Coverage Report

Created: 2025-11-28 06:44

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/rayon-1.10.0/src/iter/mod.rs
Line
Count
Source
1
//! Traits for writing parallel programs using an iterator-style interface
2
//!
3
//! You will rarely need to interact with this module directly unless you have
4
//! need to name one of the iterator types.
5
//!
6
//! Parallel iterators make it easy to write iterator-like chains that
7
//! execute in parallel: typically all you have to do is convert the
8
//! first `.iter()` (or `iter_mut()`, `into_iter()`, etc) method into
9
//! `par_iter()` (or `par_iter_mut()`, `into_par_iter()`, etc). For
10
//! example, to compute the sum of the squares of a sequence of
11
//! integers, one might write:
12
//!
13
//! ```rust
14
//! use rayon::prelude::*;
15
//! fn sum_of_squares(input: &[i32]) -> i32 {
16
//!     input.par_iter()
17
//!          .map(|i| i * i)
18
//!          .sum()
19
//! }
20
//! ```
21
//!
22
//! Or, to increment all the integers in a slice, you could write:
23
//!
24
//! ```rust
25
//! use rayon::prelude::*;
26
//! fn increment_all(input: &mut [i32]) {
27
//!     input.par_iter_mut()
28
//!          .for_each(|p| *p += 1);
29
//! }
30
//! ```
31
//!
32
//! To use parallel iterators, first import the traits by adding
33
//! something like `use rayon::prelude::*` to your module. You can
34
//! then call `par_iter`, `par_iter_mut`, or `into_par_iter` to get a
35
//! parallel iterator. Like a [regular iterator][], parallel
36
//! iterators work by first constructing a computation and then
37
//! executing it.
38
//!
39
//! In addition to `par_iter()` and friends, some types offer other
40
//! ways to create (or consume) parallel iterators:
41
//!
42
//! - Slices (`&[T]`, `&mut [T]`) offer methods like `par_split` and
43
//!   `par_windows`, as well as various parallel sorting
44
//!   operations. See [the `ParallelSlice` trait] for the full list.
45
//! - Strings (`&str`) offer methods like `par_split` and `par_lines`.
46
//!   See [the `ParallelString` trait] for the full list.
47
//! - Various collections offer [`par_extend`], which grows a
48
//!   collection given a parallel iterator. (If you don't have a
49
//!   collection to extend, you can use [`collect()`] to create a new
50
//!   one from scratch.)
51
//!
52
//! [the `ParallelSlice` trait]: ../slice/trait.ParallelSlice.html
53
//! [the `ParallelString` trait]: ../str/trait.ParallelString.html
54
//! [`par_extend`]: trait.ParallelExtend.html
55
//! [`collect()`]: trait.ParallelIterator.html#method.collect
56
//!
57
//! To see the full range of methods available on parallel iterators,
58
//! check out the [`ParallelIterator`] and [`IndexedParallelIterator`]
59
//! traits.
60
//!
61
//! If you'd like to build a custom parallel iterator, or to write your own
62
//! combinator, then check out the [split] function and the [plumbing] module.
63
//!
64
//! [regular iterator]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
65
//! [`ParallelIterator`]: trait.ParallelIterator.html
66
//! [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
67
//! [split]: fn.split.html
68
//! [plumbing]: plumbing/index.html
69
//!
70
//! Note: Several of the `ParallelIterator` methods rely on a `Try` trait which
71
//! has been deliberately obscured from the public API.  This trait is intended
72
//! to mirror the unstable `std::ops::Try` with implementations for `Option` and
73
//! `Result`, where `Some`/`Ok` values will let those iterators continue, but
74
//! `None`/`Err` values will exit early.
75
//!
76
//! A note about object safety: It is currently _not_ possible to wrap
77
//! a `ParallelIterator` (or any trait that depends on it) using a
78
//! `Box<dyn ParallelIterator>` or other kind of dynamic allocation,
79
//! because `ParallelIterator` is **not object-safe**.
80
//! (This keeps the implementation simpler and allows extra optimizations.)
81
82
use self::plumbing::*;
83
use self::private::Try;
84
pub use either::Either;
85
use std::cmp::Ordering;
86
use std::collections::LinkedList;
87
use std::iter::{Product, Sum};
88
use std::ops::{Fn, RangeBounds};
89
90
pub mod plumbing;
91
92
#[cfg(test)]
93
mod test;
94
95
// There is a method to the madness here:
96
//
97
// - These modules are private but expose certain types to the end-user
98
//   (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the
99
//   public API surface of the `ParallelIterator` traits.
100
// - In **this** module, those public types are always used unprefixed, which forces
101
//   us to add a `pub use` and helps identify if we missed anything.
102
// - In contrast, items that appear **only** in the body of a method,
103
//   e.g. `find::find()`, are always used **prefixed**, so that they
104
//   can be readily distinguished.
105
106
mod blocks;
107
mod chain;
108
mod chunks;
109
mod cloned;
110
mod collect;
111
mod copied;
112
mod empty;
113
mod enumerate;
114
mod extend;
115
mod filter;
116
mod filter_map;
117
mod find;
118
mod find_first_last;
119
mod flat_map;
120
mod flat_map_iter;
121
mod flatten;
122
mod flatten_iter;
123
mod fold;
124
mod fold_chunks;
125
mod fold_chunks_with;
126
mod for_each;
127
mod from_par_iter;
128
mod inspect;
129
mod interleave;
130
mod interleave_shortest;
131
mod intersperse;
132
mod len;
133
mod map;
134
mod map_with;
135
mod multizip;
136
mod noop;
137
mod once;
138
mod panic_fuse;
139
mod par_bridge;
140
mod positions;
141
mod product;
142
mod reduce;
143
mod repeat;
144
mod rev;
145
mod skip;
146
mod skip_any;
147
mod skip_any_while;
148
mod splitter;
149
mod step_by;
150
mod sum;
151
mod take;
152
mod take_any;
153
mod take_any_while;
154
mod try_fold;
155
mod try_reduce;
156
mod try_reduce_with;
157
mod unzip;
158
mod update;
159
mod walk_tree;
160
mod while_some;
161
mod zip;
162
mod zip_eq;
163
164
pub use self::{
165
    blocks::{ExponentialBlocks, UniformBlocks},
166
    chain::Chain,
167
    chunks::Chunks,
168
    cloned::Cloned,
169
    copied::Copied,
170
    empty::{empty, Empty},
171
    enumerate::Enumerate,
172
    filter::Filter,
173
    filter_map::FilterMap,
174
    flat_map::FlatMap,
175
    flat_map_iter::FlatMapIter,
176
    flatten::Flatten,
177
    flatten_iter::FlattenIter,
178
    fold::{Fold, FoldWith},
179
    fold_chunks::FoldChunks,
180
    fold_chunks_with::FoldChunksWith,
181
    inspect::Inspect,
182
    interleave::Interleave,
183
    interleave_shortest::InterleaveShortest,
184
    intersperse::Intersperse,
185
    len::{MaxLen, MinLen},
186
    map::Map,
187
    map_with::{MapInit, MapWith},
188
    multizip::MultiZip,
189
    once::{once, Once},
190
    panic_fuse::PanicFuse,
191
    par_bridge::{IterBridge, ParallelBridge},
192
    positions::Positions,
193
    repeat::{repeat, repeatn, Repeat, RepeatN},
194
    rev::Rev,
195
    skip::Skip,
196
    skip_any::SkipAny,
197
    skip_any_while::SkipAnyWhile,
198
    splitter::{split, Split},
199
    step_by::StepBy,
200
    take::Take,
201
    take_any::TakeAny,
202
    take_any_while::TakeAnyWhile,
203
    try_fold::{TryFold, TryFoldWith},
204
    update::Update,
205
    walk_tree::{
206
        walk_tree, walk_tree_postfix, walk_tree_prefix, WalkTree, WalkTreePostfix, WalkTreePrefix,
207
    },
208
    while_some::WhileSome,
209
    zip::Zip,
210
    zip_eq::ZipEq,
211
};
212
213
/// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`].
214
///
215
/// By implementing `IntoParallelIterator` for a type, you define how it will
216
/// transformed into an iterator. This is a parallel version of the standard
217
/// library's [`std::iter::IntoIterator`] trait.
218
///
219
/// [`ParallelIterator`]: trait.ParallelIterator.html
220
/// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
221
pub trait IntoParallelIterator {
222
    /// The parallel iterator type that will be created.
223
    type Iter: ParallelIterator<Item = Self::Item>;
224
225
    /// The type of item that the parallel iterator will produce.
226
    type Item: Send;
227
228
    /// Converts `self` into a parallel iterator.
229
    ///
230
    /// # Examples
231
    ///
232
    /// ```
233
    /// use rayon::prelude::*;
234
    ///
235
    /// println!("counting in parallel:");
236
    /// (0..100).into_par_iter()
237
    ///     .for_each(|i| println!("{}", i));
238
    /// ```
239
    ///
240
    /// This conversion is often implicit for arguments to methods like [`zip`].
241
    ///
242
    /// ```
243
    /// use rayon::prelude::*;
244
    ///
245
    /// let v: Vec<_> = (0..5).into_par_iter().zip(5..10).collect();
246
    /// assert_eq!(v, [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]);
247
    /// ```
248
    ///
249
    /// [`zip`]: trait.IndexedParallelIterator.html#method.zip
250
    fn into_par_iter(self) -> Self::Iter;
251
}
252
253
/// `IntoParallelRefIterator` implements the conversion to a
254
/// [`ParallelIterator`], providing shared references to the data.
255
///
256
/// This is a parallel version of the `iter()` method
257
/// defined by various collections.
258
///
259
/// This trait is automatically implemented
260
/// `for I where &I: IntoParallelIterator`. In most cases, users
261
/// will want to implement [`IntoParallelIterator`] rather than implement
262
/// this trait directly.
263
///
264
/// [`ParallelIterator`]: trait.ParallelIterator.html
265
/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
266
pub trait IntoParallelRefIterator<'data> {
267
    /// The type of the parallel iterator that will be returned.
268
    type Iter: ParallelIterator<Item = Self::Item>;
269
270
    /// The type of item that the parallel iterator will produce.
271
    /// This will typically be an `&'data T` reference type.
272
    type Item: Send + 'data;
273
274
    /// Converts `self` into a parallel iterator.
275
    ///
276
    /// # Examples
277
    ///
278
    /// ```
279
    /// use rayon::prelude::*;
280
    ///
281
    /// let v: Vec<_> = (0..100).collect();
282
    /// assert_eq!(v.par_iter().sum::<i32>(), 100 * 99 / 2);
283
    ///
284
    /// // `v.par_iter()` is shorthand for `(&v).into_par_iter()`,
285
    /// // producing the exact same references.
286
    /// assert!(v.par_iter().zip(&v)
287
    ///          .all(|(a, b)| std::ptr::eq(a, b)));
288
    /// ```
289
    fn par_iter(&'data self) -> Self::Iter;
290
}
291
292
impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I
293
where
294
    &'data I: IntoParallelIterator,
295
{
296
    type Iter = <&'data I as IntoParallelIterator>::Iter;
297
    type Item = <&'data I as IntoParallelIterator>::Item;
298
299
0
    fn par_iter(&'data self) -> Self::Iter {
300
0
        self.into_par_iter()
301
0
    }
302
}
303
304
/// `IntoParallelRefMutIterator` implements the conversion to a
305
/// [`ParallelIterator`], providing mutable references to the data.
306
///
307
/// This is a parallel version of the `iter_mut()` method
308
/// defined by various collections.
309
///
310
/// This trait is automatically implemented
311
/// `for I where &mut I: IntoParallelIterator`. In most cases, users
312
/// will want to implement [`IntoParallelIterator`] rather than implement
313
/// this trait directly.
314
///
315
/// [`ParallelIterator`]: trait.ParallelIterator.html
316
/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
317
pub trait IntoParallelRefMutIterator<'data> {
318
    /// The type of iterator that will be created.
319
    type Iter: ParallelIterator<Item = Self::Item>;
320
321
    /// The type of item that will be produced; this is typically an
322
    /// `&'data mut T` reference.
323
    type Item: Send + 'data;
324
325
    /// Creates the parallel iterator from `self`.
326
    ///
327
    /// # Examples
328
    ///
329
    /// ```
330
    /// use rayon::prelude::*;
331
    ///
332
    /// let mut v = vec![0usize; 5];
333
    /// v.par_iter_mut().enumerate().for_each(|(i, x)| *x = i);
334
    /// assert_eq!(v, [0, 1, 2, 3, 4]);
335
    /// ```
336
    fn par_iter_mut(&'data mut self) -> Self::Iter;
337
}
338
339
impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I
340
where
341
    &'data mut I: IntoParallelIterator,
342
{
343
    type Iter = <&'data mut I as IntoParallelIterator>::Iter;
344
    type Item = <&'data mut I as IntoParallelIterator>::Item;
345
346
0
    fn par_iter_mut(&'data mut self) -> Self::Iter {
347
0
        self.into_par_iter()
348
0
    }
Unexecuted instantiation: <alloc::vec::Vec<sysinfo::common::system::Cpu> as rayon::iter::IntoParallelRefMutIterator>::par_iter_mut
Unexecuted instantiation: <alloc::vec::Vec<alloc::vec::Vec<i_overlay::split::fragment::Fragment>> as rayon::iter::IntoParallelRefMutIterator>::par_iter_mut
Unexecuted instantiation: <_ as rayon::iter::IntoParallelRefMutIterator>::par_iter_mut
349
}
350
351
/// Parallel version of the standard iterator trait.
352
///
353
/// The combinators on this trait are available on **all** parallel
354
/// iterators.  Additional methods can be found on the
355
/// [`IndexedParallelIterator`] trait: those methods are only
356
/// available for parallel iterators where the number of items is
357
/// known in advance (so, e.g., after invoking `filter`, those methods
358
/// become unavailable).
359
///
360
/// For examples of using parallel iterators, see [the docs on the
361
/// `iter` module][iter].
362
///
363
/// [iter]: index.html
364
/// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
365
pub trait ParallelIterator: Sized + Send {
366
    /// The type of item that this parallel iterator produces.
367
    /// For example, if you use the [`for_each`] method, this is the type of
368
    /// item that your closure will be invoked with.
369
    ///
370
    /// [`for_each`]: #method.for_each
371
    type Item: Send;
372
373
    /// Executes `OP` on each item produced by the iterator, in parallel.
374
    ///
375
    /// # Examples
376
    ///
377
    /// ```
378
    /// use rayon::prelude::*;
379
    ///
380
    /// (0..100).into_par_iter().for_each(|x| println!("{:?}", x));
381
    /// ```
382
0
    fn for_each<OP>(self, op: OP)
383
0
    where
384
0
        OP: Fn(Self::Item) + Sync + Send,
385
    {
386
0
        for_each::for_each(self, &op)
387
0
    }
Unexecuted instantiation: <rayon::iter::enumerate::Enumerate<rayon::slice::IterMut<sysinfo::common::system::Cpu>> as rayon::iter::ParallelIterator>::for_each::<<sysinfo::unix::linux::cpu::CpusWrapper>::refresh::{closure#5}>
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::for_each::<_>
388
389
    /// Executes `OP` on the given `init` value with each item produced by
390
    /// the iterator, in parallel.
391
    ///
392
    /// The `init` value will be cloned only as needed to be paired with
393
    /// the group of items in each rayon job.  It does not require the type
394
    /// to be `Sync`.
395
    ///
396
    /// # Examples
397
    ///
398
    /// ```
399
    /// use std::sync::mpsc::channel;
400
    /// use rayon::prelude::*;
401
    ///
402
    /// let (sender, receiver) = channel();
403
    ///
404
    /// (0..5).into_par_iter().for_each_with(sender, |s, x| s.send(x).unwrap());
405
    ///
406
    /// let mut res: Vec<_> = receiver.iter().collect();
407
    ///
408
    /// res.sort();
409
    ///
410
    /// assert_eq!(&res[..], &[0, 1, 2, 3, 4])
411
    /// ```
412
0
    fn for_each_with<OP, T>(self, init: T, op: OP)
413
0
    where
414
0
        OP: Fn(&mut T, Self::Item) + Sync + Send,
415
0
        T: Send + Clone,
416
    {
417
0
        self.map_with(init, op).collect()
418
0
    }
419
420
    /// Executes `OP` on a value returned by `init` with each item produced by
421
    /// the iterator, in parallel.
422
    ///
423
    /// The `init` function will be called only as needed for a value to be
424
    /// paired with the group of items in each rayon job.  There is no
425
    /// constraint on that returned type at all!
426
    ///
427
    /// # Examples
428
    ///
429
    /// ```
430
    /// use rand::Rng;
431
    /// use rayon::prelude::*;
432
    ///
433
    /// let mut v = vec![0u8; 1_000_000];
434
    ///
435
    /// v.par_chunks_mut(1000)
436
    ///     .for_each_init(
437
    ///         || rand::thread_rng(),
438
    ///         |rng, chunk| rng.fill(chunk),
439
    ///     );
440
    ///
441
    /// // There's a remote chance that this will fail...
442
    /// for i in 0u8..=255 {
443
    ///     assert!(v.contains(&i));
444
    /// }
445
    /// ```
446
0
    fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP)
447
0
    where
448
0
        OP: Fn(&mut T, Self::Item) + Sync + Send,
449
0
        INIT: Fn() -> T + Sync + Send,
450
    {
451
0
        self.map_init(init, op).collect()
452
0
    }
453
454
    /// Executes a fallible `OP` on each item produced by the iterator, in parallel.
455
    ///
456
    /// If the `OP` returns `Result::Err` or `Option::None`, we will attempt to
457
    /// stop processing the rest of the items in the iterator as soon as
458
    /// possible, and we will return that terminating value.  Otherwise, we will
459
    /// return an empty `Result::Ok(())` or `Option::Some(())`.  If there are
460
    /// multiple errors in parallel, it is not specified which will be returned.
461
    ///
462
    /// # Examples
463
    ///
464
    /// ```
465
    /// use rayon::prelude::*;
466
    /// use std::io::{self, Write};
467
    ///
468
    /// // This will stop iteration early if there's any write error, like
469
    /// // having piped output get closed on the other end.
470
    /// (0..100).into_par_iter()
471
    ///     .try_for_each(|x| writeln!(io::stdout(), "{:?}", x))
472
    ///     .expect("expected no write errors");
473
    /// ```
474
0
    fn try_for_each<OP, R>(self, op: OP) -> R
475
0
    where
476
0
        OP: Fn(Self::Item) -> R + Sync + Send,
477
0
        R: Try<Output = ()> + Send,
478
    {
479
0
        fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R {
480
0
            R::from_output(())
481
0
        }
482
483
0
        self.map(op).try_reduce(<()>::default, ok)
484
0
    }
485
486
    /// Executes a fallible `OP` on the given `init` value with each item
487
    /// produced by the iterator, in parallel.
488
    ///
489
    /// This combines the `init` semantics of [`for_each_with()`] and the
490
    /// failure semantics of [`try_for_each()`].
491
    ///
492
    /// [`for_each_with()`]: #method.for_each_with
493
    /// [`try_for_each()`]: #method.try_for_each
494
    ///
495
    /// # Examples
496
    ///
497
    /// ```
498
    /// use std::sync::mpsc::channel;
499
    /// use rayon::prelude::*;
500
    ///
501
    /// let (sender, receiver) = channel();
502
    ///
503
    /// (0..5).into_par_iter()
504
    ///     .try_for_each_with(sender, |s, x| s.send(x))
505
    ///     .expect("expected no send errors");
506
    ///
507
    /// let mut res: Vec<_> = receiver.iter().collect();
508
    ///
509
    /// res.sort();
510
    ///
511
    /// assert_eq!(&res[..], &[0, 1, 2, 3, 4])
512
    /// ```
513
0
    fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R
514
0
    where
515
0
        OP: Fn(&mut T, Self::Item) -> R + Sync + Send,
516
0
        T: Send + Clone,
517
0
        R: Try<Output = ()> + Send,
518
    {
519
0
        fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R {
520
0
            R::from_output(())
521
0
        }
522
523
0
        self.map_with(init, op).try_reduce(<()>::default, ok)
524
0
    }
525
526
    /// Executes a fallible `OP` on a value returned by `init` with each item
527
    /// produced by the iterator, in parallel.
528
    ///
529
    /// This combines the `init` semantics of [`for_each_init()`] and the
530
    /// failure semantics of [`try_for_each()`].
531
    ///
532
    /// [`for_each_init()`]: #method.for_each_init
533
    /// [`try_for_each()`]: #method.try_for_each
534
    ///
535
    /// # Examples
536
    ///
537
    /// ```
538
    /// use rand::Rng;
539
    /// use rayon::prelude::*;
540
    ///
541
    /// let mut v = vec![0u8; 1_000_000];
542
    ///
543
    /// v.par_chunks_mut(1000)
544
    ///     .try_for_each_init(
545
    ///         || rand::thread_rng(),
546
    ///         |rng, chunk| rng.try_fill(chunk),
547
    ///     )
548
    ///     .expect("expected no rand errors");
549
    ///
550
    /// // There's a remote chance that this will fail...
551
    /// for i in 0u8..=255 {
552
    ///     assert!(v.contains(&i));
553
    /// }
554
    /// ```
555
0
    fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R
556
0
    where
557
0
        OP: Fn(&mut T, Self::Item) -> R + Sync + Send,
558
0
        INIT: Fn() -> T + Sync + Send,
559
0
        R: Try<Output = ()> + Send,
560
    {
561
0
        fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R {
562
0
            R::from_output(())
563
0
        }
564
565
0
        self.map_init(init, op).try_reduce(<()>::default, ok)
566
0
    }
567
568
    /// Counts the number of items in this parallel iterator.
569
    ///
570
    /// # Examples
571
    ///
572
    /// ```
573
    /// use rayon::prelude::*;
574
    ///
575
    /// let count = (0..100).into_par_iter().count();
576
    ///
577
    /// assert_eq!(count, 100);
578
    /// ```
579
0
    fn count(self) -> usize {
580
0
        fn one<T>(_: T) -> usize {
581
0
            1
582
0
        }
583
584
0
        self.map(one).sum()
585
0
    }
586
587
    /// Applies `map_op` to each item of this iterator, producing a new
588
    /// iterator with the results.
589
    ///
590
    /// # Examples
591
    ///
592
    /// ```
593
    /// use rayon::prelude::*;
594
    ///
595
    /// let mut par_iter = (0..5).into_par_iter().map(|x| x * 2);
596
    ///
597
    /// let doubles: Vec<_> = par_iter.collect();
598
    ///
599
    /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]);
600
    /// ```
601
0
    fn map<F, R>(self, map_op: F) -> Map<Self, F>
602
0
    where
603
0
        F: Fn(Self::Item) -> R + Sync + Send,
604
0
        R: Send,
605
    {
606
0
        Map::new(self, map_op)
607
0
    }
Unexecuted instantiation: <rayon::iter::enumerate::Enumerate<rayon::iter::len::MaxLen<rayon::slice::chunks::ChunksMut<surrealdb_core::val::Value>>> as rayon::iter::ParallelIterator>::map::<rayon::slice::mergesort::par_mergesort<surrealdb_core::val::Value, <ext_sort::buffer::LimitedBuffer<surrealdb_core::val::Value> as rayon::slice::ParallelSliceMut<surrealdb_core::val::Value>>::par_sort_by<<surrealdb_core::dbs::file::FileCollector>::sort_and_take_vec::{closure#0}::{closure#2}::{closure#0}>::{closure#0}>::{closure#0}, (usize, usize, rayon::slice::mergesort::MergesortResult)>
Unexecuted instantiation: <rayon::iter::par_bridge::IterBridge<std::fs::ReadDir> as rayon::iter::ParallelIterator>::map::<sysinfo::unix::linux::process::refresh_procs::{closure#0}, alloc::vec::Vec<sysinfo::unix::linux::process::ProcAndTasks>>
Unexecuted instantiation: <rayon::slice::IterMut<alloc::vec::Vec<i_overlay::split::fragment::Fragment>> as rayon::iter::ParallelIterator>::map::<<i_overlay::split::solver::SplitSolver>::parallel_split::{closure#0}, <i_overlay::split::solver::SplitSolver>::parallel_split::TaskResult>
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::map::<_, _>
608
609
    /// Applies `map_op` to the given `init` value with each item of this
610
    /// iterator, producing a new iterator with the results.
611
    ///
612
    /// The `init` value will be cloned only as needed to be paired with
613
    /// the group of items in each rayon job.  It does not require the type
614
    /// to be `Sync`.
615
    ///
616
    /// # Examples
617
    ///
618
    /// ```
619
    /// use std::sync::mpsc::channel;
620
    /// use rayon::prelude::*;
621
    ///
622
    /// let (sender, receiver) = channel();
623
    ///
624
    /// let a: Vec<_> = (0..5)
625
    ///                 .into_par_iter()            // iterating over i32
626
    ///                 .map_with(sender, |s, x| {
627
    ///                     s.send(x).unwrap();     // sending i32 values through the channel
628
    ///                     x                       // returning i32
629
    ///                 })
630
    ///                 .collect();                 // collecting the returned values into a vector
631
    ///
632
    /// let mut b: Vec<_> = receiver.iter()         // iterating over the values in the channel
633
    ///                             .collect();     // and collecting them
634
    /// b.sort();
635
    ///
636
    /// assert_eq!(a, b);
637
    /// ```
638
0
    fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F>
639
0
    where
640
0
        F: Fn(&mut T, Self::Item) -> R + Sync + Send,
641
0
        T: Send + Clone,
642
0
        R: Send,
643
    {
644
0
        MapWith::new(self, init, map_op)
645
0
    }
646
647
    /// Applies `map_op` to a value returned by `init` with each item of this
648
    /// iterator, producing a new iterator with the results.
649
    ///
650
    /// The `init` function will be called only as needed for a value to be
651
    /// paired with the group of items in each rayon job.  There is no
652
    /// constraint on that returned type at all!
653
    ///
654
    /// # Examples
655
    ///
656
    /// ```
657
    /// use rand::Rng;
658
    /// use rayon::prelude::*;
659
    ///
660
    /// let a: Vec<_> = (1i32..1_000_000)
661
    ///     .into_par_iter()
662
    ///     .map_init(
663
    ///         || rand::thread_rng(),  // get the thread-local RNG
664
    ///         |rng, x| if rng.gen() { // randomly negate items
665
    ///             -x
666
    ///         } else {
667
    ///             x
668
    ///         },
669
    ///     ).collect();
670
    ///
671
    /// // There's a remote chance that this will fail...
672
    /// assert!(a.iter().any(|&x| x < 0));
673
    /// assert!(a.iter().any(|&x| x > 0));
674
    /// ```
675
0
    fn map_init<F, INIT, T, R>(self, init: INIT, map_op: F) -> MapInit<Self, INIT, F>
676
0
    where
677
0
        F: Fn(&mut T, Self::Item) -> R + Sync + Send,
678
0
        INIT: Fn() -> T + Sync + Send,
679
0
        R: Send,
680
    {
681
0
        MapInit::new(self, init, map_op)
682
0
    }
683
684
    /// Creates an iterator which clones all of its elements.  This may be
685
    /// useful when you have an iterator over `&T`, but you need `T`, and
686
    /// that type implements `Clone`. See also [`copied()`].
687
    ///
688
    /// [`copied()`]: #method.copied
689
    ///
690
    /// # Examples
691
    ///
692
    /// ```
693
    /// use rayon::prelude::*;
694
    ///
695
    /// let a = [1, 2, 3];
696
    ///
697
    /// let v_cloned: Vec<_> = a.par_iter().cloned().collect();
698
    ///
699
    /// // cloned is the same as .map(|&x| x), for integers
700
    /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect();
701
    ///
702
    /// assert_eq!(v_cloned, vec![1, 2, 3]);
703
    /// assert_eq!(v_map, vec![1, 2, 3]);
704
    /// ```
705
0
    fn cloned<'a, T>(self) -> Cloned<Self>
706
0
    where
707
0
        T: 'a + Clone + Send,
708
0
        Self: ParallelIterator<Item = &'a T>,
709
    {
710
0
        Cloned::new(self)
711
0
    }
712
713
    /// Creates an iterator which copies all of its elements.  This may be
714
    /// useful when you have an iterator over `&T`, but you need `T`, and
715
    /// that type implements `Copy`. See also [`cloned()`].
716
    ///
717
    /// [`cloned()`]: #method.cloned
718
    ///
719
    /// # Examples
720
    ///
721
    /// ```
722
    /// use rayon::prelude::*;
723
    ///
724
    /// let a = [1, 2, 3];
725
    ///
726
    /// let v_copied: Vec<_> = a.par_iter().copied().collect();
727
    ///
728
    /// // copied is the same as .map(|&x| x), for integers
729
    /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect();
730
    ///
731
    /// assert_eq!(v_copied, vec![1, 2, 3]);
732
    /// assert_eq!(v_map, vec![1, 2, 3]);
733
    /// ```
734
0
    fn copied<'a, T>(self) -> Copied<Self>
735
0
    where
736
0
        T: 'a + Copy + Send,
737
0
        Self: ParallelIterator<Item = &'a T>,
738
    {
739
0
        Copied::new(self)
740
0
    }
741
742
    /// Applies `inspect_op` to a reference to each item of this iterator,
743
    /// producing a new iterator passing through the original items.  This is
744
    /// often useful for debugging to see what's happening in iterator stages.
745
    ///
746
    /// # Examples
747
    ///
748
    /// ```
749
    /// use rayon::prelude::*;
750
    ///
751
    /// let a = [1, 4, 2, 3];
752
    ///
753
    /// // this iterator sequence is complex.
754
    /// let sum = a.par_iter()
755
    ///             .cloned()
756
    ///             .filter(|&x| x % 2 == 0)
757
    ///             .reduce(|| 0, |sum, i| sum + i);
758
    ///
759
    /// println!("{}", sum);
760
    ///
761
    /// // let's add some inspect() calls to investigate what's happening
762
    /// let sum = a.par_iter()
763
    ///             .cloned()
764
    ///             .inspect(|x| println!("about to filter: {}", x))
765
    ///             .filter(|&x| x % 2 == 0)
766
    ///             .inspect(|x| println!("made it through filter: {}", x))
767
    ///             .reduce(|| 0, |sum, i| sum + i);
768
    ///
769
    /// println!("{}", sum);
770
    /// ```
771
0
    fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP>
772
0
    where
773
0
        OP: Fn(&Self::Item) + Sync + Send,
774
    {
775
0
        Inspect::new(self, inspect_op)
776
0
    }
777
778
    /// Mutates each item of this iterator before yielding it.
779
    ///
780
    /// # Examples
781
    ///
782
    /// ```
783
    /// use rayon::prelude::*;
784
    ///
785
    /// let par_iter = (0..5).into_par_iter().update(|x| {*x *= 2;});
786
    ///
787
    /// let doubles: Vec<_> = par_iter.collect();
788
    ///
789
    /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]);
790
    /// ```
791
0
    fn update<F>(self, update_op: F) -> Update<Self, F>
792
0
    where
793
0
        F: Fn(&mut Self::Item) + Sync + Send,
794
    {
795
0
        Update::new(self, update_op)
796
0
    }
797
798
    /// Applies `filter_op` to each item of this iterator, producing a new
799
    /// iterator with only the items that gave `true` results.
800
    ///
801
    /// # Examples
802
    ///
803
    /// ```
804
    /// use rayon::prelude::*;
805
    ///
806
    /// let mut par_iter = (0..10).into_par_iter().filter(|x| x % 2 == 0);
807
    ///
808
    /// let even_numbers: Vec<_> = par_iter.collect();
809
    ///
810
    /// assert_eq!(&even_numbers[..], &[0, 2, 4, 6, 8]);
811
    /// ```
812
0
    fn filter<P>(self, filter_op: P) -> Filter<Self, P>
813
0
    where
814
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
815
    {
816
0
        Filter::new(self, filter_op)
817
0
    }
Unexecuted instantiation: <rayon::iter::flatten::Flatten<rayon::iter::map::Map<rayon::iter::par_bridge::IterBridge<std::fs::ReadDir>, sysinfo::unix::linux::process::refresh_procs::{closure#0}>> as rayon::iter::ParallelIterator>::filter::<sysinfo::unix::linux::process::refresh_procs::{closure#1}>
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::filter::<_>
818
819
    /// Applies `filter_op` to each item of this iterator to get an `Option`,
820
    /// producing a new iterator with only the items from `Some` results.
821
    ///
822
    /// # Examples
823
    ///
824
    /// ```
825
    /// use rayon::prelude::*;
826
    ///
827
    /// let mut par_iter = (0..10).into_par_iter()
828
    ///                         .filter_map(|x| {
829
    ///                             if x % 2 == 0 { Some(x * 3) }
830
    ///                             else { None }
831
    ///                         });
832
    ///
833
    /// let even_numbers: Vec<_> = par_iter.collect();
834
    ///
835
    /// assert_eq!(&even_numbers[..], &[0, 6, 12, 18, 24]);
836
    /// ```
837
0
    fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P>
838
0
    where
839
0
        P: Fn(Self::Item) -> Option<R> + Sync + Send,
840
0
        R: Send,
841
    {
842
0
        FilterMap::new(self, filter_op)
843
0
    }
Unexecuted instantiation: <rayon::iter::filter::Filter<rayon::iter::flatten::Flatten<rayon::iter::map::Map<rayon::iter::par_bridge::IterBridge<std::fs::ReadDir>, sysinfo::unix::linux::process::refresh_procs::{closure#0}>>, sysinfo::unix::linux::process::refresh_procs::{closure#1}> as rayon::iter::ParallelIterator>::filter_map::<sysinfo::unix::linux::process::refresh_procs::{closure#2}, sysinfo::common::system::Process>
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::filter_map::<_, _>
844
845
    /// Applies `map_op` to each item of this iterator to get nested parallel iterators,
846
    /// producing a new parallel iterator that flattens these back into one.
847
    ///
848
    /// See also [`flat_map_iter`](#method.flat_map_iter).
849
    ///
850
    /// # Examples
851
    ///
852
    /// ```
853
    /// use rayon::prelude::*;
854
    ///
855
    /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]];
856
    ///
857
    /// let par_iter = a.par_iter().cloned().flat_map(|a| a.to_vec());
858
    ///
859
    /// let vec: Vec<_> = par_iter.collect();
860
    ///
861
    /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]);
862
    /// ```
863
0
    fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F>
864
0
    where
865
0
        F: Fn(Self::Item) -> PI + Sync + Send,
866
0
        PI: IntoParallelIterator,
867
    {
868
0
        FlatMap::new(self, map_op)
869
0
    }
870
871
    /// Applies `map_op` to each item of this iterator to get nested serial iterators,
872
    /// producing a new parallel iterator that flattens these back into one.
873
    ///
874
    /// # `flat_map_iter` versus `flat_map`
875
    ///
876
    /// These two methods are similar but behave slightly differently. With [`flat_map`],
877
    /// each of the nested iterators must be a parallel iterator, and they will be further
878
    /// split up with nested parallelism. With `flat_map_iter`, each nested iterator is a
879
    /// sequential `Iterator`, and we only parallelize _between_ them, while the items
880
    /// produced by each nested iterator are processed sequentially.
881
    ///
882
    /// When choosing between these methods, consider whether nested parallelism suits the
883
    /// potential iterators at hand. If there's little computation involved, or its length
884
    /// is much less than the outer parallel iterator, then it may perform better to avoid
885
    /// the overhead of parallelism, just flattening sequentially with `flat_map_iter`.
886
    /// If there is a lot of computation, potentially outweighing the outer parallel
887
    /// iterator, then the nested parallelism of `flat_map` may be worthwhile.
888
    ///
889
    /// [`flat_map`]: #method.flat_map
890
    ///
891
    /// # Examples
892
    ///
893
    /// ```
894
    /// use rayon::prelude::*;
895
    /// use std::cell::RefCell;
896
    ///
897
    /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]];
898
    ///
899
    /// let par_iter = a.par_iter().flat_map_iter(|a| {
900
    ///     // The serial iterator doesn't have to be thread-safe, just its items.
901
    ///     let cell_iter = RefCell::new(a.iter().cloned());
902
    ///     std::iter::from_fn(move || cell_iter.borrow_mut().next())
903
    /// });
904
    ///
905
    /// let vec: Vec<_> = par_iter.collect();
906
    ///
907
    /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]);
908
    /// ```
909
0
    fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F>
910
0
    where
911
0
        F: Fn(Self::Item) -> SI + Sync + Send,
912
0
        SI: IntoIterator,
913
0
        SI::Item: Send,
914
    {
915
0
        FlatMapIter::new(self, map_op)
916
0
    }
917
918
    /// An adaptor that flattens parallel-iterable `Item`s into one large iterator.
919
    ///
920
    /// See also [`flatten_iter`](#method.flatten_iter).
921
    ///
922
    /// # Examples
923
    ///
924
    /// ```
925
    /// use rayon::prelude::*;
926
    ///
927
    /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]];
928
    /// let y: Vec<_> = x.into_par_iter().flatten().collect();
929
    ///
930
    /// assert_eq!(y, vec![1, 2, 3, 4]);
931
    /// ```
932
0
    fn flatten(self) -> Flatten<Self>
933
0
    where
934
0
        Self::Item: IntoParallelIterator,
935
    {
936
0
        Flatten::new(self)
937
0
    }
Unexecuted instantiation: <rayon::iter::map::Map<rayon::iter::par_bridge::IterBridge<std::fs::ReadDir>, sysinfo::unix::linux::process::refresh_procs::{closure#0}> as rayon::iter::ParallelIterator>::flatten
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::flatten
938
939
    /// An adaptor that flattens serial-iterable `Item`s into one large iterator.
940
    ///
941
    /// See also [`flatten`](#method.flatten) and the analogous comparison of
942
    /// [`flat_map_iter` versus `flat_map`](#flat_map_iter-versus-flat_map).
943
    ///
944
    /// # Examples
945
    ///
946
    /// ```
947
    /// use rayon::prelude::*;
948
    ///
949
    /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]];
950
    /// let iters: Vec<_> = x.into_iter().map(Vec::into_iter).collect();
951
    /// let y: Vec<_> = iters.into_par_iter().flatten_iter().collect();
952
    ///
953
    /// assert_eq!(y, vec![1, 2, 3, 4]);
954
    /// ```
955
0
    fn flatten_iter(self) -> FlattenIter<Self>
956
0
    where
957
0
        Self::Item: IntoIterator,
958
0
        <Self::Item as IntoIterator>::Item: Send,
959
    {
960
0
        FlattenIter::new(self)
961
0
    }
962
963
    /// Reduces the items in the iterator into one item using `op`.
964
    /// The argument `identity` should be a closure that can produce
965
    /// "identity" value which may be inserted into the sequence as
966
    /// needed to create opportunities for parallel execution. So, for
967
    /// example, if you are doing a summation, then `identity()` ought
968
    /// to produce something that represents the zero for your type
969
    /// (but consider just calling `sum()` in that case).
970
    ///
971
    /// # Examples
972
    ///
973
    /// ```
974
    /// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)`
975
    /// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)`
976
    /// // where the first/second elements are summed separately.
977
    /// use rayon::prelude::*;
978
    /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
979
    ///            .par_iter()        // iterating over &(i32, i32)
980
    ///            .cloned()          // iterating over (i32, i32)
981
    ///            .reduce(|| (0, 0), // the "identity" is 0 in both columns
982
    ///                    |a, b| (a.0 + b.0, a.1 + b.1));
983
    /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
984
    /// ```
985
    ///
986
    /// **Note:** unlike a sequential `fold` operation, the order in
987
    /// which `op` will be applied to reduce the result is not fully
988
    /// specified. So `op` should be [associative] or else the results
989
    /// will be non-deterministic. And of course `identity()` should
990
    /// produce a true identity.
991
    ///
992
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
993
0
    fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item
994
0
    where
995
0
        OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
996
0
        ID: Fn() -> Self::Item + Sync + Send,
997
    {
998
0
        reduce::reduce(self, identity, op)
999
0
    }
1000
1001
    /// Reduces the items in the iterator into one item using `op`.
1002
    /// If the iterator is empty, `None` is returned; otherwise,
1003
    /// `Some` is returned.
1004
    ///
1005
    /// This version of `reduce` is simple but somewhat less
1006
    /// efficient. If possible, it is better to call `reduce()`, which
1007
    /// requires an identity element.
1008
    ///
1009
    /// # Examples
1010
    ///
1011
    /// ```
1012
    /// use rayon::prelude::*;
1013
    /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
1014
    ///            .par_iter()        // iterating over &(i32, i32)
1015
    ///            .cloned()          // iterating over (i32, i32)
1016
    ///            .reduce_with(|a, b| (a.0 + b.0, a.1 + b.1))
1017
    ///            .unwrap();
1018
    /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
1019
    /// ```
1020
    ///
1021
    /// **Note:** unlike a sequential `fold` operation, the order in
1022
    /// which `op` will be applied to reduce the result is not fully
1023
    /// specified. So `op` should be [associative] or else the results
1024
    /// will be non-deterministic.
1025
    ///
1026
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
1027
0
    fn reduce_with<OP>(self, op: OP) -> Option<Self::Item>
1028
0
    where
1029
0
        OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
1030
    {
1031
0
        fn opt_fold<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, T) -> Option<T> {
1032
0
            move |opt_a, b| match opt_a {
1033
0
                Some(a) => Some(op(a, b)),
1034
0
                None => Some(b),
1035
0
            }
1036
0
        }
1037
1038
0
        fn opt_reduce<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, Option<T>) -> Option<T> {
1039
0
            move |opt_a, opt_b| match (opt_a, opt_b) {
1040
0
                (Some(a), Some(b)) => Some(op(a, b)),
1041
0
                (Some(v), None) | (None, Some(v)) => Some(v),
1042
0
                (None, None) => None,
1043
0
            }
1044
0
        }
1045
1046
0
        self.fold(<_>::default, opt_fold(&op))
1047
0
            .reduce(<_>::default, opt_reduce(&op))
1048
0
    }
1049
1050
    /// Reduces the items in the iterator into one item using a fallible `op`.
1051
    /// The `identity` argument is used the same way as in [`reduce()`].
1052
    ///
1053
    /// [`reduce()`]: #method.reduce
1054
    ///
1055
    /// If a `Result::Err` or `Option::None` item is found, or if `op` reduces
1056
    /// to one, we will attempt to stop processing the rest of the items in the
1057
    /// iterator as soon as possible, and we will return that terminating value.
1058
    /// Otherwise, we will return the final reduced `Result::Ok(T)` or
1059
    /// `Option::Some(T)`.  If there are multiple errors in parallel, it is not
1060
    /// specified which will be returned.
1061
    ///
1062
    /// # Examples
1063
    ///
1064
    /// ```
1065
    /// use rayon::prelude::*;
1066
    ///
1067
    /// // Compute the sum of squares, being careful about overflow.
1068
    /// fn sum_squares<I: IntoParallelIterator<Item = i32>>(iter: I) -> Option<i32> {
1069
    ///     iter.into_par_iter()
1070
    ///         .map(|i| i.checked_mul(i))            // square each item,
1071
    ///         .try_reduce(|| 0, i32::checked_add)   // and add them up!
1072
    /// }
1073
    /// assert_eq!(sum_squares(0..5), Some(0 + 1 + 4 + 9 + 16));
1074
    ///
1075
    /// // The sum might overflow
1076
    /// assert_eq!(sum_squares(0..10_000), None);
1077
    ///
1078
    /// // Or the squares might overflow before it even reaches `try_reduce`
1079
    /// assert_eq!(sum_squares(1_000_000..1_000_001), None);
1080
    /// ```
1081
0
    fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item
1082
0
    where
1083
0
        OP: Fn(T, T) -> Self::Item + Sync + Send,
1084
0
        ID: Fn() -> T + Sync + Send,
1085
0
        Self::Item: Try<Output = T>,
1086
    {
1087
0
        try_reduce::try_reduce(self, identity, op)
1088
0
    }
1089
1090
    /// Reduces the items in the iterator into one item using a fallible `op`.
1091
    ///
1092
    /// Like [`reduce_with()`], if the iterator is empty, `None` is returned;
1093
    /// otherwise, `Some` is returned.  Beyond that, it behaves like
1094
    /// [`try_reduce()`] for handling `Err`/`None`.
1095
    ///
1096
    /// [`reduce_with()`]: #method.reduce_with
1097
    /// [`try_reduce()`]: #method.try_reduce
1098
    ///
1099
    /// For instance, with `Option` items, the return value may be:
1100
    /// - `None`, the iterator was empty
1101
    /// - `Some(None)`, we stopped after encountering `None`.
1102
    /// - `Some(Some(x))`, the entire iterator reduced to `x`.
1103
    ///
1104
    /// With `Result` items, the nesting is more obvious:
1105
    /// - `None`, the iterator was empty
1106
    /// - `Some(Err(e))`, we stopped after encountering an error `e`.
1107
    /// - `Some(Ok(x))`, the entire iterator reduced to `x`.
1108
    ///
1109
    /// # Examples
1110
    ///
1111
    /// ```
1112
    /// use rayon::prelude::*;
1113
    ///
1114
    /// let files = ["/dev/null", "/does/not/exist"];
1115
    ///
1116
    /// // Find the biggest file
1117
    /// files.into_par_iter()
1118
    ///     .map(|path| std::fs::metadata(path).map(|m| (path, m.len())))
1119
    ///     .try_reduce_with(|a, b| {
1120
    ///         Ok(if a.1 >= b.1 { a } else { b })
1121
    ///     })
1122
    ///     .expect("Some value, since the iterator is not empty")
1123
    ///     .expect_err("not found");
1124
    /// ```
1125
0
    fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item>
1126
0
    where
1127
0
        OP: Fn(T, T) -> Self::Item + Sync + Send,
1128
0
        Self::Item: Try<Output = T>,
1129
    {
1130
0
        try_reduce_with::try_reduce_with(self, op)
1131
0
    }
1132
1133
    /// Parallel fold is similar to sequential fold except that the
1134
    /// sequence of items may be subdivided before it is
1135
    /// folded. Consider a list of numbers like `22 3 77 89 46`. If
1136
    /// you used sequential fold to add them (`fold(0, |a,b| a+b)`,
1137
    /// you would wind up first adding 0 + 22, then 22 + 3, then 25 +
1138
    /// 77, and so forth. The **parallel fold** works similarly except
1139
    /// that it first breaks up your list into sublists, and hence
1140
    /// instead of yielding up a single sum at the end, it yields up
1141
    /// multiple sums. The number of results is nondeterministic, as
1142
    /// is the point where the breaks occur.
1143
    ///
1144
    /// So if we did the same parallel fold (`fold(0, |a,b| a+b)`) on
1145
    /// our example list, we might wind up with a sequence of two numbers,
1146
    /// like so:
1147
    ///
1148
    /// ```notrust
1149
    /// 22 3 77 89 46
1150
    ///       |     |
1151
    ///     102   135
1152
    /// ```
1153
    ///
1154
    /// Or perhaps these three numbers:
1155
    ///
1156
    /// ```notrust
1157
    /// 22 3 77 89 46
1158
    ///       |  |  |
1159
    ///     102 89 46
1160
    /// ```
1161
    ///
1162
    /// In general, Rayon will attempt to find good breaking points
1163
    /// that keep all of your cores busy.
1164
    ///
1165
    /// ### Fold versus reduce
1166
    ///
1167
    /// The `fold()` and `reduce()` methods each take an identity element
1168
    /// and a combining function, but they operate rather differently.
1169
    ///
1170
    /// `reduce()` requires that the identity function has the same
1171
    /// type as the things you are iterating over, and it fully
1172
    /// reduces the list of items into a single item. So, for example,
1173
    /// imagine we are iterating over a list of bytes `bytes: [128_u8,
1174
    /// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b:
1175
    /// u8| a + b)`, we would get an overflow. This is because `0`,
1176
    /// `a`, and `b` here are all bytes, just like the numbers in the
1177
    /// list (I wrote the types explicitly above, but those are the
1178
    /// only types you can use). To avoid the overflow, we would need
1179
    /// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a,
1180
    /// b| a + b)`, in which case our result would be `256`.
1181
    ///
1182
    /// In contrast, with `fold()`, the identity function does not
1183
    /// have to have the same type as the things you are iterating
1184
    /// over, and you potentially get back many results. So, if we
1185
    /// continue with the `bytes` example from the previous paragraph,
1186
    /// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to
1187
    /// convert our bytes into `u32`. And of course we might not get
1188
    /// back a single sum.
1189
    ///
1190
    /// There is a more subtle distinction as well, though it's
1191
    /// actually implied by the above points. When you use `reduce()`,
1192
    /// your reduction function is sometimes called with values that
1193
    /// were never part of your original parallel iterator (for
1194
    /// example, both the left and right might be a partial sum). With
1195
    /// `fold()`, in contrast, the left value in the fold function is
1196
    /// always the accumulator, and the right value is always from
1197
    /// your original sequence.
1198
    ///
1199
    /// ### Fold vs Map/Reduce
1200
    ///
1201
    /// Fold makes sense if you have some operation where it is
1202
    /// cheaper to create groups of elements at a time. For example,
1203
    /// imagine collecting characters into a string. If you were going
1204
    /// to use map/reduce, you might try this:
1205
    ///
1206
    /// ```
1207
    /// use rayon::prelude::*;
1208
    ///
1209
    /// let s =
1210
    ///     ['a', 'b', 'c', 'd', 'e']
1211
    ///     .par_iter()
1212
    ///     .map(|c: &char| format!("{}", c))
1213
    ///     .reduce(|| String::new(),
1214
    ///             |mut a: String, b: String| { a.push_str(&b); a });
1215
    ///
1216
    /// assert_eq!(s, "abcde");
1217
    /// ```
1218
    ///
1219
    /// Because reduce produces the same type of element as its input,
1220
    /// you have to first map each character into a string, and then
1221
    /// you can reduce them. This means we create one string per
1222
    /// element in our iterator -- not so great. Using `fold`, we can
1223
    /// do this instead:
1224
    ///
1225
    /// ```
1226
    /// use rayon::prelude::*;
1227
    ///
1228
    /// let s =
1229
    ///     ['a', 'b', 'c', 'd', 'e']
1230
    ///     .par_iter()
1231
    ///     .fold(|| String::new(),
1232
    ///             |mut s: String, c: &char| { s.push(*c); s })
1233
    ///     .reduce(|| String::new(),
1234
    ///             |mut a: String, b: String| { a.push_str(&b); a });
1235
    ///
1236
    /// assert_eq!(s, "abcde");
1237
    /// ```
1238
    ///
1239
    /// Now `fold` will process groups of our characters at a time,
1240
    /// and we only make one string per group. We should wind up with
1241
    /// some small-ish number of strings roughly proportional to the
1242
    /// number of CPUs you have (it will ultimately depend on how busy
1243
    /// your processors are). Note that we still need to do a reduce
1244
    /// afterwards to combine those groups of strings into a single
1245
    /// string.
1246
    ///
1247
    /// You could use a similar trick to save partial results (e.g., a
1248
    /// cache) or something similar.
1249
    ///
1250
    /// ### Combining fold with other operations
1251
    ///
1252
    /// You can combine `fold` with `reduce` if you want to produce a
1253
    /// single value. This is then roughly equivalent to a map/reduce
1254
    /// combination in effect:
1255
    ///
1256
    /// ```
1257
    /// use rayon::prelude::*;
1258
    ///
1259
    /// let bytes = 0..22_u8;
1260
    /// let sum = bytes.into_par_iter()
1261
    ///                .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32))
1262
    ///                .sum::<u32>();
1263
    ///
1264
    /// assert_eq!(sum, (0..22).sum()); // compare to sequential
1265
    /// ```
1266
0
    fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F>
1267
0
    where
1268
0
        F: Fn(T, Self::Item) -> T + Sync + Send,
1269
0
        ID: Fn() -> T + Sync + Send,
1270
0
        T: Send,
1271
    {
1272
0
        Fold::new(self, identity, fold_op)
1273
0
    }
1274
1275
    /// Applies `fold_op` to the given `init` value with each item of this
1276
    /// iterator, finally producing the value for further use.
1277
    ///
1278
    /// This works essentially like `fold(|| init.clone(), fold_op)`, except
1279
    /// it doesn't require the `init` type to be `Sync`, nor any other form
1280
    /// of added synchronization.
1281
    ///
1282
    /// # Examples
1283
    ///
1284
    /// ```
1285
    /// use rayon::prelude::*;
1286
    ///
1287
    /// let bytes = 0..22_u8;
1288
    /// let sum = bytes.into_par_iter()
1289
    ///                .fold_with(0_u32, |a: u32, b: u8| a + (b as u32))
1290
    ///                .sum::<u32>();
1291
    ///
1292
    /// assert_eq!(sum, (0..22).sum()); // compare to sequential
1293
    /// ```
1294
0
    fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F>
1295
0
    where
1296
0
        F: Fn(T, Self::Item) -> T + Sync + Send,
1297
0
        T: Send + Clone,
1298
    {
1299
0
        FoldWith::new(self, init, fold_op)
1300
0
    }
1301
1302
    /// Performs a fallible parallel fold.
1303
    ///
1304
    /// This is a variation of [`fold()`] for operations which can fail with
1305
    /// `Option::None` or `Result::Err`.  The first such failure stops
1306
    /// processing the local set of items, without affecting other folds in the
1307
    /// iterator's subdivisions.
1308
    ///
1309
    /// Often, `try_fold()` will be followed by [`try_reduce()`]
1310
    /// for a final reduction and global short-circuiting effect.
1311
    ///
1312
    /// [`fold()`]: #method.fold
1313
    /// [`try_reduce()`]: #method.try_reduce
1314
    ///
1315
    /// # Examples
1316
    ///
1317
    /// ```
1318
    /// use rayon::prelude::*;
1319
    ///
1320
    /// let bytes = 0..22_u8;
1321
    /// let sum = bytes.into_par_iter()
1322
    ///                .try_fold(|| 0_u32, |a: u32, b: u8| a.checked_add(b as u32))
1323
    ///                .try_reduce(|| 0, u32::checked_add);
1324
    ///
1325
    /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential
1326
    /// ```
1327
0
    fn try_fold<T, R, ID, F>(self, identity: ID, fold_op: F) -> TryFold<Self, R, ID, F>
1328
0
    where
1329
0
        F: Fn(T, Self::Item) -> R + Sync + Send,
1330
0
        ID: Fn() -> T + Sync + Send,
1331
0
        R: Try<Output = T> + Send,
1332
    {
1333
0
        TryFold::new(self, identity, fold_op)
1334
0
    }
1335
1336
    /// Performs a fallible parallel fold with a cloneable `init` value.
1337
    ///
1338
    /// This combines the `init` semantics of [`fold_with()`] and the failure
1339
    /// semantics of [`try_fold()`].
1340
    ///
1341
    /// [`fold_with()`]: #method.fold_with
1342
    /// [`try_fold()`]: #method.try_fold
1343
    ///
1344
    /// ```
1345
    /// use rayon::prelude::*;
1346
    ///
1347
    /// let bytes = 0..22_u8;
1348
    /// let sum = bytes.into_par_iter()
1349
    ///                .try_fold_with(0_u32, |a: u32, b: u8| a.checked_add(b as u32))
1350
    ///                .try_reduce(|| 0, u32::checked_add);
1351
    ///
1352
    /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential
1353
    /// ```
1354
0
    fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F>
1355
0
    where
1356
0
        F: Fn(T, Self::Item) -> R + Sync + Send,
1357
0
        R: Try<Output = T> + Send,
1358
0
        T: Clone + Send,
1359
    {
1360
0
        TryFoldWith::new(self, init, fold_op)
1361
0
    }
1362
1363
    /// Sums up the items in the iterator.
1364
    ///
1365
    /// Note that the order in items will be reduced is not specified,
1366
    /// so if the `+` operator is not truly [associative] \(as is the
1367
    /// case for floating point numbers), then the results are not
1368
    /// fully deterministic.
1369
    ///
1370
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
1371
    ///
1372
    /// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`,
1373
    /// except that the type of `0` and the `+` operation may vary
1374
    /// depending on the type of value being produced.
1375
    ///
1376
    /// # Examples
1377
    ///
1378
    /// ```
1379
    /// use rayon::prelude::*;
1380
    ///
1381
    /// let a = [1, 5, 7];
1382
    ///
1383
    /// let sum: i32 = a.par_iter().sum();
1384
    ///
1385
    /// assert_eq!(sum, 13);
1386
    /// ```
1387
0
    fn sum<S>(self) -> S
1388
0
    where
1389
0
        S: Send + Sum<Self::Item> + Sum<S>,
1390
    {
1391
0
        sum::sum(self)
1392
0
    }
1393
1394
    /// Multiplies all the items in the iterator.
1395
    ///
1396
    /// Note that the order in items will be reduced is not specified,
1397
    /// so if the `*` operator is not truly [associative] \(as is the
1398
    /// case for floating point numbers), then the results are not
1399
    /// fully deterministic.
1400
    ///
1401
    /// [associative]: https://en.wikipedia.org/wiki/Associative_property
1402
    ///
1403
    /// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`,
1404
    /// except that the type of `1` and the `*` operation may vary
1405
    /// depending on the type of value being produced.
1406
    ///
1407
    /// # Examples
1408
    ///
1409
    /// ```
1410
    /// use rayon::prelude::*;
1411
    ///
1412
    /// fn factorial(n: u32) -> u32 {
1413
    ///    (1..n+1).into_par_iter().product()
1414
    /// }
1415
    ///
1416
    /// assert_eq!(factorial(0), 1);
1417
    /// assert_eq!(factorial(1), 1);
1418
    /// assert_eq!(factorial(5), 120);
1419
    /// ```
1420
0
    fn product<P>(self) -> P
1421
0
    where
1422
0
        P: Send + Product<Self::Item> + Product<P>,
1423
    {
1424
0
        product::product(self)
1425
0
    }
1426
1427
    /// Computes the minimum of all the items in the iterator. If the
1428
    /// iterator is empty, `None` is returned; otherwise, `Some(min)`
1429
    /// is returned.
1430
    ///
1431
    /// Note that the order in which the items will be reduced is not
1432
    /// specified, so if the `Ord` impl is not truly associative, then
1433
    /// the results are not deterministic.
1434
    ///
1435
    /// Basically equivalent to `self.reduce_with(|a, b| Ord::min(a, b))`.
1436
    ///
1437
    /// # Examples
1438
    ///
1439
    /// ```
1440
    /// use rayon::prelude::*;
1441
    ///
1442
    /// let a = [45, 74, 32];
1443
    ///
1444
    /// assert_eq!(a.par_iter().min(), Some(&32));
1445
    ///
1446
    /// let b: [i32; 0] = [];
1447
    ///
1448
    /// assert_eq!(b.par_iter().min(), None);
1449
    /// ```
1450
0
    fn min(self) -> Option<Self::Item>
1451
0
    where
1452
0
        Self::Item: Ord,
1453
    {
1454
0
        self.reduce_with(Ord::min)
1455
0
    }
1456
1457
    /// Computes the minimum of all the items in the iterator with respect to
1458
    /// the given comparison function. If the iterator is empty, `None` is
1459
    /// returned; otherwise, `Some(min)` is returned.
1460
    ///
1461
    /// Note that the order in which the items will be reduced is not
1462
    /// specified, so if the comparison function is not associative, then
1463
    /// the results are not deterministic.
1464
    ///
1465
    /// # Examples
1466
    ///
1467
    /// ```
1468
    /// use rayon::prelude::*;
1469
    ///
1470
    /// let a = [-3_i32, 77, 53, 240, -1];
1471
    ///
1472
    /// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3));
1473
    /// ```
1474
0
    fn min_by<F>(self, f: F) -> Option<Self::Item>
1475
0
    where
1476
0
        F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering,
1477
    {
1478
0
        fn min<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T {
1479
0
            move |a, b| match f(&a, &b) {
1480
0
                Ordering::Greater => b,
1481
0
                _ => a,
1482
0
            }
1483
0
        }
1484
1485
0
        self.reduce_with(min(f))
1486
0
    }
1487
1488
    /// Computes the item that yields the minimum value for the given
1489
    /// function. If the iterator is empty, `None` is returned;
1490
    /// otherwise, `Some(item)` is returned.
1491
    ///
1492
    /// Note that the order in which the items will be reduced is not
1493
    /// specified, so if the `Ord` impl is not truly associative, then
1494
    /// the results are not deterministic.
1495
    ///
1496
    /// # Examples
1497
    ///
1498
    /// ```
1499
    /// use rayon::prelude::*;
1500
    ///
1501
    /// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
1502
    ///
1503
    /// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2));
1504
    /// ```
1505
0
    fn min_by_key<K, F>(self, f: F) -> Option<Self::Item>
1506
0
    where
1507
0
        K: Ord + Send,
1508
0
        F: Sync + Send + Fn(&Self::Item) -> K,
1509
    {
1510
0
        fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) {
1511
0
            move |x| (f(&x), x)
1512
0
        }
1513
1514
0
        fn min_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) {
1515
0
            match (a.0).cmp(&b.0) {
1516
0
                Ordering::Greater => b,
1517
0
                _ => a,
1518
            }
1519
0
        }
1520
1521
0
        let (_, x) = self.map(key(f)).reduce_with(min_key)?;
1522
0
        Some(x)
1523
0
    }
1524
1525
    /// Computes the maximum of all the items in the iterator. If the
1526
    /// iterator is empty, `None` is returned; otherwise, `Some(max)`
1527
    /// is returned.
1528
    ///
1529
    /// Note that the order in which the items will be reduced is not
1530
    /// specified, so if the `Ord` impl is not truly associative, then
1531
    /// the results are not deterministic.
1532
    ///
1533
    /// Basically equivalent to `self.reduce_with(|a, b| Ord::max(a, b))`.
1534
    ///
1535
    /// # Examples
1536
    ///
1537
    /// ```
1538
    /// use rayon::prelude::*;
1539
    ///
1540
    /// let a = [45, 74, 32];
1541
    ///
1542
    /// assert_eq!(a.par_iter().max(), Some(&74));
1543
    ///
1544
    /// let b: [i32; 0] = [];
1545
    ///
1546
    /// assert_eq!(b.par_iter().max(), None);
1547
    /// ```
1548
0
    fn max(self) -> Option<Self::Item>
1549
0
    where
1550
0
        Self::Item: Ord,
1551
    {
1552
0
        self.reduce_with(Ord::max)
1553
0
    }
1554
1555
    /// Computes the maximum of all the items in the iterator with respect to
1556
    /// the given comparison function. If the iterator is empty, `None` is
1557
    /// returned; otherwise, `Some(max)` is returned.
1558
    ///
1559
    /// Note that the order in which the items will be reduced is not
1560
    /// specified, so if the comparison function is not associative, then
1561
    /// the results are not deterministic.
1562
    ///
1563
    /// # Examples
1564
    ///
1565
    /// ```
1566
    /// use rayon::prelude::*;
1567
    ///
1568
    /// let a = [-3_i32, 77, 53, 240, -1];
1569
    ///
1570
    /// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240));
1571
    /// ```
1572
0
    fn max_by<F>(self, f: F) -> Option<Self::Item>
1573
0
    where
1574
0
        F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering,
1575
    {
1576
0
        fn max<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T {
1577
0
            move |a, b| match f(&a, &b) {
1578
0
                Ordering::Greater => a,
1579
0
                _ => b,
1580
0
            }
1581
0
        }
1582
1583
0
        self.reduce_with(max(f))
1584
0
    }
1585
1586
    /// Computes the item that yields the maximum value for the given
1587
    /// function. If the iterator is empty, `None` is returned;
1588
    /// otherwise, `Some(item)` is returned.
1589
    ///
1590
    /// Note that the order in which the items will be reduced is not
1591
    /// specified, so if the `Ord` impl is not truly associative, then
1592
    /// the results are not deterministic.
1593
    ///
1594
    /// # Examples
1595
    ///
1596
    /// ```
1597
    /// use rayon::prelude::*;
1598
    ///
1599
    /// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
1600
    ///
1601
    /// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34));
1602
    /// ```
1603
0
    fn max_by_key<K, F>(self, f: F) -> Option<Self::Item>
1604
0
    where
1605
0
        K: Ord + Send,
1606
0
        F: Sync + Send + Fn(&Self::Item) -> K,
1607
    {
1608
0
        fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) {
1609
0
            move |x| (f(&x), x)
1610
0
        }
1611
1612
0
        fn max_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) {
1613
0
            match (a.0).cmp(&b.0) {
1614
0
                Ordering::Greater => a,
1615
0
                _ => b,
1616
            }
1617
0
        }
1618
1619
0
        let (_, x) = self.map(key(f)).reduce_with(max_key)?;
1620
0
        Some(x)
1621
0
    }
1622
1623
    /// Takes two iterators and creates a new iterator over both.
1624
    ///
1625
    /// # Examples
1626
    ///
1627
    /// ```
1628
    /// use rayon::prelude::*;
1629
    ///
1630
    /// let a = [0, 1, 2];
1631
    /// let b = [9, 8, 7];
1632
    ///
1633
    /// let par_iter = a.par_iter().chain(b.par_iter());
1634
    ///
1635
    /// let chained: Vec<_> = par_iter.cloned().collect();
1636
    ///
1637
    /// assert_eq!(&chained[..], &[0, 1, 2, 9, 8, 7]);
1638
    /// ```
1639
0
    fn chain<C>(self, chain: C) -> Chain<Self, C::Iter>
1640
0
    where
1641
0
        C: IntoParallelIterator<Item = Self::Item>,
1642
    {
1643
0
        Chain::new(self, chain.into_par_iter())
1644
0
    }
Unexecuted instantiation: <rayon::range::Iter<i8> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<i8>>
Unexecuted instantiation: <rayon::range::Iter<u8> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<u8>>
Unexecuted instantiation: <rayon::range::Iter<isize> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<isize>>
Unexecuted instantiation: <rayon::range::Iter<usize> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<usize>>
Unexecuted instantiation: <rayon::range::Iter<i32> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<i32>>
Unexecuted instantiation: <rayon::range::Iter<u32> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<u32>>
Unexecuted instantiation: <rayon::range::Iter<i128> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<i128>>
Unexecuted instantiation: <rayon::range::Iter<u128> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<u128>>
Unexecuted instantiation: <rayon::range::Iter<i16> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<i16>>
Unexecuted instantiation: <rayon::range::Iter<u16> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<u16>>
Unexecuted instantiation: <rayon::range::Iter<i64> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<i64>>
Unexecuted instantiation: <rayon::range::Iter<u64> as rayon::iter::ParallelIterator>::chain::<rayon::iter::once::Once<u64>>
1645
1646
    /// Searches for **some** item in the parallel iterator that
1647
    /// matches the given predicate and returns it. This operation
1648
    /// is similar to [`find` on sequential iterators][find] but
1649
    /// the item returned may not be the **first** one in the parallel
1650
    /// sequence which matches, since we search the entire sequence in parallel.
1651
    ///
1652
    /// Once a match is found, we will attempt to stop processing
1653
    /// the rest of the items in the iterator as soon as possible
1654
    /// (just as `find` stops iterating once a match is found).
1655
    ///
1656
    /// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find
1657
    ///
1658
    /// # Examples
1659
    ///
1660
    /// ```
1661
    /// use rayon::prelude::*;
1662
    ///
1663
    /// let a = [1, 2, 3, 3];
1664
    ///
1665
    /// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3));
1666
    ///
1667
    /// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None);
1668
    /// ```
1669
0
    fn find_any<P>(self, predicate: P) -> Option<Self::Item>
1670
0
    where
1671
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
1672
    {
1673
0
        find::find(self, predicate)
1674
0
    }
1675
1676
    /// Searches for the sequentially **first** item in the parallel iterator
1677
    /// that matches the given predicate and returns it.
1678
    ///
1679
    /// Once a match is found, all attempts to the right of the match
1680
    /// will be stopped, while attempts to the left must continue in case
1681
    /// an earlier match is found.
1682
    ///
1683
    /// For added performance, you might consider using `find_first` in conjunction with
1684
    /// [`by_exponential_blocks()`][IndexedParallelIterator::by_exponential_blocks].
1685
    ///
1686
    /// Note that not all parallel iterators have a useful order, much like
1687
    /// sequential `HashMap` iteration, so "first" may be nebulous.  If you
1688
    /// just want the first match that discovered anywhere in the iterator,
1689
    /// `find_any` is a better choice.
1690
    ///
1691
    /// # Examples
1692
    ///
1693
    /// ```
1694
    /// use rayon::prelude::*;
1695
    ///
1696
    /// let a = [1, 2, 3, 3];
1697
    ///
1698
    /// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3));
1699
    ///
1700
    /// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None);
1701
    /// ```
1702
0
    fn find_first<P>(self, predicate: P) -> Option<Self::Item>
1703
0
    where
1704
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
1705
    {
1706
0
        find_first_last::find_first(self, predicate)
1707
0
    }
1708
1709
    /// Searches for the sequentially **last** item in the parallel iterator
1710
    /// that matches the given predicate and returns it.
1711
    ///
1712
    /// Once a match is found, all attempts to the left of the match
1713
    /// will be stopped, while attempts to the right must continue in case
1714
    /// a later match is found.
1715
    ///
1716
    /// Note that not all parallel iterators have a useful order, much like
1717
    /// sequential `HashMap` iteration, so "last" may be nebulous.  When the
1718
    /// order doesn't actually matter to you, `find_any` is a better choice.
1719
    ///
1720
    /// # Examples
1721
    ///
1722
    /// ```
1723
    /// use rayon::prelude::*;
1724
    ///
1725
    /// let a = [1, 2, 3, 3];
1726
    ///
1727
    /// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3));
1728
    ///
1729
    /// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None);
1730
    /// ```
1731
0
    fn find_last<P>(self, predicate: P) -> Option<Self::Item>
1732
0
    where
1733
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
1734
    {
1735
0
        find_first_last::find_last(self, predicate)
1736
0
    }
1737
1738
    /// Applies the given predicate to the items in the parallel iterator
1739
    /// and returns **any** non-None result of the map operation.
1740
    ///
1741
    /// Once a non-None value is produced from the map operation, we will
1742
    /// attempt to stop processing the rest of the items in the iterator
1743
    /// as soon as possible.
1744
    ///
1745
    /// Note that this method only returns **some** item in the parallel
1746
    /// iterator that is not None from the map predicate. The item returned
1747
    /// may not be the **first** non-None value produced in the parallel
1748
    /// sequence, since the entire sequence is mapped over in parallel.
1749
    ///
1750
    /// # Examples
1751
    ///
1752
    /// ```
1753
    /// use rayon::prelude::*;
1754
    ///
1755
    /// let c = ["lol", "NaN", "5", "5"];
1756
    ///
1757
    /// let found_number = c.par_iter().find_map_any(|s| s.parse().ok());
1758
    ///
1759
    /// assert_eq!(found_number, Some(5));
1760
    /// ```
1761
0
    fn find_map_any<P, R>(self, predicate: P) -> Option<R>
1762
0
    where
1763
0
        P: Fn(Self::Item) -> Option<R> + Sync + Send,
1764
0
        R: Send,
1765
    {
1766
0
        fn yes<T>(_: &T) -> bool {
1767
0
            true
1768
0
        }
1769
0
        self.filter_map(predicate).find_any(yes)
1770
0
    }
1771
1772
    /// Applies the given predicate to the items in the parallel iterator and
1773
    /// returns the sequentially **first** non-None result of the map operation.
1774
    ///
1775
    /// Once a non-None value is produced from the map operation, all attempts
1776
    /// to the right of the match will be stopped, while attempts to the left
1777
    /// must continue in case an earlier match is found.
1778
    ///
1779
    /// Note that not all parallel iterators have a useful order, much like
1780
    /// sequential `HashMap` iteration, so "first" may be nebulous. If you
1781
    /// just want the first non-None value discovered anywhere in the iterator,
1782
    /// `find_map_any` is a better choice.
1783
    ///
1784
    /// # Examples
1785
    ///
1786
    /// ```
1787
    /// use rayon::prelude::*;
1788
    ///
1789
    /// let c = ["lol", "NaN", "2", "5"];
1790
    ///
1791
    /// let first_number = c.par_iter().find_map_first(|s| s.parse().ok());
1792
    ///
1793
    /// assert_eq!(first_number, Some(2));
1794
    /// ```
1795
0
    fn find_map_first<P, R>(self, predicate: P) -> Option<R>
1796
0
    where
1797
0
        P: Fn(Self::Item) -> Option<R> + Sync + Send,
1798
0
        R: Send,
1799
    {
1800
0
        fn yes<T>(_: &T) -> bool {
1801
0
            true
1802
0
        }
1803
0
        self.filter_map(predicate).find_first(yes)
1804
0
    }
1805
1806
    /// Applies the given predicate to the items in the parallel iterator and
1807
    /// returns the sequentially **last** non-None result of the map operation.
1808
    ///
1809
    /// Once a non-None value is produced from the map operation, all attempts
1810
    /// to the left of the match will be stopped, while attempts to the right
1811
    /// must continue in case a later match is found.
1812
    ///
1813
    /// Note that not all parallel iterators have a useful order, much like
1814
    /// sequential `HashMap` iteration, so "first" may be nebulous. If you
1815
    /// just want the first non-None value discovered anywhere in the iterator,
1816
    /// `find_map_any` is a better choice.
1817
    ///
1818
    /// # Examples
1819
    ///
1820
    /// ```
1821
    /// use rayon::prelude::*;
1822
    ///
1823
    /// let c = ["lol", "NaN", "2", "5"];
1824
    ///
1825
    /// let last_number = c.par_iter().find_map_last(|s| s.parse().ok());
1826
    ///
1827
    /// assert_eq!(last_number, Some(5));
1828
    /// ```
1829
0
    fn find_map_last<P, R>(self, predicate: P) -> Option<R>
1830
0
    where
1831
0
        P: Fn(Self::Item) -> Option<R> + Sync + Send,
1832
0
        R: Send,
1833
    {
1834
0
        fn yes<T>(_: &T) -> bool {
1835
0
            true
1836
0
        }
1837
0
        self.filter_map(predicate).find_last(yes)
1838
0
    }
1839
1840
    #[doc(hidden)]
1841
    #[deprecated(note = "parallel `find` does not search in order -- use `find_any`, \\
1842
                         `find_first`, or `find_last`")]
1843
0
    fn find<P>(self, predicate: P) -> Option<Self::Item>
1844
0
    where
1845
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
1846
    {
1847
0
        self.find_any(predicate)
1848
0
    }
1849
1850
    /// Searches for **some** item in the parallel iterator that
1851
    /// matches the given predicate, and if so returns true.  Once
1852
    /// a match is found, we'll attempt to stop process the rest
1853
    /// of the items.  Proving that there's no match, returning false,
1854
    /// does require visiting every item.
1855
    ///
1856
    /// # Examples
1857
    ///
1858
    /// ```
1859
    /// use rayon::prelude::*;
1860
    ///
1861
    /// let a = [0, 12, 3, 4, 0, 23, 0];
1862
    ///
1863
    /// let is_valid = a.par_iter().any(|&x| x > 10);
1864
    ///
1865
    /// assert!(is_valid);
1866
    /// ```
1867
0
    fn any<P>(self, predicate: P) -> bool
1868
0
    where
1869
0
        P: Fn(Self::Item) -> bool + Sync + Send,
1870
    {
1871
0
        self.map(predicate).find_any(bool::clone).is_some()
1872
0
    }
1873
1874
    /// Tests that every item in the parallel iterator matches the given
1875
    /// predicate, and if so returns true.  If a counter-example is found,
1876
    /// we'll attempt to stop processing more items, then return false.
1877
    ///
1878
    /// # Examples
1879
    ///
1880
    /// ```
1881
    /// use rayon::prelude::*;
1882
    ///
1883
    /// let a = [0, 12, 3, 4, 0, 23, 0];
1884
    ///
1885
    /// let is_valid = a.par_iter().all(|&x| x > 10);
1886
    ///
1887
    /// assert!(!is_valid);
1888
    /// ```
1889
0
    fn all<P>(self, predicate: P) -> bool
1890
0
    where
1891
0
        P: Fn(Self::Item) -> bool + Sync + Send,
1892
    {
1893
        #[inline]
1894
0
        fn is_false(x: &bool) -> bool {
1895
0
            !x
1896
0
        }
1897
1898
0
        self.map(predicate).find_any(is_false).is_none()
1899
0
    }
1900
1901
    /// Creates an iterator over the `Some` items of this iterator, halting
1902
    /// as soon as any `None` is found.
1903
    ///
1904
    /// # Examples
1905
    ///
1906
    /// ```
1907
    /// use rayon::prelude::*;
1908
    /// use std::sync::atomic::{AtomicUsize, Ordering};
1909
    ///
1910
    /// let counter = AtomicUsize::new(0);
1911
    /// let value = (0_i32..2048)
1912
    ///     .into_par_iter()
1913
    ///     .map(|x| {
1914
    ///              counter.fetch_add(1, Ordering::SeqCst);
1915
    ///              if x < 1024 { Some(x) } else { None }
1916
    ///          })
1917
    ///     .while_some()
1918
    ///     .max();
1919
    ///
1920
    /// assert!(value < Some(1024));
1921
    /// assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one
1922
    /// ```
1923
0
    fn while_some<T>(self) -> WhileSome<Self>
1924
0
    where
1925
0
        Self: ParallelIterator<Item = Option<T>>,
1926
0
        T: Send,
1927
    {
1928
0
        WhileSome::new(self)
1929
0
    }
1930
1931
    /// Wraps an iterator with a fuse in case of panics, to halt all threads
1932
    /// as soon as possible.
1933
    ///
1934
    /// Panics within parallel iterators are always propagated to the caller,
1935
    /// but they don't always halt the rest of the iterator right away, due to
1936
    /// the internal semantics of [`join`]. This adaptor makes a greater effort
1937
    /// to stop processing other items sooner, with the cost of additional
1938
    /// synchronization overhead, which may also inhibit some optimizations.
1939
    ///
1940
    /// [`join`]: ../fn.join.html#panics
1941
    ///
1942
    /// # Examples
1943
    ///
1944
    /// If this code didn't use `panic_fuse()`, it would continue processing
1945
    /// many more items in other threads (with long sleep delays) before the
1946
    /// panic is finally propagated.
1947
    ///
1948
    /// ```should_panic
1949
    /// use rayon::prelude::*;
1950
    /// use std::{thread, time};
1951
    ///
1952
    /// (0..1_000_000)
1953
    ///     .into_par_iter()
1954
    ///     .panic_fuse()
1955
    ///     .for_each(|i| {
1956
    ///         // simulate some work
1957
    ///         thread::sleep(time::Duration::from_secs(1));
1958
    ///         assert!(i > 0); // oops!
1959
    ///     });
1960
    /// ```
1961
0
    fn panic_fuse(self) -> PanicFuse<Self> {
1962
0
        PanicFuse::new(self)
1963
0
    }
1964
1965
    /// Creates a fresh collection containing all the elements produced
1966
    /// by this parallel iterator.
1967
    ///
1968
    /// You may prefer [`collect_into_vec()`] implemented on
1969
    /// [`IndexedParallelIterator`], if your underlying iterator also implements
1970
    /// it. [`collect_into_vec()`] allocates efficiently with precise knowledge
1971
    /// of how many elements the iterator contains, and even allows you to reuse
1972
    /// an existing vector's backing store rather than allocating a fresh vector.
1973
    ///
1974
    /// See also [`collect_vec_list()`][Self::collect_vec_list] for collecting
1975
    /// into a `LinkedList<Vec<T>>`.
1976
    ///
1977
    /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
1978
    /// [`collect_into_vec()`]:
1979
    ///     trait.IndexedParallelIterator.html#method.collect_into_vec
1980
    ///
1981
    /// # Examples
1982
    ///
1983
    /// ```
1984
    /// use rayon::prelude::*;
1985
    ///
1986
    /// let sync_vec: Vec<_> = (0..100).into_iter().collect();
1987
    ///
1988
    /// let async_vec: Vec<_> = (0..100).into_par_iter().collect();
1989
    ///
1990
    /// assert_eq!(sync_vec, async_vec);
1991
    /// ```
1992
    ///
1993
    /// You can collect a pair of collections like [`unzip`](#method.unzip)
1994
    /// for paired items:
1995
    ///
1996
    /// ```
1997
    /// use rayon::prelude::*;
1998
    ///
1999
    /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)];
2000
    /// let (first, second): (Vec<_>, Vec<_>) = a.into_par_iter().collect();
2001
    ///
2002
    /// assert_eq!(first, [0, 1, 2, 3]);
2003
    /// assert_eq!(second, [1, 2, 3, 4]);
2004
    /// ```
2005
    ///
2006
    /// Or like [`partition_map`](#method.partition_map) for `Either` items:
2007
    ///
2008
    /// ```
2009
    /// use rayon::prelude::*;
2010
    /// use rayon::iter::Either;
2011
    ///
2012
    /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().map(|x| {
2013
    ///     if x % 2 == 0 {
2014
    ///         Either::Left(x * 4)
2015
    ///     } else {
2016
    ///         Either::Right(x * 3)
2017
    ///     }
2018
    /// }).collect();
2019
    ///
2020
    /// assert_eq!(left, [0, 8, 16, 24]);
2021
    /// assert_eq!(right, [3, 9, 15, 21]);
2022
    /// ```
2023
    ///
2024
    /// You can even collect an arbitrarily-nested combination of pairs and `Either`:
2025
    ///
2026
    /// ```
2027
    /// use rayon::prelude::*;
2028
    /// use rayon::iter::Either;
2029
    ///
2030
    /// let (first, (left, right)): (Vec<_>, (Vec<_>, Vec<_>))
2031
    ///     = (0..8).into_par_iter().map(|x| {
2032
    ///         if x % 2 == 0 {
2033
    ///             (x, Either::Left(x * 4))
2034
    ///         } else {
2035
    ///             (-x, Either::Right(x * 3))
2036
    ///         }
2037
    ///     }).collect();
2038
    ///
2039
    /// assert_eq!(first, [0, -1, 2, -3, 4, -5, 6, -7]);
2040
    /// assert_eq!(left, [0, 8, 16, 24]);
2041
    /// assert_eq!(right, [3, 9, 15, 21]);
2042
    /// ```
2043
    ///
2044
    /// All of that can _also_ be combined with short-circuiting collection of
2045
    /// `Result` or `Option` types:
2046
    ///
2047
    /// ```
2048
    /// use rayon::prelude::*;
2049
    /// use rayon::iter::Either;
2050
    ///
2051
    /// let result: Result<(Vec<_>, (Vec<_>, Vec<_>)), _>
2052
    ///     = (0..8).into_par_iter().map(|x| {
2053
    ///         if x > 5 {
2054
    ///             Err(x)
2055
    ///         } else if x % 2 == 0 {
2056
    ///             Ok((x, Either::Left(x * 4)))
2057
    ///         } else {
2058
    ///             Ok((-x, Either::Right(x * 3)))
2059
    ///         }
2060
    ///     }).collect();
2061
    ///
2062
    /// let error = result.unwrap_err();
2063
    /// assert!(error == 6 || error == 7);
2064
    /// ```
2065
0
    fn collect<C>(self) -> C
2066
0
    where
2067
0
        C: FromParallelIterator<Self::Item>,
2068
    {
2069
0
        C::from_par_iter(self)
2070
0
    }
Unexecuted instantiation: <rayon::iter::map::Map<rayon::iter::enumerate::Enumerate<rayon::iter::len::MaxLen<rayon::slice::chunks::ChunksMut<surrealdb_core::val::Value>>>, rayon::slice::mergesort::par_mergesort<surrealdb_core::val::Value, <ext_sort::buffer::LimitedBuffer<surrealdb_core::val::Value> as rayon::slice::ParallelSliceMut<surrealdb_core::val::Value>>::par_sort_by<<surrealdb_core::dbs::file::FileCollector>::sort_and_take_vec::{closure#0}::{closure#2}::{closure#0}>::{closure#0}>::{closure#0}> as rayon::iter::ParallelIterator>::collect::<alloc::vec::Vec<(usize, usize, rayon::slice::mergesort::MergesortResult)>>
Unexecuted instantiation: <rayon::iter::filter_map::FilterMap<rayon::iter::filter::Filter<rayon::iter::flatten::Flatten<rayon::iter::map::Map<rayon::iter::par_bridge::IterBridge<std::fs::ReadDir>, sysinfo::unix::linux::process::refresh_procs::{closure#0}>>, sysinfo::unix::linux::process::refresh_procs::{closure#1}>, sysinfo::unix::linux::process::refresh_procs::{closure#2}> as rayon::iter::ParallelIterator>::collect::<alloc::vec::Vec<sysinfo::common::system::Process>>
Unexecuted instantiation: <rayon::iter::map::Map<rayon::slice::IterMut<alloc::vec::Vec<i_overlay::split::fragment::Fragment>>, <i_overlay::split::solver::SplitSolver>::parallel_split::{closure#0}> as rayon::iter::ParallelIterator>::collect::<alloc::vec::Vec<<i_overlay::split::solver::SplitSolver>::parallel_split::TaskResult>>
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::collect::<_>
2071
2072
    /// Unzips the items of a parallel iterator into a pair of arbitrary
2073
    /// `ParallelExtend` containers.
2074
    ///
2075
    /// You may prefer to use `unzip_into_vecs()`, which allocates more
2076
    /// efficiently with precise knowledge of how many elements the
2077
    /// iterator contains, and even allows you to reuse existing
2078
    /// vectors' backing stores rather than allocating fresh vectors.
2079
    ///
2080
    /// # Examples
2081
    ///
2082
    /// ```
2083
    /// use rayon::prelude::*;
2084
    ///
2085
    /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)];
2086
    ///
2087
    /// let (left, right): (Vec<_>, Vec<_>) = a.par_iter().cloned().unzip();
2088
    ///
2089
    /// assert_eq!(left, [0, 1, 2, 3]);
2090
    /// assert_eq!(right, [1, 2, 3, 4]);
2091
    /// ```
2092
    ///
2093
    /// Nested pairs can be unzipped too.
2094
    ///
2095
    /// ```
2096
    /// use rayon::prelude::*;
2097
    ///
2098
    /// let (values, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = (0..4).into_par_iter()
2099
    ///     .map(|i| (i, (i * i, i * i * i)))
2100
    ///     .unzip();
2101
    ///
2102
    /// assert_eq!(values, [0, 1, 2, 3]);
2103
    /// assert_eq!(squares, [0, 1, 4, 9]);
2104
    /// assert_eq!(cubes, [0, 1, 8, 27]);
2105
    /// ```
2106
0
    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
2107
0
    where
2108
0
        Self: ParallelIterator<Item = (A, B)>,
2109
0
        FromA: Default + Send + ParallelExtend<A>,
2110
0
        FromB: Default + Send + ParallelExtend<B>,
2111
0
        A: Send,
2112
0
        B: Send,
2113
    {
2114
0
        unzip::unzip(self)
2115
0
    }
2116
2117
    /// Partitions the items of a parallel iterator into a pair of arbitrary
2118
    /// `ParallelExtend` containers.  Items for which the `predicate` returns
2119
    /// true go into the first container, and the rest go into the second.
2120
    ///
2121
    /// Note: unlike the standard `Iterator::partition`, this allows distinct
2122
    /// collection types for the left and right items.  This is more flexible,
2123
    /// but may require new type annotations when converting sequential code
2124
    /// that used type inference assuming the two were the same.
2125
    ///
2126
    /// # Examples
2127
    ///
2128
    /// ```
2129
    /// use rayon::prelude::*;
2130
    ///
2131
    /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().partition(|x| x % 2 == 0);
2132
    ///
2133
    /// assert_eq!(left, [0, 2, 4, 6]);
2134
    /// assert_eq!(right, [1, 3, 5, 7]);
2135
    /// ```
2136
0
    fn partition<A, B, P>(self, predicate: P) -> (A, B)
2137
0
    where
2138
0
        A: Default + Send + ParallelExtend<Self::Item>,
2139
0
        B: Default + Send + ParallelExtend<Self::Item>,
2140
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
2141
    {
2142
0
        unzip::partition(self, predicate)
2143
0
    }
2144
2145
    /// Partitions and maps the items of a parallel iterator into a pair of
2146
    /// arbitrary `ParallelExtend` containers.  `Either::Left` items go into
2147
    /// the first container, and `Either::Right` items go into the second.
2148
    ///
2149
    /// # Examples
2150
    ///
2151
    /// ```
2152
    /// use rayon::prelude::*;
2153
    /// use rayon::iter::Either;
2154
    ///
2155
    /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter()
2156
    ///     .partition_map(|x| {
2157
    ///         if x % 2 == 0 {
2158
    ///             Either::Left(x * 4)
2159
    ///         } else {
2160
    ///             Either::Right(x * 3)
2161
    ///         }
2162
    ///     });
2163
    ///
2164
    /// assert_eq!(left, [0, 8, 16, 24]);
2165
    /// assert_eq!(right, [3, 9, 15, 21]);
2166
    /// ```
2167
    ///
2168
    /// Nested `Either` enums can be split as well.
2169
    ///
2170
    /// ```
2171
    /// use rayon::prelude::*;
2172
    /// use rayon::iter::Either::*;
2173
    ///
2174
    /// let ((fizzbuzz, fizz), (buzz, other)): ((Vec<_>, Vec<_>), (Vec<_>, Vec<_>)) = (1..20)
2175
    ///     .into_par_iter()
2176
    ///     .partition_map(|x| match (x % 3, x % 5) {
2177
    ///         (0, 0) => Left(Left(x)),
2178
    ///         (0, _) => Left(Right(x)),
2179
    ///         (_, 0) => Right(Left(x)),
2180
    ///         (_, _) => Right(Right(x)),
2181
    ///     });
2182
    ///
2183
    /// assert_eq!(fizzbuzz, [15]);
2184
    /// assert_eq!(fizz, [3, 6, 9, 12, 18]);
2185
    /// assert_eq!(buzz, [5, 10]);
2186
    /// assert_eq!(other, [1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19]);
2187
    /// ```
2188
0
    fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B)
2189
0
    where
2190
0
        A: Default + Send + ParallelExtend<L>,
2191
0
        B: Default + Send + ParallelExtend<R>,
2192
0
        P: Fn(Self::Item) -> Either<L, R> + Sync + Send,
2193
0
        L: Send,
2194
0
        R: Send,
2195
    {
2196
0
        unzip::partition_map(self, predicate)
2197
0
    }
2198
2199
    /// Intersperses clones of an element between items of this iterator.
2200
    ///
2201
    /// # Examples
2202
    ///
2203
    /// ```
2204
    /// use rayon::prelude::*;
2205
    ///
2206
    /// let x = vec![1, 2, 3];
2207
    /// let r: Vec<_> = x.into_par_iter().intersperse(-1).collect();
2208
    ///
2209
    /// assert_eq!(r, vec![1, -1, 2, -1, 3]);
2210
    /// ```
2211
0
    fn intersperse(self, element: Self::Item) -> Intersperse<Self>
2212
0
    where
2213
0
        Self::Item: Clone,
2214
    {
2215
0
        Intersperse::new(self, element)
2216
0
    }
2217
2218
    /// Creates an iterator that yields `n` elements from *anywhere* in the original iterator.
2219
    ///
2220
    /// This is similar to [`IndexedParallelIterator::take`] without being
2221
    /// constrained to the "first" `n` of the original iterator order. The
2222
    /// taken items will still maintain their relative order where that is
2223
    /// visible in `collect`, `reduce`, and similar outputs.
2224
    ///
2225
    /// # Examples
2226
    ///
2227
    /// ```
2228
    /// use rayon::prelude::*;
2229
    ///
2230
    /// let result: Vec<_> = (0..100)
2231
    ///     .into_par_iter()
2232
    ///     .filter(|&x| x % 2 == 0)
2233
    ///     .take_any(5)
2234
    ///     .collect();
2235
    ///
2236
    /// assert_eq!(result.len(), 5);
2237
    /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2238
    /// ```
2239
0
    fn take_any(self, n: usize) -> TakeAny<Self> {
2240
0
        TakeAny::new(self, n)
2241
0
    }
2242
2243
    /// Creates an iterator that skips `n` elements from *anywhere* in the original iterator.
2244
    ///
2245
    /// This is similar to [`IndexedParallelIterator::skip`] without being
2246
    /// constrained to the "first" `n` of the original iterator order. The
2247
    /// remaining items will still maintain their relative order where that is
2248
    /// visible in `collect`, `reduce`, and similar outputs.
2249
    ///
2250
    /// # Examples
2251
    ///
2252
    /// ```
2253
    /// use rayon::prelude::*;
2254
    ///
2255
    /// let result: Vec<_> = (0..100)
2256
    ///     .into_par_iter()
2257
    ///     .filter(|&x| x % 2 == 0)
2258
    ///     .skip_any(5)
2259
    ///     .collect();
2260
    ///
2261
    /// assert_eq!(result.len(), 45);
2262
    /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2263
    /// ```
2264
0
    fn skip_any(self, n: usize) -> SkipAny<Self> {
2265
0
        SkipAny::new(self, n)
2266
0
    }
2267
2268
    /// Creates an iterator that takes elements from *anywhere* in the original iterator
2269
    /// until the given `predicate` returns `false`.
2270
    ///
2271
    /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a
2272
    /// global condition unrelated to the item itself, or some combination thereof.
2273
    ///
2274
    /// If parallel calls to the `predicate` race and give different results, then the
2275
    /// `true` results will still take those particular items, while respecting the `false`
2276
    /// result from elsewhere to skip any further items.
2277
    ///
2278
    /// This is similar to [`Iterator::take_while`] without being constrained to the original
2279
    /// iterator order. The taken items will still maintain their relative order where that is
2280
    /// visible in `collect`, `reduce`, and similar outputs.
2281
    ///
2282
    /// # Examples
2283
    ///
2284
    /// ```
2285
    /// use rayon::prelude::*;
2286
    ///
2287
    /// let result: Vec<_> = (0..100)
2288
    ///     .into_par_iter()
2289
    ///     .take_any_while(|x| *x < 50)
2290
    ///     .collect();
2291
    ///
2292
    /// assert!(result.len() <= 50);
2293
    /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2294
    /// ```
2295
    ///
2296
    /// ```
2297
    /// use rayon::prelude::*;
2298
    /// use std::sync::atomic::AtomicUsize;
2299
    /// use std::sync::atomic::Ordering::Relaxed;
2300
    ///
2301
    /// // Collect any group of items that sum <= 1000
2302
    /// let quota = AtomicUsize::new(1000);
2303
    /// let result: Vec<_> = (0_usize..100)
2304
    ///     .into_par_iter()
2305
    ///     .take_any_while(|&x| {
2306
    ///         quota.fetch_update(Relaxed, Relaxed, |q| q.checked_sub(x))
2307
    ///             .is_ok()
2308
    ///     })
2309
    ///     .collect();
2310
    ///
2311
    /// let sum = result.iter().sum::<usize>();
2312
    /// assert!(matches!(sum, 902..=1000));
2313
    /// ```
2314
0
    fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P>
2315
0
    where
2316
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
2317
    {
2318
0
        TakeAnyWhile::new(self, predicate)
2319
0
    }
2320
2321
    /// Creates an iterator that skips elements from *anywhere* in the original iterator
2322
    /// until the given `predicate` returns `false`.
2323
    ///
2324
    /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a
2325
    /// global condition unrelated to the item itself, or some combination thereof.
2326
    ///
2327
    /// If parallel calls to the `predicate` race and give different results, then the
2328
    /// `true` results will still skip those particular items, while respecting the `false`
2329
    /// result from elsewhere to skip any further items.
2330
    ///
2331
    /// This is similar to [`Iterator::skip_while`] without being constrained to the original
2332
    /// iterator order. The remaining items will still maintain their relative order where that is
2333
    /// visible in `collect`, `reduce`, and similar outputs.
2334
    ///
2335
    /// # Examples
2336
    ///
2337
    /// ```
2338
    /// use rayon::prelude::*;
2339
    ///
2340
    /// let result: Vec<_> = (0..100)
2341
    ///     .into_par_iter()
2342
    ///     .skip_any_while(|x| *x < 50)
2343
    ///     .collect();
2344
    ///
2345
    /// assert!(result.len() >= 50);
2346
    /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2347
    /// ```
2348
0
    fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P>
2349
0
    where
2350
0
        P: Fn(&Self::Item) -> bool + Sync + Send,
2351
    {
2352
0
        SkipAnyWhile::new(self, predicate)
2353
0
    }
2354
2355
    /// Collects this iterator into a linked list of vectors.
2356
    ///
2357
    /// This is useful when you need to condense a parallel iterator into a collection,
2358
    /// but have no specific requirements for what that collection should be. If you
2359
    /// plan to store the collection longer-term, `Vec<T>` is, as always, likely the
2360
    /// best default choice, despite the overhead that comes from concatenating each
2361
    /// vector. Or, if this is an `IndexedParallelIterator`, you should also prefer to
2362
    /// just collect to a `Vec<T>`.
2363
    ///
2364
    /// Internally, most [`FromParallelIterator`]/[`ParallelExtend`] implementations
2365
    /// use this strategy; each job collecting their chunk of the iterator to a `Vec<T>`
2366
    /// and those chunks getting merged into a `LinkedList`, before then extending the
2367
    /// collection with each vector. This is a very efficient way to collect an
2368
    /// unindexed parallel iterator, without much intermediate data movement.
2369
    ///
2370
    /// # Examples
2371
    ///
2372
    /// ```
2373
    /// # use std::collections::LinkedList;
2374
    /// use rayon::prelude::*;
2375
    ///
2376
    /// let result: LinkedList<Vec<_>> = (0..=100)
2377
    ///     .into_par_iter()
2378
    ///     .filter(|x| x % 2 == 0)
2379
    ///     .flat_map(|x| 0..x)
2380
    ///     .collect_vec_list();
2381
    ///
2382
    /// // `par_iter.collect_vec_list().into_iter().flatten()` turns
2383
    /// // a parallel iterator into a serial one
2384
    /// let total_len = result.into_iter().flatten().count();
2385
    /// assert_eq!(total_len, 2550);
2386
    /// ```
2387
0
    fn collect_vec_list(self) -> LinkedList<Vec<Self::Item>> {
2388
0
        match extend::fast_collect(self) {
2389
0
            Either::Left(vec) => {
2390
0
                let mut list = LinkedList::new();
2391
0
                if !vec.is_empty() {
2392
0
                    list.push_back(vec);
2393
0
                }
2394
0
                list
2395
            }
2396
0
            Either::Right(list) => list,
2397
        }
2398
0
    }
2399
2400
    /// Internal method used to define the behavior of this parallel
2401
    /// iterator. You should not need to call this directly.
2402
    ///
2403
    /// This method causes the iterator `self` to start producing
2404
    /// items and to feed them to the consumer `consumer` one by one.
2405
    /// It may split the consumer before doing so to create the
2406
    /// opportunity to produce in parallel.
2407
    ///
2408
    /// See the [README] for more details on the internals of parallel
2409
    /// iterators.
2410
    ///
2411
    /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md
2412
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
2413
    where
2414
        C: UnindexedConsumer<Self::Item>;
2415
2416
    /// Internal method used to define the behavior of this parallel
2417
    /// iterator. You should not need to call this directly.
2418
    ///
2419
    /// Returns the number of items produced by this iterator, if known
2420
    /// statically. This can be used by consumers to trigger special fast
2421
    /// paths. Therefore, if `Some(_)` is returned, this iterator must only
2422
    /// use the (indexed) `Consumer` methods when driving a consumer, such
2423
    /// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or
2424
    /// other `UnindexedConsumer` methods -- or returning an inaccurate
2425
    /// value -- may result in panics.
2426
    ///
2427
    /// This method is currently used to optimize `collect` for want
2428
    /// of true Rust specialization; it may be removed when
2429
    /// specialization is stable.
2430
0
    fn opt_len(&self) -> Option<usize> {
2431
0
        None
2432
0
    }
Unexecuted instantiation: <rayon::iter::filter_map::FilterMap<rayon::iter::filter::Filter<rayon::iter::flatten::Flatten<rayon::iter::map::Map<rayon::iter::par_bridge::IterBridge<std::fs::ReadDir>, sysinfo::unix::linux::process::refresh_procs::{closure#0}>>, sysinfo::unix::linux::process::refresh_procs::{closure#1}>, sysinfo::unix::linux::process::refresh_procs::{closure#2}> as rayon::iter::ParallelIterator>::opt_len
Unexecuted instantiation: <_ as rayon::iter::ParallelIterator>::opt_len
2433
}
2434
2435
impl<T: ParallelIterator> IntoParallelIterator for T {
2436
    type Iter = T;
2437
    type Item = T::Item;
2438
2439
0
    fn into_par_iter(self) -> T {
2440
0
        self
2441
0
    }
Unexecuted instantiation: <rayon::iter::map::Map<rayon::iter::enumerate::Enumerate<rayon::iter::len::MaxLen<rayon::slice::chunks::ChunksMut<surrealdb_core::val::Value>>>, rayon::slice::mergesort::par_mergesort<surrealdb_core::val::Value, <ext_sort::buffer::LimitedBuffer<surrealdb_core::val::Value> as rayon::slice::ParallelSliceMut<surrealdb_core::val::Value>>::par_sort_by<<surrealdb_core::dbs::file::FileCollector>::sort_and_take_vec::{closure#0}::{closure#2}::{closure#0}>::{closure#0}>::{closure#0}> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::filter_map::FilterMap<rayon::iter::filter::Filter<rayon::iter::flatten::Flatten<rayon::iter::map::Map<rayon::iter::par_bridge::IterBridge<std::fs::ReadDir>, sysinfo::unix::linux::process::refresh_procs::{closure#0}>>, sysinfo::unix::linux::process::refresh_procs::{closure#1}>, sysinfo::unix::linux::process::refresh_procs::{closure#2}> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::map::Map<rayon::slice::IterMut<alloc::vec::Vec<i_overlay::split::fragment::Fragment>>, <i_overlay::split::solver::SplitSolver>::parallel_split::{closure#0}> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<i8> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<u8> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<isize> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<usize> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<i32> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<u32> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<i128> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<u128> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<i16> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<u16> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<i64> as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <rayon::iter::once::Once<u64> as rayon::iter::IntoParallelIterator>::into_par_iter
2442
}
2443
2444
/// An iterator that supports "random access" to its data, meaning
2445
/// that you can split it at arbitrary indices and draw data from
2446
/// those points.
2447
///
2448
/// **Note:** Not implemented for `u64`, `i64`, `u128`, or `i128` ranges
2449
// Waiting for `ExactSizeIterator::is_empty` to be stabilized. See rust-lang/rust#35428
2450
#[allow(clippy::len_without_is_empty)]
2451
pub trait IndexedParallelIterator: ParallelIterator {
2452
    /// Divides an iterator into sequential blocks of exponentially-increasing size.
2453
    ///
2454
    /// Normally, parallel iterators are recursively divided into tasks in parallel.
2455
    /// This adaptor changes the default behavior by splitting the iterator into a **sequence**
2456
    /// of parallel iterators of increasing sizes.
2457
    /// Sizes grow exponentially in order to avoid creating
2458
    /// too many blocks. This also allows to balance the current block with all previous ones.
2459
    ///
2460
    /// This can have many applications but the most notable ones are:
2461
    /// - better performance with [`find_first()`][ParallelIterator::find_first]
2462
    /// - more predictable performance with [`find_any()`][ParallelIterator::find_any]
2463
    ///   or any interruptible computation
2464
    ///
2465
    /// # Examples
2466
    ///
2467
    /// ```
2468
    /// use rayon::prelude::*;
2469
    /// assert_eq!((0..10_000).into_par_iter()
2470
    ///                       .by_exponential_blocks()
2471
    ///                       .find_first(|&e| e==4_999), Some(4_999))
2472
    /// ```
2473
    ///
2474
    /// In this example, without blocks, rayon will split the initial range into two but all work
2475
    /// on the right hand side (from 5,000 onwards) is **useless** since the sequential algorithm
2476
    /// never goes there. This means that if two threads are used there will be **no** speedup **at
2477
    /// all**.
2478
    ///
2479
    /// `by_exponential_blocks` on the other hand will start with the leftmost range from 0
2480
    /// to `p` (threads number), continue with p to 3p, the 3p to 7p...
2481
    ///
2482
    /// Each subrange is treated in parallel, while all subranges are treated sequentially.
2483
    /// We therefore ensure a logarithmic number of blocks (and overhead) while guaranteeing
2484
    /// we stop at the first block containing the searched data.
2485
0
    fn by_exponential_blocks(self) -> ExponentialBlocks<Self> {
2486
0
        ExponentialBlocks::new(self)
2487
0
    }
2488
2489
    /// Divides an iterator into sequential blocks of the given size.
2490
    ///
2491
    /// Normally, parallel iterators are recursively divided into tasks in parallel.
2492
    /// This adaptor changes the default behavior by splitting the iterator into a **sequence**
2493
    /// of parallel iterators of given `block_size`.
2494
    /// The main application is to obtain better
2495
    /// memory locality (especially if the reduce operation re-use folded data).
2496
    ///
2497
    /// **Panics** if `block_size` is 0.
2498
    ///
2499
    /// # Example
2500
    /// ```
2501
    /// use rayon::prelude::*;
2502
    /// // during most reductions v1 and v2 fit the cache
2503
    /// let v = (0u32..10_000_000)
2504
    ///     .into_par_iter()
2505
    ///     .by_uniform_blocks(1_000_000)
2506
    ///     .fold(Vec::new, |mut v, e| { v.push(e); v})
2507
    ///     .reduce(Vec::new, |mut v1, mut v2| { v1.append(&mut v2); v1});
2508
    /// assert_eq!(v, (0u32..10_000_000).collect::<Vec<u32>>());
2509
    /// ```
2510
    #[track_caller]
2511
0
    fn by_uniform_blocks(self, block_size: usize) -> UniformBlocks<Self> {
2512
0
        assert!(block_size != 0, "block_size must not be zero");
2513
0
        UniformBlocks::new(self, block_size)
2514
0
    }
2515
2516
    /// Collects the results of the iterator into the specified
2517
    /// vector. The vector is always cleared before execution
2518
    /// begins. If possible, reusing the vector across calls can lead
2519
    /// to better performance since it reuses the same backing buffer.
2520
    ///
2521
    /// # Examples
2522
    ///
2523
    /// ```
2524
    /// use rayon::prelude::*;
2525
    ///
2526
    /// // any prior data will be cleared
2527
    /// let mut vec = vec![-1, -2, -3];
2528
    ///
2529
    /// (0..5).into_par_iter()
2530
    ///     .collect_into_vec(&mut vec);
2531
    ///
2532
    /// assert_eq!(vec, [0, 1, 2, 3, 4]);
2533
    /// ```
2534
0
    fn collect_into_vec(self, target: &mut Vec<Self::Item>) {
2535
0
        collect::collect_into_vec(self, target);
2536
0
    }
2537
2538
    /// Unzips the results of the iterator into the specified
2539
    /// vectors. The vectors are always cleared before execution
2540
    /// begins. If possible, reusing the vectors across calls can lead
2541
    /// to better performance since they reuse the same backing buffer.
2542
    ///
2543
    /// # Examples
2544
    ///
2545
    /// ```
2546
    /// use rayon::prelude::*;
2547
    ///
2548
    /// // any prior data will be cleared
2549
    /// let mut left = vec![42; 10];
2550
    /// let mut right = vec![-1; 10];
2551
    ///
2552
    /// (10..15).into_par_iter()
2553
    ///     .enumerate()
2554
    ///     .unzip_into_vecs(&mut left, &mut right);
2555
    ///
2556
    /// assert_eq!(left, [0, 1, 2, 3, 4]);
2557
    /// assert_eq!(right, [10, 11, 12, 13, 14]);
2558
    /// ```
2559
0
    fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>)
2560
0
    where
2561
0
        Self: IndexedParallelIterator<Item = (A, B)>,
2562
0
        A: Send,
2563
0
        B: Send,
2564
    {
2565
0
        collect::unzip_into_vecs(self, left, right);
2566
0
    }
2567
2568
    /// Iterates over tuples `(A, B)`, where the items `A` are from
2569
    /// this iterator and `B` are from the iterator given as argument.
2570
    /// Like the `zip` method on ordinary iterators, if the two
2571
    /// iterators are of unequal length, you only get the items they
2572
    /// have in common.
2573
    ///
2574
    /// # Examples
2575
    ///
2576
    /// ```
2577
    /// use rayon::prelude::*;
2578
    ///
2579
    /// let result: Vec<_> = (1..4)
2580
    ///     .into_par_iter()
2581
    ///     .zip(vec!['a', 'b', 'c'])
2582
    ///     .collect();
2583
    ///
2584
    /// assert_eq!(result, [(1, 'a'), (2, 'b'), (3, 'c')]);
2585
    /// ```
2586
0
    fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter>
2587
0
    where
2588
0
        Z: IntoParallelIterator,
2589
0
        Z::Iter: IndexedParallelIterator,
2590
    {
2591
0
        Zip::new(self, zip_op.into_par_iter())
2592
0
    }
2593
2594
    /// The same as `Zip`, but requires that both iterators have the same length.
2595
    ///
2596
    /// # Panics
2597
    /// Will panic if `self` and `zip_op` are not the same length.
2598
    ///
2599
    /// ```should_panic
2600
    /// use rayon::prelude::*;
2601
    ///
2602
    /// let one = [1u8];
2603
    /// let two = [2u8, 2];
2604
    /// let one_iter = one.par_iter();
2605
    /// let two_iter = two.par_iter();
2606
    ///
2607
    /// // this will panic
2608
    /// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect();
2609
    ///
2610
    /// // we should never get here
2611
    /// assert_eq!(1, zipped.len());
2612
    /// ```
2613
    #[track_caller]
2614
0
    fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, Z::Iter>
2615
0
    where
2616
0
        Z: IntoParallelIterator,
2617
0
        Z::Iter: IndexedParallelIterator,
2618
    {
2619
0
        let zip_op_iter = zip_op.into_par_iter();
2620
0
        assert_eq!(
2621
0
            self.len(),
2622
0
            zip_op_iter.len(),
2623
0
            "iterators must have the same length"
2624
        );
2625
0
        ZipEq::new(self, zip_op_iter)
2626
0
    }
2627
2628
    /// Interleaves elements of this iterator and the other given
2629
    /// iterator. Alternately yields elements from this iterator and
2630
    /// the given iterator, until both are exhausted. If one iterator
2631
    /// is exhausted before the other, the last elements are provided
2632
    /// from the other.
2633
    ///
2634
    /// # Examples
2635
    ///
2636
    /// ```
2637
    /// use rayon::prelude::*;
2638
    /// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]);
2639
    /// let r: Vec<i32> = x.into_par_iter().interleave(y).collect();
2640
    /// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]);
2641
    /// ```
2642
0
    fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter>
2643
0
    where
2644
0
        I: IntoParallelIterator<Item = Self::Item>,
2645
0
        I::Iter: IndexedParallelIterator<Item = Self::Item>,
2646
    {
2647
0
        Interleave::new(self, other.into_par_iter())
2648
0
    }
2649
2650
    /// Interleaves elements of this iterator and the other given
2651
    /// iterator, until one is exhausted.
2652
    ///
2653
    /// # Examples
2654
    ///
2655
    /// ```
2656
    /// use rayon::prelude::*;
2657
    /// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]);
2658
    /// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect();
2659
    /// assert_eq!(r, vec![1, 5, 2, 6, 3]);
2660
    /// ```
2661
0
    fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter>
2662
0
    where
2663
0
        I: IntoParallelIterator<Item = Self::Item>,
2664
0
        I::Iter: IndexedParallelIterator<Item = Self::Item>,
2665
    {
2666
0
        InterleaveShortest::new(self, other.into_par_iter())
2667
0
    }
2668
2669
    /// Splits an iterator up into fixed-size chunks.
2670
    ///
2671
    /// Returns an iterator that returns `Vec`s of the given number of elements.
2672
    /// If the number of elements in the iterator is not divisible by `chunk_size`,
2673
    /// the last chunk may be shorter than `chunk_size`.
2674
    ///
2675
    /// See also [`par_chunks()`] and [`par_chunks_mut()`] for similar behavior on
2676
    /// slices, without having to allocate intermediate `Vec`s for the chunks.
2677
    ///
2678
    /// [`par_chunks()`]: ../slice/trait.ParallelSlice.html#method.par_chunks
2679
    /// [`par_chunks_mut()`]: ../slice/trait.ParallelSliceMut.html#method.par_chunks_mut
2680
    ///
2681
    /// **Panics** if `chunk_size` is 0.
2682
    ///
2683
    /// # Examples
2684
    ///
2685
    /// ```
2686
    /// use rayon::prelude::*;
2687
    /// let a = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2688
    /// let r: Vec<Vec<i32>> = a.into_par_iter().chunks(3).collect();
2689
    /// assert_eq!(r, vec![vec![1,2,3], vec![4,5,6], vec![7,8,9], vec![10]]);
2690
    /// ```
2691
    #[track_caller]
2692
0
    fn chunks(self, chunk_size: usize) -> Chunks<Self> {
2693
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
2694
0
        Chunks::new(self, chunk_size)
2695
0
    }
2696
2697
    /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on
2698
    /// each chunk.
2699
    ///
2700
    /// Returns an iterator that produces a folded result for each chunk of items
2701
    /// produced by this iterator.
2702
    ///
2703
    /// This works essentially like:
2704
    ///
2705
    /// ```text
2706
    /// iter.chunks(chunk_size)
2707
    ///     .map(|chunk|
2708
    ///         chunk.into_iter()
2709
    ///             .fold(identity, fold_op)
2710
    ///     )
2711
    /// ```
2712
    ///
2713
    /// except there is no per-chunk allocation overhead.
2714
    ///
2715
    /// [`fold()`]: std::iter::Iterator#method.fold
2716
    ///
2717
    /// **Panics** if `chunk_size` is 0.
2718
    ///
2719
    /// # Examples
2720
    ///
2721
    /// ```
2722
    /// use rayon::prelude::*;
2723
    /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2724
    /// let chunk_sums = nums.into_par_iter().fold_chunks(2, || 0, |a, n| a + n).collect::<Vec<_>>();
2725
    /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]);
2726
    /// ```
2727
    #[track_caller]
2728
0
    fn fold_chunks<T, ID, F>(
2729
0
        self,
2730
0
        chunk_size: usize,
2731
0
        identity: ID,
2732
0
        fold_op: F,
2733
0
    ) -> FoldChunks<Self, ID, F>
2734
0
    where
2735
0
        ID: Fn() -> T + Send + Sync,
2736
0
        F: Fn(T, Self::Item) -> T + Send + Sync,
2737
0
        T: Send,
2738
    {
2739
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
2740
0
        FoldChunks::new(self, chunk_size, identity, fold_op)
2741
0
    }
2742
2743
    /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on
2744
    /// each chunk.
2745
    ///
2746
    /// Returns an iterator that produces a folded result for each chunk of items
2747
    /// produced by this iterator.
2748
    ///
2749
    /// This works essentially like `fold_chunks(chunk_size, || init.clone(), fold_op)`,
2750
    /// except it doesn't require the `init` type to be `Sync`, nor any other form of
2751
    /// added synchronization.
2752
    ///
2753
    /// [`fold()`]: std::iter::Iterator#method.fold
2754
    ///
2755
    /// **Panics** if `chunk_size` is 0.
2756
    ///
2757
    /// # Examples
2758
    ///
2759
    /// ```
2760
    /// use rayon::prelude::*;
2761
    /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2762
    /// let chunk_sums = nums.into_par_iter().fold_chunks_with(2, 0, |a, n| a + n).collect::<Vec<_>>();
2763
    /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]);
2764
    /// ```
2765
    #[track_caller]
2766
0
    fn fold_chunks_with<T, F>(
2767
0
        self,
2768
0
        chunk_size: usize,
2769
0
        init: T,
2770
0
        fold_op: F,
2771
0
    ) -> FoldChunksWith<Self, T, F>
2772
0
    where
2773
0
        T: Send + Clone,
2774
0
        F: Fn(T, Self::Item) -> T + Send + Sync,
2775
    {
2776
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
2777
0
        FoldChunksWith::new(self, chunk_size, init, fold_op)
2778
0
    }
2779
2780
    /// Lexicographically compares the elements of this `ParallelIterator` with those of
2781
    /// another.
2782
    ///
2783
    /// # Examples
2784
    ///
2785
    /// ```
2786
    /// use rayon::prelude::*;
2787
    /// use std::cmp::Ordering::*;
2788
    ///
2789
    /// let x = vec![1, 2, 3];
2790
    /// assert_eq!(x.par_iter().cmp(&vec![1, 3, 0]), Less);
2791
    /// assert_eq!(x.par_iter().cmp(&vec![1, 2, 3]), Equal);
2792
    /// assert_eq!(x.par_iter().cmp(&vec![1, 2]), Greater);
2793
    /// ```
2794
0
    fn cmp<I>(self, other: I) -> Ordering
2795
0
    where
2796
0
        I: IntoParallelIterator<Item = Self::Item>,
2797
0
        I::Iter: IndexedParallelIterator,
2798
0
        Self::Item: Ord,
2799
    {
2800
        #[inline]
2801
0
        fn ordering<T: Ord>((x, y): (T, T)) -> Ordering {
2802
0
            Ord::cmp(&x, &y)
2803
0
        }
2804
2805
        #[inline]
2806
0
        fn inequal(&ord: &Ordering) -> bool {
2807
0
            ord != Ordering::Equal
2808
0
        }
2809
2810
0
        let other = other.into_par_iter();
2811
0
        let ord_len = self.len().cmp(&other.len());
2812
0
        self.zip(other)
2813
0
            .map(ordering)
2814
0
            .find_first(inequal)
2815
0
            .unwrap_or(ord_len)
2816
0
    }
2817
2818
    /// Lexicographically compares the elements of this `ParallelIterator` with those of
2819
    /// another.
2820
    ///
2821
    /// # Examples
2822
    ///
2823
    /// ```
2824
    /// use rayon::prelude::*;
2825
    /// use std::cmp::Ordering::*;
2826
    /// use std::f64::NAN;
2827
    ///
2828
    /// let x = vec![1.0, 2.0, 3.0];
2829
    /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 3.0, 0.0]), Some(Less));
2830
    /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0, 3.0]), Some(Equal));
2831
    /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0]), Some(Greater));
2832
    /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, NAN]), None);
2833
    /// ```
2834
0
    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
2835
0
    where
2836
0
        I: IntoParallelIterator,
2837
0
        I::Iter: IndexedParallelIterator,
2838
0
        Self::Item: PartialOrd<I::Item>,
2839
    {
2840
        #[inline]
2841
0
        fn ordering<T: PartialOrd<U>, U>((x, y): (T, U)) -> Option<Ordering> {
2842
0
            PartialOrd::partial_cmp(&x, &y)
2843
0
        }
2844
2845
        #[inline]
2846
0
        fn inequal(&ord: &Option<Ordering>) -> bool {
2847
0
            ord != Some(Ordering::Equal)
2848
0
        }
2849
2850
0
        let other = other.into_par_iter();
2851
0
        let ord_len = self.len().cmp(&other.len());
2852
0
        self.zip(other)
2853
0
            .map(ordering)
2854
0
            .find_first(inequal)
2855
0
            .unwrap_or(Some(ord_len))
2856
0
    }
2857
2858
    /// Determines if the elements of this `ParallelIterator`
2859
    /// are equal to those of another
2860
0
    fn eq<I>(self, other: I) -> bool
2861
0
    where
2862
0
        I: IntoParallelIterator,
2863
0
        I::Iter: IndexedParallelIterator,
2864
0
        Self::Item: PartialEq<I::Item>,
2865
    {
2866
        #[inline]
2867
0
        fn eq<T: PartialEq<U>, U>((x, y): (T, U)) -> bool {
2868
0
            PartialEq::eq(&x, &y)
2869
0
        }
2870
2871
0
        let other = other.into_par_iter();
2872
0
        self.len() == other.len() && self.zip(other).all(eq)
2873
0
    }
2874
2875
    /// Determines if the elements of this `ParallelIterator`
2876
    /// are unequal to those of another
2877
0
    fn ne<I>(self, other: I) -> bool
2878
0
    where
2879
0
        I: IntoParallelIterator,
2880
0
        I::Iter: IndexedParallelIterator,
2881
0
        Self::Item: PartialEq<I::Item>,
2882
    {
2883
0
        !self.eq(other)
2884
0
    }
2885
2886
    /// Determines if the elements of this `ParallelIterator`
2887
    /// are lexicographically less than those of another.
2888
0
    fn lt<I>(self, other: I) -> bool
2889
0
    where
2890
0
        I: IntoParallelIterator,
2891
0
        I::Iter: IndexedParallelIterator,
2892
0
        Self::Item: PartialOrd<I::Item>,
2893
    {
2894
0
        self.partial_cmp(other) == Some(Ordering::Less)
2895
0
    }
2896
2897
    /// Determines if the elements of this `ParallelIterator`
2898
    /// are less or equal to those of another.
2899
0
    fn le<I>(self, other: I) -> bool
2900
0
    where
2901
0
        I: IntoParallelIterator,
2902
0
        I::Iter: IndexedParallelIterator,
2903
0
        Self::Item: PartialOrd<I::Item>,
2904
    {
2905
0
        let ord = self.partial_cmp(other);
2906
0
        ord == Some(Ordering::Equal) || ord == Some(Ordering::Less)
2907
0
    }
2908
2909
    /// Determines if the elements of this `ParallelIterator`
2910
    /// are lexicographically greater than those of another.
2911
0
    fn gt<I>(self, other: I) -> bool
2912
0
    where
2913
0
        I: IntoParallelIterator,
2914
0
        I::Iter: IndexedParallelIterator,
2915
0
        Self::Item: PartialOrd<I::Item>,
2916
    {
2917
0
        self.partial_cmp(other) == Some(Ordering::Greater)
2918
0
    }
2919
2920
    /// Determines if the elements of this `ParallelIterator`
2921
    /// are less or equal to those of another.
2922
0
    fn ge<I>(self, other: I) -> bool
2923
0
    where
2924
0
        I: IntoParallelIterator,
2925
0
        I::Iter: IndexedParallelIterator,
2926
0
        Self::Item: PartialOrd<I::Item>,
2927
    {
2928
0
        let ord = self.partial_cmp(other);
2929
0
        ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater)
2930
0
    }
2931
2932
    /// Yields an index along with each item.
2933
    ///
2934
    /// # Examples
2935
    ///
2936
    /// ```
2937
    /// use rayon::prelude::*;
2938
    ///
2939
    /// let chars = vec!['a', 'b', 'c'];
2940
    /// let result: Vec<_> = chars
2941
    ///     .into_par_iter()
2942
    ///     .enumerate()
2943
    ///     .collect();
2944
    ///
2945
    /// assert_eq!(result, [(0, 'a'), (1, 'b'), (2, 'c')]);
2946
    /// ```
2947
0
    fn enumerate(self) -> Enumerate<Self> {
2948
0
        Enumerate::new(self)
2949
0
    }
Unexecuted instantiation: <rayon::iter::len::MaxLen<rayon::slice::chunks::ChunksMut<surrealdb_core::val::Value>> as rayon::iter::IndexedParallelIterator>::enumerate
Unexecuted instantiation: <rayon::slice::IterMut<sysinfo::common::system::Cpu> as rayon::iter::IndexedParallelIterator>::enumerate
Unexecuted instantiation: <_ as rayon::iter::IndexedParallelIterator>::enumerate
2950
2951
    /// Creates an iterator that steps by the given amount
2952
    ///
2953
    /// # Examples
2954
    ///
2955
    /// ```
2956
    ///use rayon::prelude::*;
2957
    ///
2958
    /// let range = (3..10);
2959
    /// let result: Vec<i32> = range
2960
    ///    .into_par_iter()
2961
    ///    .step_by(3)
2962
    ///    .collect();
2963
    ///
2964
    /// assert_eq!(result, [3, 6, 9])
2965
    /// ```
2966
0
    fn step_by(self, step: usize) -> StepBy<Self> {
2967
0
        StepBy::new(self, step)
2968
0
    }
2969
2970
    /// Creates an iterator that skips the first `n` elements.
2971
    ///
2972
    /// # Examples
2973
    ///
2974
    /// ```
2975
    /// use rayon::prelude::*;
2976
    ///
2977
    /// let result: Vec<_> = (0..100)
2978
    ///     .into_par_iter()
2979
    ///     .skip(95)
2980
    ///     .collect();
2981
    ///
2982
    /// assert_eq!(result, [95, 96, 97, 98, 99]);
2983
    /// ```
2984
0
    fn skip(self, n: usize) -> Skip<Self> {
2985
0
        Skip::new(self, n)
2986
0
    }
2987
2988
    /// Creates an iterator that yields the first `n` elements.
2989
    ///
2990
    /// # Examples
2991
    ///
2992
    /// ```
2993
    /// use rayon::prelude::*;
2994
    ///
2995
    /// let result: Vec<_> = (0..100)
2996
    ///     .into_par_iter()
2997
    ///     .take(5)
2998
    ///     .collect();
2999
    ///
3000
    /// assert_eq!(result, [0, 1, 2, 3, 4]);
3001
    /// ```
3002
0
    fn take(self, n: usize) -> Take<Self> {
3003
0
        Take::new(self, n)
3004
0
    }
3005
3006
    /// Searches for **some** item in the parallel iterator that
3007
    /// matches the given predicate, and returns its index.  Like
3008
    /// `ParallelIterator::find_any`, the parallel search will not
3009
    /// necessarily find the **first** match, and once a match is
3010
    /// found we'll attempt to stop processing any more.
3011
    ///
3012
    /// # Examples
3013
    ///
3014
    /// ```
3015
    /// use rayon::prelude::*;
3016
    ///
3017
    /// let a = [1, 2, 3, 3];
3018
    ///
3019
    /// let i = a.par_iter().position_any(|&x| x == 3).expect("found");
3020
    /// assert!(i == 2 || i == 3);
3021
    ///
3022
    /// assert_eq!(a.par_iter().position_any(|&x| x == 100), None);
3023
    /// ```
3024
0
    fn position_any<P>(self, predicate: P) -> Option<usize>
3025
0
    where
3026
0
        P: Fn(Self::Item) -> bool + Sync + Send,
3027
    {
3028
        #[inline]
3029
0
        fn check(&(_, p): &(usize, bool)) -> bool {
3030
0
            p
3031
0
        }
3032
3033
0
        let (i, _) = self.map(predicate).enumerate().find_any(check)?;
3034
0
        Some(i)
3035
0
    }
3036
3037
    /// Searches for the sequentially **first** item in the parallel iterator
3038
    /// that matches the given predicate, and returns its index.
3039
    ///
3040
    /// Like `ParallelIterator::find_first`, once a match is found,
3041
    /// all attempts to the right of the match will be stopped, while
3042
    /// attempts to the left must continue in case an earlier match
3043
    /// is found.
3044
    ///
3045
    /// Note that not all parallel iterators have a useful order, much like
3046
    /// sequential `HashMap` iteration, so "first" may be nebulous.  If you
3047
    /// just want the first match that discovered anywhere in the iterator,
3048
    /// `position_any` is a better choice.
3049
    ///
3050
    /// # Examples
3051
    ///
3052
    /// ```
3053
    /// use rayon::prelude::*;
3054
    ///
3055
    /// let a = [1, 2, 3, 3];
3056
    ///
3057
    /// assert_eq!(a.par_iter().position_first(|&x| x == 3), Some(2));
3058
    ///
3059
    /// assert_eq!(a.par_iter().position_first(|&x| x == 100), None);
3060
    /// ```
3061
0
    fn position_first<P>(self, predicate: P) -> Option<usize>
3062
0
    where
3063
0
        P: Fn(Self::Item) -> bool + Sync + Send,
3064
    {
3065
        #[inline]
3066
0
        fn check(&(_, p): &(usize, bool)) -> bool {
3067
0
            p
3068
0
        }
3069
3070
0
        let (i, _) = self.map(predicate).enumerate().find_first(check)?;
3071
0
        Some(i)
3072
0
    }
3073
3074
    /// Searches for the sequentially **last** item in the parallel iterator
3075
    /// that matches the given predicate, and returns its index.
3076
    ///
3077
    /// Like `ParallelIterator::find_last`, once a match is found,
3078
    /// all attempts to the left of the match will be stopped, while
3079
    /// attempts to the right must continue in case a later match
3080
    /// is found.
3081
    ///
3082
    /// Note that not all parallel iterators have a useful order, much like
3083
    /// sequential `HashMap` iteration, so "last" may be nebulous.  When the
3084
    /// order doesn't actually matter to you, `position_any` is a better
3085
    /// choice.
3086
    ///
3087
    /// # Examples
3088
    ///
3089
    /// ```
3090
    /// use rayon::prelude::*;
3091
    ///
3092
    /// let a = [1, 2, 3, 3];
3093
    ///
3094
    /// assert_eq!(a.par_iter().position_last(|&x| x == 3), Some(3));
3095
    ///
3096
    /// assert_eq!(a.par_iter().position_last(|&x| x == 100), None);
3097
    /// ```
3098
0
    fn position_last<P>(self, predicate: P) -> Option<usize>
3099
0
    where
3100
0
        P: Fn(Self::Item) -> bool + Sync + Send,
3101
    {
3102
        #[inline]
3103
0
        fn check(&(_, p): &(usize, bool)) -> bool {
3104
0
            p
3105
0
        }
3106
3107
0
        let (i, _) = self.map(predicate).enumerate().find_last(check)?;
3108
0
        Some(i)
3109
0
    }
3110
3111
    #[doc(hidden)]
3112
    #[deprecated(
3113
        note = "parallel `position` does not search in order -- use `position_any`, \\
3114
                `position_first`, or `position_last`"
3115
    )]
3116
0
    fn position<P>(self, predicate: P) -> Option<usize>
3117
0
    where
3118
0
        P: Fn(Self::Item) -> bool + Sync + Send,
3119
    {
3120
0
        self.position_any(predicate)
3121
0
    }
3122
3123
    /// Searches for items in the parallel iterator that match the given
3124
    /// predicate, and returns their indices.
3125
    ///
3126
    /// # Examples
3127
    ///
3128
    /// ```
3129
    /// use rayon::prelude::*;
3130
    ///
3131
    /// let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
3132
    ///
3133
    /// // Find the positions of primes congruent to 1 modulo 6
3134
    /// let p1mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 1).collect();
3135
    /// assert_eq!(p1mod6, [3, 5, 7]); // primes 7, 13, and 19
3136
    ///
3137
    /// // Find the positions of primes congruent to 5 modulo 6
3138
    /// let p5mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 5).collect();
3139
    /// assert_eq!(p5mod6, [2, 4, 6, 8, 9]); // primes 5, 11, 17, 23, and 29
3140
    /// ```
3141
0
    fn positions<P>(self, predicate: P) -> Positions<Self, P>
3142
0
    where
3143
0
        P: Fn(Self::Item) -> bool + Sync + Send,
3144
    {
3145
0
        Positions::new(self, predicate)
3146
0
    }
3147
3148
    /// Produces a new iterator with the elements of this iterator in
3149
    /// reverse order.
3150
    ///
3151
    /// # Examples
3152
    ///
3153
    /// ```
3154
    /// use rayon::prelude::*;
3155
    ///
3156
    /// let result: Vec<_> = (0..5)
3157
    ///     .into_par_iter()
3158
    ///     .rev()
3159
    ///     .collect();
3160
    ///
3161
    /// assert_eq!(result, [4, 3, 2, 1, 0]);
3162
    /// ```
3163
0
    fn rev(self) -> Rev<Self> {
3164
0
        Rev::new(self)
3165
0
    }
3166
3167
    /// Sets the minimum length of iterators desired to process in each
3168
    /// rayon job.  Rayon will not split any smaller than this length, but
3169
    /// of course an iterator could already be smaller to begin with.
3170
    ///
3171
    /// Producers like `zip` and `interleave` will use greater of the two
3172
    /// minimums.
3173
    /// Chained iterators and iterators inside `flat_map` may each use
3174
    /// their own minimum length.
3175
    ///
3176
    /// # Examples
3177
    ///
3178
    /// ```
3179
    /// use rayon::prelude::*;
3180
    ///
3181
    /// let min = (0..1_000_000)
3182
    ///     .into_par_iter()
3183
    ///     .with_min_len(1234)
3184
    ///     .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment
3185
    ///     .min().unwrap();
3186
    ///
3187
    /// assert!(min >= 1234);
3188
    /// ```
3189
0
    fn with_min_len(self, min: usize) -> MinLen<Self> {
3190
0
        MinLen::new(self, min)
3191
0
    }
3192
3193
    /// Sets the maximum length of iterators desired to process in each
3194
    /// rayon job.  Rayon will try to split at least below this length,
3195
    /// unless that would put it below the length from `with_min_len()`.
3196
    /// For example, given min=10 and max=15, a length of 16 will not be
3197
    /// split any further.
3198
    ///
3199
    /// Producers like `zip` and `interleave` will use lesser of the two
3200
    /// maximums.
3201
    /// Chained iterators and iterators inside `flat_map` may each use
3202
    /// their own maximum length.
3203
    ///
3204
    /// # Examples
3205
    ///
3206
    /// ```
3207
    /// use rayon::prelude::*;
3208
    ///
3209
    /// let max = (0..1_000_000)
3210
    ///     .into_par_iter()
3211
    ///     .with_max_len(1234)
3212
    ///     .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment
3213
    ///     .max().unwrap();
3214
    ///
3215
    /// assert!(max <= 1234);
3216
    /// ```
3217
0
    fn with_max_len(self, max: usize) -> MaxLen<Self> {
3218
0
        MaxLen::new(self, max)
3219
0
    }
Unexecuted instantiation: <rayon::slice::chunks::ChunksMut<surrealdb_core::val::Value> as rayon::iter::IndexedParallelIterator>::with_max_len
Unexecuted instantiation: <_ as rayon::iter::IndexedParallelIterator>::with_max_len
3220
3221
    /// Produces an exact count of how many items this iterator will
3222
    /// produce, presuming no panic occurs.
3223
    ///
3224
    /// # Examples
3225
    ///
3226
    /// ```
3227
    /// use rayon::prelude::*;
3228
    ///
3229
    /// let par_iter = (0..100).into_par_iter().zip(vec![0; 10]);
3230
    /// assert_eq!(par_iter.len(), 10);
3231
    ///
3232
    /// let vec: Vec<_> = par_iter.collect();
3233
    /// assert_eq!(vec.len(), 10);
3234
    /// ```
3235
    fn len(&self) -> usize;
3236
3237
    /// Internal method used to define the behavior of this parallel
3238
    /// iterator. You should not need to call this directly.
3239
    ///
3240
    /// This method causes the iterator `self` to start producing
3241
    /// items and to feed them to the consumer `consumer` one by one.
3242
    /// It may split the consumer before doing so to create the
3243
    /// opportunity to produce in parallel. If a split does happen, it
3244
    /// will inform the consumer of the index where the split should
3245
    /// occur (unlike `ParallelIterator::drive_unindexed()`).
3246
    ///
3247
    /// See the [README] for more details on the internals of parallel
3248
    /// iterators.
3249
    ///
3250
    /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md
3251
    fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result;
3252
3253
    /// Internal method used to define the behavior of this parallel
3254
    /// iterator. You should not need to call this directly.
3255
    ///
3256
    /// This method converts the iterator into a producer P and then
3257
    /// invokes `callback.callback()` with P. Note that the type of
3258
    /// this producer is not defined as part of the API, since
3259
    /// `callback` must be defined generically for all producers. This
3260
    /// allows the producer type to contain references; it also means
3261
    /// that parallel iterators can adjust that type without causing a
3262
    /// breaking change.
3263
    ///
3264
    /// See the [README] for more details on the internals of parallel
3265
    /// iterators.
3266
    ///
3267
    /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md
3268
    fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output;
3269
}
3270
3271
/// `FromParallelIterator` implements the creation of a collection
3272
/// from a [`ParallelIterator`]. By implementing
3273
/// `FromParallelIterator` for a given type, you define how it will be
3274
/// created from an iterator.
3275
///
3276
/// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method.
3277
///
3278
/// [`ParallelIterator`]: trait.ParallelIterator.html
3279
/// [`collect()`]: trait.ParallelIterator.html#method.collect
3280
///
3281
/// # Examples
3282
///
3283
/// Implementing `FromParallelIterator` for your type:
3284
///
3285
/// ```
3286
/// use rayon::prelude::*;
3287
/// use std::mem;
3288
///
3289
/// struct BlackHole {
3290
///     mass: usize,
3291
/// }
3292
///
3293
/// impl<T: Send> FromParallelIterator<T> for BlackHole {
3294
///     fn from_par_iter<I>(par_iter: I) -> Self
3295
///         where I: IntoParallelIterator<Item = T>
3296
///     {
3297
///         let par_iter = par_iter.into_par_iter();
3298
///         BlackHole {
3299
///             mass: par_iter.count() * mem::size_of::<T>(),
3300
///         }
3301
///     }
3302
/// }
3303
///
3304
/// let bh: BlackHole = (0i32..1000).into_par_iter().collect();
3305
/// assert_eq!(bh.mass, 4000);
3306
/// ```
3307
pub trait FromParallelIterator<T>
3308
where
3309
    T: Send,
3310
{
3311
    /// Creates an instance of the collection from the parallel iterator `par_iter`.
3312
    ///
3313
    /// If your collection is not naturally parallel, the easiest (and
3314
    /// fastest) way to do this is often to collect `par_iter` into a
3315
    /// [`LinkedList`] (via [`collect_vec_list`]) or another intermediate
3316
    /// data structure and then sequentially extend your collection. However,
3317
    /// a more 'native' technique is to use the [`par_iter.fold`] or
3318
    /// [`par_iter.fold_with`] methods to create the collection.
3319
    /// Alternatively, if your collection is 'natively' parallel, you
3320
    /// can use `par_iter.for_each` to process each element in turn.
3321
    ///
3322
    /// [`LinkedList`]: https://doc.rust-lang.org/std/collections/struct.LinkedList.html
3323
    /// [`collect_vec_list`]: ParallelIterator::collect_vec_list
3324
    /// [`par_iter.fold`]: trait.ParallelIterator.html#method.fold
3325
    /// [`par_iter.fold_with`]: trait.ParallelIterator.html#method.fold_with
3326
    /// [`par_iter.for_each`]: trait.ParallelIterator.html#method.for_each
3327
    fn from_par_iter<I>(par_iter: I) -> Self
3328
    where
3329
        I: IntoParallelIterator<Item = T>;
3330
}
3331
3332
/// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`].
3333
///
3334
/// [`ParallelIterator`]: trait.ParallelIterator.html
3335
///
3336
/// # Examples
3337
///
3338
/// Implementing `ParallelExtend` for your type:
3339
///
3340
/// ```
3341
/// use rayon::prelude::*;
3342
/// use std::mem;
3343
///
3344
/// struct BlackHole {
3345
///     mass: usize,
3346
/// }
3347
///
3348
/// impl<T: Send> ParallelExtend<T> for BlackHole {
3349
///     fn par_extend<I>(&mut self, par_iter: I)
3350
///         where I: IntoParallelIterator<Item = T>
3351
///     {
3352
///         let par_iter = par_iter.into_par_iter();
3353
///         self.mass += par_iter.count() * mem::size_of::<T>();
3354
///     }
3355
/// }
3356
///
3357
/// let mut bh = BlackHole { mass: 0 };
3358
/// bh.par_extend(0i32..1000);
3359
/// assert_eq!(bh.mass, 4000);
3360
/// bh.par_extend(0i64..10);
3361
/// assert_eq!(bh.mass, 4080);
3362
/// ```
3363
pub trait ParallelExtend<T>
3364
where
3365
    T: Send,
3366
{
3367
    /// Extends an instance of the collection with the elements drawn
3368
    /// from the parallel iterator `par_iter`.
3369
    ///
3370
    /// # Examples
3371
    ///
3372
    /// ```
3373
    /// use rayon::prelude::*;
3374
    ///
3375
    /// let mut vec = vec![];
3376
    /// vec.par_extend(0..5);
3377
    /// vec.par_extend((0..5).into_par_iter().map(|i| i * i));
3378
    /// assert_eq!(vec, [0, 1, 2, 3, 4, 0, 1, 4, 9, 16]);
3379
    /// ```
3380
    fn par_extend<I>(&mut self, par_iter: I)
3381
    where
3382
        I: IntoParallelIterator<Item = T>;
3383
}
3384
3385
/// `ParallelDrainFull` creates a parallel iterator that moves all items
3386
/// from a collection while retaining the original capacity.
3387
///
3388
/// Types which are indexable typically implement [`ParallelDrainRange`]
3389
/// instead, where you can drain fully with `par_drain(..)`.
3390
///
3391
/// [`ParallelDrainRange`]: trait.ParallelDrainRange.html
3392
pub trait ParallelDrainFull {
3393
    /// The draining parallel iterator type that will be created.
3394
    type Iter: ParallelIterator<Item = Self::Item>;
3395
3396
    /// The type of item that the parallel iterator will produce.
3397
    /// This is usually the same as `IntoParallelIterator::Item`.
3398
    type Item: Send;
3399
3400
    /// Returns a draining parallel iterator over an entire collection.
3401
    ///
3402
    /// When the iterator is dropped, all items are removed, even if the
3403
    /// iterator was not fully consumed. If the iterator is leaked, for example
3404
    /// using `std::mem::forget`, it is unspecified how many items are removed.
3405
    ///
3406
    /// # Examples
3407
    ///
3408
    /// ```
3409
    /// use rayon::prelude::*;
3410
    /// use std::collections::{BinaryHeap, HashSet};
3411
    ///
3412
    /// let squares: HashSet<i32> = (0..10).map(|x| x * x).collect();
3413
    ///
3414
    /// let mut heap: BinaryHeap<_> = squares.iter().copied().collect();
3415
    /// assert_eq!(
3416
    ///     // heaps are drained in arbitrary order
3417
    ///     heap.par_drain()
3418
    ///         .inspect(|x| assert!(squares.contains(x)))
3419
    ///         .count(),
3420
    ///     squares.len(),
3421
    /// );
3422
    /// assert!(heap.is_empty());
3423
    /// assert!(heap.capacity() >= squares.len());
3424
    /// ```
3425
    fn par_drain(self) -> Self::Iter;
3426
}
3427
3428
/// `ParallelDrainRange` creates a parallel iterator that moves a range of items
3429
/// from a collection while retaining the original capacity.
3430
///
3431
/// Types which are not indexable may implement [`ParallelDrainFull`] instead.
3432
///
3433
/// [`ParallelDrainFull`]: trait.ParallelDrainFull.html
3434
pub trait ParallelDrainRange<Idx = usize> {
3435
    /// The draining parallel iterator type that will be created.
3436
    type Iter: ParallelIterator<Item = Self::Item>;
3437
3438
    /// The type of item that the parallel iterator will produce.
3439
    /// This is usually the same as `IntoParallelIterator::Item`.
3440
    type Item: Send;
3441
3442
    /// Returns a draining parallel iterator over a range of the collection.
3443
    ///
3444
    /// When the iterator is dropped, all items in the range are removed, even
3445
    /// if the iterator was not fully consumed. If the iterator is leaked, for
3446
    /// example using `std::mem::forget`, it is unspecified how many items are
3447
    /// removed.
3448
    ///
3449
    /// # Examples
3450
    ///
3451
    /// ```
3452
    /// use rayon::prelude::*;
3453
    ///
3454
    /// let squares: Vec<i32> = (0..10).map(|x| x * x).collect();
3455
    ///
3456
    /// println!("RangeFull");
3457
    /// let mut vec = squares.clone();
3458
    /// assert!(vec.par_drain(..)
3459
    ///            .eq(squares.par_iter().copied()));
3460
    /// assert!(vec.is_empty());
3461
    /// assert!(vec.capacity() >= squares.len());
3462
    ///
3463
    /// println!("RangeFrom");
3464
    /// let mut vec = squares.clone();
3465
    /// assert!(vec.par_drain(5..)
3466
    ///            .eq(squares[5..].par_iter().copied()));
3467
    /// assert_eq!(&vec[..], &squares[..5]);
3468
    /// assert!(vec.capacity() >= squares.len());
3469
    ///
3470
    /// println!("RangeTo");
3471
    /// let mut vec = squares.clone();
3472
    /// assert!(vec.par_drain(..5)
3473
    ///            .eq(squares[..5].par_iter().copied()));
3474
    /// assert_eq!(&vec[..], &squares[5..]);
3475
    /// assert!(vec.capacity() >= squares.len());
3476
    ///
3477
    /// println!("RangeToInclusive");
3478
    /// let mut vec = squares.clone();
3479
    /// assert!(vec.par_drain(..=5)
3480
    ///            .eq(squares[..=5].par_iter().copied()));
3481
    /// assert_eq!(&vec[..], &squares[6..]);
3482
    /// assert!(vec.capacity() >= squares.len());
3483
    ///
3484
    /// println!("Range");
3485
    /// let mut vec = squares.clone();
3486
    /// assert!(vec.par_drain(3..7)
3487
    ///            .eq(squares[3..7].par_iter().copied()));
3488
    /// assert_eq!(&vec[..3], &squares[..3]);
3489
    /// assert_eq!(&vec[3..], &squares[7..]);
3490
    /// assert!(vec.capacity() >= squares.len());
3491
    ///
3492
    /// println!("RangeInclusive");
3493
    /// let mut vec = squares.clone();
3494
    /// assert!(vec.par_drain(3..=7)
3495
    ///            .eq(squares[3..=7].par_iter().copied()));
3496
    /// assert_eq!(&vec[..3], &squares[..3]);
3497
    /// assert_eq!(&vec[3..], &squares[8..]);
3498
    /// assert!(vec.capacity() >= squares.len());
3499
    /// ```
3500
    fn par_drain<R: RangeBounds<Idx>>(self, range: R) -> Self::Iter;
3501
}
3502
3503
/// We hide the `Try` trait in a private module, as it's only meant to be a
3504
/// stable clone of the standard library's `Try` trait, as yet unstable.
3505
mod private {
3506
    use std::convert::Infallible;
3507
    use std::ops::ControlFlow::{self, Break, Continue};
3508
    use std::task::Poll;
3509
3510
    /// Clone of `std::ops::Try`.
3511
    ///
3512
    /// Implementing this trait is not permitted outside of `rayon`.
3513
    pub trait Try {
3514
        private_decl! {}
3515
3516
        type Output;
3517
        type Residual;
3518
3519
        fn from_output(output: Self::Output) -> Self;
3520
3521
        fn from_residual(residual: Self::Residual) -> Self;
3522
3523
        fn branch(self) -> ControlFlow<Self::Residual, Self::Output>;
3524
    }
3525
3526
    impl<B, C> Try for ControlFlow<B, C> {
3527
        private_impl! {}
3528
3529
        type Output = C;
3530
        type Residual = ControlFlow<B, Infallible>;
3531
3532
0
        fn from_output(output: Self::Output) -> Self {
3533
0
            Continue(output)
3534
0
        }
3535
3536
0
        fn from_residual(residual: Self::Residual) -> Self {
3537
0
            match residual {
3538
0
                Break(b) => Break(b),
3539
                Continue(_) => unreachable!(),
3540
            }
3541
0
        }
3542
3543
0
        fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3544
0
            match self {
3545
0
                Continue(c) => Continue(c),
3546
0
                Break(b) => Break(Break(b)),
3547
            }
3548
0
        }
3549
    }
3550
3551
    impl<T> Try for Option<T> {
3552
        private_impl! {}
3553
3554
        type Output = T;
3555
        type Residual = Option<Infallible>;
3556
3557
0
        fn from_output(output: Self::Output) -> Self {
3558
0
            Some(output)
3559
0
        }
3560
3561
0
        fn from_residual(residual: Self::Residual) -> Self {
3562
0
            match residual {
3563
0
                None => None,
3564
                Some(_) => unreachable!(),
3565
            }
3566
0
        }
3567
3568
0
        fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3569
0
            match self {
3570
0
                Some(c) => Continue(c),
3571
0
                None => Break(None),
3572
            }
3573
0
        }
3574
    }
3575
3576
    impl<T, E> Try for Result<T, E> {
3577
        private_impl! {}
3578
3579
        type Output = T;
3580
        type Residual = Result<Infallible, E>;
3581
3582
0
        fn from_output(output: Self::Output) -> Self {
3583
0
            Ok(output)
3584
0
        }
3585
3586
0
        fn from_residual(residual: Self::Residual) -> Self {
3587
0
            match residual {
3588
0
                Err(e) => Err(e),
3589
                Ok(_) => unreachable!(),
3590
            }
3591
0
        }
3592
3593
0
        fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3594
0
            match self {
3595
0
                Ok(c) => Continue(c),
3596
0
                Err(e) => Break(Err(e)),
3597
            }
3598
0
        }
3599
    }
3600
3601
    impl<T, E> Try for Poll<Result<T, E>> {
3602
        private_impl! {}
3603
3604
        type Output = Poll<T>;
3605
        type Residual = Result<Infallible, E>;
3606
3607
0
        fn from_output(output: Self::Output) -> Self {
3608
0
            output.map(Ok)
3609
0
        }
3610
3611
0
        fn from_residual(residual: Self::Residual) -> Self {
3612
0
            match residual {
3613
0
                Err(e) => Poll::Ready(Err(e)),
3614
                Ok(_) => unreachable!(),
3615
            }
3616
0
        }
3617
3618
0
        fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3619
0
            match self {
3620
0
                Poll::Pending => Continue(Poll::Pending),
3621
0
                Poll::Ready(Ok(c)) => Continue(Poll::Ready(c)),
3622
0
                Poll::Ready(Err(e)) => Break(Err(e)),
3623
            }
3624
0
        }
3625
    }
3626
3627
    impl<T, E> Try for Poll<Option<Result<T, E>>> {
3628
        private_impl! {}
3629
3630
        type Output = Poll<Option<T>>;
3631
        type Residual = Result<Infallible, E>;
3632
3633
0
        fn from_output(output: Self::Output) -> Self {
3634
0
            match output {
3635
0
                Poll::Ready(o) => Poll::Ready(o.map(Ok)),
3636
0
                Poll::Pending => Poll::Pending,
3637
            }
3638
0
        }
3639
3640
0
        fn from_residual(residual: Self::Residual) -> Self {
3641
0
            match residual {
3642
0
                Err(e) => Poll::Ready(Some(Err(e))),
3643
                Ok(_) => unreachable!(),
3644
            }
3645
0
        }
3646
3647
0
        fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3648
0
            match self {
3649
0
                Poll::Pending => Continue(Poll::Pending),
3650
0
                Poll::Ready(None) => Continue(Poll::Ready(None)),
3651
0
                Poll::Ready(Some(Ok(c))) => Continue(Poll::Ready(Some(c))),
3652
0
                Poll::Ready(Some(Err(e))) => Break(Err(e)),
3653
            }
3654
0
        }
3655
    }
3656
}