Coverage Report

Created: 2019-06-19 13:33

/src/systemd/src/basic/linux/btrfs_tree.h
Line
Count
Source (jump to first uncovered line)
1
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2
#ifndef _BTRFS_CTREE_H_
3
#define _BTRFS_CTREE_H_
4
5
#include <linux/btrfs.h>
6
#include <linux/types.h>
7
8
/*
9
 * This header contains the structure definitions and constants used
10
 * by file system objects that can be retrieved using
11
 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
12
 * is needed to describe a leaf node's key or item contents.
13
 */
14
15
/* holds pointers to all of the tree roots */
16
0
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18
/* stores information about which extents are in use, and reference counts */
19
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21
/*
22
 * chunk tree stores translations from logical -> physical block numbering
23
 * the super block points to the chunk tree
24
 */
25
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27
/*
28
 * stores information about which areas of a given device are in use.
29
 * one per device.  The tree of tree roots points to the device tree
30
 */
31
#define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33
/* one per subvolume, storing files and directories */
34
#define BTRFS_FS_TREE_OBJECTID 5ULL
35
36
/* directory objectid inside the root tree */
37
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39
/* holds checksums of all the data extents */
40
#define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42
/* holds quota configuration and tracking */
43
0
#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45
/* for storing items that use the BTRFS_UUID_KEY* types */
46
#define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48
/* tracks free space in block groups. */
49
#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51
/* device stats in the device tree */
52
#define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54
/* for storing balance parameters in the root tree */
55
#define BTRFS_BALANCE_OBJECTID -4ULL
56
57
/* orhpan objectid for tracking unlinked/truncated files */
58
#define BTRFS_ORPHAN_OBJECTID -5ULL
59
60
/* does write ahead logging to speed up fsyncs */
61
#define BTRFS_TREE_LOG_OBJECTID -6ULL
62
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64
/* for space balancing */
65
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
66
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68
/*
69
 * extent checksums all have this objectid
70
 * this allows them to share the logging tree
71
 * for fsyncs
72
 */
73
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75
/* For storing free space cache */
76
#define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78
/*
79
 * The inode number assigned to the special inode for storing
80
 * free ino cache
81
 */
82
#define BTRFS_FREE_INO_OBJECTID -12ULL
83
84
/* dummy objectid represents multiple objectids */
85
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87
/*
88
 * All files have objectids in this range.
89
 */
90
0
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
91
0
#define BTRFS_LAST_FREE_OBJECTID -256ULL
92
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95
/*
96
 * the device items go into the chunk tree.  The key is in the form
97
 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98
 */
99
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101
#define BTRFS_BTREE_INODE_OBJECTID 1
102
103
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105
#define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107
/*
108
 * inode items have the data typically returned from stat and store other
109
 * info about object characteristics.  There is one for every file and dir in
110
 * the FS
111
 */
112
#define BTRFS_INODE_ITEM_KEY    1
113
#define BTRFS_INODE_REF_KEY   12
114
#define BTRFS_INODE_EXTREF_KEY    13
115
#define BTRFS_XATTR_ITEM_KEY    24
116
#define BTRFS_ORPHAN_ITEM_KEY   48
117
/* reserve 2-15 close to the inode for later flexibility */
118
119
/*
120
 * dir items are the name -> inode pointers in a directory.  There is one
121
 * for every name in a directory.
122
 */
123
#define BTRFS_DIR_LOG_ITEM_KEY  60
124
#define BTRFS_DIR_LOG_INDEX_KEY 72
125
#define BTRFS_DIR_ITEM_KEY  84
126
#define BTRFS_DIR_INDEX_KEY 96
127
/*
128
 * extent data is for file data
129
 */
130
#define BTRFS_EXTENT_DATA_KEY 108
131
132
/*
133
 * extent csums are stored in a separate tree and hold csums for
134
 * an entire extent on disk.
135
 */
136
#define BTRFS_EXTENT_CSUM_KEY 128
137
138
/*
139
 * root items point to tree roots.  They are typically in the root
140
 * tree used by the super block to find all the other trees
141
 */
142
0
#define BTRFS_ROOT_ITEM_KEY 132
143
144
/*
145
 * root backrefs tie subvols and snapshots to the directory entries that
146
 * reference them
147
 */
148
0
#define BTRFS_ROOT_BACKREF_KEY  144
149
150
/*
151
 * root refs make a fast index for listing all of the snapshots and
152
 * subvolumes referenced by a given root.  They point directly to the
153
 * directory item in the root that references the subvol
154
 */
155
#define BTRFS_ROOT_REF_KEY  156
156
157
/*
158
 * extent items are in the extent map tree.  These record which blocks
159
 * are used, and how many references there are to each block
160
 */
161
#define BTRFS_EXTENT_ITEM_KEY 168
162
163
/*
164
 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165
 * the length, so we save the level in key->offset instead of the length.
166
 */
167
#define BTRFS_METADATA_ITEM_KEY 169
168
169
#define BTRFS_TREE_BLOCK_REF_KEY  176
170
171
#define BTRFS_EXTENT_DATA_REF_KEY 178
172
173
#define BTRFS_EXTENT_REF_V0_KEY   180
174
175
#define BTRFS_SHARED_BLOCK_REF_KEY  182
176
177
#define BTRFS_SHARED_DATA_REF_KEY 184
178
179
/*
180
 * block groups give us hints into the extent allocation trees.  Which
181
 * blocks are free etc etc
182
 */
183
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185
/*
186
 * Every block group is represented in the free space tree by a free space info
187
 * item, which stores some accounting information. It is keyed on
188
 * (block_group_start, FREE_SPACE_INFO, block_group_length).
189
 */
190
#define BTRFS_FREE_SPACE_INFO_KEY 198
191
192
/*
193
 * A free space extent tracks an extent of space that is free in a block group.
194
 * It is keyed on (start, FREE_SPACE_EXTENT, length).
195
 */
196
#define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198
/*
199
 * When a block group becomes very fragmented, we convert it to use bitmaps
200
 * instead of extents. A free space bitmap is keyed on
201
 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202
 * (length / sectorsize) bits.
203
 */
204
#define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206
#define BTRFS_DEV_EXTENT_KEY  204
207
#define BTRFS_DEV_ITEM_KEY  216
208
#define BTRFS_CHUNK_ITEM_KEY  228
209
210
/*
211
 * Records the overall state of the qgroups.
212
 * There's only one instance of this key present,
213
 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214
 */
215
0
#define BTRFS_QGROUP_STATUS_KEY         240
216
/*
217
 * Records the currently used space of the qgroup.
218
 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219
 */
220
0
#define BTRFS_QGROUP_INFO_KEY           242
221
/*
222
 * Contains the user configured limits for the qgroup.
223
 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224
 */
225
0
#define BTRFS_QGROUP_LIMIT_KEY          244
226
/*
227
 * Records the child-parent relationship of qgroups. For
228
 * each relation, 2 keys are present:
229
 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230
 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231
 */
232
0
#define BTRFS_QGROUP_RELATION_KEY       246
233
234
/*
235
 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236
 */
237
#define BTRFS_BALANCE_ITEM_KEY  248
238
239
/*
240
 * The key type for tree items that are stored persistently, but do not need to
241
 * exist for extended period of time. The items can exist in any tree.
242
 *
243
 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244
 *
245
 * Existing items:
246
 *
247
 * - balance status item
248
 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249
 */
250
#define BTRFS_TEMPORARY_ITEM_KEY  248
251
252
/*
253
 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254
 */
255
#define BTRFS_DEV_STATS_KEY   249
256
257
/*
258
 * The key type for tree items that are stored persistently and usually exist
259
 * for a long period, eg. filesystem lifetime. The item kinds can be status
260
 * information, stats or preference values. The item can exist in any tree.
261
 *
262
 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263
 *
264
 * Existing items:
265
 *
266
 * - device statistics, store IO stats in the device tree, one key for all
267
 *   stats
268
 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269
 */
270
#define BTRFS_PERSISTENT_ITEM_KEY 249
271
272
/*
273
 * Persistantly stores the device replace state in the device tree.
274
 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275
 */
276
#define BTRFS_DEV_REPLACE_KEY 250
277
278
/*
279
 * Stores items that allow to quickly map UUIDs to something else.
280
 * These items are part of the filesystem UUID tree.
281
 * The key is built like this:
282
 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283
 */
284
#if BTRFS_UUID_SIZE != 16
285
#error "UUID items require BTRFS_UUID_SIZE == 16!"
286
#endif
287
#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288
#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252 /* for UUIDs assigned to
289
             * received subvols */
290
291
/*
292
 * string items are for debugging.  They just store a short string of
293
 * data in the FS
294
 */
295
#define BTRFS_STRING_ITEM_KEY 253
296
297
298
299
/* 32 bytes in various csum fields */
300
#define BTRFS_CSUM_SIZE 32
301
302
/* csum types */
303
#define BTRFS_CSUM_TYPE_CRC32 0
304
305
/*
306
 * flags definitions for directory entry item type
307
 *
308
 * Used by:
309
 * struct btrfs_dir_item.type
310
 *
311
 * Values 0..7 must match common file type values in fs_types.h.
312
 */
313
#define BTRFS_FT_UNKNOWN  0
314
#define BTRFS_FT_REG_FILE 1
315
#define BTRFS_FT_DIR    2
316
#define BTRFS_FT_CHRDEV   3
317
#define BTRFS_FT_BLKDEV   4
318
#define BTRFS_FT_FIFO   5
319
#define BTRFS_FT_SOCK   6
320
#define BTRFS_FT_SYMLINK  7
321
#define BTRFS_FT_XATTR    8
322
#define BTRFS_FT_MAX    9
323
324
/*
325
 * The key defines the order in the tree, and so it also defines (optimal)
326
 * block layout.
327
 *
328
 * objectid corresponds to the inode number.
329
 *
330
 * type tells us things about the object, and is a kind of stream selector.
331
 * so for a given inode, keys with type of 1 might refer to the inode data,
332
 * type of 2 may point to file data in the btree and type == 3 may point to
333
 * extents.
334
 *
335
 * offset is the starting byte offset for this key in the stream.
336
 *
337
 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
338
 * in cpu native order.  Otherwise they are identical and their sizes
339
 * should be the same (ie both packed)
340
 */
341
struct btrfs_disk_key {
342
  __le64 objectid;
343
  __u8 type;
344
  __le64 offset;
345
} __attribute__ ((__packed__));
346
347
struct btrfs_key {
348
  __u64 objectid;
349
  __u8 type;
350
  __u64 offset;
351
} __attribute__ ((__packed__));
352
353
struct btrfs_dev_item {
354
  /* the internal btrfs device id */
355
  __le64 devid;
356
357
  /* size of the device */
358
  __le64 total_bytes;
359
360
  /* bytes used */
361
  __le64 bytes_used;
362
363
  /* optimal io alignment for this device */
364
  __le32 io_align;
365
366
  /* optimal io width for this device */
367
  __le32 io_width;
368
369
  /* minimal io size for this device */
370
  __le32 sector_size;
371
372
  /* type and info about this device */
373
  __le64 type;
374
375
  /* expected generation for this device */
376
  __le64 generation;
377
378
  /*
379
   * starting byte of this partition on the device,
380
   * to allow for stripe alignment in the future
381
   */
382
  __le64 start_offset;
383
384
  /* grouping information for allocation decisions */
385
  __le32 dev_group;
386
387
  /* seek speed 0-100 where 100 is fastest */
388
  __u8 seek_speed;
389
390
  /* bandwidth 0-100 where 100 is fastest */
391
  __u8 bandwidth;
392
393
  /* btrfs generated uuid for this device */
394
  __u8 uuid[BTRFS_UUID_SIZE];
395
396
  /* uuid of FS who owns this device */
397
  __u8 fsid[BTRFS_UUID_SIZE];
398
} __attribute__ ((__packed__));
399
400
struct btrfs_stripe {
401
  __le64 devid;
402
  __le64 offset;
403
  __u8 dev_uuid[BTRFS_UUID_SIZE];
404
} __attribute__ ((__packed__));
405
406
struct btrfs_chunk {
407
  /* size of this chunk in bytes */
408
  __le64 length;
409
410
  /* objectid of the root referencing this chunk */
411
  __le64 owner;
412
413
  __le64 stripe_len;
414
  __le64 type;
415
416
  /* optimal io alignment for this chunk */
417
  __le32 io_align;
418
419
  /* optimal io width for this chunk */
420
  __le32 io_width;
421
422
  /* minimal io size for this chunk */
423
  __le32 sector_size;
424
425
  /* 2^16 stripes is quite a lot, a second limit is the size of a single
426
   * item in the btree
427
   */
428
  __le16 num_stripes;
429
430
  /* sub stripes only matter for raid10 */
431
  __le16 sub_stripes;
432
  struct btrfs_stripe stripe;
433
  /* additional stripes go here */
434
} __attribute__ ((__packed__));
435
436
#define BTRFS_FREE_SPACE_EXTENT 1
437
#define BTRFS_FREE_SPACE_BITMAP 2
438
439
struct btrfs_free_space_entry {
440
  __le64 offset;
441
  __le64 bytes;
442
  __u8 type;
443
} __attribute__ ((__packed__));
444
445
struct btrfs_free_space_header {
446
  struct btrfs_disk_key location;
447
  __le64 generation;
448
  __le64 num_entries;
449
  __le64 num_bitmaps;
450
} __attribute__ ((__packed__));
451
452
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
453
#define BTRFS_HEADER_FLAG_RELOC   (1ULL << 1)
454
455
/* Super block flags */
456
/* Errors detected */
457
#define BTRFS_SUPER_FLAG_ERROR    (1ULL << 2)
458
459
#define BTRFS_SUPER_FLAG_SEEDING  (1ULL << 32)
460
#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
461
#define BTRFS_SUPER_FLAG_METADUMP_V2  (1ULL << 34)
462
#define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
463
#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
464
465
466
/*
467
 * items in the extent btree are used to record the objectid of the
468
 * owner of the block and the number of references
469
 */
470
471
struct btrfs_extent_item {
472
  __le64 refs;
473
  __le64 generation;
474
  __le64 flags;
475
} __attribute__ ((__packed__));
476
477
struct btrfs_extent_item_v0 {
478
  __le32 refs;
479
} __attribute__ ((__packed__));
480
481
482
#define BTRFS_EXTENT_FLAG_DATA    (1ULL << 0)
483
#define BTRFS_EXTENT_FLAG_TREE_BLOCK  (1ULL << 1)
484
485
/* following flags only apply to tree blocks */
486
487
/* use full backrefs for extent pointers in the block */
488
#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
489
490
/*
491
 * this flag is only used internally by scrub and may be changed at any time
492
 * it is only declared here to avoid collisions
493
 */
494
#define BTRFS_EXTENT_FLAG_SUPER   (1ULL << 48)
495
496
struct btrfs_tree_block_info {
497
  struct btrfs_disk_key key;
498
  __u8 level;
499
} __attribute__ ((__packed__));
500
501
struct btrfs_extent_data_ref {
502
  __le64 root;
503
  __le64 objectid;
504
  __le64 offset;
505
  __le32 count;
506
} __attribute__ ((__packed__));
507
508
struct btrfs_shared_data_ref {
509
  __le32 count;
510
} __attribute__ ((__packed__));
511
512
struct btrfs_extent_inline_ref {
513
  __u8 type;
514
  __le64 offset;
515
} __attribute__ ((__packed__));
516
517
/* old style backrefs item */
518
struct btrfs_extent_ref_v0 {
519
  __le64 root;
520
  __le64 generation;
521
  __le64 objectid;
522
  __le32 count;
523
} __attribute__ ((__packed__));
524
525
526
/* dev extents record free space on individual devices.  The owner
527
 * field points back to the chunk allocation mapping tree that allocated
528
 * the extent.  The chunk tree uuid field is a way to double check the owner
529
 */
530
struct btrfs_dev_extent {
531
  __le64 chunk_tree;
532
  __le64 chunk_objectid;
533
  __le64 chunk_offset;
534
  __le64 length;
535
  __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
536
} __attribute__ ((__packed__));
537
538
struct btrfs_inode_ref {
539
  __le64 index;
540
  __le16 name_len;
541
  /* name goes here */
542
} __attribute__ ((__packed__));
543
544
struct btrfs_inode_extref {
545
  __le64 parent_objectid;
546
  __le64 index;
547
  __le16 name_len;
548
  __u8   name[0];
549
  /* name goes here */
550
} __attribute__ ((__packed__));
551
552
struct btrfs_timespec {
553
  __le64 sec;
554
  __le32 nsec;
555
} __attribute__ ((__packed__));
556
557
struct btrfs_inode_item {
558
  /* nfs style generation number */
559
  __le64 generation;
560
  /* transid that last touched this inode */
561
  __le64 transid;
562
  __le64 size;
563
  __le64 nbytes;
564
  __le64 block_group;
565
  __le32 nlink;
566
  __le32 uid;
567
  __le32 gid;
568
  __le32 mode;
569
  __le64 rdev;
570
  __le64 flags;
571
572
  /* modification sequence number for NFS */
573
  __le64 sequence;
574
575
  /*
576
   * a little future expansion, for more than this we can
577
   * just grow the inode item and version it
578
   */
579
  __le64 reserved[4];
580
  struct btrfs_timespec atime;
581
  struct btrfs_timespec ctime;
582
  struct btrfs_timespec mtime;
583
  struct btrfs_timespec otime;
584
} __attribute__ ((__packed__));
585
586
struct btrfs_dir_log_item {
587
  __le64 end;
588
} __attribute__ ((__packed__));
589
590
struct btrfs_dir_item {
591
  struct btrfs_disk_key location;
592
  __le64 transid;
593
  __le16 data_len;
594
  __le16 name_len;
595
  __u8 type;
596
} __attribute__ ((__packed__));
597
598
0
#define BTRFS_ROOT_SUBVOL_RDONLY  (1ULL << 0)
599
600
/*
601
 * Internal in-memory flag that a subvolume has been marked for deletion but
602
 * still visible as a directory
603
 */
604
#define BTRFS_ROOT_SUBVOL_DEAD    (1ULL << 48)
605
606
struct btrfs_root_item {
607
  struct btrfs_inode_item inode;
608
  __le64 generation;
609
  __le64 root_dirid;
610
  __le64 bytenr;
611
  __le64 byte_limit;
612
  __le64 bytes_used;
613
  __le64 last_snapshot;
614
  __le64 flags;
615
  __le32 refs;
616
  struct btrfs_disk_key drop_progress;
617
  __u8 drop_level;
618
  __u8 level;
619
620
  /*
621
   * The following fields appear after subvol_uuids+subvol_times
622
   * were introduced.
623
   */
624
625
  /*
626
   * This generation number is used to test if the new fields are valid
627
   * and up to date while reading the root item. Every time the root item
628
   * is written out, the "generation" field is copied into this field. If
629
   * anyone ever mounted the fs with an older kernel, we will have
630
   * mismatching generation values here and thus must invalidate the
631
   * new fields. See btrfs_update_root and btrfs_find_last_root for
632
   * details.
633
   * the offset of generation_v2 is also used as the start for the memset
634
   * when invalidating the fields.
635
   */
636
  __le64 generation_v2;
637
  __u8 uuid[BTRFS_UUID_SIZE];
638
  __u8 parent_uuid[BTRFS_UUID_SIZE];
639
  __u8 received_uuid[BTRFS_UUID_SIZE];
640
  __le64 ctransid; /* updated when an inode changes */
641
  __le64 otransid; /* trans when created */
642
  __le64 stransid; /* trans when sent. non-zero for received subvol */
643
  __le64 rtransid; /* trans when received. non-zero for received subvol */
644
  struct btrfs_timespec ctime;
645
  struct btrfs_timespec otime;
646
  struct btrfs_timespec stime;
647
  struct btrfs_timespec rtime;
648
  __le64 reserved[8]; /* for future */
649
} __attribute__ ((__packed__));
650
651
/*
652
 * this is used for both forward and backward root refs
653
 */
654
struct btrfs_root_ref {
655
  __le64 dirid;
656
  __le64 sequence;
657
  __le16 name_len;
658
} __attribute__ ((__packed__));
659
660
struct btrfs_disk_balance_args {
661
  /*
662
   * profiles to operate on, single is denoted by
663
   * BTRFS_AVAIL_ALLOC_BIT_SINGLE
664
   */
665
  __le64 profiles;
666
667
  /*
668
   * usage filter
669
   * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
670
   * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
671
   */
672
  union {
673
    __le64 usage;
674
    struct {
675
      __le32 usage_min;
676
      __le32 usage_max;
677
    };
678
  };
679
680
  /* devid filter */
681
  __le64 devid;
682
683
  /* devid subset filter [pstart..pend) */
684
  __le64 pstart;
685
  __le64 pend;
686
687
  /* btrfs virtual address space subset filter [vstart..vend) */
688
  __le64 vstart;
689
  __le64 vend;
690
691
  /*
692
   * profile to convert to, single is denoted by
693
   * BTRFS_AVAIL_ALLOC_BIT_SINGLE
694
   */
695
  __le64 target;
696
697
  /* BTRFS_BALANCE_ARGS_* */
698
  __le64 flags;
699
700
  /*
701
   * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
702
   * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
703
   * and maximum
704
   */
705
  union {
706
    __le64 limit;
707
    struct {
708
      __le32 limit_min;
709
      __le32 limit_max;
710
    };
711
  };
712
713
  /*
714
   * Process chunks that cross stripes_min..stripes_max devices,
715
   * BTRFS_BALANCE_ARGS_STRIPES_RANGE
716
   */
717
  __le32 stripes_min;
718
  __le32 stripes_max;
719
720
  __le64 unused[6];
721
} __attribute__ ((__packed__));
722
723
/*
724
 * store balance parameters to disk so that balance can be properly
725
 * resumed after crash or unmount
726
 */
727
struct btrfs_balance_item {
728
  /* BTRFS_BALANCE_* */
729
  __le64 flags;
730
731
  struct btrfs_disk_balance_args data;
732
  struct btrfs_disk_balance_args meta;
733
  struct btrfs_disk_balance_args sys;
734
735
  __le64 unused[4];
736
} __attribute__ ((__packed__));
737
738
#define BTRFS_FILE_EXTENT_INLINE 0
739
#define BTRFS_FILE_EXTENT_REG 1
740
#define BTRFS_FILE_EXTENT_PREALLOC 2
741
#define BTRFS_FILE_EXTENT_TYPES 2
742
743
struct btrfs_file_extent_item {
744
  /*
745
   * transaction id that created this extent
746
   */
747
  __le64 generation;
748
  /*
749
   * max number of bytes to hold this extent in ram
750
   * when we split a compressed extent we can't know how big
751
   * each of the resulting pieces will be.  So, this is
752
   * an upper limit on the size of the extent in ram instead of
753
   * an exact limit.
754
   */
755
  __le64 ram_bytes;
756
757
  /*
758
   * 32 bits for the various ways we might encode the data,
759
   * including compression and encryption.  If any of these
760
   * are set to something a given disk format doesn't understand
761
   * it is treated like an incompat flag for reading and writing,
762
   * but not for stat.
763
   */
764
  __u8 compression;
765
  __u8 encryption;
766
  __le16 other_encoding; /* spare for later use */
767
768
  /* are we inline data or a real extent? */
769
  __u8 type;
770
771
  /*
772
   * disk space consumed by the extent, checksum blocks are included
773
   * in these numbers
774
   *
775
   * At this offset in the structure, the inline extent data start.
776
   */
777
  __le64 disk_bytenr;
778
  __le64 disk_num_bytes;
779
  /*
780
   * the logical offset in file blocks (no csums)
781
   * this extent record is for.  This allows a file extent to point
782
   * into the middle of an existing extent on disk, sharing it
783
   * between two snapshots (useful if some bytes in the middle of the
784
   * extent have changed
785
   */
786
  __le64 offset;
787
  /*
788
   * the logical number of file blocks (no csums included).  This
789
   * always reflects the size uncompressed and without encoding.
790
   */
791
  __le64 num_bytes;
792
793
} __attribute__ ((__packed__));
794
795
struct btrfs_csum_item {
796
  __u8 csum;
797
} __attribute__ ((__packed__));
798
799
struct btrfs_dev_stats_item {
800
  /*
801
   * grow this item struct at the end for future enhancements and keep
802
   * the existing values unchanged
803
   */
804
  __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
805
} __attribute__ ((__packed__));
806
807
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
808
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID  1
809
#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED  0
810
#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED    1
811
#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED    2
812
#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED   3
813
#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED   4
814
815
struct btrfs_dev_replace_item {
816
  /*
817
   * grow this item struct at the end for future enhancements and keep
818
   * the existing values unchanged
819
   */
820
  __le64 src_devid;
821
  __le64 cursor_left;
822
  __le64 cursor_right;
823
  __le64 cont_reading_from_srcdev_mode;
824
825
  __le64 replace_state;
826
  __le64 time_started;
827
  __le64 time_stopped;
828
  __le64 num_write_errors;
829
  __le64 num_uncorrectable_read_errors;
830
} __attribute__ ((__packed__));
831
832
/* different types of block groups (and chunks) */
833
#define BTRFS_BLOCK_GROUP_DATA    (1ULL << 0)
834
#define BTRFS_BLOCK_GROUP_SYSTEM  (1ULL << 1)
835
#define BTRFS_BLOCK_GROUP_METADATA  (1ULL << 2)
836
#define BTRFS_BLOCK_GROUP_RAID0   (1ULL << 3)
837
#define BTRFS_BLOCK_GROUP_RAID1   (1ULL << 4)
838
#define BTRFS_BLOCK_GROUP_DUP   (1ULL << 5)
839
#define BTRFS_BLOCK_GROUP_RAID10  (1ULL << 6)
840
#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
841
#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
842
#define BTRFS_BLOCK_GROUP_RESERVED  (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
843
           BTRFS_SPACE_INFO_GLOBAL_RSV)
844
845
enum btrfs_raid_types {
846
  BTRFS_RAID_RAID10,
847
  BTRFS_RAID_RAID1,
848
  BTRFS_RAID_DUP,
849
  BTRFS_RAID_RAID0,
850
  BTRFS_RAID_SINGLE,
851
  BTRFS_RAID_RAID5,
852
  BTRFS_RAID_RAID6,
853
  BTRFS_NR_RAID_TYPES
854
};
855
856
#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA |    \
857
           BTRFS_BLOCK_GROUP_SYSTEM |  \
858
           BTRFS_BLOCK_GROUP_METADATA)
859
860
#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
861
           BTRFS_BLOCK_GROUP_RAID1 |   \
862
           BTRFS_BLOCK_GROUP_RAID5 |   \
863
           BTRFS_BLOCK_GROUP_RAID6 |   \
864
           BTRFS_BLOCK_GROUP_DUP |     \
865
           BTRFS_BLOCK_GROUP_RAID10)
866
#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 |   \
867
           BTRFS_BLOCK_GROUP_RAID6)
868
869
/*
870
 * We need a bit for restriper to be able to tell when chunks of type
871
 * SINGLE are available.  This "extended" profile format is used in
872
 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
873
 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
874
 * to avoid remappings between two formats in future.
875
 */
876
#define BTRFS_AVAIL_ALLOC_BIT_SINGLE  (1ULL << 48)
877
878
/*
879
 * A fake block group type that is used to communicate global block reserve
880
 * size to userspace via the SPACE_INFO ioctl.
881
 */
882
#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
883
884
#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
885
           BTRFS_AVAIL_ALLOC_BIT_SINGLE)
886
887
static inline __u64 chunk_to_extended(__u64 flags)
888
0
{
889
0
  if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
890
0
    flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
891
0
892
0
  return flags;
893
0
}
894
static inline __u64 extended_to_chunk(__u64 flags)
895
0
{
896
0
  return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
897
0
}
898
899
struct btrfs_block_group_item {
900
  __le64 used;
901
  __le64 chunk_objectid;
902
  __le64 flags;
903
} __attribute__ ((__packed__));
904
905
struct btrfs_free_space_info {
906
  __le32 extent_count;
907
  __le32 flags;
908
} __attribute__ ((__packed__));
909
910
#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
911
912
0
#define BTRFS_QGROUP_LEVEL_SHIFT    48
913
static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
914
0
{
915
0
  return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
916
0
}
917
918
/*
919
 * is subvolume quota turned on?
920
 */
921
#define BTRFS_QGROUP_STATUS_FLAG_ON   (1ULL << 0)
922
/*
923
 * RESCAN is set during the initialization phase
924
 */
925
#define BTRFS_QGROUP_STATUS_FLAG_RESCAN   (1ULL << 1)
926
/*
927
 * Some qgroup entries are known to be out of date,
928
 * either because the configuration has changed in a way that
929
 * makes a rescan necessary, or because the fs has been mounted
930
 * with a non-qgroup-aware version.
931
 * Turning qouta off and on again makes it inconsistent, too.
932
 */
933
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
934
935
#define BTRFS_QGROUP_STATUS_VERSION        1
936
937
struct btrfs_qgroup_status_item {
938
  __le64 version;
939
  /*
940
   * the generation is updated during every commit. As older
941
   * versions of btrfs are not aware of qgroups, it will be
942
   * possible to detect inconsistencies by checking the
943
   * generation on mount time
944
   */
945
  __le64 generation;
946
947
  /* flag definitions see above */
948
  __le64 flags;
949
950
  /*
951
   * only used during scanning to record the progress
952
   * of the scan. It contains a logical address
953
   */
954
  __le64 rescan;
955
} __attribute__ ((__packed__));
956
957
struct btrfs_qgroup_info_item {
958
  __le64 generation;
959
  __le64 rfer;
960
  __le64 rfer_cmpr;
961
  __le64 excl;
962
  __le64 excl_cmpr;
963
} __attribute__ ((__packed__));
964
965
struct btrfs_qgroup_limit_item {
966
  /*
967
   * only updated when any of the other values change
968
   */
969
  __le64 flags;
970
  __le64 max_rfer;
971
  __le64 max_excl;
972
  __le64 rsv_rfer;
973
  __le64 rsv_excl;
974
} __attribute__ ((__packed__));
975
976
#endif /* _BTRFS_CTREE_H_ */