Coverage Report

Created: 2025-07-01 06:46

/rust/registry/src/index.crates.io-6f17d22bba15001f/ring-0.17.14/crypto/poly1305/poly1305.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2014, Google Inc.
2
 *
3
 * Permission to use, copy, modify, and/or distribute this software for any
4
 * purpose with or without fee is hereby granted, provided that the above
5
 * copyright notice and this permission notice appear in all copies.
6
 *
7
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15
// This implementation of poly1305 is by Andrew Moon
16
// (https://github.com/floodyberry/poly1305-donna) and released as public
17
// domain.
18
19
#include <ring-core/base.h>
20
21
#include "../internal.h"
22
#include "ring-core/check.h"
23
24
#if defined(__GNUC__) || defined(__clang__)
25
#pragma GCC diagnostic ignored "-Wsign-conversion"
26
#pragma GCC diagnostic ignored "-Wconversion"
27
#endif
28
29
0
static uint64_t mul32x32_64(uint32_t a, uint32_t b) { return (uint64_t)a * b; }
30
31
// Keep in sync with `poly1305_state_st` in ffi_fallback.rs.
32
struct poly1305_state_st {
33
  alignas(64) uint32_t r0;
34
  uint32_t r1, r2, r3, r4;
35
  uint32_t s1, s2, s3, s4;
36
  uint32_t h0, h1, h2, h3, h4;
37
  uint8_t key[16];
38
};
39
40
// poly1305_blocks updates |state| given some amount of input data. This
41
// function may only be called with a |len| that is not a multiple of 16 at the
42
// end of the data. Otherwise the input must be buffered into 16 byte blocks.
43
static void poly1305_update(struct poly1305_state_st *state, const uint8_t *in,
44
0
                            size_t len) {
45
0
  debug_assert_nonsecret((uintptr_t)state % 64 == 0);
46
47
0
  uint32_t t0, t1, t2, t3;
48
0
  uint64_t t[5];
49
0
  uint32_t b;
50
0
  uint64_t c;
51
0
  size_t j;
52
0
  uint8_t mp[16];
53
54
0
  if (len < 16) {
55
0
    goto poly1305_donna_atmost15bytes;
56
0
  }
57
58
0
poly1305_donna_16bytes:
59
0
  t0 = CRYPTO_load_u32_le(in);
60
0
  t1 = CRYPTO_load_u32_le(in + 4);
61
0
  t2 = CRYPTO_load_u32_le(in + 8);
62
0
  t3 = CRYPTO_load_u32_le(in + 12);
63
64
0
  in += 16;
65
0
  len -= 16;
66
67
0
  state->h0 += t0 & 0x3ffffff;
68
0
  state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
69
0
  state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
70
0
  state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
71
0
  state->h4 += (t3 >> 8) | (1 << 24);
72
73
0
poly1305_donna_mul:
74
0
  t[0] = mul32x32_64(state->h0, state->r0) + mul32x32_64(state->h1, state->s4) +
75
0
         mul32x32_64(state->h2, state->s3) + mul32x32_64(state->h3, state->s2) +
76
0
         mul32x32_64(state->h4, state->s1);
77
0
  t[1] = mul32x32_64(state->h0, state->r1) + mul32x32_64(state->h1, state->r0) +
78
0
         mul32x32_64(state->h2, state->s4) + mul32x32_64(state->h3, state->s3) +
79
0
         mul32x32_64(state->h4, state->s2);
80
0
  t[2] = mul32x32_64(state->h0, state->r2) + mul32x32_64(state->h1, state->r1) +
81
0
         mul32x32_64(state->h2, state->r0) + mul32x32_64(state->h3, state->s4) +
82
0
         mul32x32_64(state->h4, state->s3);
83
0
  t[3] = mul32x32_64(state->h0, state->r3) + mul32x32_64(state->h1, state->r2) +
84
0
         mul32x32_64(state->h2, state->r1) + mul32x32_64(state->h3, state->r0) +
85
0
         mul32x32_64(state->h4, state->s4);
86
0
  t[4] = mul32x32_64(state->h0, state->r4) + mul32x32_64(state->h1, state->r3) +
87
0
         mul32x32_64(state->h2, state->r2) + mul32x32_64(state->h3, state->r1) +
88
0
         mul32x32_64(state->h4, state->r0);
89
90
0
  state->h0 = (uint32_t)t[0] & 0x3ffffff;
91
0
  c = (t[0] >> 26);
92
0
  t[1] += c;
93
0
  state->h1 = (uint32_t)t[1] & 0x3ffffff;
94
0
  b = (uint32_t)(t[1] >> 26);
95
0
  t[2] += b;
96
0
  state->h2 = (uint32_t)t[2] & 0x3ffffff;
97
0
  b = (uint32_t)(t[2] >> 26);
98
0
  t[3] += b;
99
0
  state->h3 = (uint32_t)t[3] & 0x3ffffff;
100
0
  b = (uint32_t)(t[3] >> 26);
101
0
  t[4] += b;
102
0
  state->h4 = (uint32_t)t[4] & 0x3ffffff;
103
0
  b = (uint32_t)(t[4] >> 26);
104
0
  state->h0 += b * 5;
105
106
0
  if (len >= 16) {
107
0
    goto poly1305_donna_16bytes;
108
0
  }
109
110
// final bytes
111
0
poly1305_donna_atmost15bytes:
112
0
  if (!len) {
113
0
    return;
114
0
  }
115
116
0
  for (j = 0; j < len; j++) {
117
0
    mp[j] = in[j];
118
0
  }
119
0
  mp[j++] = 1;
120
0
  for (; j < 16; j++) {
121
0
    mp[j] = 0;
122
0
  }
123
0
  len = 0;
124
125
0
  t0 = CRYPTO_load_u32_le(mp + 0);
126
0
  t1 = CRYPTO_load_u32_le(mp + 4);
127
0
  t2 = CRYPTO_load_u32_le(mp + 8);
128
0
  t3 = CRYPTO_load_u32_le(mp + 12);
129
130
0
  state->h0 += t0 & 0x3ffffff;
131
0
  state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
132
0
  state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
133
0
  state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
134
0
  state->h4 += (t3 >> 8);
135
136
0
  goto poly1305_donna_mul;
137
0
}
138
139
0
void CRYPTO_poly1305_init(struct poly1305_state_st *state, const uint8_t key[32]) {
140
0
  debug_assert_nonsecret((uintptr_t)state % 64 == 0);
141
142
0
  uint32_t t0, t1, t2, t3;
143
144
0
  t0 = CRYPTO_load_u32_le(key + 0);
145
0
  t1 = CRYPTO_load_u32_le(key + 4);
146
0
  t2 = CRYPTO_load_u32_le(key + 8);
147
0
  t3 = CRYPTO_load_u32_le(key + 12);
148
149
  // precompute multipliers
150
0
  state->r0 = t0 & 0x3ffffff;
151
0
  t0 >>= 26;
152
0
  t0 |= t1 << 6;
153
0
  state->r1 = t0 & 0x3ffff03;
154
0
  t1 >>= 20;
155
0
  t1 |= t2 << 12;
156
0
  state->r2 = t1 & 0x3ffc0ff;
157
0
  t2 >>= 14;
158
0
  t2 |= t3 << 18;
159
0
  state->r3 = t2 & 0x3f03fff;
160
0
  t3 >>= 8;
161
0
  state->r4 = t3 & 0x00fffff;
162
163
0
  state->s1 = state->r1 * 5;
164
0
  state->s2 = state->r2 * 5;
165
0
  state->s3 = state->r3 * 5;
166
0
  state->s4 = state->r4 * 5;
167
168
  // init state
169
0
  state->h0 = 0;
170
0
  state->h1 = 0;
171
0
  state->h2 = 0;
172
0
  state->h3 = 0;
173
0
  state->h4 = 0;
174
175
0
  OPENSSL_memcpy(state->key, key + 16, sizeof(state->key));
176
0
}
177
178
void CRYPTO_poly1305_update(struct poly1305_state_st *state, const uint8_t *in,
179
0
                            size_t in_len) {
180
  // Work around a C language bug. See https://crbug.com/1019588.
181
0
  if (in_len == 0) {
182
0
    return;
183
0
  }
184
185
0
  poly1305_update(state, in, in_len);
186
0
}
187
188
0
void CRYPTO_poly1305_finish(struct poly1305_state_st *state, uint8_t mac[16]) {
189
0
  uint32_t g0, g1, g2, g3, g4;
190
0
  uint32_t b, nb;
191
192
0
  b = state->h0 >> 26;
193
0
  state->h0 = state->h0 & 0x3ffffff;
194
0
  state->h1 += b;
195
0
  b = state->h1 >> 26;
196
0
  state->h1 = state->h1 & 0x3ffffff;
197
0
  state->h2 += b;
198
0
  b = state->h2 >> 26;
199
0
  state->h2 = state->h2 & 0x3ffffff;
200
0
  state->h3 += b;
201
0
  b = state->h3 >> 26;
202
0
  state->h3 = state->h3 & 0x3ffffff;
203
0
  state->h4 += b;
204
0
  b = state->h4 >> 26;
205
0
  state->h4 = state->h4 & 0x3ffffff;
206
0
  state->h0 += b * 5;
207
208
0
  g0 = state->h0 + 5;
209
0
  b = g0 >> 26;
210
0
  g0 &= 0x3ffffff;
211
0
  g1 = state->h1 + b;
212
0
  b = g1 >> 26;
213
0
  g1 &= 0x3ffffff;
214
0
  g2 = state->h2 + b;
215
0
  b = g2 >> 26;
216
0
  g2 &= 0x3ffffff;
217
0
  g3 = state->h3 + b;
218
0
  b = g3 >> 26;
219
0
  g3 &= 0x3ffffff;
220
0
  g4 = state->h4 + b - (1 << 26);
221
222
0
  b = (g4 >> 31) - 1;
223
0
  nb = ~b;
224
0
  state->h0 = (state->h0 & nb) | (g0 & b);
225
0
  state->h1 = (state->h1 & nb) | (g1 & b);
226
0
  state->h2 = (state->h2 & nb) | (g2 & b);
227
0
  state->h3 = (state->h3 & nb) | (g3 & b);
228
0
  state->h4 = (state->h4 & nb) | (g4 & b);
229
230
0
  uint64_t f0 = ((state->h0) | (state->h1 << 26)) +
231
0
                (uint64_t)CRYPTO_load_u32_le(&state->key[0]);
232
0
  uint64_t f1 = ((state->h1 >> 6) | (state->h2 << 20)) +
233
0
                (uint64_t)CRYPTO_load_u32_le(&state->key[4]);
234
0
  uint64_t f2 = ((state->h2 >> 12) | (state->h3 << 14)) +
235
0
                (uint64_t)CRYPTO_load_u32_le(&state->key[8]);
236
0
  uint64_t f3 = ((state->h3 >> 18) | (state->h4 << 8)) +
237
0
                (uint64_t)CRYPTO_load_u32_le(&state->key[12]);
238
239
0
  CRYPTO_store_u32_le(&mac[0], (uint32_t)f0);
240
0
  f1 += (f0 >> 32);
241
0
  CRYPTO_store_u32_le(&mac[4], (uint32_t)f1);
242
0
  f2 += (f1 >> 32);
243
0
  CRYPTO_store_u32_le(&mac[8], (uint32_t)f2);
244
0
  f3 += (f2 >> 32);
245
0
  CRYPTO_store_u32_le(&mac[12], (uint32_t)f3);
246
0
}