Coverage Report

Created: 2025-11-28 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/num-complex-0.4.6/src/lib.rs
Line
Count
Source
1
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
2
// file at the top-level directory of this distribution and at
3
// http://rust-lang.org/COPYRIGHT.
4
//
5
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8
// option. This file may not be copied, modified, or distributed
9
// except according to those terms.
10
11
//! Complex numbers.
12
//!
13
//! ## Compatibility
14
//!
15
//! The `num-complex` crate is tested for rustc 1.60 and greater.
16
17
#![doc(html_root_url = "https://docs.rs/num-complex/0.4")]
18
#![no_std]
19
20
#[cfg(any(test, feature = "std"))]
21
#[cfg_attr(test, macro_use)]
22
extern crate std;
23
24
use core::fmt;
25
#[cfg(test)]
26
use core::hash;
27
use core::iter::{Product, Sum};
28
use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
29
use core::str::FromStr;
30
#[cfg(feature = "std")]
31
use std::error::Error;
32
33
use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero};
34
35
use num_traits::float::FloatCore;
36
#[cfg(any(feature = "std", feature = "libm"))]
37
use num_traits::float::{Float, FloatConst};
38
39
mod cast;
40
mod pow;
41
42
#[cfg(any(feature = "std", feature = "libm"))]
43
mod complex_float;
44
#[cfg(any(feature = "std", feature = "libm"))]
45
pub use crate::complex_float::ComplexFloat;
46
47
#[cfg(feature = "rand")]
48
mod crand;
49
#[cfg(feature = "rand")]
50
pub use crate::crand::ComplexDistribution;
51
52
// FIXME #1284: handle complex NaN & infinity etc. This
53
// probably doesn't map to C's _Complex correctly.
54
55
/// A complex number in Cartesian form.
56
///
57
/// ## Representation and Foreign Function Interface Compatibility
58
///
59
/// `Complex<T>` is memory layout compatible with an array `[T; 2]`.
60
///
61
/// Note that `Complex<F>` where F is a floating point type is **only** memory
62
/// layout compatible with C's complex types, **not** necessarily calling
63
/// convention compatible.  This means that for FFI you can only pass
64
/// `Complex<F>` behind a pointer, not as a value.
65
///
66
/// ## Examples
67
///
68
/// Example of extern function declaration.
69
///
70
/// ```
71
/// use num_complex::Complex;
72
/// use std::os::raw::c_int;
73
///
74
/// extern "C" {
75
///     fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
76
///               x: *const Complex<f64>, incx: *const c_int,
77
///               y: *mut Complex<f64>, incy: *const c_int);
78
/// }
79
/// ```
80
#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)]
81
#[repr(C)]
82
#[cfg_attr(
83
    feature = "rkyv",
84
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
85
)]
86
#[cfg_attr(feature = "rkyv", archive(as = "Complex<T::Archived>"))]
87
#[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))]
88
pub struct Complex<T> {
89
    /// Real portion of the complex number
90
    pub re: T,
91
    /// Imaginary portion of the complex number
92
    pub im: T,
93
}
94
95
/// Alias for a [`Complex<f32>`]
96
pub type Complex32 = Complex<f32>;
97
98
/// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`].
99
///
100
/// ```
101
/// use num_complex::{c32, Complex32};
102
/// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0));
103
/// ```
104
///
105
/// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement
106
/// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a
107
/// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type.
108
///
109
/// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions
110
#[inline]
111
0
pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 {
112
0
    Complex::new(re.into(), im.into())
113
0
}
114
115
/// Alias for a [`Complex<f64>`]
116
pub type Complex64 = Complex<f64>;
117
118
/// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`].
119
///
120
/// ```
121
/// use num_complex::{c64, Complex64};
122
/// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0));
123
/// ```
124
#[inline]
125
0
pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 {
126
0
    Complex::new(re.into(), im.into())
127
0
}
128
129
impl<T> Complex<T> {
130
    /// Create a new `Complex`
131
    #[inline]
132
0
    pub const fn new(re: T, im: T) -> Self {
133
0
        Complex { re, im }
134
0
    }
135
}
136
137
impl<T: Clone + Num> Complex<T> {
138
    /// Returns the imaginary unit.
139
    ///
140
    /// See also [`Complex::I`].
141
    #[inline]
142
0
    pub fn i() -> Self {
143
0
        Self::new(T::zero(), T::one())
144
0
    }
145
146
    /// Returns the square of the norm (since `T` doesn't necessarily
147
    /// have a sqrt function), i.e. `re^2 + im^2`.
148
    #[inline]
149
0
    pub fn norm_sqr(&self) -> T {
150
0
        self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
151
0
    }
152
153
    /// Multiplies `self` by the scalar `t`.
154
    #[inline]
155
0
    pub fn scale(&self, t: T) -> Self {
156
0
        Self::new(self.re.clone() * t.clone(), self.im.clone() * t)
157
0
    }
158
159
    /// Divides `self` by the scalar `t`.
160
    #[inline]
161
0
    pub fn unscale(&self, t: T) -> Self {
162
0
        Self::new(self.re.clone() / t.clone(), self.im.clone() / t)
163
0
    }
164
165
    /// Raises `self` to an unsigned integer power.
166
    #[inline]
167
0
    pub fn powu(&self, exp: u32) -> Self {
168
0
        Pow::pow(self, exp)
169
0
    }
170
}
171
172
impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
173
    /// Returns the complex conjugate. i.e. `re - i im`
174
    #[inline]
175
0
    pub fn conj(&self) -> Self {
176
0
        Self::new(self.re.clone(), -self.im.clone())
177
0
    }
178
179
    /// Returns `1/self`
180
    #[inline]
181
0
    pub fn inv(&self) -> Self {
182
0
        let norm_sqr = self.norm_sqr();
183
0
        Self::new(
184
0
            self.re.clone() / norm_sqr.clone(),
185
0
            -self.im.clone() / norm_sqr,
186
        )
187
0
    }
188
189
    /// Raises `self` to a signed integer power.
190
    #[inline]
191
0
    pub fn powi(&self, exp: i32) -> Self {
192
0
        Pow::pow(self, exp)
193
0
    }
194
}
195
196
impl<T: Clone + Signed> Complex<T> {
197
    /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
198
    ///
199
    /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
200
    #[inline]
201
0
    pub fn l1_norm(&self) -> T {
202
0
        self.re.abs() + self.im.abs()
203
0
    }
204
}
205
206
#[cfg(any(feature = "std", feature = "libm"))]
207
impl<T: Float> Complex<T> {
208
    /// Create a new Complex with a given phase: `exp(i * phase)`.
209
    /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)).
210
    #[inline]
211
    pub fn cis(phase: T) -> Self {
212
        Self::new(phase.cos(), phase.sin())
213
    }
214
215
    /// Calculate |self|
216
    #[inline]
217
    pub fn norm(self) -> T {
218
        self.re.hypot(self.im)
219
    }
220
    /// Calculate the principal Arg of self.
221
    #[inline]
222
    pub fn arg(self) -> T {
223
        self.im.atan2(self.re)
224
    }
225
    /// Convert to polar form (r, theta), such that
226
    /// `self = r * exp(i * theta)`
227
    #[inline]
228
    pub fn to_polar(self) -> (T, T) {
229
        (self.norm(), self.arg())
230
    }
231
    /// Convert a polar representation into a complex number.
232
    #[inline]
233
    pub fn from_polar(r: T, theta: T) -> Self {
234
        Self::new(r * theta.cos(), r * theta.sin())
235
    }
236
237
    /// Computes `e^(self)`, where `e` is the base of the natural logarithm.
238
    #[inline]
239
    pub fn exp(self) -> Self {
240
        // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b)
241
242
        let Complex { re, mut im } = self;
243
        // Treat the corner cases +∞, -∞, and NaN
244
        if re.is_infinite() {
245
            if re < T::zero() {
246
                if !im.is_finite() {
247
                    return Self::new(T::zero(), T::zero());
248
                }
249
            } else if im == T::zero() || !im.is_finite() {
250
                if im.is_infinite() {
251
                    im = T::nan();
252
                }
253
                return Self::new(re, im);
254
            }
255
        } else if re.is_nan() && im == T::zero() {
256
            return self;
257
        }
258
259
        Self::from_polar(re.exp(), im)
260
    }
261
262
    /// Computes the principal value of natural logarithm of `self`.
263
    ///
264
    /// This function has one branch cut:
265
    ///
266
    /// * `(-∞, 0]`, continuous from above.
267
    ///
268
    /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`.
269
    #[inline]
270
    pub fn ln(self) -> Self {
271
        // formula: ln(z) = ln|z| + i*arg(z)
272
        let (r, theta) = self.to_polar();
273
        Self::new(r.ln(), theta)
274
    }
275
276
    /// Computes the principal value of the square root of `self`.
277
    ///
278
    /// This function has one branch cut:
279
    ///
280
    /// * `(-∞, 0)`, continuous from above.
281
    ///
282
    /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`.
283
    #[inline]
284
    pub fn sqrt(self) -> Self {
285
        if self.im.is_zero() {
286
            if self.re.is_sign_positive() {
287
                // simple positive real √r, and copy `im` for its sign
288
                Self::new(self.re.sqrt(), self.im)
289
            } else {
290
                // √(r e^(iπ)) = √r e^(iπ/2) = i√r
291
                // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r
292
                let re = T::zero();
293
                let im = (-self.re).sqrt();
294
                if self.im.is_sign_positive() {
295
                    Self::new(re, im)
296
                } else {
297
                    Self::new(re, -im)
298
                }
299
            }
300
        } else if self.re.is_zero() {
301
            // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2)
302
            // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2)
303
            let one = T::one();
304
            let two = one + one;
305
            let x = (self.im.abs() / two).sqrt();
306
            if self.im.is_sign_positive() {
307
                Self::new(x, x)
308
            } else {
309
                Self::new(x, -x)
310
            }
311
        } else {
312
            // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2)
313
            let one = T::one();
314
            let two = one + one;
315
            let (r, theta) = self.to_polar();
316
            Self::from_polar(r.sqrt(), theta / two)
317
        }
318
    }
319
320
    /// Computes the principal value of the cube root of `self`.
321
    ///
322
    /// This function has one branch cut:
323
    ///
324
    /// * `(-∞, 0)`, continuous from above.
325
    ///
326
    /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`.
327
    ///
328
    /// Note that this does not match the usual result for the cube root of
329
    /// negative real numbers. For example, the real cube root of `-8` is `-2`,
330
    /// but the principal complex cube root of `-8` is `1 + i√3`.
331
    #[inline]
332
    pub fn cbrt(self) -> Self {
333
        if self.im.is_zero() {
334
            if self.re.is_sign_positive() {
335
                // simple positive real ∛r, and copy `im` for its sign
336
                Self::new(self.re.cbrt(), self.im)
337
            } else {
338
                // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2
339
                // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2
340
                let one = T::one();
341
                let two = one + one;
342
                let three = two + one;
343
                let re = (-self.re).cbrt() / two;
344
                let im = three.sqrt() * re;
345
                if self.im.is_sign_positive() {
346
                    Self::new(re, im)
347
                } else {
348
                    Self::new(re, -im)
349
                }
350
            }
351
        } else if self.re.is_zero() {
352
            // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2
353
            // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2
354
            let one = T::one();
355
            let two = one + one;
356
            let three = two + one;
357
            let im = self.im.abs().cbrt() / two;
358
            let re = three.sqrt() * im;
359
            if self.im.is_sign_positive() {
360
                Self::new(re, im)
361
            } else {
362
                Self::new(re, -im)
363
            }
364
        } else {
365
            // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3)
366
            let one = T::one();
367
            let three = one + one + one;
368
            let (r, theta) = self.to_polar();
369
            Self::from_polar(r.cbrt(), theta / three)
370
        }
371
    }
372
373
    /// Raises `self` to a floating point power.
374
    #[inline]
375
    pub fn powf(self, exp: T) -> Self {
376
        if exp.is_zero() {
377
            return Self::one();
378
        }
379
        // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
380
        // = from_polar(ρ^y, θ y)
381
        let (r, theta) = self.to_polar();
382
        Self::from_polar(r.powf(exp), theta * exp)
383
    }
384
385
    /// Returns the logarithm of `self` with respect to an arbitrary base.
386
    #[inline]
387
    pub fn log(self, base: T) -> Self {
388
        // formula: log_y(x) = log_y(ρ e^(i θ))
389
        // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
390
        // = log_y(ρ) + i θ / ln(y)
391
        let (r, theta) = self.to_polar();
392
        Self::new(r.log(base), theta / base.ln())
393
    }
394
395
    /// Raises `self` to a complex power.
396
    #[inline]
397
    pub fn powc(self, exp: Self) -> Self {
398
        if exp.is_zero() {
399
            return Self::one();
400
        }
401
        // formula: x^y = exp(y * ln(x))
402
        (exp * self.ln()).exp()
403
    }
404
405
    /// Raises a floating point number to the complex power `self`.
406
    #[inline]
407
    pub fn expf(self, base: T) -> Self {
408
        // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
409
        // = from_polar(x^a, b ln(x))
410
        Self::from_polar(base.powf(self.re), self.im * base.ln())
411
    }
412
413
    /// Computes the sine of `self`.
414
    #[inline]
415
    pub fn sin(self) -> Self {
416
        // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b)
417
        Self::new(
418
            self.re.sin() * self.im.cosh(),
419
            self.re.cos() * self.im.sinh(),
420
        )
421
    }
422
423
    /// Computes the cosine of `self`.
424
    #[inline]
425
    pub fn cos(self) -> Self {
426
        // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b)
427
        Self::new(
428
            self.re.cos() * self.im.cosh(),
429
            -self.re.sin() * self.im.sinh(),
430
        )
431
    }
432
433
    /// Computes the tangent of `self`.
434
    #[inline]
435
    pub fn tan(self) -> Self {
436
        // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b))
437
        let (two_re, two_im) = (self.re + self.re, self.im + self.im);
438
        Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh())
439
    }
440
441
    /// Computes the principal value of the inverse sine of `self`.
442
    ///
443
    /// This function has two branch cuts:
444
    ///
445
    /// * `(-∞, -1)`, continuous from above.
446
    /// * `(1, ∞)`, continuous from below.
447
    ///
448
    /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`.
449
    #[inline]
450
    pub fn asin(self) -> Self {
451
        // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
452
        let i = Self::i();
453
        -i * ((Self::one() - self * self).sqrt() + i * self).ln()
454
    }
455
456
    /// Computes the principal value of the inverse cosine of `self`.
457
    ///
458
    /// This function has two branch cuts:
459
    ///
460
    /// * `(-∞, -1)`, continuous from above.
461
    /// * `(1, ∞)`, continuous from below.
462
    ///
463
    /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`.
464
    #[inline]
465
    pub fn acos(self) -> Self {
466
        // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
467
        let i = Self::i();
468
        -i * (i * (Self::one() - self * self).sqrt() + self).ln()
469
    }
470
471
    /// Computes the principal value of the inverse tangent of `self`.
472
    ///
473
    /// This function has two branch cuts:
474
    ///
475
    /// * `(-∞i, -i]`, continuous from the left.
476
    /// * `[i, ∞i)`, continuous from the right.
477
    ///
478
    /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`.
479
    #[inline]
480
    pub fn atan(self) -> Self {
481
        // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
482
        let i = Self::i();
483
        let one = Self::one();
484
        let two = one + one;
485
        if self == i {
486
            return Self::new(T::zero(), T::infinity());
487
        } else if self == -i {
488
            return Self::new(T::zero(), -T::infinity());
489
        }
490
        ((one + i * self).ln() - (one - i * self).ln()) / (two * i)
491
    }
492
493
    /// Computes the hyperbolic sine of `self`.
494
    #[inline]
495
    pub fn sinh(self) -> Self {
496
        // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b)
497
        Self::new(
498
            self.re.sinh() * self.im.cos(),
499
            self.re.cosh() * self.im.sin(),
500
        )
501
    }
502
503
    /// Computes the hyperbolic cosine of `self`.
504
    #[inline]
505
    pub fn cosh(self) -> Self {
506
        // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b)
507
        Self::new(
508
            self.re.cosh() * self.im.cos(),
509
            self.re.sinh() * self.im.sin(),
510
        )
511
    }
512
513
    /// Computes the hyperbolic tangent of `self`.
514
    #[inline]
515
    pub fn tanh(self) -> Self {
516
        // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b))
517
        let (two_re, two_im) = (self.re + self.re, self.im + self.im);
518
        Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos())
519
    }
520
521
    /// Computes the principal value of inverse hyperbolic sine of `self`.
522
    ///
523
    /// This function has two branch cuts:
524
    ///
525
    /// * `(-∞i, -i)`, continuous from the left.
526
    /// * `(i, ∞i)`, continuous from the right.
527
    ///
528
    /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`.
529
    #[inline]
530
    pub fn asinh(self) -> Self {
531
        // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
532
        let one = Self::one();
533
        (self + (one + self * self).sqrt()).ln()
534
    }
535
536
    /// Computes the principal value of inverse hyperbolic cosine of `self`.
537
    ///
538
    /// This function has one branch cut:
539
    ///
540
    /// * `(-∞, 1)`, continuous from above.
541
    ///
542
    /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`.
543
    #[inline]
544
    pub fn acosh(self) -> Self {
545
        // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2))
546
        let one = Self::one();
547
        let two = one + one;
548
        two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln()
549
    }
550
551
    /// Computes the principal value of inverse hyperbolic tangent of `self`.
552
    ///
553
    /// This function has two branch cuts:
554
    ///
555
    /// * `(-∞, -1]`, continuous from above.
556
    /// * `[1, ∞)`, continuous from below.
557
    ///
558
    /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`.
559
    #[inline]
560
    pub fn atanh(self) -> Self {
561
        // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2
562
        let one = Self::one();
563
        let two = one + one;
564
        if self == one {
565
            return Self::new(T::infinity(), T::zero());
566
        } else if self == -one {
567
            return Self::new(-T::infinity(), T::zero());
568
        }
569
        ((one + self).ln() - (one - self).ln()) / two
570
    }
571
572
    /// Returns `1/self` using floating-point operations.
573
    ///
574
    /// This may be more accurate than the generic `self.inv()` in cases
575
    /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0.
576
    ///
577
    /// # Examples
578
    ///
579
    /// ```
580
    /// use num_complex::Complex64;
581
    /// let c = Complex64::new(1e300, 1e300);
582
    ///
583
    /// // The generic `inv()` will overflow.
584
    /// assert!(!c.inv().is_normal());
585
    ///
586
    /// // But we can do better for `Float` types.
587
    /// let inv = c.finv();
588
    /// assert!(inv.is_normal());
589
    /// println!("{:e}", inv);
590
    ///
591
    /// let expected = Complex64::new(5e-301, -5e-301);
592
    /// assert!((inv - expected).norm() < 1e-315);
593
    /// ```
594
    #[inline]
595
    pub fn finv(self) -> Complex<T> {
596
        let norm = self.norm();
597
        self.conj() / norm / norm
598
    }
599
600
    /// Returns `self/other` using floating-point operations.
601
    ///
602
    /// This may be more accurate than the generic `Div` implementation in cases
603
    /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0.
604
    ///
605
    /// # Examples
606
    ///
607
    /// ```
608
    /// use num_complex::Complex64;
609
    /// let a = Complex64::new(2.0, 3.0);
610
    /// let b = Complex64::new(1e300, 1e300);
611
    ///
612
    /// // Generic division will overflow.
613
    /// assert!(!(a / b).is_normal());
614
    ///
615
    /// // But we can do better for `Float` types.
616
    /// let quotient = a.fdiv(b);
617
    /// assert!(quotient.is_normal());
618
    /// println!("{:e}", quotient);
619
    ///
620
    /// let expected = Complex64::new(2.5e-300, 5e-301);
621
    /// assert!((quotient - expected).norm() < 1e-315);
622
    /// ```
623
    #[inline]
624
    pub fn fdiv(self, other: Complex<T>) -> Complex<T> {
625
        self * other.finv()
626
    }
627
}
628
629
#[cfg(any(feature = "std", feature = "libm"))]
630
impl<T: Float + FloatConst> Complex<T> {
631
    /// Computes `2^(self)`.
632
    #[inline]
633
    pub fn exp2(self) -> Self {
634
        // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2))
635
        // = from_polar(2^a, b*log2)
636
        Self::from_polar(self.re.exp2(), self.im * T::LN_2())
637
    }
638
639
    /// Computes the principal value of log base 2 of `self`.
640
    #[inline]
641
    pub fn log2(self) -> Self {
642
        Self::ln(self) / T::LN_2()
643
    }
644
645
    /// Computes the principal value of log base 10 of `self`.
646
    #[inline]
647
    pub fn log10(self) -> Self {
648
        Self::ln(self) / T::LN_10()
649
    }
650
}
651
652
impl<T: FloatCore> Complex<T> {
653
    /// Checks if the given complex number is NaN
654
    #[inline]
655
0
    pub fn is_nan(self) -> bool {
656
0
        self.re.is_nan() || self.im.is_nan()
657
0
    }
658
659
    /// Checks if the given complex number is infinite
660
    #[inline]
661
0
    pub fn is_infinite(self) -> bool {
662
0
        !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
663
0
    }
664
665
    /// Checks if the given complex number is finite
666
    #[inline]
667
0
    pub fn is_finite(self) -> bool {
668
0
        self.re.is_finite() && self.im.is_finite()
669
0
    }
670
671
    /// Checks if the given complex number is normal
672
    #[inline]
673
0
    pub fn is_normal(self) -> bool {
674
0
        self.re.is_normal() && self.im.is_normal()
675
0
    }
676
}
677
678
// Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
679
// can guarantee it contains no *added* padding. Thus, if `T: Zeroable`,
680
// `Complex<T>` is also `Zeroable`
681
#[cfg(feature = "bytemuck")]
682
unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {}
683
684
// Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we
685
// can guarantee it contains no *added* padding. Thus, if `T: Pod`,
686
// `Complex<T>` is also `Pod`
687
#[cfg(feature = "bytemuck")]
688
unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {}
689
690
impl<T: Clone + Num> From<T> for Complex<T> {
691
    #[inline]
692
0
    fn from(re: T) -> Self {
693
0
        Self::new(re, T::zero())
694
0
    }
695
}
696
697
impl<'a, T: Clone + Num> From<&'a T> for Complex<T> {
698
    #[inline]
699
0
    fn from(re: &T) -> Self {
700
0
        From::from(re.clone())
701
0
    }
702
}
703
704
macro_rules! forward_ref_ref_binop {
705
    (impl $imp:ident, $method:ident) => {
706
        impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> {
707
            type Output = Complex<T>;
708
709
            #[inline]
710
0
            fn $method(self, other: &Complex<T>) -> Self::Output {
711
0
                self.clone().$method(other.clone())
712
0
            }
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem>::rem
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add>::add
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub>::sub
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul>::mul
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div>::div
713
        }
714
    };
715
}
716
717
macro_rules! forward_ref_val_binop {
718
    (impl $imp:ident, $method:ident) => {
719
        impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
720
            type Output = Complex<T>;
721
722
            #[inline]
723
0
            fn $method(self, other: Complex<T>) -> Self::Output {
724
0
                self.clone().$method(other)
725
0
            }
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem<num_complex::Complex<_>>>::rem
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add<num_complex::Complex<_>>>::add
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub<num_complex::Complex<_>>>::sub
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul<num_complex::Complex<_>>>::mul
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div<num_complex::Complex<_>>>::div
726
        }
727
    };
728
}
729
730
macro_rules! forward_val_ref_binop {
731
    (impl $imp:ident, $method:ident) => {
732
        impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
733
            type Output = Complex<T>;
734
735
            #[inline]
736
0
            fn $method(self, other: &Complex<T>) -> Self::Output {
737
0
                self.$method(other.clone())
738
0
            }
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Div<&num_complex::Complex<_>>>::div
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Rem<&num_complex::Complex<_>>>::rem
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Add<&num_complex::Complex<_>>>::add
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Sub<&num_complex::Complex<_>>>::sub
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Mul<&num_complex::Complex<_>>>::mul
739
        }
740
    };
741
}
742
743
macro_rules! forward_all_binop {
744
    (impl $imp:ident, $method:ident) => {
745
        forward_ref_ref_binop!(impl $imp, $method);
746
        forward_ref_val_binop!(impl $imp, $method);
747
        forward_val_ref_binop!(impl $imp, $method);
748
    };
749
}
750
751
// arithmetic
752
forward_all_binop!(impl Add, add);
753
754
// (a + i b) + (c + i d) == (a + c) + i (b + d)
755
impl<T: Clone + Num> Add<Complex<T>> for Complex<T> {
756
    type Output = Self;
757
758
    #[inline]
759
0
    fn add(self, other: Self) -> Self::Output {
760
0
        Self::Output::new(self.re + other.re, self.im + other.im)
761
0
    }
762
}
763
764
forward_all_binop!(impl Sub, sub);
765
766
// (a + i b) - (c + i d) == (a - c) + i (b - d)
767
impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> {
768
    type Output = Self;
769
770
    #[inline]
771
0
    fn sub(self, other: Self) -> Self::Output {
772
0
        Self::Output::new(self.re - other.re, self.im - other.im)
773
0
    }
774
}
775
776
forward_all_binop!(impl Mul, mul);
777
778
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
779
impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> {
780
    type Output = Self;
781
782
    #[inline]
783
0
    fn mul(self, other: Self) -> Self::Output {
784
0
        let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone();
785
0
        let im = self.re * other.im + self.im * other.re;
786
0
        Self::Output::new(re, im)
787
0
    }
788
}
789
790
// (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f))
791
impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> {
792
    type Output = Complex<T>;
793
794
    #[inline]
795
0
    fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> {
796
0
        let re = self.re.clone().mul_add(other.re.clone(), add.re)
797
0
            - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust
798
0
        let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im));
799
0
        Complex::new(re, im)
800
0
    }
801
}
802
impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> {
803
    type Output = Complex<T>;
804
805
    #[inline]
806
0
    fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> {
807
0
        self.clone().mul_add(other.clone(), add.clone())
808
0
    }
809
}
810
811
forward_all_binop!(impl Div, div);
812
813
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
814
//   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
815
impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
816
    type Output = Self;
817
818
    #[inline]
819
0
    fn div(self, other: Self) -> Self::Output {
820
0
        let norm_sqr = other.norm_sqr();
821
0
        let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone();
822
0
        let im = self.im * other.re - self.re * other.im;
823
0
        Self::Output::new(re / norm_sqr.clone(), im / norm_sqr)
824
0
    }
825
}
826
827
forward_all_binop!(impl Rem, rem);
828
829
impl<T: Clone + Num> Complex<T> {
830
    /// Find the gaussian integer corresponding to the true ratio rounded towards zero.
831
0
    fn div_trunc(&self, divisor: &Self) -> Self {
832
0
        let Complex { re, im } = self / divisor;
833
0
        Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one())
834
0
    }
835
}
836
837
impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
838
    type Output = Self;
839
840
    #[inline]
841
0
    fn rem(self, modulus: Self) -> Self::Output {
842
0
        let gaussian = self.div_trunc(&modulus);
843
0
        self - modulus * gaussian
844
0
    }
845
}
846
847
// Op Assign
848
849
mod opassign {
850
    use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
851
852
    use num_traits::{MulAddAssign, NumAssign};
853
854
    use crate::Complex;
855
856
    impl<T: Clone + NumAssign> AddAssign for Complex<T> {
857
0
        fn add_assign(&mut self, other: Self) {
858
0
            self.re += other.re;
859
0
            self.im += other.im;
860
0
        }
861
    }
862
863
    impl<T: Clone + NumAssign> SubAssign for Complex<T> {
864
0
        fn sub_assign(&mut self, other: Self) {
865
0
            self.re -= other.re;
866
0
            self.im -= other.im;
867
0
        }
868
    }
869
870
    // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
871
    impl<T: Clone + NumAssign> MulAssign for Complex<T> {
872
0
        fn mul_assign(&mut self, other: Self) {
873
0
            let a = self.re.clone();
874
875
0
            self.re *= other.re.clone();
876
0
            self.re -= self.im.clone() * other.im.clone();
877
878
0
            self.im *= other.re;
879
0
            self.im += a * other.im;
880
0
        }
881
    }
882
883
    // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f))
884
    impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> {
885
0
        fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) {
886
0
            let a = self.re.clone();
887
888
0
            self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e)
889
0
            self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d)
890
891
0
            let mut adf = a;
892
0
            adf.mul_add_assign(other.im, add.im); // (a*d + f)
893
0
            self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f))
894
0
        }
895
    }
896
897
    impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>>
898
        for Complex<T>
899
    {
900
0
        fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) {
901
0
            self.mul_add_assign(other.clone(), add.clone());
902
0
        }
903
    }
904
905
    // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
906
    //   == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
907
    impl<T: Clone + NumAssign> DivAssign for Complex<T> {
908
0
        fn div_assign(&mut self, other: Self) {
909
0
            let a = self.re.clone();
910
0
            let norm_sqr = other.norm_sqr();
911
912
0
            self.re *= other.re.clone();
913
0
            self.re += self.im.clone() * other.im.clone();
914
0
            self.re /= norm_sqr.clone();
915
916
0
            self.im *= other.re;
917
0
            self.im -= a * other.im;
918
0
            self.im /= norm_sqr;
919
0
        }
920
    }
921
922
    impl<T: Clone + NumAssign> RemAssign for Complex<T> {
923
0
        fn rem_assign(&mut self, modulus: Self) {
924
0
            let gaussian = self.div_trunc(&modulus);
925
0
            *self -= modulus * gaussian;
926
0
        }
927
    }
928
929
    impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
930
0
        fn add_assign(&mut self, other: T) {
931
0
            self.re += other;
932
0
        }
933
    }
934
935
    impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> {
936
0
        fn sub_assign(&mut self, other: T) {
937
0
            self.re -= other;
938
0
        }
939
    }
940
941
    impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> {
942
0
        fn mul_assign(&mut self, other: T) {
943
0
            self.re *= other.clone();
944
0
            self.im *= other;
945
0
        }
946
    }
947
948
    impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> {
949
0
        fn div_assign(&mut self, other: T) {
950
0
            self.re /= other.clone();
951
0
            self.im /= other;
952
0
        }
953
    }
954
955
    impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
956
0
        fn rem_assign(&mut self, other: T) {
957
0
            self.re %= other.clone();
958
0
            self.im %= other;
959
0
        }
960
    }
961
962
    macro_rules! forward_op_assign {
963
        (impl $imp:ident, $method:ident) => {
964
            impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
965
                #[inline]
966
0
                fn $method(&mut self, other: &Self) {
967
0
                    self.$method(other.clone())
968
0
                }
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::AddAssign<&num_complex::Complex<_>>>::add_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::SubAssign<&num_complex::Complex<_>>>::sub_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::MulAssign<&num_complex::Complex<_>>>::mul_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::DivAssign<&num_complex::Complex<_>>>::div_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::RemAssign<&num_complex::Complex<_>>>::rem_assign
969
            }
970
            impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> {
971
                #[inline]
972
0
                fn $method(&mut self, other: &T) {
973
0
                    self.$method(other.clone())
974
0
                }
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::AddAssign<&_>>::add_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::SubAssign<&_>>::sub_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::MulAssign<&_>>::mul_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::DivAssign<&_>>::div_assign
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::RemAssign<&_>>::rem_assign
975
            }
976
        };
977
    }
978
979
    forward_op_assign!(impl AddAssign, add_assign);
980
    forward_op_assign!(impl SubAssign, sub_assign);
981
    forward_op_assign!(impl MulAssign, mul_assign);
982
    forward_op_assign!(impl DivAssign, div_assign);
983
    forward_op_assign!(impl RemAssign, rem_assign);
984
}
985
986
impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
987
    type Output = Self;
988
989
    #[inline]
990
0
    fn neg(self) -> Self::Output {
991
0
        Self::Output::new(-self.re, -self.im)
992
0
    }
993
}
994
995
impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
996
    type Output = Complex<T>;
997
998
    #[inline]
999
0
    fn neg(self) -> Self::Output {
1000
0
        -self.clone()
1001
0
    }
1002
}
1003
1004
impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> {
1005
    type Output = Self;
1006
1007
    #[inline]
1008
0
    fn inv(self) -> Self::Output {
1009
0
        Complex::inv(&self)
1010
0
    }
1011
}
1012
1013
impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> {
1014
    type Output = Complex<T>;
1015
1016
    #[inline]
1017
0
    fn inv(self) -> Self::Output {
1018
0
        Complex::inv(self)
1019
0
    }
1020
}
1021
1022
macro_rules! real_arithmetic {
1023
    (@forward $imp:ident::$method:ident for $($real:ident),*) => (
1024
        impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> {
1025
            type Output = Complex<T>;
1026
1027
            #[inline]
1028
0
            fn $method(self, other: &T) -> Self::Output {
1029
0
                self.$method(other.clone())
1030
0
            }
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Sub<&_>>::sub
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Add<&_>>::add
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Mul<&_>>::mul
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Div<&_>>::div
Unexecuted instantiation: <num_complex::Complex<_> as core::ops::arith::Rem<&_>>::rem
1031
        }
1032
        impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> {
1033
            type Output = Complex<T>;
1034
1035
            #[inline]
1036
0
            fn $method(self, other: T) -> Self::Output {
1037
0
                self.clone().$method(other)
1038
0
            }
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub<_>>::sub
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add<_>>::add
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul<_>>::mul
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div<_>>::div
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem<_>>::rem
1039
        }
1040
        impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> {
1041
            type Output = Complex<T>;
1042
1043
            #[inline]
1044
0
            fn $method(self, other: &T) -> Self::Output {
1045
0
                self.clone().$method(other.clone())
1046
0
            }
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Sub<&_>>::sub
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Add<&_>>::add
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Mul<&_>>::mul
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Div<&_>>::div
Unexecuted instantiation: <&num_complex::Complex<_> as core::ops::arith::Rem<&_>>::rem
1047
        }
1048
        $(
1049
            impl<'a> $imp<&'a Complex<$real>> for $real {
1050
                type Output = Complex<$real>;
1051
1052
                #[inline]
1053
0
                fn $method(self, other: &Complex<$real>) -> Complex<$real> {
1054
0
                    self.$method(other.clone())
1055
0
                }
Unexecuted instantiation: <i8 as core::ops::arith::Add<&num_complex::Complex<i8>>>::add
Unexecuted instantiation: <i16 as core::ops::arith::Add<&num_complex::Complex<i16>>>::add
Unexecuted instantiation: <i32 as core::ops::arith::Add<&num_complex::Complex<i32>>>::add
Unexecuted instantiation: <i64 as core::ops::arith::Add<&num_complex::Complex<i64>>>::add
Unexecuted instantiation: <i128 as core::ops::arith::Add<&num_complex::Complex<i128>>>::add
Unexecuted instantiation: <f32 as core::ops::arith::Add<&num_complex::Complex<f32>>>::add
Unexecuted instantiation: <f64 as core::ops::arith::Add<&num_complex::Complex<f64>>>::add
Unexecuted instantiation: <usize as core::ops::arith::Sub<&num_complex::Complex<usize>>>::sub
Unexecuted instantiation: <usize as core::ops::arith::Add<&num_complex::Complex<usize>>>::add
Unexecuted instantiation: <u8 as core::ops::arith::Add<&num_complex::Complex<u8>>>::add
Unexecuted instantiation: <u16 as core::ops::arith::Add<&num_complex::Complex<u16>>>::add
Unexecuted instantiation: <u32 as core::ops::arith::Add<&num_complex::Complex<u32>>>::add
Unexecuted instantiation: <u64 as core::ops::arith::Add<&num_complex::Complex<u64>>>::add
Unexecuted instantiation: <u128 as core::ops::arith::Add<&num_complex::Complex<u128>>>::add
Unexecuted instantiation: <isize as core::ops::arith::Add<&num_complex::Complex<isize>>>::add
Unexecuted instantiation: <u8 as core::ops::arith::Sub<&num_complex::Complex<u8>>>::sub
Unexecuted instantiation: <u16 as core::ops::arith::Sub<&num_complex::Complex<u16>>>::sub
Unexecuted instantiation: <u32 as core::ops::arith::Sub<&num_complex::Complex<u32>>>::sub
Unexecuted instantiation: <f64 as core::ops::arith::Sub<&num_complex::Complex<f64>>>::sub
Unexecuted instantiation: <usize as core::ops::arith::Mul<&num_complex::Complex<usize>>>::mul
Unexecuted instantiation: <u8 as core::ops::arith::Mul<&num_complex::Complex<u8>>>::mul
Unexecuted instantiation: <u16 as core::ops::arith::Mul<&num_complex::Complex<u16>>>::mul
Unexecuted instantiation: <u32 as core::ops::arith::Mul<&num_complex::Complex<u32>>>::mul
Unexecuted instantiation: <u64 as core::ops::arith::Mul<&num_complex::Complex<u64>>>::mul
Unexecuted instantiation: <u128 as core::ops::arith::Mul<&num_complex::Complex<u128>>>::mul
Unexecuted instantiation: <isize as core::ops::arith::Mul<&num_complex::Complex<isize>>>::mul
Unexecuted instantiation: <u64 as core::ops::arith::Sub<&num_complex::Complex<u64>>>::sub
Unexecuted instantiation: <u128 as core::ops::arith::Sub<&num_complex::Complex<u128>>>::sub
Unexecuted instantiation: <isize as core::ops::arith::Sub<&num_complex::Complex<isize>>>::sub
Unexecuted instantiation: <i8 as core::ops::arith::Sub<&num_complex::Complex<i8>>>::sub
Unexecuted instantiation: <i16 as core::ops::arith::Sub<&num_complex::Complex<i16>>>::sub
Unexecuted instantiation: <i32 as core::ops::arith::Sub<&num_complex::Complex<i32>>>::sub
Unexecuted instantiation: <i64 as core::ops::arith::Sub<&num_complex::Complex<i64>>>::sub
Unexecuted instantiation: <i128 as core::ops::arith::Sub<&num_complex::Complex<i128>>>::sub
Unexecuted instantiation: <f32 as core::ops::arith::Sub<&num_complex::Complex<f32>>>::sub
Unexecuted instantiation: <i8 as core::ops::arith::Mul<&num_complex::Complex<i8>>>::mul
Unexecuted instantiation: <i16 as core::ops::arith::Mul<&num_complex::Complex<i16>>>::mul
Unexecuted instantiation: <i32 as core::ops::arith::Mul<&num_complex::Complex<i32>>>::mul
Unexecuted instantiation: <u64 as core::ops::arith::Div<&num_complex::Complex<u64>>>::div
Unexecuted instantiation: <u128 as core::ops::arith::Div<&num_complex::Complex<u128>>>::div
Unexecuted instantiation: <isize as core::ops::arith::Div<&num_complex::Complex<isize>>>::div
Unexecuted instantiation: <i8 as core::ops::arith::Div<&num_complex::Complex<i8>>>::div
Unexecuted instantiation: <i16 as core::ops::arith::Div<&num_complex::Complex<i16>>>::div
Unexecuted instantiation: <i32 as core::ops::arith::Div<&num_complex::Complex<i32>>>::div
Unexecuted instantiation: <i64 as core::ops::arith::Div<&num_complex::Complex<i64>>>::div
Unexecuted instantiation: <i128 as core::ops::arith::Div<&num_complex::Complex<i128>>>::div
Unexecuted instantiation: <i64 as core::ops::arith::Mul<&num_complex::Complex<i64>>>::mul
Unexecuted instantiation: <i128 as core::ops::arith::Mul<&num_complex::Complex<i128>>>::mul
Unexecuted instantiation: <f32 as core::ops::arith::Mul<&num_complex::Complex<f32>>>::mul
Unexecuted instantiation: <f64 as core::ops::arith::Mul<&num_complex::Complex<f64>>>::mul
Unexecuted instantiation: <usize as core::ops::arith::Div<&num_complex::Complex<usize>>>::div
Unexecuted instantiation: <u8 as core::ops::arith::Div<&num_complex::Complex<u8>>>::div
Unexecuted instantiation: <u16 as core::ops::arith::Div<&num_complex::Complex<u16>>>::div
Unexecuted instantiation: <u32 as core::ops::arith::Div<&num_complex::Complex<u32>>>::div
Unexecuted instantiation: <f32 as core::ops::arith::Div<&num_complex::Complex<f32>>>::div
Unexecuted instantiation: <f64 as core::ops::arith::Div<&num_complex::Complex<f64>>>::div
Unexecuted instantiation: <usize as core::ops::arith::Rem<&num_complex::Complex<usize>>>::rem
Unexecuted instantiation: <i32 as core::ops::arith::Rem<&num_complex::Complex<i32>>>::rem
Unexecuted instantiation: <i64 as core::ops::arith::Rem<&num_complex::Complex<i64>>>::rem
Unexecuted instantiation: <i128 as core::ops::arith::Rem<&num_complex::Complex<i128>>>::rem
Unexecuted instantiation: <f32 as core::ops::arith::Rem<&num_complex::Complex<f32>>>::rem
Unexecuted instantiation: <f64 as core::ops::arith::Rem<&num_complex::Complex<f64>>>::rem
Unexecuted instantiation: <u8 as core::ops::arith::Rem<&num_complex::Complex<u8>>>::rem
Unexecuted instantiation: <u16 as core::ops::arith::Rem<&num_complex::Complex<u16>>>::rem
Unexecuted instantiation: <u32 as core::ops::arith::Rem<&num_complex::Complex<u32>>>::rem
Unexecuted instantiation: <u64 as core::ops::arith::Rem<&num_complex::Complex<u64>>>::rem
Unexecuted instantiation: <u128 as core::ops::arith::Rem<&num_complex::Complex<u128>>>::rem
Unexecuted instantiation: <isize as core::ops::arith::Rem<&num_complex::Complex<isize>>>::rem
Unexecuted instantiation: <i8 as core::ops::arith::Rem<&num_complex::Complex<i8>>>::rem
Unexecuted instantiation: <i16 as core::ops::arith::Rem<&num_complex::Complex<i16>>>::rem
1056
            }
1057
            impl<'a> $imp<Complex<$real>> for &'a $real {
1058
                type Output = Complex<$real>;
1059
1060
                #[inline]
1061
0
                fn $method(self, other: Complex<$real>) -> Complex<$real> {
1062
0
                    self.clone().$method(other)
1063
0
                }
Unexecuted instantiation: <&i8 as core::ops::arith::Add<num_complex::Complex<i8>>>::add
Unexecuted instantiation: <&i16 as core::ops::arith::Add<num_complex::Complex<i16>>>::add
Unexecuted instantiation: <&i32 as core::ops::arith::Add<num_complex::Complex<i32>>>::add
Unexecuted instantiation: <&i64 as core::ops::arith::Add<num_complex::Complex<i64>>>::add
Unexecuted instantiation: <&i128 as core::ops::arith::Add<num_complex::Complex<i128>>>::add
Unexecuted instantiation: <&f32 as core::ops::arith::Add<num_complex::Complex<f32>>>::add
Unexecuted instantiation: <&f64 as core::ops::arith::Add<num_complex::Complex<f64>>>::add
Unexecuted instantiation: <&usize as core::ops::arith::Sub<num_complex::Complex<usize>>>::sub
Unexecuted instantiation: <&usize as core::ops::arith::Add<num_complex::Complex<usize>>>::add
Unexecuted instantiation: <&u8 as core::ops::arith::Add<num_complex::Complex<u8>>>::add
Unexecuted instantiation: <&u16 as core::ops::arith::Add<num_complex::Complex<u16>>>::add
Unexecuted instantiation: <&u32 as core::ops::arith::Add<num_complex::Complex<u32>>>::add
Unexecuted instantiation: <&u64 as core::ops::arith::Add<num_complex::Complex<u64>>>::add
Unexecuted instantiation: <&u128 as core::ops::arith::Add<num_complex::Complex<u128>>>::add
Unexecuted instantiation: <&isize as core::ops::arith::Add<num_complex::Complex<isize>>>::add
Unexecuted instantiation: <&u8 as core::ops::arith::Sub<num_complex::Complex<u8>>>::sub
Unexecuted instantiation: <&u16 as core::ops::arith::Sub<num_complex::Complex<u16>>>::sub
Unexecuted instantiation: <&u32 as core::ops::arith::Sub<num_complex::Complex<u32>>>::sub
Unexecuted instantiation: <&f64 as core::ops::arith::Sub<num_complex::Complex<f64>>>::sub
Unexecuted instantiation: <&usize as core::ops::arith::Mul<num_complex::Complex<usize>>>::mul
Unexecuted instantiation: <&u8 as core::ops::arith::Mul<num_complex::Complex<u8>>>::mul
Unexecuted instantiation: <&u16 as core::ops::arith::Mul<num_complex::Complex<u16>>>::mul
Unexecuted instantiation: <&u32 as core::ops::arith::Mul<num_complex::Complex<u32>>>::mul
Unexecuted instantiation: <&u64 as core::ops::arith::Mul<num_complex::Complex<u64>>>::mul
Unexecuted instantiation: <&u128 as core::ops::arith::Mul<num_complex::Complex<u128>>>::mul
Unexecuted instantiation: <&u64 as core::ops::arith::Sub<num_complex::Complex<u64>>>::sub
Unexecuted instantiation: <&u128 as core::ops::arith::Sub<num_complex::Complex<u128>>>::sub
Unexecuted instantiation: <&isize as core::ops::arith::Sub<num_complex::Complex<isize>>>::sub
Unexecuted instantiation: <&i8 as core::ops::arith::Sub<num_complex::Complex<i8>>>::sub
Unexecuted instantiation: <&i16 as core::ops::arith::Sub<num_complex::Complex<i16>>>::sub
Unexecuted instantiation: <&i32 as core::ops::arith::Sub<num_complex::Complex<i32>>>::sub
Unexecuted instantiation: <&i64 as core::ops::arith::Sub<num_complex::Complex<i64>>>::sub
Unexecuted instantiation: <&i128 as core::ops::arith::Sub<num_complex::Complex<i128>>>::sub
Unexecuted instantiation: <&f32 as core::ops::arith::Sub<num_complex::Complex<f32>>>::sub
Unexecuted instantiation: <&isize as core::ops::arith::Mul<num_complex::Complex<isize>>>::mul
Unexecuted instantiation: <&i8 as core::ops::arith::Mul<num_complex::Complex<i8>>>::mul
Unexecuted instantiation: <&i16 as core::ops::arith::Mul<num_complex::Complex<i16>>>::mul
Unexecuted instantiation: <&i32 as core::ops::arith::Mul<num_complex::Complex<i32>>>::mul
Unexecuted instantiation: <&u32 as core::ops::arith::Div<num_complex::Complex<u32>>>::div
Unexecuted instantiation: <&u64 as core::ops::arith::Div<num_complex::Complex<u64>>>::div
Unexecuted instantiation: <&u128 as core::ops::arith::Div<num_complex::Complex<u128>>>::div
Unexecuted instantiation: <&isize as core::ops::arith::Div<num_complex::Complex<isize>>>::div
Unexecuted instantiation: <&i8 as core::ops::arith::Div<num_complex::Complex<i8>>>::div
Unexecuted instantiation: <&i16 as core::ops::arith::Div<num_complex::Complex<i16>>>::div
Unexecuted instantiation: <&i32 as core::ops::arith::Div<num_complex::Complex<i32>>>::div
Unexecuted instantiation: <&i64 as core::ops::arith::Div<num_complex::Complex<i64>>>::div
Unexecuted instantiation: <&i128 as core::ops::arith::Div<num_complex::Complex<i128>>>::div
Unexecuted instantiation: <&i64 as core::ops::arith::Mul<num_complex::Complex<i64>>>::mul
Unexecuted instantiation: <&i128 as core::ops::arith::Mul<num_complex::Complex<i128>>>::mul
Unexecuted instantiation: <&f32 as core::ops::arith::Mul<num_complex::Complex<f32>>>::mul
Unexecuted instantiation: <&f64 as core::ops::arith::Mul<num_complex::Complex<f64>>>::mul
Unexecuted instantiation: <&usize as core::ops::arith::Div<num_complex::Complex<usize>>>::div
Unexecuted instantiation: <&u8 as core::ops::arith::Div<num_complex::Complex<u8>>>::div
Unexecuted instantiation: <&u16 as core::ops::arith::Div<num_complex::Complex<u16>>>::div
Unexecuted instantiation: <&f32 as core::ops::arith::Div<num_complex::Complex<f32>>>::div
Unexecuted instantiation: <&f64 as core::ops::arith::Div<num_complex::Complex<f64>>>::div
Unexecuted instantiation: <&i32 as core::ops::arith::Rem<num_complex::Complex<i32>>>::rem
Unexecuted instantiation: <&i64 as core::ops::arith::Rem<num_complex::Complex<i64>>>::rem
Unexecuted instantiation: <&i128 as core::ops::arith::Rem<num_complex::Complex<i128>>>::rem
Unexecuted instantiation: <&f32 as core::ops::arith::Rem<num_complex::Complex<f32>>>::rem
Unexecuted instantiation: <&f64 as core::ops::arith::Rem<num_complex::Complex<f64>>>::rem
Unexecuted instantiation: <&usize as core::ops::arith::Rem<num_complex::Complex<usize>>>::rem
Unexecuted instantiation: <&u8 as core::ops::arith::Rem<num_complex::Complex<u8>>>::rem
Unexecuted instantiation: <&u16 as core::ops::arith::Rem<num_complex::Complex<u16>>>::rem
Unexecuted instantiation: <&u32 as core::ops::arith::Rem<num_complex::Complex<u32>>>::rem
Unexecuted instantiation: <&u64 as core::ops::arith::Rem<num_complex::Complex<u64>>>::rem
Unexecuted instantiation: <&u128 as core::ops::arith::Rem<num_complex::Complex<u128>>>::rem
Unexecuted instantiation: <&isize as core::ops::arith::Rem<num_complex::Complex<isize>>>::rem
Unexecuted instantiation: <&i8 as core::ops::arith::Rem<num_complex::Complex<i8>>>::rem
Unexecuted instantiation: <&i16 as core::ops::arith::Rem<num_complex::Complex<i16>>>::rem
1064
            }
1065
            impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real {
1066
                type Output = Complex<$real>;
1067
1068
                #[inline]
1069
0
                fn $method(self, other: &Complex<$real>) -> Complex<$real> {
1070
0
                    self.clone().$method(other.clone())
1071
0
                }
Unexecuted instantiation: <&i8 as core::ops::arith::Add<&num_complex::Complex<i8>>>::add
Unexecuted instantiation: <&i16 as core::ops::arith::Add<&num_complex::Complex<i16>>>::add
Unexecuted instantiation: <&i32 as core::ops::arith::Add<&num_complex::Complex<i32>>>::add
Unexecuted instantiation: <&i64 as core::ops::arith::Add<&num_complex::Complex<i64>>>::add
Unexecuted instantiation: <&i128 as core::ops::arith::Add<&num_complex::Complex<i128>>>::add
Unexecuted instantiation: <&f32 as core::ops::arith::Add<&num_complex::Complex<f32>>>::add
Unexecuted instantiation: <&f64 as core::ops::arith::Add<&num_complex::Complex<f64>>>::add
Unexecuted instantiation: <&usize as core::ops::arith::Add<&num_complex::Complex<usize>>>::add
Unexecuted instantiation: <&u8 as core::ops::arith::Add<&num_complex::Complex<u8>>>::add
Unexecuted instantiation: <&u16 as core::ops::arith::Add<&num_complex::Complex<u16>>>::add
Unexecuted instantiation: <&u32 as core::ops::arith::Add<&num_complex::Complex<u32>>>::add
Unexecuted instantiation: <&u64 as core::ops::arith::Add<&num_complex::Complex<u64>>>::add
Unexecuted instantiation: <&u128 as core::ops::arith::Add<&num_complex::Complex<u128>>>::add
Unexecuted instantiation: <&isize as core::ops::arith::Add<&num_complex::Complex<isize>>>::add
Unexecuted instantiation: <&usize as core::ops::arith::Sub<&num_complex::Complex<usize>>>::sub
Unexecuted instantiation: <&u8 as core::ops::arith::Sub<&num_complex::Complex<u8>>>::sub
Unexecuted instantiation: <&u16 as core::ops::arith::Sub<&num_complex::Complex<u16>>>::sub
Unexecuted instantiation: <&u32 as core::ops::arith::Sub<&num_complex::Complex<u32>>>::sub
Unexecuted instantiation: <&f32 as core::ops::arith::Sub<&num_complex::Complex<f32>>>::sub
Unexecuted instantiation: <&f64 as core::ops::arith::Sub<&num_complex::Complex<f64>>>::sub
Unexecuted instantiation: <&usize as core::ops::arith::Mul<&num_complex::Complex<usize>>>::mul
Unexecuted instantiation: <&u8 as core::ops::arith::Mul<&num_complex::Complex<u8>>>::mul
Unexecuted instantiation: <&u16 as core::ops::arith::Mul<&num_complex::Complex<u16>>>::mul
Unexecuted instantiation: <&u32 as core::ops::arith::Mul<&num_complex::Complex<u32>>>::mul
Unexecuted instantiation: <&u64 as core::ops::arith::Mul<&num_complex::Complex<u64>>>::mul
Unexecuted instantiation: <&u128 as core::ops::arith::Mul<&num_complex::Complex<u128>>>::mul
Unexecuted instantiation: <&u64 as core::ops::arith::Sub<&num_complex::Complex<u64>>>::sub
Unexecuted instantiation: <&u128 as core::ops::arith::Sub<&num_complex::Complex<u128>>>::sub
Unexecuted instantiation: <&isize as core::ops::arith::Sub<&num_complex::Complex<isize>>>::sub
Unexecuted instantiation: <&i8 as core::ops::arith::Sub<&num_complex::Complex<i8>>>::sub
Unexecuted instantiation: <&i16 as core::ops::arith::Sub<&num_complex::Complex<i16>>>::sub
Unexecuted instantiation: <&i32 as core::ops::arith::Sub<&num_complex::Complex<i32>>>::sub
Unexecuted instantiation: <&i64 as core::ops::arith::Sub<&num_complex::Complex<i64>>>::sub
Unexecuted instantiation: <&i128 as core::ops::arith::Sub<&num_complex::Complex<i128>>>::sub
Unexecuted instantiation: <&isize as core::ops::arith::Mul<&num_complex::Complex<isize>>>::mul
Unexecuted instantiation: <&i8 as core::ops::arith::Mul<&num_complex::Complex<i8>>>::mul
Unexecuted instantiation: <&i16 as core::ops::arith::Mul<&num_complex::Complex<i16>>>::mul
Unexecuted instantiation: <&u32 as core::ops::arith::Div<&num_complex::Complex<u32>>>::div
Unexecuted instantiation: <&u64 as core::ops::arith::Div<&num_complex::Complex<u64>>>::div
Unexecuted instantiation: <&u128 as core::ops::arith::Div<&num_complex::Complex<u128>>>::div
Unexecuted instantiation: <&isize as core::ops::arith::Div<&num_complex::Complex<isize>>>::div
Unexecuted instantiation: <&i8 as core::ops::arith::Div<&num_complex::Complex<i8>>>::div
Unexecuted instantiation: <&i16 as core::ops::arith::Div<&num_complex::Complex<i16>>>::div
Unexecuted instantiation: <&i32 as core::ops::arith::Div<&num_complex::Complex<i32>>>::div
Unexecuted instantiation: <&i64 as core::ops::arith::Div<&num_complex::Complex<i64>>>::div
Unexecuted instantiation: <&i128 as core::ops::arith::Div<&num_complex::Complex<i128>>>::div
Unexecuted instantiation: <&i32 as core::ops::arith::Mul<&num_complex::Complex<i32>>>::mul
Unexecuted instantiation: <&i64 as core::ops::arith::Mul<&num_complex::Complex<i64>>>::mul
Unexecuted instantiation: <&i128 as core::ops::arith::Mul<&num_complex::Complex<i128>>>::mul
Unexecuted instantiation: <&f32 as core::ops::arith::Mul<&num_complex::Complex<f32>>>::mul
Unexecuted instantiation: <&f64 as core::ops::arith::Mul<&num_complex::Complex<f64>>>::mul
Unexecuted instantiation: <&usize as core::ops::arith::Div<&num_complex::Complex<usize>>>::div
Unexecuted instantiation: <&u8 as core::ops::arith::Div<&num_complex::Complex<u8>>>::div
Unexecuted instantiation: <&u16 as core::ops::arith::Div<&num_complex::Complex<u16>>>::div
Unexecuted instantiation: <&f32 as core::ops::arith::Div<&num_complex::Complex<f32>>>::div
Unexecuted instantiation: <&f64 as core::ops::arith::Div<&num_complex::Complex<f64>>>::div
Unexecuted instantiation: <&i32 as core::ops::arith::Rem<&num_complex::Complex<i32>>>::rem
Unexecuted instantiation: <&i64 as core::ops::arith::Rem<&num_complex::Complex<i64>>>::rem
Unexecuted instantiation: <&i128 as core::ops::arith::Rem<&num_complex::Complex<i128>>>::rem
Unexecuted instantiation: <&f32 as core::ops::arith::Rem<&num_complex::Complex<f32>>>::rem
Unexecuted instantiation: <&f64 as core::ops::arith::Rem<&num_complex::Complex<f64>>>::rem
Unexecuted instantiation: <&usize as core::ops::arith::Rem<&num_complex::Complex<usize>>>::rem
Unexecuted instantiation: <&u8 as core::ops::arith::Rem<&num_complex::Complex<u8>>>::rem
Unexecuted instantiation: <&u16 as core::ops::arith::Rem<&num_complex::Complex<u16>>>::rem
Unexecuted instantiation: <&u32 as core::ops::arith::Rem<&num_complex::Complex<u32>>>::rem
Unexecuted instantiation: <&u64 as core::ops::arith::Rem<&num_complex::Complex<u64>>>::rem
Unexecuted instantiation: <&u128 as core::ops::arith::Rem<&num_complex::Complex<u128>>>::rem
Unexecuted instantiation: <&isize as core::ops::arith::Rem<&num_complex::Complex<isize>>>::rem
Unexecuted instantiation: <&i8 as core::ops::arith::Rem<&num_complex::Complex<i8>>>::rem
Unexecuted instantiation: <&i16 as core::ops::arith::Rem<&num_complex::Complex<i16>>>::rem
1072
            }
1073
        )*
1074
    );
1075
    ($($real:ident),*) => (
1076
        real_arithmetic!(@forward Add::add for $($real),*);
1077
        real_arithmetic!(@forward Sub::sub for $($real),*);
1078
        real_arithmetic!(@forward Mul::mul for $($real),*);
1079
        real_arithmetic!(@forward Div::div for $($real),*);
1080
        real_arithmetic!(@forward Rem::rem for $($real),*);
1081
1082
        $(
1083
            impl Add<Complex<$real>> for $real {
1084
                type Output = Complex<$real>;
1085
1086
                #[inline]
1087
0
                fn add(self, other: Complex<$real>) -> Self::Output {
1088
0
                    Self::Output::new(self + other.re, other.im)
1089
0
                }
Unexecuted instantiation: <usize as core::ops::arith::Add<num_complex::Complex<usize>>>::add
Unexecuted instantiation: <u8 as core::ops::arith::Add<num_complex::Complex<u8>>>::add
Unexecuted instantiation: <i8 as core::ops::arith::Add<num_complex::Complex<i8>>>::add
Unexecuted instantiation: <i16 as core::ops::arith::Add<num_complex::Complex<i16>>>::add
Unexecuted instantiation: <i32 as core::ops::arith::Add<num_complex::Complex<i32>>>::add
Unexecuted instantiation: <i64 as core::ops::arith::Add<num_complex::Complex<i64>>>::add
Unexecuted instantiation: <i128 as core::ops::arith::Add<num_complex::Complex<i128>>>::add
Unexecuted instantiation: <u16 as core::ops::arith::Add<num_complex::Complex<u16>>>::add
Unexecuted instantiation: <u32 as core::ops::arith::Add<num_complex::Complex<u32>>>::add
Unexecuted instantiation: <u64 as core::ops::arith::Add<num_complex::Complex<u64>>>::add
Unexecuted instantiation: <u128 as core::ops::arith::Add<num_complex::Complex<u128>>>::add
Unexecuted instantiation: <isize as core::ops::arith::Add<num_complex::Complex<isize>>>::add
Unexecuted instantiation: <f32 as core::ops::arith::Add<num_complex::Complex<f32>>>::add
Unexecuted instantiation: <f64 as core::ops::arith::Add<num_complex::Complex<f64>>>::add
1090
            }
1091
1092
            impl Sub<Complex<$real>> for $real {
1093
                type Output = Complex<$real>;
1094
1095
                #[inline]
1096
0
                fn sub(self, other: Complex<$real>) -> Self::Output  {
1097
0
                    Self::Output::new(self - other.re, $real::zero() - other.im)
1098
0
                }
Unexecuted instantiation: <usize as core::ops::arith::Sub<num_complex::Complex<usize>>>::sub
Unexecuted instantiation: <i8 as core::ops::arith::Sub<num_complex::Complex<i8>>>::sub
Unexecuted instantiation: <i16 as core::ops::arith::Sub<num_complex::Complex<i16>>>::sub
Unexecuted instantiation: <i32 as core::ops::arith::Sub<num_complex::Complex<i32>>>::sub
Unexecuted instantiation: <i64 as core::ops::arith::Sub<num_complex::Complex<i64>>>::sub
Unexecuted instantiation: <i128 as core::ops::arith::Sub<num_complex::Complex<i128>>>::sub
Unexecuted instantiation: <u8 as core::ops::arith::Sub<num_complex::Complex<u8>>>::sub
Unexecuted instantiation: <u16 as core::ops::arith::Sub<num_complex::Complex<u16>>>::sub
Unexecuted instantiation: <u32 as core::ops::arith::Sub<num_complex::Complex<u32>>>::sub
Unexecuted instantiation: <u64 as core::ops::arith::Sub<num_complex::Complex<u64>>>::sub
Unexecuted instantiation: <u128 as core::ops::arith::Sub<num_complex::Complex<u128>>>::sub
Unexecuted instantiation: <isize as core::ops::arith::Sub<num_complex::Complex<isize>>>::sub
Unexecuted instantiation: <f32 as core::ops::arith::Sub<num_complex::Complex<f32>>>::sub
Unexecuted instantiation: <f64 as core::ops::arith::Sub<num_complex::Complex<f64>>>::sub
1099
            }
1100
1101
            impl Mul<Complex<$real>> for $real {
1102
                type Output = Complex<$real>;
1103
1104
                #[inline]
1105
0
                fn mul(self, other: Complex<$real>) -> Self::Output {
1106
0
                    Self::Output::new(self * other.re, self * other.im)
1107
0
                }
Unexecuted instantiation: <usize as core::ops::arith::Mul<num_complex::Complex<usize>>>::mul
Unexecuted instantiation: <isize as core::ops::arith::Mul<num_complex::Complex<isize>>>::mul
Unexecuted instantiation: <i8 as core::ops::arith::Mul<num_complex::Complex<i8>>>::mul
Unexecuted instantiation: <i16 as core::ops::arith::Mul<num_complex::Complex<i16>>>::mul
Unexecuted instantiation: <i32 as core::ops::arith::Mul<num_complex::Complex<i32>>>::mul
Unexecuted instantiation: <i64 as core::ops::arith::Mul<num_complex::Complex<i64>>>::mul
Unexecuted instantiation: <i128 as core::ops::arith::Mul<num_complex::Complex<i128>>>::mul
Unexecuted instantiation: <u8 as core::ops::arith::Mul<num_complex::Complex<u8>>>::mul
Unexecuted instantiation: <u16 as core::ops::arith::Mul<num_complex::Complex<u16>>>::mul
Unexecuted instantiation: <u32 as core::ops::arith::Mul<num_complex::Complex<u32>>>::mul
Unexecuted instantiation: <u64 as core::ops::arith::Mul<num_complex::Complex<u64>>>::mul
Unexecuted instantiation: <u128 as core::ops::arith::Mul<num_complex::Complex<u128>>>::mul
Unexecuted instantiation: <f32 as core::ops::arith::Mul<num_complex::Complex<f32>>>::mul
Unexecuted instantiation: <f64 as core::ops::arith::Mul<num_complex::Complex<f64>>>::mul
1108
            }
1109
1110
            impl Div<Complex<$real>> for $real {
1111
                type Output = Complex<$real>;
1112
1113
                #[inline]
1114
0
                fn div(self, other: Complex<$real>) -> Self::Output {
1115
                    // a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
1116
0
                    let norm_sqr = other.norm_sqr();
1117
0
                    Self::Output::new(self * other.re / norm_sqr.clone(),
1118
0
                                      $real::zero() - self * other.im / norm_sqr)
1119
0
                }
Unexecuted instantiation: <usize as core::ops::arith::Div<num_complex::Complex<usize>>>::div
Unexecuted instantiation: <isize as core::ops::arith::Div<num_complex::Complex<isize>>>::div
Unexecuted instantiation: <i8 as core::ops::arith::Div<num_complex::Complex<i8>>>::div
Unexecuted instantiation: <i16 as core::ops::arith::Div<num_complex::Complex<i16>>>::div
Unexecuted instantiation: <i32 as core::ops::arith::Div<num_complex::Complex<i32>>>::div
Unexecuted instantiation: <i64 as core::ops::arith::Div<num_complex::Complex<i64>>>::div
Unexecuted instantiation: <u8 as core::ops::arith::Div<num_complex::Complex<u8>>>::div
Unexecuted instantiation: <u16 as core::ops::arith::Div<num_complex::Complex<u16>>>::div
Unexecuted instantiation: <u32 as core::ops::arith::Div<num_complex::Complex<u32>>>::div
Unexecuted instantiation: <u64 as core::ops::arith::Div<num_complex::Complex<u64>>>::div
Unexecuted instantiation: <u128 as core::ops::arith::Div<num_complex::Complex<u128>>>::div
Unexecuted instantiation: <i128 as core::ops::arith::Div<num_complex::Complex<i128>>>::div
Unexecuted instantiation: <f32 as core::ops::arith::Div<num_complex::Complex<f32>>>::div
Unexecuted instantiation: <f64 as core::ops::arith::Div<num_complex::Complex<f64>>>::div
1120
            }
1121
1122
            impl Rem<Complex<$real>> for $real {
1123
                type Output = Complex<$real>;
1124
1125
                #[inline]
1126
0
                fn rem(self, other: Complex<$real>) -> Self::Output {
1127
0
                    Self::Output::new(self, Self::zero()) % other
1128
0
                }
Unexecuted instantiation: <usize as core::ops::arith::Rem<num_complex::Complex<usize>>>::rem
Unexecuted instantiation: <isize as core::ops::arith::Rem<num_complex::Complex<isize>>>::rem
Unexecuted instantiation: <i8 as core::ops::arith::Rem<num_complex::Complex<i8>>>::rem
Unexecuted instantiation: <i16 as core::ops::arith::Rem<num_complex::Complex<i16>>>::rem
Unexecuted instantiation: <i32 as core::ops::arith::Rem<num_complex::Complex<i32>>>::rem
Unexecuted instantiation: <i64 as core::ops::arith::Rem<num_complex::Complex<i64>>>::rem
Unexecuted instantiation: <u8 as core::ops::arith::Rem<num_complex::Complex<u8>>>::rem
Unexecuted instantiation: <u16 as core::ops::arith::Rem<num_complex::Complex<u16>>>::rem
Unexecuted instantiation: <u32 as core::ops::arith::Rem<num_complex::Complex<u32>>>::rem
Unexecuted instantiation: <u64 as core::ops::arith::Rem<num_complex::Complex<u64>>>::rem
Unexecuted instantiation: <u128 as core::ops::arith::Rem<num_complex::Complex<u128>>>::rem
Unexecuted instantiation: <i128 as core::ops::arith::Rem<num_complex::Complex<i128>>>::rem
Unexecuted instantiation: <f32 as core::ops::arith::Rem<num_complex::Complex<f32>>>::rem
Unexecuted instantiation: <f64 as core::ops::arith::Rem<num_complex::Complex<f64>>>::rem
1129
            }
1130
        )*
1131
    );
1132
}
1133
1134
impl<T: Clone + Num> Add<T> for Complex<T> {
1135
    type Output = Complex<T>;
1136
1137
    #[inline]
1138
0
    fn add(self, other: T) -> Self::Output {
1139
0
        Self::Output::new(self.re + other, self.im)
1140
0
    }
1141
}
1142
1143
impl<T: Clone + Num> Sub<T> for Complex<T> {
1144
    type Output = Complex<T>;
1145
1146
    #[inline]
1147
0
    fn sub(self, other: T) -> Self::Output {
1148
0
        Self::Output::new(self.re - other, self.im)
1149
0
    }
1150
}
1151
1152
impl<T: Clone + Num> Mul<T> for Complex<T> {
1153
    type Output = Complex<T>;
1154
1155
    #[inline]
1156
0
    fn mul(self, other: T) -> Self::Output {
1157
0
        Self::Output::new(self.re * other.clone(), self.im * other)
1158
0
    }
1159
}
1160
1161
impl<T: Clone + Num> Div<T> for Complex<T> {
1162
    type Output = Self;
1163
1164
    #[inline]
1165
0
    fn div(self, other: T) -> Self::Output {
1166
0
        Self::Output::new(self.re / other.clone(), self.im / other)
1167
0
    }
1168
}
1169
1170
impl<T: Clone + Num> Rem<T> for Complex<T> {
1171
    type Output = Complex<T>;
1172
1173
    #[inline]
1174
0
    fn rem(self, other: T) -> Self::Output {
1175
0
        Self::Output::new(self.re % other.clone(), self.im % other)
1176
0
    }
1177
}
1178
1179
real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64);
1180
1181
// constants
1182
impl<T: ConstZero> Complex<T> {
1183
    /// A constant `Complex` 0.
1184
    pub const ZERO: Self = Self::new(T::ZERO, T::ZERO);
1185
}
1186
1187
impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> {
1188
    const ZERO: Self = Self::ZERO;
1189
}
1190
1191
impl<T: Clone + Num> Zero for Complex<T> {
1192
    #[inline]
1193
0
    fn zero() -> Self {
1194
0
        Self::new(Zero::zero(), Zero::zero())
1195
0
    }
1196
1197
    #[inline]
1198
0
    fn is_zero(&self) -> bool {
1199
0
        self.re.is_zero() && self.im.is_zero()
1200
0
    }
1201
1202
    #[inline]
1203
0
    fn set_zero(&mut self) {
1204
0
        self.re.set_zero();
1205
0
        self.im.set_zero();
1206
0
    }
1207
}
1208
1209
impl<T: ConstOne + ConstZero> Complex<T> {
1210
    /// A constant `Complex` 1.
1211
    pub const ONE: Self = Self::new(T::ONE, T::ZERO);
1212
1213
    /// A constant `Complex` _i_, the imaginary unit.
1214
    pub const I: Self = Self::new(T::ZERO, T::ONE);
1215
}
1216
1217
impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> {
1218
    const ONE: Self = Self::ONE;
1219
}
1220
1221
impl<T: Clone + Num> One for Complex<T> {
1222
    #[inline]
1223
0
    fn one() -> Self {
1224
0
        Self::new(One::one(), Zero::zero())
1225
0
    }
1226
1227
    #[inline]
1228
0
    fn is_one(&self) -> bool {
1229
0
        self.re.is_one() && self.im.is_zero()
1230
0
    }
1231
1232
    #[inline]
1233
0
    fn set_one(&mut self) {
1234
0
        self.re.set_one();
1235
0
        self.im.set_zero();
1236
0
    }
1237
}
1238
1239
macro_rules! write_complex {
1240
    ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{
1241
        let abs_re = if $re < Zero::zero() {
1242
            $T::zero() - $re.clone()
1243
        } else {
1244
            $re.clone()
1245
        };
1246
        let abs_im = if $im < Zero::zero() {
1247
            $T::zero() - $im.clone()
1248
        } else {
1249
            $im.clone()
1250
        };
1251
1252
        return if let Some(prec) = $f.precision() {
1253
            fmt_re_im(
1254
                $f,
1255
                $re < $T::zero(),
1256
                $im < $T::zero(),
1257
                format_args!(concat!("{:.1$", $t, "}"), abs_re, prec),
1258
                format_args!(concat!("{:.1$", $t, "}"), abs_im, prec),
1259
            )
1260
        } else {
1261
            fmt_re_im(
1262
                $f,
1263
                $re < $T::zero(),
1264
                $im < $T::zero(),
1265
                format_args!(concat!("{:", $t, "}"), abs_re),
1266
                format_args!(concat!("{:", $t, "}"), abs_im),
1267
            )
1268
        };
1269
1270
0
        fn fmt_re_im(
1271
0
            f: &mut fmt::Formatter<'_>,
1272
0
            re_neg: bool,
1273
0
            im_neg: bool,
1274
0
            real: fmt::Arguments<'_>,
1275
0
            imag: fmt::Arguments<'_>,
1276
0
        ) -> fmt::Result {
1277
0
            let prefix = if f.alternate() { $prefix } else { "" };
1278
0
            let sign = if re_neg {
1279
0
                "-"
1280
0
            } else if f.sign_plus() {
1281
0
                "+"
1282
            } else {
1283
0
                ""
1284
            };
1285
1286
0
            if im_neg {
1287
0
                fmt_complex(
1288
0
                    f,
1289
0
                    format_args!(
1290
0
                        "{}{pre}{re}-{pre}{im}i",
1291
                        sign,
1292
                        re = real,
1293
                        im = imag,
1294
                        pre = prefix
1295
                    ),
1296
                )
1297
            } else {
1298
0
                fmt_complex(
1299
0
                    f,
1300
0
                    format_args!(
1301
0
                        "{}{pre}{re}+{pre}{im}i",
1302
                        sign,
1303
                        re = real,
1304
                        im = imag,
1305
                        pre = prefix
1306
                    ),
1307
                )
1308
            }
1309
0
        }
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Display>::fmt::fmt_re_im
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerExp>::fmt::fmt_re_im
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperExp>::fmt::fmt_re_im
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerHex>::fmt::fmt_re_im
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperHex>::fmt::fmt_re_im
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Octal>::fmt::fmt_re_im
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Binary>::fmt::fmt_re_im
1310
1311
        #[cfg(feature = "std")]
1312
        // Currently, we can only apply width using an intermediate `String` (and thus `std`)
1313
        fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
1314
            use std::string::ToString;
1315
            if let Some(width) = f.width() {
1316
                write!(f, "{0: >1$}", complex.to_string(), width)
1317
            } else {
1318
                write!(f, "{}", complex)
1319
            }
1320
        }
1321
1322
        #[cfg(not(feature = "std"))]
1323
0
        fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result {
1324
0
            write!(f, "{}", complex)
1325
0
        }
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Display>::fmt::fmt_complex
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerExp>::fmt::fmt_complex
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperExp>::fmt::fmt_complex
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::LowerHex>::fmt::fmt_complex
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::UpperHex>::fmt::fmt_complex
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Octal>::fmt::fmt_complex
Unexecuted instantiation: <num_complex::Complex<_> as core::fmt::Binary>::fmt::fmt_complex
1326
    }};
1327
}
1328
1329
// string conversions
1330
impl<T> fmt::Display for Complex<T>
1331
where
1332
    T: fmt::Display + Num + PartialOrd + Clone,
1333
{
1334
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1335
0
        write_complex!(f, "", "", self.re, self.im, T)
1336
0
    }
1337
}
1338
1339
impl<T> fmt::LowerExp for Complex<T>
1340
where
1341
    T: fmt::LowerExp + Num + PartialOrd + Clone,
1342
{
1343
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1344
0
        write_complex!(f, "e", "", self.re, self.im, T)
1345
0
    }
1346
}
1347
1348
impl<T> fmt::UpperExp for Complex<T>
1349
where
1350
    T: fmt::UpperExp + Num + PartialOrd + Clone,
1351
{
1352
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1353
0
        write_complex!(f, "E", "", self.re, self.im, T)
1354
0
    }
1355
}
1356
1357
impl<T> fmt::LowerHex for Complex<T>
1358
where
1359
    T: fmt::LowerHex + Num + PartialOrd + Clone,
1360
{
1361
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1362
0
        write_complex!(f, "x", "0x", self.re, self.im, T)
1363
0
    }
1364
}
1365
1366
impl<T> fmt::UpperHex for Complex<T>
1367
where
1368
    T: fmt::UpperHex + Num + PartialOrd + Clone,
1369
{
1370
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1371
0
        write_complex!(f, "X", "0x", self.re, self.im, T)
1372
0
    }
1373
}
1374
1375
impl<T> fmt::Octal for Complex<T>
1376
where
1377
    T: fmt::Octal + Num + PartialOrd + Clone,
1378
{
1379
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1380
0
        write_complex!(f, "o", "0o", self.re, self.im, T)
1381
0
    }
1382
}
1383
1384
impl<T> fmt::Binary for Complex<T>
1385
where
1386
    T: fmt::Binary + Num + PartialOrd + Clone,
1387
{
1388
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1389
0
        write_complex!(f, "b", "0b", self.re, self.im, T)
1390
0
    }
1391
}
1392
1393
0
fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
1394
0
where
1395
0
    F: Fn(&str) -> Result<T, E>,
1396
0
    T: Clone + Num,
1397
{
1398
0
    let imag = match s.rfind('j') {
1399
0
        None => 'i',
1400
0
        _ => 'j',
1401
    };
1402
1403
0
    let mut neg_b = false;
1404
0
    let mut a = s;
1405
0
    let mut b = "";
1406
1407
0
    for (i, w) in s.as_bytes().windows(2).enumerate() {
1408
0
        let p = w[0];
1409
0
        let c = w[1];
1410
1411
        // ignore '+'/'-' if part of an exponent
1412
0
        if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') {
1413
            // trim whitespace around the separator
1414
0
            a = s[..=i].trim_end_matches(char::is_whitespace);
1415
0
            b = s[i + 2..].trim_start_matches(char::is_whitespace);
1416
0
            neg_b = c == b'-';
1417
1418
0
            if b.is_empty() || (neg_b && b.starts_with('-')) {
1419
0
                return Err(ParseComplexError::expr_error());
1420
0
            }
1421
0
            break;
1422
0
        }
1423
    }
1424
1425
    // split off real and imaginary parts
1426
0
    if b.is_empty() {
1427
        // input was either pure real or pure imaginary
1428
0
        b = if a.ends_with(imag) { "0" } else { "0i" };
1429
0
    }
1430
1431
    let re;
1432
    let neg_re;
1433
    let im;
1434
    let neg_im;
1435
0
    if a.ends_with(imag) {
1436
0
        im = a;
1437
0
        neg_im = false;
1438
0
        re = b;
1439
0
        neg_re = neg_b;
1440
0
    } else if b.ends_with(imag) {
1441
0
        re = a;
1442
0
        neg_re = false;
1443
0
        im = b;
1444
0
        neg_im = neg_b;
1445
0
    } else {
1446
0
        return Err(ParseComplexError::expr_error());
1447
    }
1448
1449
    // parse re
1450
0
    let re = from(re).map_err(ParseComplexError::from_error)?;
1451
0
    let re = if neg_re { T::zero() - re } else { re };
1452
1453
    // pop imaginary unit off
1454
0
    let mut im = &im[..im.len() - 1];
1455
    // handle im == "i" or im == "-i"
1456
0
    if im.is_empty() || im == "+" {
1457
0
        im = "1";
1458
0
    } else if im == "-" {
1459
0
        im = "-1";
1460
0
    }
1461
1462
    // parse im
1463
0
    let im = from(im).map_err(ParseComplexError::from_error)?;
1464
0
    let im = if neg_im { T::zero() - im } else { im };
1465
1466
0
    Ok(Complex::new(re, im))
1467
0
}
1468
1469
impl<T> FromStr for Complex<T>
1470
where
1471
    T: FromStr + Num + Clone,
1472
{
1473
    type Err = ParseComplexError<T::Err>;
1474
1475
    /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1476
0
    fn from_str(s: &str) -> Result<Self, Self::Err> {
1477
0
        from_str_generic(s, T::from_str)
1478
0
    }
1479
}
1480
1481
impl<T: Num + Clone> Num for Complex<T> {
1482
    type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
1483
1484
    /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
1485
    ///
1486
    /// `radix` must be <= 18; larger radix would include *i* and *j* as digits,
1487
    /// which cannot be supported.
1488
    ///
1489
    /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.
1490
    ///
1491
    /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors
1492
    /// (or panics) from that are reflected here as well.
1493
0
    fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
1494
0
        assert!(
1495
0
            radix <= 36,
1496
0
            "from_str_radix: radix is too high (maximum 36)"
1497
        );
1498
1499
        // larger radix would include 'i' and 'j' as digits, which cannot be supported
1500
0
        if radix > 18 {
1501
0
            return Err(ParseComplexError::unsupported_radix());
1502
0
        }
1503
1504
0
        from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
1505
0
            T::from_str_radix(x, radix)
1506
0
        })
1507
0
    }
1508
}
1509
1510
impl<T: Num + Clone> Sum for Complex<T> {
1511
0
    fn sum<I>(iter: I) -> Self
1512
0
    where
1513
0
        I: Iterator<Item = Self>,
1514
    {
1515
0
        iter.fold(Self::zero(), |acc, c| acc + c)
1516
0
    }
1517
}
1518
1519
impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> {
1520
0
    fn sum<I>(iter: I) -> Self
1521
0
    where
1522
0
        I: Iterator<Item = &'a Complex<T>>,
1523
    {
1524
0
        iter.fold(Self::zero(), |acc, c| acc + c)
1525
0
    }
1526
}
1527
1528
impl<T: Num + Clone> Product for Complex<T> {
1529
0
    fn product<I>(iter: I) -> Self
1530
0
    where
1531
0
        I: Iterator<Item = Self>,
1532
    {
1533
0
        iter.fold(Self::one(), |acc, c| acc * c)
1534
0
    }
1535
}
1536
1537
impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> {
1538
0
    fn product<I>(iter: I) -> Self
1539
0
    where
1540
0
        I: Iterator<Item = &'a Complex<T>>,
1541
    {
1542
0
        iter.fold(Self::one(), |acc, c| acc * c)
1543
0
    }
1544
}
1545
1546
#[cfg(feature = "serde")]
1547
impl<T> serde::Serialize for Complex<T>
1548
where
1549
    T: serde::Serialize,
1550
{
1551
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1552
    where
1553
        S: serde::Serializer,
1554
    {
1555
        (&self.re, &self.im).serialize(serializer)
1556
    }
1557
}
1558
1559
#[cfg(feature = "serde")]
1560
impl<'de, T> serde::Deserialize<'de> for Complex<T>
1561
where
1562
    T: serde::Deserialize<'de>,
1563
{
1564
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1565
    where
1566
        D: serde::Deserializer<'de>,
1567
    {
1568
        let (re, im) = serde::Deserialize::deserialize(deserializer)?;
1569
        Ok(Self::new(re, im))
1570
    }
1571
}
1572
1573
#[derive(Debug, PartialEq)]
1574
pub struct ParseComplexError<E> {
1575
    kind: ComplexErrorKind<E>,
1576
}
1577
1578
#[derive(Debug, PartialEq)]
1579
enum ComplexErrorKind<E> {
1580
    ParseError(E),
1581
    ExprError,
1582
    UnsupportedRadix,
1583
}
1584
1585
impl<E> ParseComplexError<E> {
1586
0
    fn expr_error() -> Self {
1587
0
        ParseComplexError {
1588
0
            kind: ComplexErrorKind::ExprError,
1589
0
        }
1590
0
    }
1591
1592
0
    fn unsupported_radix() -> Self {
1593
0
        ParseComplexError {
1594
0
            kind: ComplexErrorKind::UnsupportedRadix,
1595
0
        }
1596
0
    }
1597
1598
0
    fn from_error(error: E) -> Self {
1599
0
        ParseComplexError {
1600
0
            kind: ComplexErrorKind::ParseError(error),
1601
0
        }
1602
0
    }
1603
}
1604
1605
#[cfg(feature = "std")]
1606
impl<E: Error> Error for ParseComplexError<E> {
1607
    #[allow(deprecated)]
1608
    fn description(&self) -> &str {
1609
        match self.kind {
1610
            ComplexErrorKind::ParseError(ref e) => e.description(),
1611
            ComplexErrorKind::ExprError => "invalid or unsupported complex expression",
1612
            ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion",
1613
        }
1614
    }
1615
}
1616
1617
impl<E: fmt::Display> fmt::Display for ParseComplexError<E> {
1618
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1619
0
        match self.kind {
1620
0
            ComplexErrorKind::ParseError(ref e) => e.fmt(f),
1621
0
            ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f),
1622
0
            ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f),
1623
        }
1624
0
    }
1625
}
1626
1627
#[cfg(test)]
1628
fn hash<T: hash::Hash>(x: &T) -> u64 {
1629
    use std::collections::hash_map::RandomState;
1630
    use std::hash::{BuildHasher, Hasher};
1631
    let mut hasher = <RandomState as BuildHasher>::Hasher::new();
1632
    x.hash(&mut hasher);
1633
    hasher.finish()
1634
}
1635
1636
#[cfg(test)]
1637
pub(crate) mod test {
1638
    #![allow(non_upper_case_globals)]
1639
1640
    use super::{Complex, Complex64};
1641
    use super::{ComplexErrorKind, ParseComplexError};
1642
    use core::f64;
1643
    use core::str::FromStr;
1644
1645
    use std::string::{String, ToString};
1646
1647
    use num_traits::{Num, One, Zero};
1648
1649
    pub const _0_0i: Complex64 = Complex::new(0.0, 0.0);
1650
    pub const _1_0i: Complex64 = Complex::new(1.0, 0.0);
1651
    pub const _1_1i: Complex64 = Complex::new(1.0, 1.0);
1652
    pub const _0_1i: Complex64 = Complex::new(0.0, 1.0);
1653
    pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0);
1654
    pub const _05_05i: Complex64 = Complex::new(0.5, 0.5);
1655
    pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
1656
    pub const _4_2i: Complex64 = Complex::new(4.0, 2.0);
1657
    pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY);
1658
    pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY);
1659
    pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN);
1660
    pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN);
1661
    pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0);
1662
    pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0);
1663
    pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0);
1664
    pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0);
1665
    pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0);
1666
    pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY);
1667
    pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY);
1668
    pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN);
1669
    pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN);
1670
    pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0);
1671
    pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0);
1672
    pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0);
1673
    pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN);
1674
1675
    #[test]
1676
    fn test_consts() {
1677
        // check our constants are what Complex::new creates
1678
        fn test(c: Complex64, r: f64, i: f64) {
1679
            assert_eq!(c, Complex::new(r, i));
1680
        }
1681
        test(_0_0i, 0.0, 0.0);
1682
        test(_1_0i, 1.0, 0.0);
1683
        test(_1_1i, 1.0, 1.0);
1684
        test(_neg1_1i, -1.0, 1.0);
1685
        test(_05_05i, 0.5, 0.5);
1686
1687
        assert_eq!(_0_0i, Zero::zero());
1688
        assert_eq!(_1_0i, One::one());
1689
    }
1690
1691
    #[test]
1692
    fn test_scale_unscale() {
1693
        assert_eq!(_05_05i.scale(2.0), _1_1i);
1694
        assert_eq!(_1_1i.unscale(2.0), _05_05i);
1695
        for &c in all_consts.iter() {
1696
            assert_eq!(c.scale(2.0).unscale(2.0), c);
1697
        }
1698
    }
1699
1700
    #[test]
1701
    fn test_conj() {
1702
        for &c in all_consts.iter() {
1703
            assert_eq!(c.conj(), Complex::new(c.re, -c.im));
1704
            assert_eq!(c.conj().conj(), c);
1705
        }
1706
    }
1707
1708
    #[test]
1709
    fn test_inv() {
1710
        assert_eq!(_1_1i.inv(), _05_05i.conj());
1711
        assert_eq!(_1_0i.inv(), _1_0i.inv());
1712
    }
1713
1714
    #[test]
1715
    #[should_panic]
1716
    fn test_divide_by_zero_natural() {
1717
        let n = Complex::new(2, 3);
1718
        let d = Complex::new(0, 0);
1719
        let _x = n / d;
1720
    }
1721
1722
    #[test]
1723
    fn test_inv_zero() {
1724
        // FIXME #20: should this really fail, or just NaN?
1725
        assert!(_0_0i.inv().is_nan());
1726
    }
1727
1728
    #[test]
1729
    #[allow(clippy::float_cmp)]
1730
    fn test_l1_norm() {
1731
        assert_eq!(_0_0i.l1_norm(), 0.0);
1732
        assert_eq!(_1_0i.l1_norm(), 1.0);
1733
        assert_eq!(_1_1i.l1_norm(), 2.0);
1734
        assert_eq!(_0_1i.l1_norm(), 1.0);
1735
        assert_eq!(_neg1_1i.l1_norm(), 2.0);
1736
        assert_eq!(_05_05i.l1_norm(), 1.0);
1737
        assert_eq!(_4_2i.l1_norm(), 6.0);
1738
    }
1739
1740
    #[test]
1741
    fn test_pow() {
1742
        for c in all_consts.iter() {
1743
            assert_eq!(c.powi(0), _1_0i);
1744
            let mut pos = _1_0i;
1745
            let mut neg = _1_0i;
1746
            for i in 1i32..20 {
1747
                pos *= c;
1748
                assert_eq!(pos, c.powi(i));
1749
                if c.is_zero() {
1750
                    assert!(c.powi(-i).is_nan());
1751
                } else {
1752
                    neg /= c;
1753
                    assert_eq!(neg, c.powi(-i));
1754
                }
1755
            }
1756
        }
1757
    }
1758
1759
    #[cfg(any(feature = "std", feature = "libm"))]
1760
    pub(crate) mod float {
1761
1762
        use core::f64::INFINITY;
1763
1764
        use super::*;
1765
        use num_traits::{Float, Pow};
1766
1767
        #[test]
1768
        fn test_cis() {
1769
            assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i));
1770
            assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i));
1771
            assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i));
1772
            assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i));
1773
            assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i));
1774
        }
1775
1776
        #[test]
1777
        #[cfg_attr(target_arch = "x86", ignore)]
1778
        // FIXME #7158: (maybe?) currently failing on x86.
1779
        #[allow(clippy::float_cmp)]
1780
        fn test_norm() {
1781
            fn test(c: Complex64, ns: f64) {
1782
                assert_eq!(c.norm_sqr(), ns);
1783
                assert_eq!(c.norm(), ns.sqrt())
1784
            }
1785
            test(_0_0i, 0.0);
1786
            test(_1_0i, 1.0);
1787
            test(_1_1i, 2.0);
1788
            test(_neg1_1i, 2.0);
1789
            test(_05_05i, 0.5);
1790
        }
1791
1792
        #[test]
1793
        fn test_arg() {
1794
            fn test(c: Complex64, arg: f64) {
1795
                assert!((c.arg() - arg).abs() < 1.0e-6)
1796
            }
1797
            test(_1_0i, 0.0);
1798
            test(_1_1i, 0.25 * f64::consts::PI);
1799
            test(_neg1_1i, 0.75 * f64::consts::PI);
1800
            test(_05_05i, 0.25 * f64::consts::PI);
1801
        }
1802
1803
        #[test]
1804
        fn test_polar_conv() {
1805
            fn test(c: Complex64) {
1806
                let (r, theta) = c.to_polar();
1807
                assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6);
1808
            }
1809
            for &c in all_consts.iter() {
1810
                test(c);
1811
            }
1812
        }
1813
1814
        pub(crate) fn close(a: Complex64, b: Complex64) -> bool {
1815
            close_to_tol(a, b, 1e-10)
1816
        }
1817
1818
        fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1819
            // returns true if a and b are reasonably close
1820
            let close = (a == b) || (a - b).norm() < tol;
1821
            if !close {
1822
                println!("{:?} != {:?}", a, b);
1823
            }
1824
            close
1825
        }
1826
1827
        // Version that also works if re or im are +inf, -inf, or nan
1828
        fn close_naninf(a: Complex64, b: Complex64) -> bool {
1829
            close_naninf_to_tol(a, b, 1.0e-10)
1830
        }
1831
1832
        fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
1833
            let mut close = true;
1834
1835
            // Compare the real parts
1836
            if a.re.is_finite() {
1837
                if b.re.is_finite() {
1838
                    close = (a.re == b.re) || (a.re - b.re).abs() < tol;
1839
                } else {
1840
                    close = false;
1841
                }
1842
            } else if (a.re.is_nan() && !b.re.is_nan())
1843
                || (a.re.is_infinite()
1844
                    && a.re.is_sign_positive()
1845
                    && !(b.re.is_infinite() && b.re.is_sign_positive()))
1846
                || (a.re.is_infinite()
1847
                    && a.re.is_sign_negative()
1848
                    && !(b.re.is_infinite() && b.re.is_sign_negative()))
1849
            {
1850
                close = false;
1851
            }
1852
1853
            // Compare the imaginary parts
1854
            if a.im.is_finite() {
1855
                if b.im.is_finite() {
1856
                    close &= (a.im == b.im) || (a.im - b.im).abs() < tol;
1857
                } else {
1858
                    close = false;
1859
                }
1860
            } else if (a.im.is_nan() && !b.im.is_nan())
1861
                || (a.im.is_infinite()
1862
                    && a.im.is_sign_positive()
1863
                    && !(b.im.is_infinite() && b.im.is_sign_positive()))
1864
                || (a.im.is_infinite()
1865
                    && a.im.is_sign_negative()
1866
                    && !(b.im.is_infinite() && b.im.is_sign_negative()))
1867
            {
1868
                close = false;
1869
            }
1870
1871
            if close == false {
1872
                println!("{:?} != {:?}", a, b);
1873
            }
1874
            close
1875
        }
1876
1877
        #[test]
1878
        fn test_exp2() {
1879
            assert!(close(_0_0i.exp2(), _1_0i));
1880
        }
1881
1882
        #[test]
1883
        fn test_exp() {
1884
            assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E)));
1885
            assert!(close(_0_0i.exp(), _1_0i));
1886
            assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin())));
1887
            assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp()));
1888
            assert!(close(
1889
                _0_1i.scale(-f64::consts::PI).exp(),
1890
                _1_0i.scale(-1.0)
1891
            ));
1892
            for &c in all_consts.iter() {
1893
                // e^conj(z) = conj(e^z)
1894
                assert!(close(c.conj().exp(), c.exp().conj()));
1895
                // e^(z + 2 pi i) = e^z
1896
                assert!(close(
1897
                    c.exp(),
1898
                    (c + _0_1i.scale(f64::consts::PI * 2.0)).exp()
1899
                ));
1900
            }
1901
1902
            // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp
1903
            assert!(close_naninf(_1_infi.exp(), _nan_nani));
1904
            assert!(close_naninf(_neg1_infi.exp(), _nan_nani));
1905
            assert!(close_naninf(_1_nani.exp(), _nan_nani));
1906
            assert!(close_naninf(_neg1_nani.exp(), _nan_nani));
1907
            assert!(close_naninf(_inf_0i.exp(), _inf_0i));
1908
            assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0)));
1909
            assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0)));
1910
            assert!(close_naninf(
1911
                _inf_1i.exp(),
1912
                f64::INFINITY * Complex::cis(1.0)
1913
            ));
1914
            assert!(close_naninf(
1915
                _inf_neg1i.exp(),
1916
                f64::INFINITY * Complex::cis(-1.0)
1917
            ));
1918
            assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
1919
            assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
1920
            assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified
1921
            assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified
1922
            assert!(close_naninf(_nan_0i.exp(), _nan_0i));
1923
            assert!(close_naninf(_nan_1i.exp(), _nan_nani));
1924
            assert!(close_naninf(_nan_neg1i.exp(), _nan_nani));
1925
            assert!(close_naninf(_nan_nani.exp(), _nan_nani));
1926
        }
1927
1928
        #[test]
1929
        fn test_ln() {
1930
            assert!(close(_1_0i.ln(), _0_0i));
1931
            assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0)));
1932
            assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0)));
1933
            assert!(close(
1934
                (_neg1_1i * _05_05i).ln(),
1935
                _neg1_1i.ln() + _05_05i.ln()
1936
            ));
1937
            for &c in all_consts.iter() {
1938
                // ln(conj(z() = conj(ln(z))
1939
                assert!(close(c.conj().ln(), c.ln().conj()));
1940
                // for this branch, -pi <= arg(ln(z)) <= pi
1941
                assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
1942
            }
1943
        }
1944
1945
        #[test]
1946
        fn test_powc() {
1947
            let a = Complex::new(2.0, -3.0);
1948
            let b = Complex::new(3.0, 0.0);
1949
            assert!(close(a.powc(b), a.powf(b.re)));
1950
            assert!(close(b.powc(a), a.expf(b.re)));
1951
            let c = Complex::new(1.0 / 3.0, 0.1);
1952
            assert!(close_to_tol(
1953
                a.powc(c),
1954
                Complex::new(1.65826, -0.33502),
1955
                1e-5
1956
            ));
1957
            let z = Complex::new(0.0, 0.0);
1958
            assert!(close(z.powc(b), z));
1959
            assert!(z.powc(Complex64::new(0., INFINITY)).is_nan());
1960
            assert!(z.powc(Complex64::new(10., INFINITY)).is_nan());
1961
            assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan());
1962
            assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z));
1963
            assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite());
1964
            assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan());
1965
1966
            for c in all_consts.iter() {
1967
                assert_eq!(c.powc(_0_0i), _1_0i);
1968
            }
1969
            assert_eq!(_nan_nani.powc(_0_0i), _1_0i);
1970
        }
1971
1972
        #[test]
1973
        fn test_powf() {
1974
            let c = Complex64::new(2.0, -1.0);
1975
            let expected = Complex64::new(-0.8684746, -16.695934);
1976
            assert!(close_to_tol(c.powf(3.5), expected, 1e-5));
1977
            assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5));
1978
            assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5));
1979
1980
            for c in all_consts.iter() {
1981
                assert_eq!(c.powf(0.0), _1_0i);
1982
            }
1983
            assert_eq!(_nan_nani.powf(0.0), _1_0i);
1984
        }
1985
1986
        #[test]
1987
        fn test_log() {
1988
            let c = Complex::new(2.0, -1.0);
1989
            let r = c.log(10.0);
1990
            assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
1991
        }
1992
1993
        #[test]
1994
        fn test_log2() {
1995
            assert!(close(_1_0i.log2(), _0_0i));
1996
        }
1997
1998
        #[test]
1999
        fn test_log10() {
2000
            assert!(close(_1_0i.log10(), _0_0i));
2001
        }
2002
2003
        #[test]
2004
        fn test_some_expf_cases() {
2005
            let c = Complex::new(2.0, -1.0);
2006
            let r = c.expf(10.0);
2007
            assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
2008
2009
            let c = Complex::new(5.0, -2.0);
2010
            let r = c.expf(3.4);
2011
            assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
2012
2013
            let c = Complex::new(-1.5, 2.0 / 3.0);
2014
            let r = c.expf(1.0 / 3.0);
2015
            assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
2016
        }
2017
2018
        #[test]
2019
        fn test_sqrt() {
2020
            assert!(close(_0_0i.sqrt(), _0_0i));
2021
            assert!(close(_1_0i.sqrt(), _1_0i));
2022
            assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i));
2023
            assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0)));
2024
            assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt())));
2025
            for &c in all_consts.iter() {
2026
                // sqrt(conj(z() = conj(sqrt(z))
2027
                assert!(close(c.conj().sqrt(), c.sqrt().conj()));
2028
                // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2
2029
                assert!(
2030
                    -f64::consts::FRAC_PI_2 <= c.sqrt().arg()
2031
                        && c.sqrt().arg() <= f64::consts::FRAC_PI_2
2032
                );
2033
                // sqrt(z) * sqrt(z) = z
2034
                assert!(close(c.sqrt() * c.sqrt(), c));
2035
            }
2036
        }
2037
2038
        #[test]
2039
        fn test_sqrt_real() {
2040
            for n in (0..100).map(f64::from) {
2041
                // √(n² + 0i) = n + 0i
2042
                let n2 = n * n;
2043
                assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0));
2044
                // √(-n² + 0i) = 0 + ni
2045
                assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n));
2046
                // √(-n² - 0i) = 0 - ni
2047
                assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n));
2048
            }
2049
        }
2050
2051
        #[test]
2052
        fn test_sqrt_imag() {
2053
            for n in (0..100).map(f64::from) {
2054
                // √(0 + n²i) = n e^(iπ/4)
2055
                let n2 = n * n;
2056
                assert!(close(
2057
                    Complex64::new(0.0, n2).sqrt(),
2058
                    Complex64::from_polar(n, f64::consts::FRAC_PI_4)
2059
                ));
2060
                // √(0 - n²i) = n e^(-iπ/4)
2061
                assert!(close(
2062
                    Complex64::new(0.0, -n2).sqrt(),
2063
                    Complex64::from_polar(n, -f64::consts::FRAC_PI_4)
2064
                ));
2065
            }
2066
        }
2067
2068
        #[test]
2069
        fn test_cbrt() {
2070
            assert!(close(_0_0i.cbrt(), _0_0i));
2071
            assert!(close(_1_0i.cbrt(), _1_0i));
2072
            assert!(close(
2073
                Complex::new(-1.0, 0.0).cbrt(),
2074
                Complex::new(0.5, 0.75.sqrt())
2075
            ));
2076
            assert!(close(
2077
                Complex::new(-1.0, -0.0).cbrt(),
2078
                Complex::new(0.5, -(0.75.sqrt()))
2079
            ));
2080
            assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5)));
2081
            assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5)));
2082
            for &c in all_consts.iter() {
2083
                // cbrt(conj(z() = conj(cbrt(z))
2084
                assert!(close(c.conj().cbrt(), c.cbrt().conj()));
2085
                // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3
2086
                assert!(
2087
                    -f64::consts::FRAC_PI_3 <= c.cbrt().arg()
2088
                        && c.cbrt().arg() <= f64::consts::FRAC_PI_3
2089
                );
2090
                // cbrt(z) * cbrt(z) cbrt(z) = z
2091
                assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c));
2092
            }
2093
        }
2094
2095
        #[test]
2096
        fn test_cbrt_real() {
2097
            for n in (0..100).map(f64::from) {
2098
                // ∛(n³ + 0i) = n + 0i
2099
                let n3 = n * n * n;
2100
                assert!(close(
2101
                    Complex64::new(n3, 0.0).cbrt(),
2102
                    Complex64::new(n, 0.0)
2103
                ));
2104
                // ∛(-n³ + 0i) = n e^(iπ/3)
2105
                assert!(close(
2106
                    Complex64::new(-n3, 0.0).cbrt(),
2107
                    Complex64::from_polar(n, f64::consts::FRAC_PI_3)
2108
                ));
2109
                // ∛(-n³ - 0i) = n e^(-iπ/3)
2110
                assert!(close(
2111
                    Complex64::new(-n3, -0.0).cbrt(),
2112
                    Complex64::from_polar(n, -f64::consts::FRAC_PI_3)
2113
                ));
2114
            }
2115
        }
2116
2117
        #[test]
2118
        fn test_cbrt_imag() {
2119
            for n in (0..100).map(f64::from) {
2120
                // ∛(0 + n³i) = n e^(iπ/6)
2121
                let n3 = n * n * n;
2122
                assert!(close(
2123
                    Complex64::new(0.0, n3).cbrt(),
2124
                    Complex64::from_polar(n, f64::consts::FRAC_PI_6)
2125
                ));
2126
                // ∛(0 - n³i) = n e^(-iπ/6)
2127
                assert!(close(
2128
                    Complex64::new(0.0, -n3).cbrt(),
2129
                    Complex64::from_polar(n, -f64::consts::FRAC_PI_6)
2130
                ));
2131
            }
2132
        }
2133
2134
        #[test]
2135
        fn test_sin() {
2136
            assert!(close(_0_0i.sin(), _0_0i));
2137
            assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i));
2138
            assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh())));
2139
            for &c in all_consts.iter() {
2140
                // sin(conj(z)) = conj(sin(z))
2141
                assert!(close(c.conj().sin(), c.sin().conj()));
2142
                // sin(-z) = -sin(z)
2143
                assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
2144
            }
2145
        }
2146
2147
        #[test]
2148
        fn test_cos() {
2149
            assert!(close(_0_0i.cos(), _1_0i));
2150
            assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i));
2151
            assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh())));
2152
            for &c in all_consts.iter() {
2153
                // cos(conj(z)) = conj(cos(z))
2154
                assert!(close(c.conj().cos(), c.cos().conj()));
2155
                // cos(-z) = cos(z)
2156
                assert!(close(c.scale(-1.0).cos(), c.cos()));
2157
            }
2158
        }
2159
2160
        #[test]
2161
        fn test_tan() {
2162
            assert!(close(_0_0i.tan(), _0_0i));
2163
            assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i));
2164
            assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
2165
            for &c in all_consts.iter() {
2166
                // tan(conj(z)) = conj(tan(z))
2167
                assert!(close(c.conj().tan(), c.tan().conj()));
2168
                // tan(-z) = -tan(z)
2169
                assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
2170
            }
2171
        }
2172
2173
        #[test]
2174
        fn test_asin() {
2175
            assert!(close(_0_0i.asin(), _0_0i));
2176
            assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0)));
2177
            assert!(close(
2178
                _1_0i.scale(-1.0).asin(),
2179
                _1_0i.scale(-f64::consts::PI / 2.0)
2180
            ));
2181
            assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln())));
2182
            for &c in all_consts.iter() {
2183
                // asin(conj(z)) = conj(asin(z))
2184
                assert!(close(c.conj().asin(), c.asin().conj()));
2185
                // asin(-z) = -asin(z)
2186
                assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0)));
2187
                // for this branch, -pi/2 <= asin(z).re <= pi/2
2188
                assert!(
2189
                    -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0
2190
                );
2191
            }
2192
        }
2193
2194
        #[test]
2195
        fn test_acos() {
2196
            assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0)));
2197
            assert!(close(_1_0i.acos(), _0_0i));
2198
            assert!(close(
2199
                _1_0i.scale(-1.0).acos(),
2200
                _1_0i.scale(f64::consts::PI)
2201
            ));
2202
            assert!(close(
2203
                _0_1i.acos(),
2204
                Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln())
2205
            ));
2206
            for &c in all_consts.iter() {
2207
                // acos(conj(z)) = conj(acos(z))
2208
                assert!(close(c.conj().acos(), c.acos().conj()));
2209
                // for this branch, 0 <= acos(z).re <= pi
2210
                assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI);
2211
            }
2212
        }
2213
2214
        #[test]
2215
        fn test_atan() {
2216
            assert!(close(_0_0i.atan(), _0_0i));
2217
            assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0)));
2218
            assert!(close(
2219
                _1_0i.scale(-1.0).atan(),
2220
                _1_0i.scale(-f64::consts::PI / 4.0)
2221
            ));
2222
            assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity())));
2223
            for &c in all_consts.iter() {
2224
                // atan(conj(z)) = conj(atan(z))
2225
                assert!(close(c.conj().atan(), c.atan().conj()));
2226
                // atan(-z) = -atan(z)
2227
                assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0)));
2228
                // for this branch, -pi/2 <= atan(z).re <= pi/2
2229
                assert!(
2230
                    -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0
2231
                );
2232
            }
2233
        }
2234
2235
        #[test]
2236
        fn test_sinh() {
2237
            assert!(close(_0_0i.sinh(), _0_0i));
2238
            assert!(close(
2239
                _1_0i.sinh(),
2240
                _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0)
2241
            ));
2242
            assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin())));
2243
            for &c in all_consts.iter() {
2244
                // sinh(conj(z)) = conj(sinh(z))
2245
                assert!(close(c.conj().sinh(), c.sinh().conj()));
2246
                // sinh(-z) = -sinh(z)
2247
                assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
2248
            }
2249
        }
2250
2251
        #[test]
2252
        fn test_cosh() {
2253
            assert!(close(_0_0i.cosh(), _1_0i));
2254
            assert!(close(
2255
                _1_0i.cosh(),
2256
                _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0)
2257
            ));
2258
            assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos())));
2259
            for &c in all_consts.iter() {
2260
                // cosh(conj(z)) = conj(cosh(z))
2261
                assert!(close(c.conj().cosh(), c.cosh().conj()));
2262
                // cosh(-z) = cosh(z)
2263
                assert!(close(c.scale(-1.0).cosh(), c.cosh()));
2264
            }
2265
        }
2266
2267
        #[test]
2268
        fn test_tanh() {
2269
            assert!(close(_0_0i.tanh(), _0_0i));
2270
            assert!(close(
2271
                _1_0i.tanh(),
2272
                _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0))
2273
            ));
2274
            assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
2275
            for &c in all_consts.iter() {
2276
                // tanh(conj(z)) = conj(tanh(z))
2277
                assert!(close(c.conj().tanh(), c.conj().tanh()));
2278
                // tanh(-z) = -tanh(z)
2279
                assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
2280
            }
2281
        }
2282
2283
        #[test]
2284
        fn test_asinh() {
2285
            assert!(close(_0_0i.asinh(), _0_0i));
2286
            assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln()));
2287
            assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0)));
2288
            assert!(close(
2289
                _0_1i.asinh().scale(-1.0),
2290
                _0_1i.scale(-f64::consts::PI / 2.0)
2291
            ));
2292
            for &c in all_consts.iter() {
2293
                // asinh(conj(z)) = conj(asinh(z))
2294
                assert!(close(c.conj().asinh(), c.conj().asinh()));
2295
                // asinh(-z) = -asinh(z)
2296
                assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0)));
2297
                // for this branch, -pi/2 <= asinh(z).im <= pi/2
2298
                assert!(
2299
                    -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0
2300
                );
2301
            }
2302
        }
2303
2304
        #[test]
2305
        fn test_acosh() {
2306
            assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0)));
2307
            assert!(close(_1_0i.acosh(), _0_0i));
2308
            assert!(close(
2309
                _1_0i.scale(-1.0).acosh(),
2310
                _0_1i.scale(f64::consts::PI)
2311
            ));
2312
            for &c in all_consts.iter() {
2313
                // acosh(conj(z)) = conj(acosh(z))
2314
                assert!(close(c.conj().acosh(), c.conj().acosh()));
2315
                // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re
2316
                assert!(
2317
                    -f64::consts::PI <= c.acosh().im
2318
                        && c.acosh().im <= f64::consts::PI
2319
                        && 0.0 <= c.cosh().re
2320
                );
2321
            }
2322
        }
2323
2324
        #[test]
2325
        fn test_atanh() {
2326
            assert!(close(_0_0i.atanh(), _0_0i));
2327
            assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0)));
2328
            assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0)));
2329
            for &c in all_consts.iter() {
2330
                // atanh(conj(z)) = conj(atanh(z))
2331
                assert!(close(c.conj().atanh(), c.conj().atanh()));
2332
                // atanh(-z) = -atanh(z)
2333
                assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0)));
2334
                // for this branch, -pi/2 <= atanh(z).im <= pi/2
2335
                assert!(
2336
                    -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0
2337
                );
2338
            }
2339
        }
2340
2341
        #[test]
2342
        fn test_exp_ln() {
2343
            for &c in all_consts.iter() {
2344
                // e^ln(z) = z
2345
                assert!(close(c.ln().exp(), c));
2346
            }
2347
        }
2348
2349
        #[test]
2350
        fn test_exp2_log() {
2351
            for &c in all_consts.iter() {
2352
                // 2^log2(z) = z
2353
                assert!(close(c.log2().exp2(), c));
2354
            }
2355
        }
2356
2357
        #[test]
2358
        fn test_trig_to_hyperbolic() {
2359
            for &c in all_consts.iter() {
2360
                // sin(iz) = i sinh(z)
2361
                assert!(close((_0_1i * c).sin(), _0_1i * c.sinh()));
2362
                // cos(iz) = cosh(z)
2363
                assert!(close((_0_1i * c).cos(), c.cosh()));
2364
                // tan(iz) = i tanh(z)
2365
                assert!(close((_0_1i * c).tan(), _0_1i * c.tanh()));
2366
            }
2367
        }
2368
2369
        #[test]
2370
        fn test_trig_identities() {
2371
            for &c in all_consts.iter() {
2372
                // tan(z) = sin(z)/cos(z)
2373
                assert!(close(c.tan(), c.sin() / c.cos()));
2374
                // sin(z)^2 + cos(z)^2 = 1
2375
                assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i));
2376
2377
                // sin(asin(z)) = z
2378
                assert!(close(c.asin().sin(), c));
2379
                // cos(acos(z)) = z
2380
                assert!(close(c.acos().cos(), c));
2381
                // tan(atan(z)) = z
2382
                // i and -i are branch points
2383
                if c != _0_1i && c != _0_1i.scale(-1.0) {
2384
                    assert!(close(c.atan().tan(), c));
2385
                }
2386
2387
                // sin(z) = (e^(iz) - e^(-iz))/(2i)
2388
                assert!(close(
2389
                    ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0),
2390
                    c.sin()
2391
                ));
2392
                // cos(z) = (e^(iz) + e^(-iz))/2
2393
                assert!(close(
2394
                    ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0),
2395
                    c.cos()
2396
                ));
2397
                // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz))
2398
                assert!(close(
2399
                    _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp())
2400
                        / (_1_0i + (_0_1i * c).scale(2.0).exp()),
2401
                    c.tan()
2402
                ));
2403
            }
2404
        }
2405
2406
        #[test]
2407
        fn test_hyperbolic_identites() {
2408
            for &c in all_consts.iter() {
2409
                // tanh(z) = sinh(z)/cosh(z)
2410
                assert!(close(c.tanh(), c.sinh() / c.cosh()));
2411
                // cosh(z)^2 - sinh(z)^2 = 1
2412
                assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i));
2413
2414
                // sinh(asinh(z)) = z
2415
                assert!(close(c.asinh().sinh(), c));
2416
                // cosh(acosh(z)) = z
2417
                assert!(close(c.acosh().cosh(), c));
2418
                // tanh(atanh(z)) = z
2419
                // 1 and -1 are branch points
2420
                if c != _1_0i && c != _1_0i.scale(-1.0) {
2421
                    assert!(close(c.atanh().tanh(), c));
2422
                }
2423
2424
                // sinh(z) = (e^z - e^(-z))/2
2425
                assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh()));
2426
                // cosh(z) = (e^z + e^(-z))/2
2427
                assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh()));
2428
                // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1)
2429
                assert!(close(
2430
                    (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i),
2431
                    c.tanh()
2432
                ));
2433
            }
2434
        }
2435
    }
2436
2437
    // Test both a + b and a += b
2438
    macro_rules! test_a_op_b {
2439
        ($a:ident + $b:expr, $answer:expr) => {
2440
            assert_eq!($a + $b, $answer);
2441
            assert_eq!(
2442
                {
2443
                    let mut x = $a;
2444
                    x += $b;
2445
                    x
2446
                },
2447
                $answer
2448
            );
2449
        };
2450
        ($a:ident - $b:expr, $answer:expr) => {
2451
            assert_eq!($a - $b, $answer);
2452
            assert_eq!(
2453
                {
2454
                    let mut x = $a;
2455
                    x -= $b;
2456
                    x
2457
                },
2458
                $answer
2459
            );
2460
        };
2461
        ($a:ident * $b:expr, $answer:expr) => {
2462
            assert_eq!($a * $b, $answer);
2463
            assert_eq!(
2464
                {
2465
                    let mut x = $a;
2466
                    x *= $b;
2467
                    x
2468
                },
2469
                $answer
2470
            );
2471
        };
2472
        ($a:ident / $b:expr, $answer:expr) => {
2473
            assert_eq!($a / $b, $answer);
2474
            assert_eq!(
2475
                {
2476
                    let mut x = $a;
2477
                    x /= $b;
2478
                    x
2479
                },
2480
                $answer
2481
            );
2482
        };
2483
        ($a:ident % $b:expr, $answer:expr) => {
2484
            assert_eq!($a % $b, $answer);
2485
            assert_eq!(
2486
                {
2487
                    let mut x = $a;
2488
                    x %= $b;
2489
                    x
2490
                },
2491
                $answer
2492
            );
2493
        };
2494
    }
2495
2496
    // Test both a + b and a + &b
2497
    macro_rules! test_op {
2498
        ($a:ident $op:tt $b:expr, $answer:expr) => {
2499
            test_a_op_b!($a $op $b, $answer);
2500
            test_a_op_b!($a $op &$b, $answer);
2501
        };
2502
    }
2503
2504
    mod complex_arithmetic {
2505
        use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts};
2506
        use num_traits::{MulAdd, MulAddAssign, Zero};
2507
2508
        #[test]
2509
        fn test_add() {
2510
            test_op!(_05_05i + _05_05i, _1_1i);
2511
            test_op!(_0_1i + _1_0i, _1_1i);
2512
            test_op!(_1_0i + _neg1_1i, _0_1i);
2513
2514
            for &c in all_consts.iter() {
2515
                test_op!(_0_0i + c, c);
2516
                test_op!(c + _0_0i, c);
2517
            }
2518
        }
2519
2520
        #[test]
2521
        fn test_sub() {
2522
            test_op!(_05_05i - _05_05i, _0_0i);
2523
            test_op!(_0_1i - _1_0i, _neg1_1i);
2524
            test_op!(_0_1i - _neg1_1i, _1_0i);
2525
2526
            for &c in all_consts.iter() {
2527
                test_op!(c - _0_0i, c);
2528
                test_op!(c - c, _0_0i);
2529
            }
2530
        }
2531
2532
        #[test]
2533
        fn test_mul() {
2534
            test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0));
2535
            test_op!(_1_1i * _0_1i, _neg1_1i);
2536
2537
            // i^2 & i^4
2538
            test_op!(_0_1i * _0_1i, -_1_0i);
2539
            assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
2540
2541
            for &c in all_consts.iter() {
2542
                test_op!(c * _1_0i, c);
2543
                test_op!(_1_0i * c, c);
2544
            }
2545
        }
2546
2547
        #[test]
2548
        #[cfg(any(feature = "std", feature = "libm"))]
2549
        fn test_mul_add_float() {
2550
            assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i);
2551
            assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i));
2552
            assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2553
            assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2554
            assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2555
2556
            let mut x = _1_0i;
2557
            x.mul_add_assign(_1_0i, _1_0i);
2558
            assert_eq!(x, _1_0i * _1_0i + _1_0i);
2559
2560
            for &a in &all_consts {
2561
                for &b in &all_consts {
2562
                    for &c in &all_consts {
2563
                        let abc = a * b + c;
2564
                        assert_eq!(a.mul_add(b, c), abc);
2565
                        let mut x = a;
2566
                        x.mul_add_assign(b, c);
2567
                        assert_eq!(x, abc);
2568
                    }
2569
                }
2570
            }
2571
        }
2572
2573
        #[test]
2574
        fn test_mul_add() {
2575
            use super::Complex;
2576
            const _0_0i: Complex<i32> = Complex { re: 0, im: 0 };
2577
            const _1_0i: Complex<i32> = Complex { re: 1, im: 0 };
2578
            const _1_1i: Complex<i32> = Complex { re: 1, im: 1 };
2579
            const _0_1i: Complex<i32> = Complex { re: 0, im: 1 };
2580
            const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 };
2581
            const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i];
2582
2583
            assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i);
2584
            assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i));
2585
            assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
2586
            assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
2587
            assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
2588
2589
            let mut x = _1_0i;
2590
            x.mul_add_assign(_1_0i, _1_0i);
2591
            assert_eq!(x, _1_0i * _1_0i + _1_0i);
2592
2593
            for &a in &all_consts {
2594
                for &b in &all_consts {
2595
                    for &c in &all_consts {
2596
                        let abc = a * b + c;
2597
                        assert_eq!(a.mul_add(b, c), abc);
2598
                        let mut x = a;
2599
                        x.mul_add_assign(b, c);
2600
                        assert_eq!(x, abc);
2601
                    }
2602
                }
2603
            }
2604
        }
2605
2606
        #[test]
2607
        fn test_div() {
2608
            test_op!(_neg1_1i / _0_1i, _1_1i);
2609
            for &c in all_consts.iter() {
2610
                if c != Zero::zero() {
2611
                    test_op!(c / c, _1_0i);
2612
                }
2613
            }
2614
        }
2615
2616
        #[test]
2617
        fn test_rem() {
2618
            test_op!(_neg1_1i % _0_1i, _0_0i);
2619
            test_op!(_4_2i % _0_1i, _0_0i);
2620
            test_op!(_05_05i % _0_1i, _05_05i);
2621
            test_op!(_05_05i % _1_1i, _05_05i);
2622
            assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
2623
            assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
2624
        }
2625
2626
        #[test]
2627
        fn test_neg() {
2628
            assert_eq!(-_1_0i + _0_1i, _neg1_1i);
2629
            assert_eq!((-_0_1i) * _0_1i, _1_0i);
2630
            for &c in all_consts.iter() {
2631
                assert_eq!(-(-c), c);
2632
            }
2633
        }
2634
    }
2635
2636
    mod real_arithmetic {
2637
        use super::super::Complex;
2638
        use super::{_4_2i, _neg1_1i};
2639
2640
        #[test]
2641
        fn test_add() {
2642
            test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0));
2643
            assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0));
2644
        }
2645
2646
        #[test]
2647
        fn test_sub() {
2648
            test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0));
2649
            assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0));
2650
        }
2651
2652
        #[test]
2653
        fn test_mul() {
2654
            assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0));
2655
            assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0));
2656
        }
2657
2658
        #[test]
2659
        fn test_div() {
2660
            assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
2661
            assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
2662
        }
2663
2664
        #[test]
2665
        fn test_rem() {
2666
            assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
2667
            assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
2668
            assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
2669
            assert_eq!(_neg1_1i % 2.0, _neg1_1i);
2670
            assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
2671
        }
2672
2673
        #[test]
2674
        fn test_div_rem_gaussian() {
2675
            // These would overflow with `norm_sqr` division.
2676
            let max = Complex::new(255u8, 255u8);
2677
            assert_eq!(max / 200, Complex::new(1, 1));
2678
            assert_eq!(max % 200, Complex::new(55, 55));
2679
        }
2680
    }
2681
2682
    #[test]
2683
    fn test_to_string() {
2684
        fn test(c: Complex64, s: String) {
2685
            assert_eq!(c.to_string(), s);
2686
        }
2687
        test(_0_0i, "0+0i".to_string());
2688
        test(_1_0i, "1+0i".to_string());
2689
        test(_0_1i, "0+1i".to_string());
2690
        test(_1_1i, "1+1i".to_string());
2691
        test(_neg1_1i, "-1+1i".to_string());
2692
        test(-_neg1_1i, "1-1i".to_string());
2693
        test(_05_05i, "0.5+0.5i".to_string());
2694
    }
2695
2696
    #[test]
2697
    fn test_string_formatting() {
2698
        let a = Complex::new(1.23456, 123.456);
2699
        assert_eq!(format!("{}", a), "1.23456+123.456i");
2700
        assert_eq!(format!("{:.2}", a), "1.23+123.46i");
2701
        assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i");
2702
        assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i");
2703
        #[cfg(feature = "std")]
2704
        assert_eq!(format!("{:+20.2E}", a), "     +1.23E0+1.23E2i");
2705
2706
        let b = Complex::new(0x80, 0xff);
2707
        assert_eq!(format!("{:X}", b), "80+FFi");
2708
        assert_eq!(format!("{:#x}", b), "0x80+0xffi");
2709
        assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i");
2710
        assert_eq!(format!("{:+#o}", b), "+0o200+0o377i");
2711
        #[cfg(feature = "std")]
2712
        assert_eq!(format!("{:+#16o}", b), "   +0o200+0o377i");
2713
2714
        let c = Complex::new(-10, -10000);
2715
        assert_eq!(format!("{}", c), "-10-10000i");
2716
        #[cfg(feature = "std")]
2717
        assert_eq!(format!("{:16}", c), "      -10-10000i");
2718
    }
2719
2720
    #[test]
2721
    fn test_hash() {
2722
        let a = Complex::new(0i32, 0i32);
2723
        let b = Complex::new(1i32, 0i32);
2724
        let c = Complex::new(0i32, 1i32);
2725
        assert!(crate::hash(&a) != crate::hash(&b));
2726
        assert!(crate::hash(&b) != crate::hash(&c));
2727
        assert!(crate::hash(&c) != crate::hash(&a));
2728
    }
2729
2730
    #[test]
2731
    fn test_hashset() {
2732
        use std::collections::HashSet;
2733
        let a = Complex::new(0i32, 0i32);
2734
        let b = Complex::new(1i32, 0i32);
2735
        let c = Complex::new(0i32, 1i32);
2736
2737
        let set: HashSet<_> = [a, b, c].iter().cloned().collect();
2738
        assert!(set.contains(&a));
2739
        assert!(set.contains(&b));
2740
        assert!(set.contains(&c));
2741
        assert!(!set.contains(&(a + b + c)));
2742
    }
2743
2744
    #[test]
2745
    fn test_is_nan() {
2746
        assert!(!_1_1i.is_nan());
2747
        let a = Complex::new(f64::NAN, f64::NAN);
2748
        assert!(a.is_nan());
2749
    }
2750
2751
    #[test]
2752
    fn test_is_nan_special_cases() {
2753
        let a = Complex::new(0f64, f64::NAN);
2754
        let b = Complex::new(f64::NAN, 0f64);
2755
        assert!(a.is_nan());
2756
        assert!(b.is_nan());
2757
    }
2758
2759
    #[test]
2760
    fn test_is_infinite() {
2761
        let a = Complex::new(2f64, f64::INFINITY);
2762
        assert!(a.is_infinite());
2763
    }
2764
2765
    #[test]
2766
    fn test_is_finite() {
2767
        assert!(_1_1i.is_finite())
2768
    }
2769
2770
    #[test]
2771
    fn test_is_normal() {
2772
        let a = Complex::new(0f64, f64::NAN);
2773
        let b = Complex::new(2f64, f64::INFINITY);
2774
        assert!(!a.is_normal());
2775
        assert!(!b.is_normal());
2776
        assert!(_1_1i.is_normal());
2777
    }
2778
2779
    #[test]
2780
    fn test_from_str() {
2781
        fn test(z: Complex64, s: &str) {
2782
            assert_eq!(FromStr::from_str(s), Ok(z));
2783
        }
2784
        test(_0_0i, "0 + 0i");
2785
        test(_0_0i, "0+0j");
2786
        test(_0_0i, "0 - 0j");
2787
        test(_0_0i, "0-0i");
2788
        test(_0_0i, "0i + 0");
2789
        test(_0_0i, "0");
2790
        test(_0_0i, "-0");
2791
        test(_0_0i, "0i");
2792
        test(_0_0i, "0j");
2793
        test(_0_0i, "+0j");
2794
        test(_0_0i, "-0i");
2795
2796
        test(_1_0i, "1 + 0i");
2797
        test(_1_0i, "1+0j");
2798
        test(_1_0i, "1 - 0j");
2799
        test(_1_0i, "+1-0i");
2800
        test(_1_0i, "-0j+1");
2801
        test(_1_0i, "1");
2802
2803
        test(_1_1i, "1 + i");
2804
        test(_1_1i, "1+j");
2805
        test(_1_1i, "1 + 1j");
2806
        test(_1_1i, "1+1i");
2807
        test(_1_1i, "i + 1");
2808
        test(_1_1i, "1i+1");
2809
        test(_1_1i, "+j+1");
2810
2811
        test(_0_1i, "0 + i");
2812
        test(_0_1i, "0+j");
2813
        test(_0_1i, "-0 + j");
2814
        test(_0_1i, "-0+i");
2815
        test(_0_1i, "0 + 1i");
2816
        test(_0_1i, "0+1j");
2817
        test(_0_1i, "-0 + 1j");
2818
        test(_0_1i, "-0+1i");
2819
        test(_0_1i, "j + 0");
2820
        test(_0_1i, "i");
2821
        test(_0_1i, "j");
2822
        test(_0_1i, "1j");
2823
2824
        test(_neg1_1i, "-1 + i");
2825
        test(_neg1_1i, "-1+j");
2826
        test(_neg1_1i, "-1 + 1j");
2827
        test(_neg1_1i, "-1+1i");
2828
        test(_neg1_1i, "1i-1");
2829
        test(_neg1_1i, "j + -1");
2830
2831
        test(_05_05i, "0.5 + 0.5i");
2832
        test(_05_05i, "0.5+0.5j");
2833
        test(_05_05i, "5e-1+0.5j");
2834
        test(_05_05i, "5E-1 + 0.5j");
2835
        test(_05_05i, "5E-1i + 0.5");
2836
        test(_05_05i, "0.05e+1j + 50E-2");
2837
    }
2838
2839
    #[test]
2840
    fn test_from_str_radix() {
2841
        fn test(z: Complex64, s: &str, radix: u32) {
2842
            let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> =
2843
                Num::from_str_radix(s, radix);
2844
            assert_eq!(res.unwrap(), z)
2845
        }
2846
        test(_4_2i, "4+2i", 10);
2847
        test(Complex::new(15.0, 32.0), "F+20i", 16);
2848
        test(Complex::new(15.0, 32.0), "1111+100000i", 2);
2849
        test(Complex::new(-15.0, -32.0), "-F-20i", 16);
2850
        test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
2851
2852
        fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> {
2853
            let res = Complex64::from_str_radix(s, radix);
2854
2855
            res.expect_err(&format!("Expected failure on input {:?}", s))
2856
        }
2857
2858
        let err = test_error("1ii", 19);
2859
        if let ComplexErrorKind::UnsupportedRadix = err.kind {
2860
            /* pass */
2861
        } else {
2862
            panic!("Expected failure on invalid radix, got {:?}", err);
2863
        }
2864
2865
        let err = test_error("1 + 0", 16);
2866
        if let ComplexErrorKind::ExprError = err.kind {
2867
            /* pass */
2868
        } else {
2869
            panic!("Expected failure on expr error, got {:?}", err);
2870
        }
2871
    }
2872
2873
    #[test]
2874
    #[should_panic(expected = "radix is too high")]
2875
    fn test_from_str_radix_fail() {
2876
        // ensure we preserve the underlying panic on radix > 36
2877
        let _complex = Complex64::from_str_radix("1", 37);
2878
    }
2879
2880
    #[test]
2881
    fn test_from_str_fail() {
2882
        fn test(s: &str) {
2883
            let complex: Result<Complex64, _> = FromStr::from_str(s);
2884
            assert!(
2885
                complex.is_err(),
2886
                "complex {:?} -> {:?} should be an error",
2887
                s,
2888
                complex
2889
            );
2890
        }
2891
        test("foo");
2892
        test("6E");
2893
        test("0 + 2.718");
2894
        test("1 - -2i");
2895
        test("314e-2ij");
2896
        test("4.3j - i");
2897
        test("1i - 2i");
2898
        test("+ 1 - 3.0i");
2899
    }
2900
2901
    #[test]
2902
    fn test_sum() {
2903
        let v = vec![_0_1i, _1_0i];
2904
        assert_eq!(v.iter().sum::<Complex64>(), _1_1i);
2905
        assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i);
2906
    }
2907
2908
    #[test]
2909
    fn test_prod() {
2910
        let v = vec![_0_1i, _1_0i];
2911
        assert_eq!(v.iter().product::<Complex64>(), _0_1i);
2912
        assert_eq!(v.into_iter().product::<Complex64>(), _0_1i);
2913
    }
2914
2915
    #[test]
2916
    fn test_zero() {
2917
        let zero = Complex64::zero();
2918
        assert!(zero.is_zero());
2919
2920
        let mut c = Complex::new(1.23, 4.56);
2921
        assert!(!c.is_zero());
2922
        assert_eq!(c + zero, c);
2923
2924
        c.set_zero();
2925
        assert!(c.is_zero());
2926
    }
2927
2928
    #[test]
2929
    fn test_one() {
2930
        let one = Complex64::one();
2931
        assert!(one.is_one());
2932
2933
        let mut c = Complex::new(1.23, 4.56);
2934
        assert!(!c.is_one());
2935
        assert_eq!(c * one, c);
2936
2937
        c.set_one();
2938
        assert!(c.is_one());
2939
    }
2940
2941
    #[test]
2942
    #[allow(clippy::float_cmp)]
2943
    fn test_const() {
2944
        const R: f64 = 12.3;
2945
        const I: f64 = -4.5;
2946
        const C: Complex64 = Complex::new(R, I);
2947
2948
        assert_eq!(C.re, 12.3);
2949
        assert_eq!(C.im, -4.5);
2950
    }
2951
}