711 | | assert_eq!(_1_0i.inv(), _1_0i.inv()); |
1712 | | } |
1713 | | |
1714 | | #[test] |
1715 | | #[should_panic] |
1716 | | fn test_divide_by_zero_natural() { |
1717 | | let n = Complex::new(2, 3); |
1718 | | let d = Complex::new(0, 0); |
1719 | | let _x = n / d; |
1720 | | } |
1721 | | |
1722 | | #[test] |
1723 | | fn test_inv_zero() { |
1724 | | // FIXME #20: should this really fail, or just NaN? |
1725 | | assert!(_0_0i.inv().is_nan()); |
1726 | | } |
1727 | | |
1728 | | #[test] |
1729 | | #[allow(clippy::float_cmp)] |
1730 | | fn test_l1_norm() { |
1731 | | assert_eq!(_0_0i.l1_norm(), 0.0); |
1732 | | assert_eq!(_1_0i.l1_norm(), 1.0); |
1733 | | assert_eq!(_1_1i.l1_norm(), 2.0); |
1734 | | assert_eq!(_0_1i.l1_norm(), 1.0); |
1735 | | assert_eq!(_neg1_1i.l1_norm(), 2.0); |
1736 | | assert_eq!(_05_05i.l1_norm(), 1.0); |
1737 | | assert_eq!(_4_2i.l1_norm(), 6.0); |
1738 | | } |
1739 | | |
1740 | | #[test] |
1741 | | fn test_pow() { |
1742 | | for c in all_consts.iter() { |
1743 | | assert_eq!(c.powi(0), _1_0i); |
1744 | | let mut pos = _1_0i; |
1745 | | let mut neg = _1_0i; |
1746 | | for i in 1i32..20 { |
1747 | | pos *= c; |
1748 | | assert_eq!(pos, c.powi(i)); |
1749 | | if c.is_zero() { |
1750 | | assert!(c.powi(-i).is_nan()); |
1751 | | } else { |
1752 | | neg /= c; |
1753 | | assert_eq!(neg, c.powi(-i)); |
1754 | | } |
1755 | | } |
1756 | | } |
1757 | | } |
1758 | | |
1759 | | #[cfg(any(feature = "std", feature = "libm"))] |
1760 | | pub(crate) mod float { |
1761 | | |
1762 | | use core::f64::INFINITY; |
1763 | | |
1764 | | use super::*; |
1765 | | use num_traits::{Float, Pow}; |
1766 | | |
1767 | | #[test] |
1768 | | fn test_cis() { |
1769 | | assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i)); |
1770 | | assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i)); |
1771 | | assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i)); |
1772 | | assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i)); |
1773 | | assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i)); |
1774 | | } |
1775 | | |
1776 | | #[test] |
1777 | | #[cfg_attr(target_arch = "x86", ignore)] |
1778 | | // FIXME #7158: (maybe?) currently failing on x86. |
1779 | | #[allow(clippy::float_cmp)] |
1780 | | fn test_norm() { |
1781 | | fn test(c: Complex64, ns: f64) { |
1782 | | assert_eq!(c.norm_sqr(), ns); |
1783 | | assert_eq!(c.norm(), ns.sqrt()) |
1784 | | } |
1785 | | test(_0_0i, 0.0); |
1786 | | test(_1_0i, 1.0); |
1787 | | test(_1_1i, 2.0); |
1788 | | test(_neg1_1i, 2.0); |
1789 | | test(_05_05i, 0.5); |
1790 | | } |
1791 | | |
1792 | | #[test] |
1793 | | fn test_arg() { |
1794 | | fn test(c: Complex64, arg: f64) { |
1795 | | assert!((c.arg() - arg).abs() < 1.0e-6) |
1796 | | } |
1797 | | test(_1_0i, 0.0); |
1798 | | test(_1_1i, 0.25 * f64::consts::PI); |
1799 | | test(_neg1_1i, 0.75 * f64::consts::PI); |
1800 | | test(_05_05i, 0.25 * f64::consts::PI); |
1801 | | } |
1802 | | |
1803 | | #[test] |
1804 | | fn test_polar_conv() { |
1805 | | fn test(c: Complex64) { |
1806 | | let (r, theta) = c.to_polar(); |
1807 | | assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6); |
1808 | | } |
1809 | | for &c in all_consts.iter() { |
1810 | | test(c); |
1811 | | } |
1812 | | } |
1813 | | |
1814 | | pub(crate) fn close(a: Complex64, b: Complex64) -> bool { |
1815 | | close_to_tol(a, b, 1e-10) |
1816 | | } |
1817 | | |
1818 | | fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
1819 | | // returns true if a and b are reasonably close |
1820 | | let close = (a == b) || (a - b).norm() < tol; |
1821 | | if !close { |
1822 | | println!("{:?} != {:?}", a, b); |
1823 | | } |
1824 | | close |
1825 | | } |
1826 | | |
1827 | | // Version that also works if re or im are +inf, -inf, or nan |
1828 | | fn close_naninf(a: Complex64, b: Complex64) -> bool { |
1829 | | close_naninf_to_tol(a, b, 1.0e-10) |
1830 | | } |
1831 | | |
1832 | | fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
1833 | | let mut close = true; |
1834 | | |
1835 | | // Compare the real parts |
1836 | | if a.re.is_finite() { |
1837 | | if b.re.is_finite() { |
1838 | | close = (a.re == b.re) || (a.re - b.re).abs() < tol; |
1839 | | } else { |
1840 | | close = false; |
1841 | | } |
1842 | | } else if (a.re.is_nan() && !b.re.is_nan()) |
1843 | | || (a.re.is_infinite() |
1844 | | && a.re.is_sign_positive() |
1845 | | && !(b.re.is_infinite() && b.re.is_sign_positive())) |
1846 | | || (a.re.is_infinite() |
1847 | | && a.re.is_sign_negative() |
1848 | | && !(b.re.is_infinite() && b.re.is_sign_negative())) |
1849 | | { |
1850 | | close = false; |
1851 | | } |
1852 | | |
1853 | | // Compare the imaginary parts |
1854 | | if a.im.is_finite() { |
1855 | | if b.im.is_finite() { |
1856 | | close &= (a.im == b.im) || (a.im - b.im).abs() < tol; |
1857 | | } else { |
1858 | | close = false; |
1859 | | } |
1860 | | } else if (a.im.is_nan() && !b.im.is_nan()) |
1861 | | || (a.im.is_infinite() |
1862 | | && a.im.is_sign_positive() |
1863 | | && !(b.im.is_infinite() && b.im.is_sign_positive())) |
1864 | | || (a.im.is_infinite() |
1865 | | && a.im.is_sign_negative() |
1866 | | && !(b.im.is_infinite() && b.im.is_sign_negative())) |
1867 | | { |
1868 | | close = false; |
1869 | | } |
1870 | | |
1871 | | if close == false { |
1872 | | println!("{:?} != {:?}", a, b); |
1873 | | } |
1874 | | close |
1875 | | } |
1876 | | |
1877 | | #[test] |
1878 | | fn test_exp2() { |
1879 | | assert!(close(_0_0i.exp2(), _1_0i)); |
1880 | | } |
1881 | | |
1882 | | #[test] |
1883 | | fn test_exp() { |
1884 | | assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); |
1885 | | assert!(close(_0_0i.exp(), _1_0i)); |
1886 | | assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); |
1887 | | assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp())); |
1888 | | assert!(close( |
1889 | | _0_1i.scale(-f64::consts::PI).exp(), |
1890 | | _1_0i.scale(-1.0) |
1891 | | )); |
1892 | | for &c in all_consts.iter() { |
1893 | | // e^conj(z) = conj(e^z) |
1894 | | assert!(close(c.conj().exp(), c.exp().conj())); |
1895 | | // e^(z + 2 pi i) = e^z |
1896 | | assert!(close( |
1897 | | c.exp(), |
1898 | | (c + _0_1i.scale(f64::consts::PI * 2.0)).exp() |
1899 | | )); |
1900 | | } |
1901 | | |
1902 | | // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp |
1903 | | assert!(close_naninf(_1_infi.exp(), _nan_nani)); |
1904 | | assert!(close_naninf(_neg1_infi.exp(), _nan_nani)); |
1905 | | assert!(close_naninf(_1_nani.exp(), _nan_nani)); |
1906 | | assert!(close_naninf(_neg1_nani.exp(), _nan_nani)); |
1907 | | assert!(close_naninf(_inf_0i.exp(), _inf_0i)); |
1908 | | assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0))); |
1909 | | assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0))); |
1910 | | assert!(close_naninf( |
1911 | | _inf_1i.exp(), |
1912 | | f64::INFINITY * Complex::cis(1.0) |
1913 | | )); |
1914 | | assert!(close_naninf( |
1915 | | _inf_neg1i.exp(), |
1916 | | f64::INFINITY * Complex::cis(-1.0) |
1917 | | )); |
1918 | | assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
1919 | | assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
1920 | | assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
1921 | | assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
1922 | | assert!(close_naninf(_nan_0i.exp(), _nan_0i)); |
1923 | | assert!(close_naninf(_nan_1i.exp(), _nan_nani)); |
1924 | | assert!(close_naninf(_nan_neg1i.exp(), _nan_nani)); |
1925 | | assert!(close_naninf(_nan_nani.exp(), _nan_nani)); |
1926 | | } |
1927 | | |
1928 | | #[test] |
1929 | | fn test_ln() { |
1930 | | assert!(close(_1_0i.ln(), _0_0i)); |
1931 | | assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0))); |
1932 | | assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); |
1933 | | assert!(close( |
1934 | | (_neg1_1i * _05_05i).ln(), |
1935 | | _neg1_1i.ln() + _05_05i.ln() |
1936 | | )); |
1937 | | for &c in all_consts.iter() { |
1938 | | // ln(conj(z() = conj(ln(z)) |
1939 | | assert!(close(c.conj().ln(), c.ln().conj())); |
1940 | | // for this branch, -pi <= arg(ln(z)) <= pi |
1941 | | assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); |
1942 | | } |
1943 | | } |
1944 | | |
1945 | | #[test] |
1946 | | fn test_powc() { |
1947 | | let a = Complex::new(2.0, -3.0); |
1948 | | let b = Complex::new(3.0, 0.0); |
1949 | | assert!(close(a.powc(b), a.powf(b.re))); |
1950 | | assert!(close(b.powc(a), a.expf(b.re))); |
1951 | | let c = Complex::new(1.0 / 3.0, 0.1); |
1952 | | assert!(close_to_tol( |
1953 | | a.powc(c), |
1954 | | Complex::new(1.65826, -0.33502), |
1955 | | 1e-5 |
1956 | | )); |
1957 | | let z = Complex::new(0.0, 0.0); |
1958 | | assert!(close(z.powc(b), z)); |
1959 | | assert!(z.powc(Complex64::new(0., INFINITY)).is_nan()); |
1960 | | assert!(z.powc(Complex64::new(10., INFINITY)).is_nan()); |
1961 | | assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan()); |
1962 | | assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z)); |
1963 | | assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite()); |
1964 | | assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan()); |
1965 | | |
1966 | | for c in all_consts.iter() { |
1967 | | assert_eq!(c.powc(_0_0i), _1_0i); |
1968 | | } |
1969 | | assert_eq!(_nan_nani.powc(_0_0i), _1_0i); |
1970 | | } |
1971 | | |
1972 | | #[test] |
1973 | | fn test_powf() { |
1974 | | let c = Complex64::new(2.0, -1.0); |
1975 | | let expected = Complex64::new(-0.8684746, -16.695934); |
1976 | | assert!(close_to_tol(c.powf(3.5), expected, 1e-5)); |
1977 | | assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5)); |
1978 | | assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5)); |
1979 | | |
1980 | | for c in all_consts.iter() { |
1981 | | assert_eq!(c.powf(0.0), _1_0i); |
1982 | | } |
1983 | | assert_eq!(_nan_nani.powf(0.0), _1_0i); |
1984 | | } |
1985 | | |
1986 | | #[test] |
1987 | | fn test_log() { |
1988 | | let c = Complex::new(2.0, -1.0); |
1989 | | let r = c.log(10.0); |
1990 | | assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); |
1991 | | } |
1992 | | |
1993 | | #[test] |
1994 | | fn test_log2() { |
1995 | | assert!(close(_1_0i.log2(), _0_0i)); |
1996 | | } |
1997 | | |
1998 | | #[test] |
1999 | | fn test_log10() { |
2000 | | assert!(close(_1_0i.log10(), _0_0i)); |
2001 | | } |
2002 | | |
2003 | | #[test] |
2004 | | fn test_some_expf_cases() { |
2005 | | let c = Complex::new(2.0, -1.0); |
2006 | | let r = c.expf(10.0); |
2007 | | assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); |
2008 | | |
2009 | | let c = Complex::new(5.0, -2.0); |
2010 | | let r = c.expf(3.4); |
2011 | | assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); |
2012 | | |
2013 | | let c = Complex::new(-1.5, 2.0 / 3.0); |
2014 | | let r = c.expf(1.0 / 3.0); |
2015 | | assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); |
2016 | | } |
2017 | | |
2018 | | #[test] |
2019 | | fn test_sqrt() { |
2020 | | assert!(close(_0_0i.sqrt(), _0_0i)); |
2021 | | assert!(close(_1_0i.sqrt(), _1_0i)); |
2022 | | assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); |
2023 | | assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); |
2024 | | assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); |
2025 | | for &c in all_consts.iter() { |
2026 | | // sqrt(conj(z() = conj(sqrt(z)) |
2027 | | assert!(close(c.conj().sqrt(), c.sqrt().conj())); |
2028 | | // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 |
2029 | | assert!( |
2030 | | -f64::consts::FRAC_PI_2 <= c.sqrt().arg() |
2031 | | && c.sqrt().arg() <= f64::consts::FRAC_PI_2 |
2032 | | ); |
2033 | | // sqrt(z) * sqrt(z) = z |
2034 | | assert!(close(c.sqrt() * c.sqrt(), c)); |
2035 | | } |
2036 | | } |
2037 | | |
2038 | | #[test] |
2039 | | fn test_sqrt_real() { |
2040 | | for n in (0..100).map(f64::from) { |
2041 | | // √(n² + 0i) = n + 0i |
2042 | | let n2 = n * n; |
2043 | | assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0)); |
2044 | | // √(-n² + 0i) = 0 + ni |
2045 | | assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n)); |
2046 | | // √(-n² - 0i) = 0 - ni |
2047 | | assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n)); |
2048 | | } |
2049 | | } |
2050 | | |
2051 | | #[test] |
2052 | | fn test_sqrt_imag() { |
2053 | | for n in (0..100).map(f64::from) { |
2054 | | // √(0 + n²i) = n e^(iπ/4) |
2055 | | let n2 = n * n; |
2056 | | assert!(close( |
2057 | | Complex64::new(0.0, n2).sqrt(), |
2058 | | Complex64::from_polar(n, f64::consts::FRAC_PI_4) |
2059 | | )); |
2060 | | // √(0 - n²i) = n e^(-iπ/4) |
2061 | | assert!(close( |
2062 | | Complex64::new(0.0, -n2).sqrt(), |
2063 | | Complex64::from_polar(n, -f64::consts::FRAC_PI_4) |
2064 | | )); |
2065 | | } |
2066 | | } |
2067 | | |
2068 | | #[test] |
2069 | | fn test_cbrt() { |
2070 | | assert!(close(_0_0i.cbrt(), _0_0i)); |
2071 | | assert!(close(_1_0i.cbrt(), _1_0i)); |
2072 | | assert!(close( |
2073 | | Complex::new(-1.0, 0.0).cbrt(), |
2074 | | Complex::new(0.5, 0.75.sqrt()) |
2075 | | )); |
2076 | | assert!(close( |
2077 | | Complex::new(-1.0, -0.0).cbrt(), |
2078 | | Complex::new(0.5, -(0.75.sqrt())) |
2079 | | )); |
2080 | | assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5))); |
2081 | | assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5))); |
2082 | | for &c in all_consts.iter() { |
2083 | | // cbrt(conj(z() = conj(cbrt(z)) |
2084 | | assert!(close(c.conj().cbrt(), c.cbrt().conj())); |
2085 | | // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3 |
2086 | | assert!( |
2087 | | -f64::consts::FRAC_PI_3 <= c.cbrt().arg() |
2088 | | && c.cbrt().arg() <= f64::consts::FRAC_PI_3 |
2089 | | ); |
2090 | | // cbrt(z) * cbrt(z) cbrt(z) = z |
2091 | | assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c)); |
2092 | | } |
2093 | | } |
2094 | | |
2095 | | #[test] |
2096 | | fn test_cbrt_real() { |
2097 | | for n in (0..100).map(f64::from) { |
2098 | | // ∛(n³ + 0i) = n + 0i |
2099 | | let n3 = n * n * n; |
2100 | | assert!(close( |
2101 | | Complex64::new(n3, 0.0).cbrt(), |
2102 | | Complex64::new(n, 0.0) |
2103 | | )); |
2104 | | // ∛(-n³ + 0i) = n e^(iπ/3) |
2105 | | assert!(close( |
2106 | | Complex64::new(-n3, 0.0).cbrt(), |
2107 | | Complex64::from_polar(n, f64::consts::FRAC_PI_3) |
2108 | | )); |
2109 | | // ∛(-n³ - 0i) = n e^(-iπ/3) |
2110 | | assert!(close( |
2111 | | Complex64::new(-n3, -0.0).cbrt(), |
2112 | | Complex64::from_polar(n, -f64::consts::FRAC_PI_3) |
2113 | | )); |
2114 | | } |
2115 | | } |
2116 | | |
2117 | | #[test] |
2118 | | fn test_cbrt_imag() { |
2119 | | for n in (0..100).map(f64::from) { |
2120 | | // ∛(0 + n³i) = n e^(iπ/6) |
2121 | | let n3 = n * n * n; |
2122 | | assert!(close( |
2123 | | Complex64::new(0.0, n3).cbrt(), |
2124 | | Complex64::from_polar(n, f64::consts::FRAC_PI_6) |
2125 | | )); |
2126 | | // ∛(0 - n³i) = n e^(-iπ/6) |
2127 | | assert!(close( |
2128 | | Complex64::new(0.0, -n3).cbrt(), |
2129 | | Complex64::from_polar(n, -f64::consts::FRAC_PI_6) |
2130 | | )); |
2131 | | } |
2132 | | } |
2133 | | |
2134 | | #[test] |
2135 | | fn test_sin() { |
2136 | | assert!(close(_0_0i.sin(), _0_0i)); |
2137 | | assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i)); |
2138 | | assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); |
2139 | | for &c in all_consts.iter() { |
2140 | | // sin(conj(z)) = conj(sin(z)) |
2141 | | assert!(close(c.conj().sin(), c.sin().conj())); |
2142 | | // sin(-z) = -sin(z) |
2143 | | assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); |
2144 | | } |
2145 | | } |
2146 | | |
2147 | | #[test] |
2148 | | fn test_cos() { |
2149 | | assert!(close(_0_0i.cos(), _1_0i)); |
2150 | | assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i)); |
2151 | | assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); |
2152 | | for &c in all_consts.iter() { |
2153 | | // cos(conj(z)) = conj(cos(z)) |
2154 | | assert!(close(c.conj().cos(), c.cos().conj())); |
2155 | | // cos(-z) = cos(z) |
2156 | | assert!(close(c.scale(-1.0).cos(), c.cos())); |
2157 | | } |
2158 | | } |
2159 | | |
2160 | | #[test] |
2161 | | fn test_tan() { |
2162 | | assert!(close(_0_0i.tan(), _0_0i)); |
2163 | | assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i)); |
2164 | | assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); |
2165 | | for &c in all_consts.iter() { |
2166 | | // tan(conj(z)) = conj(tan(z)) |
2167 | | assert!(close(c.conj().tan(), c.tan().conj())); |
2168 | | // tan(-z) = -tan(z) |
2169 | | assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); |
2170 | | } |
2171 | | } |
2172 | | |
2173 | | #[test] |
2174 | | fn test_asin() { |
2175 | | assert!(close(_0_0i.asin(), _0_0i)); |
2176 | | assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0))); |
2177 | | assert!(close( |
2178 | | _1_0i.scale(-1.0).asin(), |
2179 | | _1_0i.scale(-f64::consts::PI / 2.0) |
2180 | | )); |
2181 | | assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); |
2182 | | for &c in all_consts.iter() { |
2183 | | // asin(conj(z)) = conj(asin(z)) |
2184 | | assert!(close(c.conj().asin(), c.asin().conj())); |
2185 | | // asin(-z) = -asin(z) |
2186 | | assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); |
2187 | | // for this branch, -pi/2 <= asin(z).re <= pi/2 |
2188 | | assert!( |
2189 | | -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0 |
2190 | | ); |
2191 | | } |
2192 | | } |
2193 | | |
2194 | | #[test] |
2195 | | fn test_acos() { |
2196 | | assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0))); |
2197 | | assert!(close(_1_0i.acos(), _0_0i)); |
2198 | | assert!(close( |
2199 | | _1_0i.scale(-1.0).acos(), |
2200 | | _1_0i.scale(f64::consts::PI) |
2201 | | )); |
2202 | | assert!(close( |
2203 | | _0_1i.acos(), |
2204 | | Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln()) |
2205 | | )); |
2206 | | for &c in all_consts.iter() { |
2207 | | // acos(conj(z)) = conj(acos(z)) |
2208 | | assert!(close(c.conj().acos(), c.acos().conj())); |
2209 | | // for this branch, 0 <= acos(z).re <= pi |
2210 | | assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); |
2211 | | } |
2212 | | } |
2213 | | |
2214 | | #[test] |
2215 | | fn test_atan() { |
2216 | | assert!(close(_0_0i.atan(), _0_0i)); |
2217 | | assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0))); |
2218 | | assert!(close( |
2219 | | _1_0i.scale(-1.0).atan(), |
2220 | | _1_0i.scale(-f64::consts::PI / 4.0) |
2221 | | )); |
2222 | | assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); |
2223 | | for &c in all_consts.iter() { |
2224 | | // atan(conj(z)) = conj(atan(z)) |
2225 | | assert!(close(c.conj().atan(), c.atan().conj())); |
2226 | | // atan(-z) = -atan(z) |
2227 | | assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); |
2228 | | // for this branch, -pi/2 <= atan(z).re <= pi/2 |
2229 | | assert!( |
2230 | | -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0 |
2231 | | ); |
2232 | | } |
2233 | | } |
2234 | | |
2235 | | #[test] |
2236 | | fn test_sinh() { |
2237 | | assert!(close(_0_0i.sinh(), _0_0i)); |
2238 | | assert!(close( |
2239 | | _1_0i.sinh(), |
2240 | | _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0) |
2241 | | )); |
2242 | | assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); |
2243 | | for &c in all_consts.iter() { |
2244 | | // sinh(conj(z)) = conj(sinh(z)) |
2245 | | assert!(close(c.conj().sinh(), c.sinh().conj())); |
2246 | | // sinh(-z) = -sinh(z) |
2247 | | assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); |
2248 | | } |
2249 | | } |
2250 | | |
2251 | | #[test] |
2252 | | fn test_cosh() { |
2253 | | assert!(close(_0_0i.cosh(), _1_0i)); |
2254 | | assert!(close( |
2255 | | _1_0i.cosh(), |
2256 | | _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0) |
2257 | | )); |
2258 | | assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); |
2259 | | for &c in all_consts.iter() { |
2260 | | // cosh(conj(z)) = conj(cosh(z)) |
2261 | | assert!(close(c.conj().cosh(), c.cosh().conj())); |
2262 | | // cosh(-z) = cosh(z) |
2263 | | assert!(close(c.scale(-1.0).cosh(), c.cosh())); |
2264 | | } |
2265 | | } |
2266 | | |
2267 | | #[test] |
2268 | | fn test_tanh() { |
2269 | | assert!(close(_0_0i.tanh(), _0_0i)); |
2270 | | assert!(close( |
2271 | | _1_0i.tanh(), |
2272 | | _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0)) |
2273 | | )); |
2274 | | assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); |
2275 | | for &c in all_consts.iter() { |
2276 | | // tanh(conj(z)) = conj(tanh(z)) |
2277 | | assert!(close(c.conj().tanh(), c.conj().tanh())); |
2278 | | // tanh(-z) = -tanh(z) |
2279 | | assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); |
2280 | | } |
2281 | | } |
2282 | | |
2283 | | #[test] |
2284 | | fn test_asinh() { |
2285 | | assert!(close(_0_0i.asinh(), _0_0i)); |
2286 | | assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); |
2287 | | assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0))); |
2288 | | assert!(close( |
2289 | | _0_1i.asinh().scale(-1.0), |
2290 | | _0_1i.scale(-f64::consts::PI / 2.0) |
2291 | | )); |
2292 | | for &c in all_consts.iter() { |
2293 | | // asinh(conj(z)) = conj(asinh(z)) |
2294 | | assert!(close(c.conj().asinh(), c.conj().asinh())); |
2295 | | // asinh(-z) = -asinh(z) |
2296 | | assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); |
2297 | | // for this branch, -pi/2 <= asinh(z).im <= pi/2 |
2298 | | assert!( |
2299 | | -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0 |
2300 | | ); |
2301 | | } |
2302 | | } |
2303 | | |
2304 | | #[test] |
2305 | | fn test_acosh() { |
2306 | | assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0))); |
2307 | | assert!(close(_1_0i.acosh(), _0_0i)); |
2308 | | assert!(close( |
2309 | | _1_0i.scale(-1.0).acosh(), |
2310 | | _0_1i.scale(f64::consts::PI) |
2311 | | )); |
2312 | | for &c in all_consts.iter() { |
2313 | | // acosh(conj(z)) = conj(acosh(z)) |
2314 | | assert!(close(c.conj().acosh(), c.conj().acosh())); |
2315 | | // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re |
2316 | | assert!( |
2317 | | -f64::consts::PI <= c.acosh().im |
2318 | | && c.acosh().im <= f64::consts::PI |
2319 | | && 0.0 <= c.cosh().re |
2320 | | ); |
2321 | | } |
2322 | | } |
2323 | | |
2324 | | #[test] |
2325 | | fn test_atanh() { |
2326 | | assert!(close(_0_0i.atanh(), _0_0i)); |
2327 | | assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0))); |
2328 | | assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); |
2329 | | for &c in all_consts.iter() { |
2330 | | // atanh(conj(z)) = conj(atanh(z)) |
2331 | | assert!(close(c.conj().atanh(), c.conj().atanh())); |
2332 | | // atanh(-z) = -atanh(z) |
2333 | | assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); |
2334 | | // for this branch, -pi/2 <= atanh(z).im <= pi/2 |
2335 | | assert!( |
2336 | | -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0 |
2337 | | ); |
2338 | | } |
2339 | | } |
2340 | | |
2341 | | #[test] |
2342 | | fn test_exp_ln() { |
2343 | | for &c in all_consts.iter() { |
2344 | | // e^ln(z) = z |
2345 | | assert!(close(c.ln().exp(), c)); |
2346 | | } |
2347 | | } |
2348 | | |
2349 | | #[test] |
2350 | | fn test_exp2_log() { |
2351 | | for &c in all_consts.iter() { |
2352 | | // 2^log2(z) = z |
2353 | | assert!(close(c.log2().exp2(), c)); |
2354 | | } |
2355 | | } |
2356 | | |
2357 | | #[test] |
2358 | | fn test_trig_to_hyperbolic() { |
2359 | | for &c in all_consts.iter() { |
2360 | | // sin(iz) = i sinh(z) |
2361 | | assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); |
2362 | | // cos(iz) = cosh(z) |
2363 | | assert!(close((_0_1i * c).cos(), c.cosh())); |
2364 | | // tan(iz) = i tanh(z) |
2365 | | assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); |
2366 | | } |
2367 | | } |
2368 | | |
2369 | | #[test] |
2370 | | fn test_trig_identities() { |
2371 | | for &c in all_consts.iter() { |
2372 | | // tan(z) = sin(z)/cos(z) |
2373 | | assert!(close(c.tan(), c.sin() / c.cos())); |
2374 | | // sin(z)^2 + cos(z)^2 = 1 |
2375 | | assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i)); |
2376 | | |
2377 | | // sin(asin(z)) = z |
2378 | | assert!(close(c.asin().sin(), c)); |
2379 | | // cos(acos(z)) = z |
2380 | | assert!(close(c.acos().cos(), c)); |
2381 | | // tan(atan(z)) = z |
2382 | | // i and -i are branch points |
2383 | | if c != _0_1i && c != _0_1i.scale(-1.0) { |
2384 | | assert!(close(c.atan().tan(), c)); |
2385 | | } |
2386 | | |
2387 | | // sin(z) = (e^(iz) - e^(-iz))/(2i) |
2388 | | assert!(close( |
2389 | | ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0), |
2390 | | c.sin() |
2391 | | )); |
2392 | | // cos(z) = (e^(iz) + e^(-iz))/2 |
2393 | | assert!(close( |
2394 | | ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0), |
2395 | | c.cos() |
2396 | | )); |
2397 | | // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) |
2398 | | assert!(close( |
2399 | | _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp()) |
2400 | | / (_1_0i + (_0_1i * c).scale(2.0).exp()), |
2401 | | c.tan() |
2402 | | )); |
2403 | | } |
2404 | | } |
2405 | | |
2406 | | #[test] |
2407 | | fn test_hyperbolic_identites() { |
2408 | | for &c in all_consts.iter() { |
2409 | | // tanh(z) = sinh(z)/cosh(z) |
2410 | | assert!(close(c.tanh(), c.sinh() / c.cosh())); |
2411 | | // cosh(z)^2 - sinh(z)^2 = 1 |
2412 | | assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i)); |
2413 | | |
2414 | | // sinh(asinh(z)) = z |
2415 | | assert!(close(c.asinh().sinh(), c)); |
2416 | | // cosh(acosh(z)) = z |
2417 | | assert!(close(c.acosh().cosh(), c)); |
2418 | | // tanh(atanh(z)) = z |
2419 | | // 1 and -1 are branch points |
2420 | | if c != _1_0i && c != _1_0i.scale(-1.0) { |
2421 | | assert!(close(c.atanh().tanh(), c)); |
2422 | | } |
2423 | | |
2424 | | // sinh(z) = (e^z - e^(-z))/2 |
2425 | | assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); |
2426 | | // cosh(z) = (e^z + e^(-z))/2 |
2427 | | assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); |
2428 | | // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) |
2429 | | assert!(close( |
2430 | | (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i), |
2431 | | c.tanh() |
2432 | | )); |
2433 | | } |
2434 | | } |
2435 | | } |
2436 | | |
2437 | | // Test both a + b and a += b |
2438 | | macro_rules! test_a_op_b { |
2439 | | ($a:ident + $b:expr, $answer:expr) => { |
2440 | | assert_eq!($a + $b, $answer); |
2441 | | assert_eq!( |
2442 | | { |
2443 | | let mut x = $a; |
2444 | | x += $b; |
2445 | | x |
2446 | | }, |
2447 | | $answer |
2448 | | ); |
2449 | | }; |
2450 | | ($a:ident - $b:expr, $answer:expr) => { |
2451 | | assert_eq!($a - $b, $answer); |
2452 | | assert_eq!( |
2453 | | { |
2454 | | let mut x = $a; |
2455 | | x -= $b; |
2456 | | x |
2457 | | }, |
2458 | | $answer |
2459 | | ); |
2460 | | }; |
2461 | | ($a:ident * $b:expr, $answer:expr) => { |
2462 | | assert_eq!($a * $b, $answer); |
2463 | | assert_eq!( |
2464 | | { |
2465 | | let mut x = $a; |
2466 | | x *= $b; |
2467 | | x |
2468 | | }, |
2469 | | $answer |
2470 | | ); |
2471 | | }; |
2472 | | ($a:ident / $b:expr, $answer:expr) => { |
2473 | | assert_eq!($a / $b, $answer); |
2474 | | assert_eq!( |
2475 | | { |
2476 | | let mut x = $a; |
2477 | | x /= $b; |
2478 | | x |
2479 | | }, |
2480 | | $answer |
2481 | | ); |
2482 | | }; |
2483 | | ($a:ident % $b:expr, $answer:expr) => { |
2484 | | assert_eq!($a % $b, $answer); |
2485 | | assert_eq!( |
2486 | | { |
2487 | | let mut x = $a; |
2488 | | x %= $b; |
2489 | | x |
2490 | | }, |
2491 | | $answer |
2492 | | ); |
2493 | | }; |
2494 | | } |
2495 | | |
2496 | | // Test both a + b and a + &b |
2497 | | macro_rules! test_op { |
2498 | | ($a:ident $op:tt $b:expr, $answer:expr) => { |
2499 | | test_a_op_b!($a $op $b, $answer); |
2500 | | test_a_op_b!($a $op &$b, $answer); |
2501 | | }; |
2502 | | } |
2503 | | |
2504 | | mod complex_arithmetic { |
2505 | | use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts}; |
2506 | | use num_traits::{MulAdd, MulAddAssign, Zero}; |
2507 | | |
2508 | | #[test] |
2509 | | fn test_add() { |
2510 | | test_op!(_05_05i + _05_05i, _1_1i); |
2511 | | test_op!(_0_1i + _1_0i, _1_1i); |
2512 | | test_op!(_1_0i + _neg1_1i, _0_1i); |
2513 | | |
2514 | | for &c in all_consts.iter() { |
2515 | | test_op!(_0_0i + c, c); |
2516 | | test_op!(c + _0_0i, c); |
2517 | | } |
2518 | | } |
2519 | | |
2520 | | #[test] |
2521 | | fn test_sub() { |
2522 | | test_op!(_05_05i - _05_05i, _0_0i); |
2523 | | test_op!(_0_1i - _1_0i, _neg1_1i); |
2524 | | test_op!(_0_1i - _neg1_1i, _1_0i); |
2525 | | |
2526 | | for &c in all_consts.iter() { |
2527 | | test_op!(c - _0_0i, c); |
2528 | | test_op!(c - c, _0_0i); |
2529 | | } |
2530 | | } |
2531 | | |
2532 | | #[test] |
2533 | | fn test_mul() { |
2534 | | test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0)); |
2535 | | test_op!(_1_1i * _0_1i, _neg1_1i); |
2536 | | |
2537 | | // i^2 & i^4 |
2538 | | test_op!(_0_1i * _0_1i, -_1_0i); |
2539 | | assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); |
2540 | | |
2541 | | for &c in all_consts.iter() { |
2542 | | test_op!(c * _1_0i, c); |
2543 | | test_op!(_1_0i * c, c); |
2544 | | } |
2545 | | } |
2546 | | |
2547 | | #[test] |
2548 | | #[cfg(any(feature = "std", feature = "libm"))] |
2549 | | fn test_mul_add_float() { |
2550 | | assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i); |
2551 | | assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i)); |
2552 | | assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
2553 | | assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
2554 | | assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
2555 | | |
2556 | | let mut x = _1_0i; |
2557 | | x.mul_add_assign(_1_0i, _1_0i); |
2558 | | assert_eq!(x, _1_0i * _1_0i + _1_0i); |
2559 | | |
2560 | | for &a in &all_consts { |
2561 | | for &b in &all_consts { |
2562 | | for &c in &all_consts { |
2563 | | let abc = a * b + c; |
2564 | | assert_eq!(a.mul_add(b, c), abc); |
2565 | | let mut x = a; |
2566 | | x.mul_add_assign(b, c); |
2567 | | assert_eq!(x, abc); |
2568 | | } |
2569 | | } |
2570 | | } |
2571 | | } |
2572 | | |
2573 | | #[test] |
2574 | | fn test_mul_add() { |
2575 | | use super::Complex; |
2576 | | const _0_0i: Complex<i32> = Complex { re: 0, im: 0 }; |
2577 | | const _1_0i: Complex<i32> = Complex { re: 1, im: 0 }; |
2578 | | const _1_1i: Complex<i32> = Complex { re: 1, im: 1 }; |
2579 | | const _0_1i: Complex<i32> = Complex { re: 0, im: 1 }; |
2580 | | const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 }; |
2581 | | const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i]; |
2582 | | |
2583 | | assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i); |
2584 | | assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i)); |
2585 | | assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
2586 | | assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
2587 | | assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
2588 | | |
2589 | | let mut x = _1_0i; |
2590 | | x.mul_add_assign(_1_0i, _1_0i); |
2591 | | assert_eq!(x, _1_0i * _1_0i + _1_0i); |
2592 | | |
2593 | | for &a in &all_consts { |
2594 | | for &b in &all_consts { |
2595 | | for &c in &all_consts { |
2596 | | let abc = a * b + c; |
2597 | | assert_eq!(a.mul_add(b, c), abc); |
2598 | | let mut x = a; |
2599 | | x.mul_add_assign(b, c); |
2600 | | assert_eq!(x, abc); |
2601 | | } |
2602 | | } |
2603 | | } |
2604 | | } |
2605 | | |
2606 | | #[test] |
2607 | | fn test_div() { |
2608 | | test_op!(_neg1_1i / _0_1i, _1_1i); |
2609 | | for &c in all_consts.iter() { |
2610 | | if c != Zero::zero() { |
2611 | | test_op!(c / c, _1_0i); |
2612 | | } |
2613 | | } |
2614 | | } |
2615 | | |
2616 | | #[test] |
2617 | | fn test_rem() { |
2618 | | test_op!(_neg1_1i % _0_1i, _0_0i); |
2619 | | test_op!(_4_2i % _0_1i, _0_0i); |
2620 | | test_op!(_05_05i % _0_1i, _05_05i); |
2621 | | test_op!(_05_05i % _1_1i, _05_05i); |
2622 | | assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i); |
2623 | | assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i); |
2624 | | } |
2625 | | |
2626 | | #[test] |
2627 | | fn test_neg() { |
2628 | | assert_eq!(-_1_0i + _0_1i, _neg1_1i); |
2629 | | assert_eq!((-_0_1i) * _0_1i, _1_0i); |
2630 | | for &c in all_consts.iter() { |
2631 | | assert_eq!(-(-c), c); |
2632 | | } |
2633 | | } |
2634 | | } |
2635 | | |
2636 | | mod real_arithmetic { |
2637 | | use super::super::Complex; |
2638 | | use super::{_4_2i, _neg1_1i}; |
2639 | | |
2640 | | #[test] |
2641 | | fn test_add() { |
2642 | | test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0)); |
2643 | | assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0)); |
2644 | | } |
2645 | | |
2646 | | #[test] |
2647 | | fn test_sub() { |
2648 | | test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0)); |
2649 | | assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0)); |
2650 | | } |
2651 | | |
2652 | | #[test] |
2653 | | fn test_mul() { |
2654 | | assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0)); |
2655 | | assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0)); |
2656 | | } |
2657 | | |
2658 | | #[test] |
2659 | | fn test_div() { |
2660 | | assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); |
2661 | | assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); |
2662 | | } |
2663 | | |
2664 | | #[test] |
2665 | | fn test_rem() { |
2666 | | assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0)); |
2667 | | assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0)); |
2668 | | assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0)); |
2669 | | assert_eq!(_neg1_1i % 2.0, _neg1_1i); |
2670 | | assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0)); |
2671 | | } |
2672 | | |
2673 | | #[test] |
2674 | | fn test_div_rem_gaussian() { |
2675 | | // These would overflow with `norm_sqr` division. |
2676 | | let max = Complex::new(255u8, 255u8); |
2677 | | assert_eq!(max / 200, Complex::new(1, 1)); |
2678 | | assert_eq!(max % 200, Complex::new(55, 55)); |
2679 | | } |
2680 | | } |
2681 | | |
2682 | | #[test] |
2683 | | fn test_to_string() { |
2684 | | fn test(c: Complex64, s: String) { |
2685 | | assert_eq!(c.to_string(), s); |
2686 | | } |
2687 | | test(_0_0i, "0+0i".to_string()); |
2688 | | test(_1_0i, "1+0i".to_string()); |
2689 | | test(_0_1i, "0+1i".to_string()); |
2690 | | test(_1_1i, "1+1i".to_string()); |
2691 | | test(_neg1_1i, "-1+1i".to_string()); |
2692 | | test(-_neg1_1i, "1-1i".to_string()); |
2693 | | test(_05_05i, "0.5+0.5i".to_string()); |
2694 | | } |
2695 | | |
2696 | | #[test] |
2697 | | fn test_string_formatting() { |
2698 | | let a = Complex::new(1.23456, 123.456); |
2699 | | assert_eq!(format!("{}", a), "1.23456+123.456i"); |
2700 | | assert_eq!(format!("{:.2}", a), "1.23+123.46i"); |
2701 | | assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i"); |
2702 | | assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i"); |
2703 | | #[cfg(feature = "std")] |
2704 | | assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i"); |
2705 | | |
2706 | | let b = Complex::new(0x80, 0xff); |
2707 | | assert_eq!(format!("{:X}", b), "80+FFi"); |
2708 | | assert_eq!(format!("{:#x}", b), "0x80+0xffi"); |
2709 | | assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i"); |
2710 | | assert_eq!(format!("{:+#o}", b), "+0o200+0o377i"); |
2711 | | #[cfg(feature = "std")] |
2712 | | assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i"); |
2713 | | |
2714 | | let c = Complex::new(-10, -10000); |
2715 | | assert_eq!(format!("{}", c), "-10-10000i"); |
2716 | | #[cfg(feature = "std")] |
2717 | | assert_eq!(format!("{:16}", c), " -10-10000i"); |
2718 | | } |
2719 | | |
2720 | | #[test] |
2721 | | fn test_hash() { |
2722 | | let a = Complex::new(0i32, 0i32); |
2723 | | let b = Complex::new(1i32, 0i32); |
2724 | | let c = Complex::new(0i32, 1i32); |
2725 | | assert!(crate::hash(&a) != crate::hash(&b)); |
2726 | | assert!(crate::hash(&b) != crate::hash(&c)); |
2727 | | assert!(crate::hash(&c) != crate::hash(&a)); |
2728 | | } |
2729 | | |
2730 | | #[test] |
2731 | | fn test_hashset() { |
2732 | | use std::collections::HashSet; |
2733 | | let a = Complex::new(0i32, 0i32); |
2734 | | let b = Complex::new(1i32, 0i32); |
2735 | | let c = Complex::new(0i32, 1i32); |
2736 | | |
2737 | | let set: HashSet<_> = [a, b, c].iter().cloned().collect(); |
2738 | | assert!(set.contains(&a)); |
2739 | | assert!(set.contains(&b)); |
2740 | | assert!(set.contains(&c)); |
2741 | | assert!(!set.contains(&(a + b + c))); |
2742 | | } |
2743 | | |
2744 | | #[test] |
2745 | | fn test_is_nan() { |
2746 | | assert!(!_1_1i.is_nan()); |
2747 | | let a = Complex::new(f64::NAN, f64::NAN); |
2748 | | assert!(a.is_nan()); |
2749 | | } |
2750 | | |
2751 | | #[test] |
2752 | | fn test_is_nan_special_cases() { |
2753 | | let a = Complex::new(0f64, f64::NAN); |
2754 | | let b = Complex::new(f64::NAN, 0f64); |
2755 | | assert!(a.is_nan()); |
2756 | | assert!(b.is_nan()); |
2757 | | } |
2758 | | |
2759 | | #[test] |
2760 | | fn test_is_infinite() { |
2761 | | let a = Complex::new(2f64, f64::INFINITY); |
2762 | | assert!(a.is_infinite()); |
2763 | | } |
2764 | | |
2765 | | #[test] |
2766 | | fn test_is_finite() { |
2767 | | assert!(_1_1i.is_finite()) |
2768 | | } |
2769 | | |
2770 | | #[test] |
2771 | | fn test_is_normal() { |
2772 | | let a = Complex::new(0f64, f64::NAN); |
2773 | | let b = Complex::new(2f64, f64::INFINITY); |
2774 | | assert!(!a.is_normal()); |
2775 | | assert!(!b.is_normal()); |
2776 | | assert!(_1_1i.is_normal()); |
2777 | | } |
2778 | | |
2779 | | #[test] |
2780 | | fn test_from_str() { |
2781 | | fn test(z: Complex64, s: &str) { |
2782 | | assert_eq!(FromStr::from_str(s), Ok(z)); |
2783 | | } |
2784 | | test(_0_0i, "0 + 0i"); |
2785 | | test(_0_0i, "0+0j"); |
2786 | | test(_0_0i, "0 - 0j"); |
2787 | | test(_0_0i, "0-0i"); |
2788 | | test(_0_0i, "0i + 0"); |
2789 | | test(_0_0i, "0"); |
2790 | | test(_0_0i, "-0"); |
2791 | | test(_0_0i, "0i"); |
2792 | | test(_0_0i, "0j"); |
2793 | | test(_0_0i, "+0j"); |
2794 | | test(_0_0i, "-0i"); |
2795 | | |
2796 | | test(_1_0i, "1 + 0i"); |
2797 | | test(_1_0i, "1+0j"); |
2798 | | test(_1_0i, "1 - 0j"); |
2799 | | test(_1_0i, "+1-0i"); |
2800 | | test(_1_0i, "-0j+1"); |
2801 | | test(_1_0i, "1"); |
2802 | | |
2803 | | test(_1_1i, "1 + i"); |
2804 | | test(_1_1i, "1+j"); |
2805 | | test(_1_1i, "1 + 1j"); |
2806 | | test(_1_1i, "1+1i"); |
2807 | | test(_1_1i, "i + 1"); |
2808 | | test(_1_1i, "1i+1"); |
2809 | | test(_1_1i, "+j+1"); |
2810 | | |
2811 | | test(_0_1i, "0 + i"); |
2812 | | test(_0_1i, "0+j"); |
2813 | | test(_0_1i, "-0 + j"); |
2814 | | test(_0_1i, "-0+i"); |
2815 | | test(_0_1i, "0 + 1i"); |
2816 | | test(_0_1i, "0+1j"); |
2817 | | test(_0_1i, "-0 + 1j"); |
2818 | | test(_0_1i, "-0+1i"); |
2819 | | test(_0_1i, "j + 0"); |
2820 | | test(_0_1i, "i"); |
2821 | | test(_0_1i, "j"); |
2822 | | test(_0_1i, "1j"); |
2823 | | |
2824 | | test(_neg1_1i, "-1 + i"); |
2825 | | test(_neg1_1i, "-1+j"); |
2826 | | test(_neg1_1i, "-1 + 1j"); |
2827 | | test(_neg1_1i, "-1+1i"); |
2828 | | test(_neg1_1i, "1i-1"); |
2829 | | test(_neg1_1i, "j + -1"); |
2830 | | |
2831 | | test(_05_05i, "0.5 + 0.5i"); |
2832 | | test(_05_05i, "0.5+0.5j"); |
2833 | | test(_05_05i, "5e-1+0.5j"); |
2834 | | test(_05_05i, "5E-1 + 0.5j"); |
2835 | | test(_05_05i, "5E-1i + 0.5"); |
2836 | | test(_05_05i, "0.05e+1j + 50E-2"); |
2837 | | } |
2838 | | |
2839 | | #[test] |
2840 | | fn test_from_str_radix() { |
2841 | | fn test(z: Complex64, s: &str, radix: u32) { |
2842 | | let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> = |
2843 | | Num::from_str_radix(s, radix); |
2844 | | assert_eq!(res.unwrap(), z) |
2845 | | } |
2846 | | test(_4_2i, "4+2i", 10); |
2847 | | test(Complex::new(15.0, 32.0), "F+20i", 16); |
2848 | | test(Complex::new(15.0, 32.0), "1111+100000i", 2); |
2849 | | test(Complex::new(-15.0, -32.0), "-F-20i", 16); |
2850 | | test(Complex::new(-15.0, -32.0), "-1111-100000i", 2); |
2851 | | |
2852 | | fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> { |
2853 | | let res = Complex64::from_str_radix(s, radix); |
2854 | | |
2855 | | res.expect_err(&format!("Expected failure on input {:?}", s)) |
2856 | | } |
2857 | | |
2858 | | let err = test_error("1ii", 19); |
2859 | | if let ComplexErrorKind::UnsupportedRadix = err.kind { |
2860 | | /* pass */ |
2861 | | } else { |
2862 | | panic!("Expected failure on invalid radix, got {:?}", err); |
2863 | | } |
2864 | | |
2865 | | let err = test_error("1 + 0", 16); |
2866 | | if let ComplexErrorKind::ExprError = err.kind { |
2867 | | /* pass */ |
2868 | | } else { |
2869 | | panic!("Expected failure on expr error, got {:?}", err); |
2870 | | } |
2871 | | } |
2872 | | |
2873 | | #[test] |
2874 | | #[should_panic(expected = "radix is too high")] |
2875 | | fn test_from_str_radix_fail() { |
2876 | | // ensure we preserve the underlying panic on radix > 36 |
2877 | | let _complex = Complex64::from_str_radix("1", 37); |
2878 | | } |
2879 | | |
2880 | | #[test] |
2881 | | fn test_from_str_fail() { |
2882 | | fn test(s: &str) { |
2883 | | let complex: Result<Complex64, _> = FromStr::from_str(s); |
2884 | | assert!( |
2885 | | complex.is_err(), |
2886 | | "complex {:?} -> {:?} should be an error", |
2887 | | s, |
2888 | | complex |
2889 | | ); |
2890 | | } |
2891 | | test("foo"); |
2892 | | test("6E"); |
2893 | | test("0 + 2.718"); |
2894 | | test("1 - -2i"); |
2895 | | test("314e-2ij"); |
2896 | | test("4.3j - i"); |
2897 | | test("1i - 2i"); |
2898 | | test("+ 1 - 3.0i"); |
2899 | | } |
2900 | | |
2901 | | #[test] |
2902 | | fn test_sum() { |
2903 | | let v = vec![_0_1i, _1_0i]; |
2904 | | assert_eq!(v.iter().sum::<Complex64>(), _1_1i); |
2905 | | assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i); |
2906 | | } |
2907 | | |
2908 | | #[test] |
2909 | | fn test_prod() { |
2910 | | let v = vec![_0_1i, _1_0i]; |
2911 | | assert_eq!(v.iter().product::<Complex64>(), _0_1i); |
2912 | | assert_eq!(v.into_iter().product::<Complex64>(), _0_1i); |
2913 | | } |
2914 | | |
2915 | | #[test] |
2916 | | fn test_zero() { |
2917 | | let zero = Complex64::zero(); |
2918 | | assert!(zero.is_zero()); |
2919 | | |
2920 | | let mut c = Complex::new(1.23, 4.56); |
2921 | | assert!(!c.is_zero()); |
2922 | | assert_eq!(c + zero, c); |
2923 | | |
2924 | | c.set_zero(); |
2925 | | assert!(c.is_zero()); |
2926 | | } |
2927 | | |
2928 | | #[test] |
2929 | | fn test_one() { |
2930 | | let one = Complex64::one(); |
2931 | | assert!(one.is_one()); |
2932 | | |
2933 | | let mut c = Complex::new(1.23, 4.56); |
2934 | | assert!(!c.is_one()); |
2935 | | assert_eq!(c * one, c); |
2936 | | |
2937 | | c.set_one(); |
2938 | | assert!(c.is_one()); |
2939 | | } |
2940 | | |
2941 | | #[test] |
2942 | | #[allow(clippy::float_cmp)] |
2943 | | fn test_const() { |
2944 | | const R: f64 = 12.3; |
2945 | | const I: f64 = -4.5; |
2946 | | const C: Complex64 = Complex::new(R, I); |
2947 | | |
2948 | | assert_eq!(C.re, 12.3); |
2949 | | assert_eq!(C.im, -4.5); |
2950 | | } |
2951 | | } |