Coverage Report

Created: 2025-07-02 06:49

/rust/registry/src/index.crates.io-6f17d22bba15001f/ring-0.17.14/src/arithmetic/bigint.rs
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2015-2023 Brian Smith.
2
//
3
// Permission to use, copy, modify, and/or distribute this software for any
4
// purpose with or without fee is hereby granted, provided that the above
5
// copyright notice and this permission notice appear in all copies.
6
//
7
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14
15
//! Multi-precision integers.
16
//!
17
//! # Modular Arithmetic.
18
//!
19
//! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some
20
//! modulus *m*. We work in finite commutative rings instead of finite fields
21
//! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains
22
//! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a
23
//! finite field.
24
//!
25
//! In some calculations we need to deal with multiple rings at once. For
26
//! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and
27
//! ℤ/qℤ. Types and functions dealing with such rings are all parameterized
28
//! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by
29
//! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows
30
//! the "unit" pattern described in [Static checking of units in Servo].
31
//!
32
//! `Elem` also uses the static unit checking pattern to statically track the
33
//! Montgomery factors that need to be canceled out in each value using it's
34
//! `E` parameter.
35
//!
36
//! [Static checking of units in Servo]:
37
//!     https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/
38
39
use self::boxed_limbs::BoxedLimbs;
40
pub(crate) use self::{
41
    modulus::{Modulus, OwnedModulus},
42
    modulusvalue::OwnedModulusValue,
43
    private_exponent::PrivateExponent,
44
};
45
use super::{inout::AliasingSlices3, limbs512, montgomery::*, LimbSliceError, MAX_LIMBS};
46
use crate::{
47
    bits::BitLength,
48
    c,
49
    error::{self, LenMismatchError},
50
    limb::{self, Limb, LIMB_BITS},
51
    polyfill::slice::{self, AsChunks},
52
};
53
use core::{
54
    marker::PhantomData,
55
    num::{NonZeroU64, NonZeroUsize},
56
};
57
58
mod boxed_limbs;
59
mod modulus;
60
mod modulusvalue;
61
mod private_exponent;
62
63
pub trait PublicModulus {}
64
65
// When we need to create a new `Elem`, first we create a `Storage` and then
66
// move its `limbs` into the new element. When we want to recylce an `Elem`'s
67
// memory allocation, we convert it back into a `Storage`.
68
pub struct Storage<M> {
69
    limbs: BoxedLimbs<M>,
70
}
71
72
impl<M, E> From<Elem<M, E>> for Storage<M> {
73
0
    fn from(elem: Elem<M, E>) -> Self {
74
0
        Self { limbs: elem.limbs }
75
0
    }
Unexecuted instantiation: <ring::arithmetic::bigint::Storage<ring::rsa::keypair::P> as core::convert::From<ring::arithmetic::bigint::Elem<ring::rsa::keypair::P, ring::arithmetic::montgomery::RInverse>>>::from
Unexecuted instantiation: <ring::arithmetic::bigint::Storage<ring::rsa::keypair::Q> as core::convert::From<ring::arithmetic::bigint::Elem<ring::rsa::keypair::Q, ring::arithmetic::montgomery::RInverse>>>::from
76
}
77
78
/// Elements of ℤ/mℤ for some modulus *m*.
79
//
80
// Defaulting `E` to `Unencoded` is a convenience for callers from outside this
81
// submodule. However, for maximum clarity, we always explicitly use
82
// `Unencoded` within the `bigint` submodule.
83
pub struct Elem<M, E = Unencoded> {
84
    limbs: BoxedLimbs<M>,
85
86
    /// The number of Montgomery factors that need to be canceled out from
87
    /// `value` to get the actual value.
88
    encoding: PhantomData<E>,
89
}
90
91
impl<M, E> Elem<M, E> {
92
0
    pub fn clone_into(&self, mut out: Storage<M>) -> Self {
93
0
        out.limbs.copy_from_slice(&self.limbs);
94
0
        Self {
95
0
            limbs: out.limbs,
96
0
            encoding: self.encoding,
97
0
        }
98
0
    }
Unexecuted instantiation: <ring::arithmetic::bigint::Elem<ring::rsa::N, ring::arithmetic::montgomery::R>>::clone_into
Unexecuted instantiation: <ring::arithmetic::bigint::Elem<ring::rsa::N, ring::arithmetic::montgomery::RR>>::clone_into
99
}
100
101
impl<M, E> Elem<M, E> {
102
    #[inline]
103
0
    pub fn is_zero(&self) -> bool {
104
0
        limb::limbs_are_zero(&self.limbs).leak()
105
0
    }
106
}
107
108
/// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming
109
/// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be
110
/// fully reduced mod `m`.
111
///
112
/// WARNING: Takes a `Storage` as an in/out value.
113
0
fn from_montgomery_amm<M>(mut in_out: Storage<M>, m: &Modulus<M>) -> Elem<M, Unencoded> {
114
0
    let mut one = [0; MAX_LIMBS];
115
0
    one[0] = 1;
116
0
    let one = &one[..m.limbs().len()];
117
0
    limbs_mul_mont(
118
0
        (&mut in_out.limbs[..], one),
119
0
        m.limbs(),
120
0
        m.n0(),
121
0
        m.cpu_features(),
122
0
    )
123
0
    .unwrap_or_else(unwrap_impossible_limb_slice_error);
124
0
    Elem {
125
0
        limbs: in_out.limbs,
126
0
        encoding: PhantomData,
127
0
    }
128
0
}
Unexecuted instantiation: ring::arithmetic::bigint::from_montgomery_amm::<ring::rsa::keypair::P>
Unexecuted instantiation: ring::arithmetic::bigint::from_montgomery_amm::<ring::rsa::keypair::Q>
129
130
#[cfg(any(test, not(target_arch = "x86_64")))]
131
impl<M> Elem<M, R> {
132
    #[inline]
133
    pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> {
134
        from_montgomery_amm(Storage::from(self), m)
135
    }
136
}
137
138
impl<M> Elem<M, Unencoded> {
139
0
    pub fn from_be_bytes_padded(
140
0
        input: untrusted::Input,
141
0
        m: &Modulus<M>,
142
0
    ) -> Result<Self, error::Unspecified> {
143
0
        Ok(Self {
144
0
            limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
145
0
            encoding: PhantomData,
146
        })
147
0
    }
Unexecuted instantiation: <ring::arithmetic::bigint::Elem<ring::rsa::N>>::from_be_bytes_padded
Unexecuted instantiation: <ring::arithmetic::bigint::Elem<ring::rsa::keypair::P>>::from_be_bytes_padded
148
149
    #[inline]
150
0
    pub fn fill_be_bytes(&self, out: &mut [u8]) {
151
0
        // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
152
0
        limb::big_endian_from_limbs(&self.limbs, out)
153
0
    }
154
}
155
156
0
pub fn elem_mul_into<M, AF, BF>(
157
0
    mut out: Storage<M>,
158
0
    a: &Elem<M, AF>,
159
0
    b: &Elem<M, BF>,
160
0
    m: &Modulus<M>,
161
0
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
162
0
where
163
0
    (AF, BF): ProductEncoding,
164
0
{
165
0
    limbs_mul_mont(
166
0
        (out.limbs.as_mut(), b.limbs.as_ref(), a.limbs.as_ref()),
167
0
        m.limbs(),
168
0
        m.n0(),
169
0
        m.cpu_features(),
170
0
    )
171
0
    .unwrap_or_else(unwrap_impossible_limb_slice_error);
172
0
    Elem {
173
0
        limbs: out.limbs,
174
0
        encoding: PhantomData,
175
0
    }
176
0
}
177
178
0
pub fn elem_mul<M, AF, BF>(
179
0
    a: &Elem<M, AF>,
180
0
    mut b: Elem<M, BF>,
181
0
    m: &Modulus<M>,
182
0
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
183
0
where
184
0
    (AF, BF): ProductEncoding,
185
0
{
186
0
    limbs_mul_mont(
187
0
        (&mut b.limbs[..], &a.limbs[..]),
188
0
        m.limbs(),
189
0
        m.n0(),
190
0
        m.cpu_features(),
191
0
    )
192
0
    .unwrap_or_else(unwrap_impossible_limb_slice_error);
193
0
    Elem {
194
0
        limbs: b.limbs,
195
0
        encoding: PhantomData,
196
0
    }
197
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::N, ring::arithmetic::montgomery::R, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::N, ring::arithmetic::montgomery::R, ring::arithmetic::montgomery::Unencoded>
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::N, ring::arithmetic::montgomery::RR, ring::arithmetic::montgomery::Unencoded>
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::N, ring::arithmetic::montgomery::Unencoded, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::keypair::P, ring::arithmetic::montgomery::R, ring::arithmetic::montgomery::Unencoded>
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::keypair::P, ring::arithmetic::montgomery::RR, ring::arithmetic::montgomery::RInverse>
Unexecuted instantiation: ring::arithmetic::bigint::elem_mul::<ring::rsa::keypair::P, ring::arithmetic::montgomery::RR, ring::arithmetic::montgomery::Unencoded>
198
199
// r *= 2.
200
0
fn elem_double<M, AF>(r: &mut Elem<M, AF>, m: &Modulus<M>) {
201
0
    limb::limbs_double_mod(&mut r.limbs, m.limbs())
202
0
        .unwrap_or_else(unwrap_impossible_len_mismatch_error)
203
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_double::<ring::rsa::N, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_double::<ring::rsa::keypair::P, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_double::<ring::rsa::keypair::Q, ring::arithmetic::montgomery::R>
204
205
// TODO: This is currently unused, but we intend to eventually use this to
206
// reduce elements (x mod q) mod p in the RSA CRT. If/when we do so, we
207
// should update the testing so it is reflective of that usage, instead of
208
// the old usage.
209
0
pub fn elem_reduced_once<A, M>(
210
0
    mut r: Storage<M>,
211
0
    a: &Elem<A, Unencoded>,
212
0
    m: &Modulus<M>,
213
0
    other_modulus_len_bits: BitLength,
214
0
) -> Elem<M, Unencoded> {
215
0
    assert_eq!(m.len_bits(), other_modulus_len_bits);
216
0
    r.limbs.copy_from_slice(&a.limbs);
217
0
    limb::limbs_reduce_once(&mut r.limbs, m.limbs())
218
0
        .unwrap_or_else(unwrap_impossible_len_mismatch_error);
219
0
    Elem {
220
0
        limbs: r.limbs,
221
0
        encoding: PhantomData,
222
0
    }
223
0
}
224
225
#[inline]
226
0
pub fn elem_reduced<Larger, Smaller>(
227
0
    mut r: Storage<Smaller>,
228
0
    a: &Elem<Larger, Unencoded>,
229
0
    m: &Modulus<Smaller>,
230
0
    other_prime_len_bits: BitLength,
231
0
) -> Elem<Smaller, RInverse> {
232
0
    // This is stricter than required mathematically but this is what we
233
0
    // guarantee and this is easier to check. The real requirement is that
234
0
    // that `a < m*R` where `R` is the Montgomery `R` for `m`.
235
0
    assert_eq!(other_prime_len_bits, m.len_bits());
236
237
    // `limbs_from_mont_in_place` requires this.
238
0
    assert_eq!(a.limbs.len(), m.limbs().len() * 2);
239
240
0
    let mut tmp = [0; MAX_LIMBS];
241
0
    let tmp = &mut tmp[..a.limbs.len()];
242
0
    tmp.copy_from_slice(&a.limbs);
243
0
244
0
    limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0());
245
0
    Elem {
246
0
        limbs: r.limbs,
247
0
        encoding: PhantomData,
248
0
    }
249
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_reduced::<ring::rsa::N, ring::rsa::keypair::P>
Unexecuted instantiation: ring::arithmetic::bigint::elem_reduced::<ring::rsa::N, ring::rsa::keypair::Q>
250
251
#[inline]
252
0
fn elem_squared<M, E>(
253
0
    mut a: Elem<M, E>,
254
0
    m: &Modulus<M>,
255
0
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
256
0
where
257
0
    (E, E): ProductEncoding,
258
0
{
259
0
    limbs_square_mont(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features())
260
0
        .unwrap_or_else(unwrap_impossible_limb_slice_error);
261
0
    Elem {
262
0
        limbs: a.limbs,
263
0
        encoding: PhantomData,
264
0
    }
265
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_squared::<ring::rsa::N, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_squared::<ring::rsa::keypair::P, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_squared::<ring::rsa::keypair::P, ring::arithmetic::montgomery::RR>
Unexecuted instantiation: ring::arithmetic::bigint::elem_squared::<ring::rsa::keypair::Q, ring::arithmetic::montgomery::R>
Unexecuted instantiation: ring::arithmetic::bigint::elem_squared::<ring::rsa::keypair::Q, ring::arithmetic::montgomery::RR>
266
267
0
pub fn elem_widen<Larger, Smaller>(
268
0
    mut r: Storage<Larger>,
269
0
    a: Elem<Smaller, Unencoded>,
270
0
    m: &Modulus<Larger>,
271
0
    smaller_modulus_bits: BitLength,
272
0
) -> Result<Elem<Larger, Unencoded>, error::Unspecified> {
273
0
    if smaller_modulus_bits >= m.len_bits() {
274
0
        return Err(error::Unspecified);
275
0
    }
276
0
    let (to_copy, to_zero) = r.limbs.split_at_mut(a.limbs.len());
277
0
    to_copy.copy_from_slice(&a.limbs);
278
0
    to_zero.fill(0);
279
0
    Ok(Elem {
280
0
        limbs: r.limbs,
281
0
        encoding: PhantomData,
282
0
    })
283
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_widen::<ring::rsa::N, ring::rsa::keypair::P>
Unexecuted instantiation: ring::arithmetic::bigint::elem_widen::<ring::rsa::N, ring::rsa::keypair::Q>
284
285
// TODO: Document why this works for all Montgomery factors.
286
0
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
287
0
    limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs())
288
0
        .unwrap_or_else(unwrap_impossible_len_mismatch_error);
289
0
    a
290
0
}
291
292
// TODO: Document why this works for all Montgomery factors.
293
0
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
294
0
    prefixed_extern! {
295
0
        // `r` and `a` may alias.
296
0
        fn LIMBS_sub_mod(
297
0
            r: *mut Limb,
298
0
            a: *const Limb,
299
0
            b: *const Limb,
300
0
            m: *const Limb,
301
0
            num_limbs: c::NonZero_size_t,
302
0
        );
303
0
    }
304
0
    let num_limbs = NonZeroUsize::new(m.limbs().len()).unwrap();
305
0
    (a.limbs.as_mut(), b.limbs.as_ref())
306
0
        .with_non_dangling_non_null_pointers_rab(num_limbs, |r, a, b| {
307
0
            let m = m.limbs().as_ptr(); // Also non-dangling because num_limbs is non-zero.
308
0
            unsafe { LIMBS_sub_mod(r, a, b, m, num_limbs) }
309
0
        })
310
0
        .unwrap_or_else(unwrap_impossible_len_mismatch_error);
311
0
    a
312
0
}
313
314
// The value 1, Montgomery-encoded some number of times.
315
pub struct One<M, E>(Elem<M, E>);
316
317
impl<M> One<M, RR> {
318
    // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of
319
    // 2**LIMB_BITS such that R > m.
320
    //
321
    // Even though the assembly on some 32-bit platforms works with 64-bit
322
    // values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`,
323
    // is correct because R**2 will still be a multiple of the latter as
324
    // `N0::LIMBS_USED` is either one or two.
325
0
    pub(crate) fn newRR(mut out: Storage<M>, m: &Modulus<M>) -> Self {
326
0
        // The number of limbs in the numbers involved.
327
0
        let w = m.limbs().len();
328
0
329
0
        // The length of the numbers involved, in bits. R = 2**r.
330
0
        let r = w * LIMB_BITS;
331
0
332
0
        m.oneR(&mut out.limbs);
333
0
        let mut acc: Elem<M, R> = Elem {
334
0
            limbs: out.limbs,
335
0
            encoding: PhantomData,
336
0
        };
337
0
338
0
        // 2**t * R can be calculated by t doublings starting with R.
339
0
        //
340
0
        // Choose a t that divides r and where t doublings are cheaper than 1 squaring.
341
0
        //
342
0
        // We could choose other values of t than w. But if t < d then the exponentiation that
343
0
        // follows would require multiplications. Normally d is 1 (i.e. the modulus length is a
344
0
        // power of two: RSA 1024, 2048, 4097, 8192) or 3 (RSA 1536, 3072).
345
0
        //
346
0
        // XXX(perf): Currently t = w / 2 is slightly faster. TODO(perf): Optimize `elem_double`
347
0
        // and re-run benchmarks to rebalance this.
348
0
        let t = w;
349
0
        let z = w.trailing_zeros();
350
0
        let d = w >> z;
351
0
        debug_assert_eq!(w, d * (1 << z));
352
0
        debug_assert!(d <= t);
353
0
        debug_assert!(t < r);
354
0
        for _ in 0..t {
355
0
            elem_double(&mut acc, m);
356
0
        }
357
358
        // Because t | r:
359
        //
360
        //     MontExp(2**t * R, r / t)
361
        //   = (2**t)**(r / t)   * R (mod m) by definition of MontExp.
362
        //   = (2**t)**(1/t * r) * R (mod m)
363
        //   = (2**(t * 1/t))**r * R (mod m)
364
        //   = (2**1)**r         * R (mod m)
365
        //   = 2**r              * R (mod m)
366
        //   = R * R                 (mod m)
367
        //   = RR
368
        //
369
        // Like BoringSSL, use t = w (`m.limbs.len()`) which ensures that the exponent is a power
370
        // of two. Consequently, there will be no multiplications in the Montgomery exponentiation;
371
        // there will only be lg(r / t) squarings.
372
        //
373
        //     lg(r / t)
374
        //   = lg((w * 2**b) / t)
375
        //   = lg((t * 2**b) / t)
376
        //   = lg(2**b)
377
        //   = b
378
        // TODO(MSRV:1.67): const B: u32 = LIMB_BITS.ilog2();
379
        const B: u32 = if cfg!(target_pointer_width = "64") {
380
            6
381
        } else if cfg!(target_pointer_width = "32") {
382
            5
383
        } else {
384
            panic!("unsupported target_pointer_width")
385
        };
386
        #[allow(clippy::assertions_on_constants)]
387
        const _LIMB_BITS_IS_2_POW_B: () = assert!(LIMB_BITS == 1 << B);
388
0
        debug_assert_eq!(r, t * (1 << B));
389
0
        for _ in 0..B {
390
0
            acc = elem_squared(acc, m);
391
0
        }
392
393
0
        Self(Elem {
394
0
            limbs: acc.limbs,
395
0
            encoding: PhantomData, // PhantomData<RR>
396
0
        })
397
0
    }
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::N, ring::arithmetic::montgomery::RR>>::newRR
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::P, ring::arithmetic::montgomery::RR>>::newRR
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::Q, ring::arithmetic::montgomery::RR>>::newRR
398
}
399
400
impl<M> One<M, RRR> {
401
0
    pub(crate) fn newRRR(One(oneRR): One<M, RR>, m: &Modulus<M>) -> Self {
402
0
        Self(elem_squared(oneRR, m))
403
0
    }
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::P, ring::arithmetic::montgomery::RRR>>::newRRR
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::Q, ring::arithmetic::montgomery::RRR>>::newRRR
404
}
405
406
impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
407
0
    fn as_ref(&self) -> &Elem<M, E> {
408
0
        &self.0
409
0
    }
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::N, ring::arithmetic::montgomery::RR> as core::convert::AsRef<ring::arithmetic::bigint::Elem<ring::rsa::N, ring::arithmetic::montgomery::RR>>>::as_ref
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::P, ring::arithmetic::montgomery::RR> as core::convert::AsRef<ring::arithmetic::bigint::Elem<ring::rsa::keypair::P, ring::arithmetic::montgomery::RR>>>::as_ref
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::P, ring::arithmetic::montgomery::RRR> as core::convert::AsRef<ring::arithmetic::bigint::Elem<ring::rsa::keypair::P, ring::arithmetic::montgomery::RRR>>>::as_ref
Unexecuted instantiation: <ring::arithmetic::bigint::One<ring::rsa::keypair::Q, ring::arithmetic::montgomery::RRR> as core::convert::AsRef<ring::arithmetic::bigint::Elem<ring::rsa::keypair::Q, ring::arithmetic::montgomery::RRR>>>::as_ref
410
}
411
412
impl<M: PublicModulus, E> One<M, E> {
413
0
    pub fn clone_into(&self, out: Storage<M>) -> Self {
414
0
        Self(self.0.clone_into(out))
415
0
    }
416
}
417
418
/// Calculates base**exponent (mod m).
419
///
420
/// The run time  is a function of the number of limbs in `m` and the bit
421
/// length and Hamming Weight of `exponent`. The bounds on `m` are pretty
422
/// obvious but the bounds on `exponent` are less obvious. Callers should
423
/// document the bounds they place on the maximum value and maximum Hamming
424
/// weight of `exponent`.
425
// TODO: The test coverage needs to be expanded, e.g. test with the largest
426
// accepted exponent and with the most common values of 65537 and 3.
427
0
pub(crate) fn elem_exp_vartime<M>(
428
0
    out: Storage<M>,
429
0
    base: Elem<M, R>,
430
0
    exponent: NonZeroU64,
431
0
    m: &Modulus<M>,
432
0
) -> Elem<M, R> {
433
0
    // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
434
0
    // square-and-multiply that scans the exponent from the most significant
435
0
    // bit to the least significant bit (left-to-right). Left-to-right requires
436
0
    // less storage compared to right-to-left scanning, at the cost of needing
437
0
    // to compute `exponent.leading_zeros()`, which we assume to be cheap.
438
0
    //
439
0
    // As explained in [Knuth], exponentiation by squaring is the most
440
0
    // efficient algorithm when the Hamming weight is 2 or less. It isn't the
441
0
    // most efficient for all other, uncommon, exponent values but any
442
0
    // suboptimality is bounded at least by the small bit length of `exponent`
443
0
    // as enforced by its type.
444
0
    //
445
0
    // This implementation is slightly simplified by taking advantage of the
446
0
    // fact that we require the exponent to be a positive integer.
447
0
    //
448
0
    // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical
449
0
    //          Algorithms (3rd Edition), Section 4.6.3.
450
0
    let exponent = exponent.get();
451
0
    let mut acc = base.clone_into(out);
452
0
    let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
453
0
    debug_assert!((exponent & bit) != 0);
454
0
    while bit > 1 {
455
0
        bit >>= 1;
456
0
        acc = elem_squared(acc, m);
457
0
        if (exponent & bit) != 0 {
458
0
            acc = elem_mul(&base, acc, m);
459
0
        }
460
    }
461
0
    acc
462
0
}
463
464
0
pub fn elem_exp_consttime<N, P>(
465
0
    out: Storage<P>,
466
0
    base: &Elem<N>,
467
0
    oneRRR: &One<P, RRR>,
468
0
    exponent: &PrivateExponent,
469
0
    p: &Modulus<P>,
470
0
    other_prime_len_bits: BitLength,
471
0
) -> Result<Elem<P, Unencoded>, LimbSliceError> {
472
0
    // `elem_exp_consttime_inner` is parameterized on `STORAGE_LIMBS` only so
473
0
    // we can run tests with larger-than-supported-in-operation test vectors.
474
0
    elem_exp_consttime_inner::<N, P, { ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS * STORAGE_ENTRIES }>(
475
0
        out,
476
0
        base,
477
0
        oneRRR,
478
0
        exponent,
479
0
        p,
480
0
        other_prime_len_bits,
481
0
    )
482
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime::<ring::rsa::N, ring::rsa::keypair::P>
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime::<ring::rsa::N, ring::rsa::keypair::Q>
483
484
// The maximum modulus size supported for `elem_exp_consttime` in normal
485
// operation.
486
const ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS: usize = 2048 / LIMB_BITS;
487
const _LIMBS_PER_CHUNK_DIVIDES_ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS: () =
488
    assert!(ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS % limbs512::LIMBS_PER_CHUNK == 0);
489
const WINDOW_BITS: u32 = 5;
490
const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;
491
const STORAGE_ENTRIES: usize = TABLE_ENTRIES + if cfg!(target_arch = "x86_64") { 3 } else { 0 };
492
493
#[cfg(not(target_arch = "x86_64"))]
494
fn elem_exp_consttime_inner<N, M, const STORAGE_LIMBS: usize>(
495
    out: Storage<M>,
496
    base_mod_n: &Elem<N>,
497
    oneRRR: &One<M, RRR>,
498
    exponent: &PrivateExponent,
499
    m: &Modulus<M>,
500
    other_prime_len_bits: BitLength,
501
) -> Result<Elem<M, Unencoded>, LimbSliceError> {
502
    use crate::{bssl, limb::Window};
503
504
    let base_rinverse: Elem<M, RInverse> = elem_reduced(out, base_mod_n, m, other_prime_len_bits);
505
506
    let num_limbs = m.limbs().len();
507
    let m_chunked: AsChunks<Limb, { limbs512::LIMBS_PER_CHUNK }> = match slice::as_chunks(m.limbs())
508
    {
509
        (m, []) => m,
510
        _ => {
511
            return Err(LimbSliceError::len_mismatch(LenMismatchError::new(
512
                num_limbs,
513
            )))
514
        }
515
    };
516
    let cpe = m_chunked.len(); // 512-bit chunks per entry.
517
518
    // This code doesn't have the strict alignment requirements that the x86_64
519
    // version does, but uses the same aligned storage for convenience.
520
    assert!(STORAGE_LIMBS % (STORAGE_ENTRIES * limbs512::LIMBS_PER_CHUNK) == 0); // TODO: `const`
521
    let mut table = limbs512::AlignedStorage::<STORAGE_LIMBS>::zeroed();
522
    let mut table = table
523
        .aligned_chunks_mut(TABLE_ENTRIES, cpe)
524
        .map_err(LimbSliceError::len_mismatch)?;
525
526
    // TODO: Rewrite the below in terms of `AsChunks`.
527
    let table = table.as_flattened_mut();
528
529
    fn gather<M>(table: &[Limb], acc: &mut Elem<M, R>, i: Window) {
530
        prefixed_extern! {
531
            fn LIMBS_select_512_32(
532
                r: *mut Limb,
533
                table: *const Limb,
534
                num_limbs: c::size_t,
535
                i: Window,
536
            ) -> bssl::Result;
537
        }
538
        Result::from(unsafe {
539
            LIMBS_select_512_32(acc.limbs.as_mut_ptr(), table.as_ptr(), acc.limbs.len(), i)
540
        })
541
        .unwrap();
542
    }
543
544
    fn power<M>(
545
        table: &[Limb],
546
        mut acc: Elem<M, R>,
547
        m: &Modulus<M>,
548
        i: Window,
549
        mut tmp: Elem<M, R>,
550
    ) -> (Elem<M, R>, Elem<M, R>) {
551
        for _ in 0..WINDOW_BITS {
552
            acc = elem_squared(acc, m);
553
        }
554
        gather(table, &mut tmp, i);
555
        let acc = elem_mul(&tmp, acc, m);
556
        (acc, tmp)
557
    }
558
559
    fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] {
560
        &table[(i * num_limbs)..][..num_limbs]
561
    }
562
    fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] {
563
        &mut table[(i * num_limbs)..][..num_limbs]
564
    }
565
566
    // table[0] = base**0 (i.e. 1).
567
    m.oneR(entry_mut(table, 0, num_limbs));
568
569
    // table[1] = base*R == (base/R * RRR)/R
570
    limbs_mul_mont(
571
        (
572
            entry_mut(table, 1, num_limbs),
573
            base_rinverse.limbs.as_ref(),
574
            oneRRR.as_ref().limbs.as_ref(),
575
        ),
576
        m.limbs(),
577
        m.n0(),
578
        m.cpu_features(),
579
    )?;
580
    for i in 2..TABLE_ENTRIES {
581
        let (src1, src2) = if i % 2 == 0 {
582
            (i / 2, i / 2)
583
        } else {
584
            (i - 1, 1)
585
        };
586
        let (previous, rest) = table.split_at_mut(num_limbs * i);
587
        let src1 = entry(previous, src1, num_limbs);
588
        let src2 = entry(previous, src2, num_limbs);
589
        let dst = entry_mut(rest, 0, num_limbs);
590
        limbs_mul_mont((dst, src1, src2), m.limbs(), m.n0(), m.cpu_features())?;
591
    }
592
593
    let mut acc = Elem {
594
        limbs: base_rinverse.limbs,
595
        encoding: PhantomData,
596
    };
597
    let tmp = m.alloc_zero();
598
    let tmp = Elem {
599
        limbs: tmp.limbs,
600
        encoding: PhantomData,
601
    };
602
    let (acc, _) = limb::fold_5_bit_windows(
603
        exponent.limbs(),
604
        |initial_window| {
605
            gather(&table, &mut acc, initial_window);
606
            (acc, tmp)
607
        },
608
        |(acc, tmp), window| power(&table, acc, m, window, tmp),
609
    );
610
611
    Ok(acc.into_unencoded(m))
612
}
613
614
#[cfg(target_arch = "x86_64")]
615
0
fn elem_exp_consttime_inner<N, M, const STORAGE_LIMBS: usize>(
616
0
    out: Storage<M>,
617
0
    base_mod_n: &Elem<N>,
618
0
    oneRRR: &One<M, RRR>,
619
0
    exponent: &PrivateExponent,
620
0
    m: &Modulus<M>,
621
0
    other_prime_len_bits: BitLength,
622
0
) -> Result<Elem<M, Unencoded>, LimbSliceError> {
623
    use super::limbs::x86_64::mont::{
624
        gather5, mul_mont5, mul_mont_gather5_amm, power5_amm, scatter5, sqr_mont5,
625
    };
626
    use crate::{
627
        cpu::{
628
            intel::{Adx, Bmi2},
629
            GetFeature as _,
630
        },
631
        limb::{LeakyWindow, Window},
632
        polyfill::slice::AsChunksMut,
633
    };
634
635
0
    let n0 = m.n0();
636
0
637
0
    let cpu2 = m.cpu_features().get_feature();
638
0
    let cpu3 = m.cpu_features().get_feature();
639
0
640
0
    if base_mod_n.limbs.len() != m.limbs().len() * 2 {
641
0
        return Err(LimbSliceError::len_mismatch(LenMismatchError::new(
642
0
            base_mod_n.limbs.len(),
643
0
        )));
644
0
    }
645
646
0
    let m_original: AsChunks<Limb, 8> = match slice::as_chunks(m.limbs()) {
647
0
        (m, []) => m,
648
0
        _ => return Err(LimbSliceError::len_mismatch(LenMismatchError::new(8))),
649
    };
650
0
    let cpe = m_original.len(); // 512-bit chunks per entry
651
0
652
0
    let oneRRR = &oneRRR.as_ref().limbs;
653
0
    let oneRRR = match slice::as_chunks(oneRRR) {
654
0
        (c, []) => c,
655
        _ => {
656
0
            return Err(LimbSliceError::len_mismatch(LenMismatchError::new(
657
0
                oneRRR.len(),
658
0
            )))
659
        }
660
    };
661
662
    // The x86_64 assembly was written under the assumption that the input data
663
    // is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL.
664
    // Subsequently, it was changed such that, according to BoringSSL, they
665
    // only require 16 byte alignment. We enforce the old, stronger, alignment
666
    // unless/until we can see a benefit to reducing it.
667
    //
668
    // Similarly, OpenSSL uses the x86_64 assembly functions by giving it only
669
    // inputs `tmp`, `am`, and `np` that immediately follow the table.
670
    // According to BoringSSL, in older versions of the OpenSSL code, this
671
    // extra space was required for memory safety because the assembly code
672
    // would over-read the table; according to BoringSSL, this is no longer the
673
    // case. Regardless, the upstream code also contained comments implying
674
    // that this was also important for performance. For now, we do as OpenSSL
675
    // did/does.
676
    const MOD_EXP_CTIME_ALIGN: usize = 64;
677
    // Required by
678
    const _TABLE_ENTRIES_IS_32: () = assert!(TABLE_ENTRIES == 32);
679
    const _STORAGE_ENTRIES_HAS_3_EXTRA: () = assert!(STORAGE_ENTRIES == TABLE_ENTRIES + 3);
680
681
0
    assert!(STORAGE_LIMBS % (STORAGE_ENTRIES * limbs512::LIMBS_PER_CHUNK) == 0); // TODO: `const`
682
0
    let mut table = limbs512::AlignedStorage::<STORAGE_LIMBS>::zeroed();
683
0
    let mut table = table
684
0
        .aligned_chunks_mut(STORAGE_ENTRIES, cpe)
685
0
        .map_err(LimbSliceError::len_mismatch)?;
686
0
    let (mut table, mut state) = table.split_at_mut(TABLE_ENTRIES * cpe);
687
0
    assert_eq!((table.as_ptr() as usize) % MOD_EXP_CTIME_ALIGN, 0);
688
689
    // These are named `(tmp, am, np)` in BoringSSL.
690
0
    let (mut acc, mut rest) = state.split_at_mut(cpe);
691
0
    let (mut base_cached, mut m_cached) = rest.split_at_mut(cpe);
692
0
693
0
    // "To improve cache locality" according to upstream.
694
0
    m_cached
695
0
        .as_flattened_mut()
696
0
        .copy_from_slice(m_original.as_flattened());
697
0
    let m_cached = m_cached.as_ref();
698
0
699
0
    let out: Elem<M, RInverse> = elem_reduced(out, base_mod_n, m, other_prime_len_bits);
700
0
    let base_rinverse = match slice::as_chunks(&out.limbs) {
701
0
        (c, []) => c,
702
        _ => {
703
0
            return Err(LimbSliceError::len_mismatch(LenMismatchError::new(
704
0
                out.limbs.len(),
705
0
            )))
706
        }
707
    };
708
709
    // base_cached = base*R == (base/R * RRR)/R
710
0
    mul_mont5(
711
0
        base_cached.as_mut(),
712
0
        base_rinverse,
713
0
        oneRRR,
714
0
        m_cached,
715
0
        n0,
716
0
        cpu2,
717
0
    )?;
718
0
    let base_cached = base_cached.as_ref();
719
0
    let mut out = Storage::from(out); // recycle.
720
721
    // Fill in all the powers of 2 of `acc` into the table using only squaring and without any
722
    // gathering, storing the last calculated power into `acc`.
723
0
    fn scatter_powers_of_2(
724
0
        mut table: AsChunksMut<Limb, 8>,
725
0
        mut acc: AsChunksMut<Limb, 8>,
726
0
        m_cached: AsChunks<Limb, 8>,
727
0
        n0: &N0,
728
0
        mut i: LeakyWindow,
729
0
        cpu: Option<(Adx, Bmi2)>,
730
0
    ) -> Result<(), LimbSliceError> {
731
        loop {
732
0
            scatter5(acc.as_ref(), table.as_mut(), i)?;
733
0
            i *= 2;
734
0
            if i >= TABLE_ENTRIES as LeakyWindow {
735
0
                break;
736
0
            }
737
0
            sqr_mont5(acc.as_mut(), m_cached, n0, cpu)?;
738
        }
739
0
        Ok(())
740
0
    }
741
742
    // All entries in `table` will be Montgomery encoded.
743
744
    // acc = table[0] = base**0 (i.e. 1).
745
0
    m.oneR(acc.as_flattened_mut());
746
0
    scatter5(acc.as_ref(), table.as_mut(), 0)?;
747
748
    // acc = base**1 (i.e. base).
749
0
    acc.as_flattened_mut()
750
0
        .copy_from_slice(base_cached.as_flattened());
751
0
752
0
    // Fill in entries 1, 2, 4, 8, 16.
753
0
    scatter_powers_of_2(table.as_mut(), acc.as_mut(), m_cached, n0, 1, cpu2)?;
754
    // Fill in entries 3, 6, 12, 24; 5, 10, 20, 30; 7, 14, 28; 9, 18; 11, 22; 13, 26; 15, 30;
755
    // 17; 19; 21; 23; 25; 27; 29; 31.
756
0
    for i in (3..(TABLE_ENTRIES as LeakyWindow)).step_by(2) {
757
0
        let power = Window::from(i - 1);
758
0
        assert!(power < 32); // Not secret,
759
        unsafe {
760
0
            mul_mont_gather5_amm(
761
0
                acc.as_mut(),
762
0
                base_cached,
763
0
                table.as_ref(),
764
0
                m_cached,
765
0
                n0,
766
0
                power,
767
0
                cpu3,
768
0
            )
769
0
        }?;
770
0
        scatter_powers_of_2(table.as_mut(), acc.as_mut(), m_cached, n0, i, cpu2)?;
771
    }
772
773
0
    let table = table.as_ref();
774
0
775
0
    let acc = limb::fold_5_bit_windows(
776
0
        exponent.limbs(),
777
0
        |initial_window| {
778
0
            unsafe { gather5(acc.as_mut(), table, initial_window) }
779
0
                .unwrap_or_else(unwrap_impossible_limb_slice_error);
780
0
            acc
781
0
        },
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime_inner::<ring::rsa::N, ring::rsa::keypair::P, 1120>::{closure#0}
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime_inner::<ring::rsa::N, ring::rsa::keypair::Q, 1120>::{closure#0}
782
0
        |mut acc, window| {
783
0
            unsafe { power5_amm(acc.as_mut(), table, m_cached, n0, window, cpu3) }
784
0
                .unwrap_or_else(unwrap_impossible_limb_slice_error);
785
0
            acc
786
0
        },
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime_inner::<ring::rsa::N, ring::rsa::keypair::P, 1120>::{closure#1}
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime_inner::<ring::rsa::N, ring::rsa::keypair::Q, 1120>::{closure#1}
787
0
    );
788
0
789
0
    // Reuse `base_rinverse`'s limbs to save an allocation.
790
0
    out.limbs.copy_from_slice(acc.as_flattened());
791
0
    Ok(from_montgomery_amm(out, m))
792
0
}
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime_inner::<ring::rsa::N, ring::rsa::keypair::P, 1120>
Unexecuted instantiation: ring::arithmetic::bigint::elem_exp_consttime_inner::<ring::rsa::N, ring::rsa::keypair::Q, 1120>
793
794
/// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m).
795
0
pub fn verify_inverses_consttime<M>(
796
0
    a: &Elem<M, R>,
797
0
    b: Elem<M, Unencoded>,
798
0
    m: &Modulus<M>,
799
0
) -> Result<(), error::Unspecified> {
800
0
    let r = elem_mul(a, b, m);
801
0
    limb::verify_limbs_equal_1_leak_bit(&r.limbs)
802
0
}
803
804
#[inline]
805
0
pub fn elem_verify_equal_consttime<M, E>(
806
0
    a: &Elem<M, E>,
807
0
    b: &Elem<M, E>,
808
0
) -> Result<(), error::Unspecified> {
809
0
    let equal = limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs)
810
0
        .unwrap_or_else(unwrap_impossible_len_mismatch_error);
811
0
    if !equal.leak() {
812
0
        return Err(error::Unspecified);
813
0
    }
814
0
    Ok(())
815
0
}
816
817
#[cold]
818
#[inline(never)]
819
0
fn unwrap_impossible_len_mismatch_error<T>(LenMismatchError { .. }: LenMismatchError) -> T {
820
0
    unreachable!()
Unexecuted instantiation: ring::arithmetic::bigint::unwrap_impossible_len_mismatch_error::<ring::bb::boolmask::BoolMask>
Unexecuted instantiation: ring::arithmetic::bigint::unwrap_impossible_len_mismatch_error::<()>
821
}
822
823
#[cold]
824
#[inline(never)]
825
0
fn unwrap_impossible_limb_slice_error(err: LimbSliceError) {
826
0
    match err {
827
0
        LimbSliceError::LenMismatch(_) => unreachable!(),
828
0
        LimbSliceError::TooShort(_) => unreachable!(),
829
0
        LimbSliceError::TooLong(_) => unreachable!(),
830
    }
831
}
832
833
#[cfg(test)]
834
mod tests {
835
    use super::*;
836
    use crate::cpu;
837
    use crate::testutil as test;
838
839
    // Type-level representation of an arbitrary modulus.
840
    struct M {}
841
842
    impl PublicModulus for M {}
843
844
    #[test]
845
    fn test_elem_exp_consttime() {
846
        let cpu_features = cpu::features();
847
        test::run(
848
            test_vector_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"),
849
            |section, test_case| {
850
                assert_eq!(section, "");
851
852
                let m = consume_modulus::<M>(test_case, "M");
853
                let m = m.modulus(cpu_features);
854
                let expected_result = consume_elem(test_case, "ModExp", &m);
855
                let base = consume_elem(test_case, "A", &m);
856
                let e = {
857
                    let bytes = test_case.consume_bytes("E");
858
                    PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m)
859
                        .expect("valid exponent")
860
                };
861
862
                let oneRR = One::newRR(m.alloc_zero(), &m);
863
                let oneRRR = One::newRRR(oneRR, &m);
864
865
                // `base` in the test vectors is reduced (mod M) already but
866
                // the API expects the bsae to be (mod N) where N = M * P for
867
                // some other prime of the same length. Fake that here.
868
                // Pretend there's another prime of equal length.
869
                struct N {}
870
                let other_modulus_len_bits = m.len_bits();
871
                let base: Elem<N> = {
872
                    let mut limbs = BoxedLimbs::zero(base.limbs.len() * 2);
873
                    limbs[..base.limbs.len()].copy_from_slice(&base.limbs);
874
                    Elem {
875
                        limbs,
876
                        encoding: PhantomData,
877
                    }
878
                };
879
880
                let too_big = m.limbs().len() > ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS;
881
                let actual_result = if !too_big {
882
                    elem_exp_consttime(
883
                        m.alloc_zero(),
884
                        &base,
885
                        &oneRRR,
886
                        &e,
887
                        &m,
888
                        other_modulus_len_bits,
889
                    )
890
                } else {
891
                    let actual_result = elem_exp_consttime(
892
                        m.alloc_zero(),
893
                        &base,
894
                        &oneRRR,
895
                        &e,
896
                        &m,
897
                        other_modulus_len_bits,
898
                    );
899
                    // TODO: Be more specific with which error we expect?
900
                    assert!(actual_result.is_err());
901
                    // Try again with a larger-than-normally-supported limit
902
                    elem_exp_consttime_inner::<_, _, { (4096 / LIMB_BITS) * STORAGE_ENTRIES }>(
903
                        m.alloc_zero(),
904
                        &base,
905
                        &oneRRR,
906
                        &e,
907
                        &m,
908
                        other_modulus_len_bits,
909
                    )
910
                };
911
                match actual_result {
912
                    Ok(r) => assert_elem_eq(&r, &expected_result),
913
                    Err(LimbSliceError::LenMismatch { .. }) => panic!(),
914
                    Err(LimbSliceError::TooLong { .. }) => panic!(),
915
                    Err(LimbSliceError::TooShort { .. }) => panic!(),
916
                };
917
918
                Ok(())
919
            },
920
        )
921
    }
922
923
    // TODO: fn test_elem_exp_vartime() using
924
    // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details.
925
    // In the meantime, the function is tested indirectly via the RSA
926
    // verification and signing tests.
927
    #[test]
928
    fn test_elem_mul() {
929
        let cpu_features = cpu::features();
930
        test::run(
931
            test_vector_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"),
932
            |section, test_case| {
933
                assert_eq!(section, "");
934
935
                let m = consume_modulus::<M>(test_case, "M");
936
                let m = m.modulus(cpu_features);
937
                let expected_result = consume_elem(test_case, "ModMul", &m);
938
                let a = consume_elem(test_case, "A", &m);
939
                let b = consume_elem(test_case, "B", &m);
940
941
                let b = into_encoded(m.alloc_zero(), b, &m);
942
                let a = into_encoded(m.alloc_zero(), a, &m);
943
                let actual_result = elem_mul(&a, b, &m);
944
                let actual_result = actual_result.into_unencoded(&m);
945
                assert_elem_eq(&actual_result, &expected_result);
946
947
                Ok(())
948
            },
949
        )
950
    }
951
952
    #[test]
953
    fn test_elem_squared() {
954
        let cpu_features = cpu::features();
955
        test::run(
956
            test_vector_file!("bigint_elem_squared_tests.txt"),
957
            |section, test_case| {
958
                assert_eq!(section, "");
959
960
                let m = consume_modulus::<M>(test_case, "M");
961
                let m = m.modulus(cpu_features);
962
                let expected_result = consume_elem(test_case, "ModSquare", &m);
963
                let a = consume_elem(test_case, "A", &m);
964
965
                let a = into_encoded(m.alloc_zero(), a, &m);
966
                let actual_result = elem_squared(a, &m);
967
                let actual_result = actual_result.into_unencoded(&m);
968
                assert_elem_eq(&actual_result, &expected_result);
969
970
                Ok(())
971
            },
972
        )
973
    }
974
975
    #[test]
976
    fn test_elem_reduced() {
977
        let cpu_features = cpu::features();
978
        test::run(
979
            test_vector_file!("bigint_elem_reduced_tests.txt"),
980
            |section, test_case| {
981
                assert_eq!(section, "");
982
983
                struct M {}
984
985
                let m_ = consume_modulus::<M>(test_case, "M");
986
                let m = m_.modulus(cpu_features);
987
                let expected_result = consume_elem(test_case, "R", &m);
988
                let a =
989
                    consume_elem_unchecked::<M>(test_case, "A", expected_result.limbs.len() * 2);
990
                let other_modulus_len_bits = m_.len_bits();
991
992
                let actual_result = elem_reduced(m.alloc_zero(), &a, &m, other_modulus_len_bits);
993
                let oneRR = One::newRR(m.alloc_zero(), &m);
994
                let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
995
                assert_elem_eq(&actual_result, &expected_result);
996
997
                Ok(())
998
            },
999
        )
1000
    }
1001
1002
    #[test]
1003
    fn test_elem_reduced_once() {
1004
        let cpu_features = cpu::features();
1005
        test::run(
1006
            test_vector_file!("bigint_elem_reduced_once_tests.txt"),
1007
            |section, test_case| {
1008
                assert_eq!(section, "");
1009
1010
                struct M {}
1011
                struct O {}
1012
                let m = consume_modulus::<M>(test_case, "m");
1013
                let m = m.modulus(cpu_features);
1014
                let a = consume_elem_unchecked::<O>(test_case, "a", m.limbs().len());
1015
                let expected_result = consume_elem::<M>(test_case, "r", &m);
1016
                let other_modulus_len_bits = m.len_bits();
1017
1018
                let actual_result =
1019
                    elem_reduced_once(m.alloc_zero(), &a, &m, other_modulus_len_bits);
1020
                assert_elem_eq(&actual_result, &expected_result);
1021
1022
                Ok(())
1023
            },
1024
        )
1025
    }
1026
1027
    fn consume_elem<M>(
1028
        test_case: &mut test::TestCase,
1029
        name: &str,
1030
        m: &Modulus<M>,
1031
    ) -> Elem<M, Unencoded> {
1032
        let value = test_case.consume_bytes(name);
1033
        Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
1034
    }
1035
1036
    fn consume_elem_unchecked<M>(
1037
        test_case: &mut test::TestCase,
1038
        name: &str,
1039
        num_limbs: usize,
1040
    ) -> Elem<M, Unencoded> {
1041
        let bytes = test_case.consume_bytes(name);
1042
        let mut limbs = BoxedLimbs::zero(num_limbs);
1043
        limb::parse_big_endian_and_pad_consttime(untrusted::Input::from(&bytes), &mut limbs)
1044
            .unwrap();
1045
        Elem {
1046
            limbs,
1047
            encoding: PhantomData,
1048
        }
1049
    }
1050
1051
    fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> OwnedModulus<M> {
1052
        let value = test_case.consume_bytes(name);
1053
        OwnedModulus::from(
1054
            OwnedModulusValue::from_be_bytes(untrusted::Input::from(&value)).unwrap(),
1055
        )
1056
    }
1057
1058
    fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
1059
        if elem_verify_equal_consttime(a, b).is_err() {
1060
            panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs);
1061
        }
1062
    }
1063
1064
    fn into_encoded<M>(out: Storage<M>, a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
1065
        let oneRR = One::newRR(out, m);
1066
        elem_mul(oneRR.as_ref(), a, m)
1067
    }
1068
}