/rust/registry/src/index.crates.io-1949cf8c6b5b557f/ring-0.17.14/crypto/internal.h
Line  | Count  | Source  | 
1  |  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.  | 
2  |  | //  | 
3  |  | // Licensed under the Apache License, Version 2.0 (the "License");  | 
4  |  | // you may not use this file except in compliance with the License.  | 
5  |  | // You may obtain a copy of the License at  | 
6  |  | //  | 
7  |  | //     https://www.apache.org/licenses/LICENSE-2.0  | 
8  |  | //  | 
9  |  | // Unless required by applicable law or agreed to in writing, software  | 
10  |  | // distributed under the License is distributed on an "AS IS" BASIS,  | 
11  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
12  |  | // See the License for the specific language governing permissions and  | 
13  |  | // limitations under the License.  | 
14  |  |  | 
15  |  | #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H  | 
16  |  | #define OPENSSL_HEADER_CRYPTO_INTERNAL_H  | 
17  |  |  | 
18  |  | #include <ring-core/base.h> // Must be first.  | 
19  |  |  | 
20  |  | #include "ring-core/check.h"  | 
21  |  |  | 
22  |  | #if defined(__clang__)  | 
23  |  | // Don't require prototypes for functions defined in C that are only  | 
24  |  | // used from Rust.  | 
25  |  | #pragma GCC diagnostic ignored "-Wmissing-prototypes"  | 
26  |  | #endif  | 
27  |  |  | 
28  |  | #if defined(__GNUC__) && \  | 
29  |  |     (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800  | 
30  |  | // |alignas| and |alignof| were added in C11. GCC added support in version 4.8.  | 
31  |  | // Testing for __STDC_VERSION__/__cplusplus doesn't work because 4.7 already  | 
32  |  | // reports support for C11.  | 
33  | 0  | #define alignas(x) __attribute__ ((aligned (x)))  | 
34  |  | #elif defined(_MSC_VER) && !defined(__clang__)  | 
35  |  | #define alignas(x) __declspec(align(x))  | 
36  |  | #else  | 
37  |  | #include <stdalign.h>  | 
38  |  | #endif  | 
39  |  |  | 
40  |  | #if defined(__clang__) || defined(__GNUC__)  | 
41  |  | #define RING_NOINLINE __attribute__((noinline))  | 
42  |  | #elif defined(_MSC_VER)  | 
43  |  | #define RING_NOINLINE __declspec(noinline)  | 
44  |  | #else  | 
45  |  | #define RING_NOINLINE  | 
46  |  | #endif  | 
47  |  |  | 
48  |  | // Some C compilers require a useless cast when dealing with arrays for the  | 
49  |  | // reason explained in  | 
50  |  | // https://gustedt.wordpress.com/2011/02/12/const-and-arrays/  | 
51  |  | #if defined(__clang__) || defined(_MSC_VER)  | 
52  |  | #define RING_CORE_POINTLESS_ARRAY_CONST_CAST(cast)  | 
53  |  | #else  | 
54  |  | #define RING_CORE_POINTLESS_ARRAY_CONST_CAST(cast) cast  | 
55  |  | #endif  | 
56  |  |  | 
57  |  | // `uint8_t` isn't guaranteed to be 'unsigned char' and only 'char' and  | 
58  |  | // 'unsigned char' are allowed to alias according to ISO C.  | 
59  |  | typedef unsigned char aliasing_uint8_t;  | 
60  |  |  | 
61  |  | #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)  | 
62  |  | #define BORINGSSL_HAS_UINT128  | 
63  |  | typedef __int128_t int128_t;  | 
64  |  | typedef __uint128_t uint128_t;  | 
65  |  | #endif  | 
66  |  |  | 
67  |  | // GCC-like compilers indicate SSE2 with |__SSE2__|. MSVC leaves the caller to  | 
68  |  | // know that x86_64 has SSE2, and uses _M_IX86_FP to indicate SSE2 on x86.  | 
69  |  | // https://learn.microsoft.com/en-us/cpp/preprocessor/predefined-macros?view=msvc-170  | 
70  |  | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)  | 
71  |  | # if defined(_MSC_VER) && !defined(__clang__)  | 
72  |  | #  if defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 2)  | 
73  |  | #   define OPENSSL_SSE2  | 
74  |  | #  else  | 
75  |  | #   error "SSE2 is required."  | 
76  |  | #  endif  | 
77  |  | # elif !defined(__SSE2__)  | 
78  |  | #  error "SSE2 is required."  | 
79  |  | # endif  | 
80  |  | #endif  | 
81  |  |  | 
82  |  | // For convenience in testing the fallback code, we allow disabling SSE2  | 
83  |  | // intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. We require SSE2 on x86 and  | 
84  |  | // x86_64, so we would otherwise need to test such code on a non-x86 platform.  | 
85  |  | //  | 
86  |  | // This does not remove the above requirement for SSE2 support with assembly  | 
87  |  | // optimizations. It only disables some intrinsics-based optimizations so that  | 
88  |  | // we can test the fallback code on CI.  | 
89  |  | #if defined(OPENSSL_SSE2) && defined(OPENSSL_NO_SSE2_FOR_TESTING)  | 
90  |  | #undef OPENSSL_SSE2  | 
91  |  | #endif  | 
92  |  |  | 
93  |  | // Pointer utility functions.  | 
94  |  |  | 
95  |  | // buffers_alias returns one if |a| and |b| alias and zero otherwise.  | 
96  |  | static inline int buffers_alias(const void *a, size_t a_bytes,  | 
97  | 0  |                                 const void *b, size_t b_bytes) { | 
98  | 0  |   // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated  | 
99  | 0  |   // objects are undefined whereas pointer to integer conversions are merely  | 
100  | 0  |   // implementation-defined. We assume the implementation defined it in a sane  | 
101  | 0  |   // way.  | 
102  | 0  |   uintptr_t a_u = (uintptr_t)a;  | 
103  | 0  |   uintptr_t b_u = (uintptr_t)b;  | 
104  | 0  |   return a_u + a_bytes > b_u && b_u + b_bytes > a_u;  | 
105  | 0  | } Unexecuted instantiation: curve25519.c:buffers_alias Unexecuted instantiation: aes_nohw.c:buffers_alias Unexecuted instantiation: montgomery.c:buffers_alias Unexecuted instantiation: montgomery_inv.c:buffers_alias Unexecuted instantiation: gfp_p384.c:buffers_alias Unexecuted instantiation: limbs.c:buffers_alias Unexecuted instantiation: mem.c:buffers_alias Unexecuted instantiation: poly1305.c:buffers_alias Unexecuted instantiation: cpu_intel.c:buffers_alias Unexecuted instantiation: curve25519_64_adx.c:buffers_alias Unexecuted instantiation: p256-nistz.c:buffers_alias Unexecuted instantiation: ecp_nistz.c:buffers_alias  | 
106  |  |  | 
107  |  |  | 
108  |  | // Constant-time utility functions.  | 
109  |  | //  | 
110  |  | // The following methods return a bitmask of all ones (0xff...f) for true and 0  | 
111  |  | // for false. This is useful for choosing a value based on the result of a  | 
112  |  | // conditional in constant time. For example,  | 
113  |  | //  | 
114  |  | // if (a < b) { | 
115  |  | //   c = a;  | 
116  |  | // } else { | 
117  |  | //   c = b;  | 
118  |  | // }  | 
119  |  | //  | 
120  |  | // can be written as  | 
121  |  | //  | 
122  |  | // crypto_word_t lt = constant_time_lt_w(a, b);  | 
123  |  | // c = constant_time_select_w(lt, a, b);  | 
124  |  |  | 
125  |  | #if defined(__GNUC__) || defined(__clang__)  | 
126  |  | #pragma GCC diagnostic push  | 
127  |  | #pragma GCC diagnostic ignored "-Wconversion"  | 
128  |  | #pragma GCC diagnostic ignored "-Wsign-conversion"  | 
129  |  | #endif  | 
130  |  | #if defined(_MSC_VER) && !defined(__clang__)  | 
131  |  | #pragma warning(push)  | 
132  |  | // '=': conversion from 'crypto_word_t' to 'uint8_t', possible loss of data  | 
133  |  | #pragma warning(disable: 4242)  | 
134  |  | //  'initializing': conversion from 'crypto_word_t' to 'uint8_t', ...  | 
135  |  | #pragma warning(disable: 4244)  | 
136  |  | #endif  | 
137  |  |  | 
138  |  | // crypto_word_t is the type that most constant-time functions use. Ideally we  | 
139  |  | // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit  | 
140  |  | // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64  | 
141  |  | // bits. Since we want to be able to do constant-time operations on a  | 
142  |  | // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native  | 
143  |  | // word length.  | 
144  |  | #if defined(OPENSSL_64_BIT)  | 
145  |  | typedef uint64_t crypto_word_t;  | 
146  | 0  | #define CRYPTO_WORD_BITS (64u)  | 
147  |  | #elif defined(OPENSSL_32_BIT)  | 
148  |  | typedef uint32_t crypto_word_t;  | 
149  |  | #define CRYPTO_WORD_BITS (32u)  | 
150  |  | #else  | 
151  |  | #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"  | 
152  |  | #endif  | 
153  |  |  | 
154  | 0  | #define CONSTTIME_TRUE_W ~((crypto_word_t)0)  | 
155  |  | #define CONSTTIME_FALSE_W ((crypto_word_t)0)  | 
156  |  |  | 
157  |  | // value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about  | 
158  |  | // the returned value. This is used to mitigate compilers undoing constant-time  | 
159  |  | // code, until we can express our requirements directly in the language.  | 
160  |  | //  | 
161  |  | // Note the compiler is aware that |value_barrier_w| has no side effects and  | 
162  |  | // always has the same output for a given input. This allows it to eliminate  | 
163  |  | // dead code, move computations across loops, and vectorize.  | 
164  | 0  | static inline crypto_word_t value_barrier_w(crypto_word_t a) { | 
165  | 0  | #if defined(__GNUC__) || defined(__clang__)  | 
166  | 0  |   __asm__("" : "+r"(a) : /* no inputs */); | 
167  | 0  | #endif  | 
168  | 0  |   return a;  | 
169  | 0  | } Unexecuted instantiation: curve25519.c:value_barrier_w Unexecuted instantiation: aes_nohw.c:value_barrier_w Unexecuted instantiation: montgomery.c:value_barrier_w Unexecuted instantiation: montgomery_inv.c:value_barrier_w Unexecuted instantiation: gfp_p384.c:value_barrier_w Unexecuted instantiation: limbs.c:value_barrier_w Unexecuted instantiation: mem.c:value_barrier_w Unexecuted instantiation: poly1305.c:value_barrier_w Unexecuted instantiation: cpu_intel.c:value_barrier_w Unexecuted instantiation: curve25519_64_adx.c:value_barrier_w Unexecuted instantiation: p256-nistz.c:value_barrier_w Unexecuted instantiation: ecp_nistz.c:value_barrier_w  | 
170  |  |  | 
171  |  | // value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.  | 
172  | 0  | static inline uint32_t value_barrier_u32(uint32_t a) { | 
173  | 0  | #if defined(__GNUC__) || defined(__clang__)  | 
174  | 0  |   __asm__("" : "+r"(a) : /* no inputs */); | 
175  | 0  | #endif  | 
176  | 0  |   return a;  | 
177  | 0  | } Unexecuted instantiation: curve25519.c:value_barrier_u32 Unexecuted instantiation: aes_nohw.c:value_barrier_u32 Unexecuted instantiation: montgomery.c:value_barrier_u32 Unexecuted instantiation: montgomery_inv.c:value_barrier_u32 Unexecuted instantiation: gfp_p384.c:value_barrier_u32 Unexecuted instantiation: limbs.c:value_barrier_u32 Unexecuted instantiation: mem.c:value_barrier_u32 Unexecuted instantiation: poly1305.c:value_barrier_u32 Unexecuted instantiation: cpu_intel.c:value_barrier_u32 Unexecuted instantiation: curve25519_64_adx.c:value_barrier_u32 Unexecuted instantiation: p256-nistz.c:value_barrier_u32 Unexecuted instantiation: ecp_nistz.c:value_barrier_u32  | 
178  |  |  | 
179  |  | // |value_barrier_u8| could be defined as above, but compilers other than  | 
180  |  | // clang seem to still materialize 0x00..00MM instead of reusing 0x??..??MM.  | 
181  |  |  | 
182  |  | // constant_time_msb_w returns the given value with the MSB copied to all the  | 
183  |  | // other bits.  | 
184  | 0  | static inline crypto_word_t constant_time_msb_w(crypto_word_t a) { | 
185  | 0  |   return 0u - (a >> (sizeof(a) * 8 - 1));  | 
186  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_msb_w Unexecuted instantiation: aes_nohw.c:constant_time_msb_w Unexecuted instantiation: montgomery.c:constant_time_msb_w Unexecuted instantiation: montgomery_inv.c:constant_time_msb_w Unexecuted instantiation: gfp_p384.c:constant_time_msb_w Unexecuted instantiation: limbs.c:constant_time_msb_w Unexecuted instantiation: mem.c:constant_time_msb_w Unexecuted instantiation: poly1305.c:constant_time_msb_w Unexecuted instantiation: cpu_intel.c:constant_time_msb_w Unexecuted instantiation: curve25519_64_adx.c:constant_time_msb_w Unexecuted instantiation: p256-nistz.c:constant_time_msb_w Unexecuted instantiation: ecp_nistz.c:constant_time_msb_w  | 
187  |  |  | 
188  |  | // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.  | 
189  | 0  | static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) { | 
190  |  |   // Here is an SMT-LIB verification of this formula:  | 
191  |  |   //  | 
192  |  |   // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)  | 
193  |  |   //   (bvand (bvnot a) (bvsub a #x00000001))  | 
194  |  |   // )  | 
195  |  |   //  | 
196  |  |   // (declare-fun a () (_ BitVec 32))  | 
197  |  |   //  | 
198  |  |   // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))  | 
199  |  |   // (check-sat)  | 
200  |  |   // (get-model)  | 
201  | 0  |   return constant_time_msb_w(~a & (a - 1));  | 
202  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_is_zero_w Unexecuted instantiation: aes_nohw.c:constant_time_is_zero_w Unexecuted instantiation: montgomery.c:constant_time_is_zero_w Unexecuted instantiation: montgomery_inv.c:constant_time_is_zero_w Unexecuted instantiation: gfp_p384.c:constant_time_is_zero_w Unexecuted instantiation: limbs.c:constant_time_is_zero_w Unexecuted instantiation: mem.c:constant_time_is_zero_w Unexecuted instantiation: poly1305.c:constant_time_is_zero_w Unexecuted instantiation: cpu_intel.c:constant_time_is_zero_w Unexecuted instantiation: curve25519_64_adx.c:constant_time_is_zero_w Unexecuted instantiation: p256-nistz.c:constant_time_is_zero_w Unexecuted instantiation: ecp_nistz.c:constant_time_is_zero_w  | 
203  |  |  | 
204  | 0  | static inline crypto_word_t constant_time_is_nonzero_w(crypto_word_t a) { | 
205  | 0  |   return ~constant_time_is_zero_w(a);  | 
206  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_is_nonzero_w Unexecuted instantiation: aes_nohw.c:constant_time_is_nonzero_w Unexecuted instantiation: montgomery.c:constant_time_is_nonzero_w Unexecuted instantiation: montgomery_inv.c:constant_time_is_nonzero_w Unexecuted instantiation: gfp_p384.c:constant_time_is_nonzero_w Unexecuted instantiation: limbs.c:constant_time_is_nonzero_w Unexecuted instantiation: mem.c:constant_time_is_nonzero_w Unexecuted instantiation: poly1305.c:constant_time_is_nonzero_w Unexecuted instantiation: cpu_intel.c:constant_time_is_nonzero_w Unexecuted instantiation: curve25519_64_adx.c:constant_time_is_nonzero_w Unexecuted instantiation: p256-nistz.c:constant_time_is_nonzero_w Unexecuted instantiation: ecp_nistz.c:constant_time_is_nonzero_w  | 
207  |  |  | 
208  |  | // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.  | 
209  |  | static inline crypto_word_t constant_time_eq_w(crypto_word_t a,  | 
210  | 0  |                                                crypto_word_t b) { | 
211  | 0  |   return constant_time_is_zero_w(a ^ b);  | 
212  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_eq_w Unexecuted instantiation: aes_nohw.c:constant_time_eq_w Unexecuted instantiation: montgomery.c:constant_time_eq_w Unexecuted instantiation: montgomery_inv.c:constant_time_eq_w Unexecuted instantiation: gfp_p384.c:constant_time_eq_w Unexecuted instantiation: limbs.c:constant_time_eq_w Unexecuted instantiation: mem.c:constant_time_eq_w Unexecuted instantiation: poly1305.c:constant_time_eq_w Unexecuted instantiation: cpu_intel.c:constant_time_eq_w Unexecuted instantiation: curve25519_64_adx.c:constant_time_eq_w Unexecuted instantiation: p256-nistz.c:constant_time_eq_w Unexecuted instantiation: ecp_nistz.c:constant_time_eq_w  | 
213  |  |  | 
214  |  | // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all  | 
215  |  | // 1s or all 0s (as returned by the methods above), the select methods return  | 
216  |  | // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).  | 
217  |  | static inline crypto_word_t constant_time_select_w(crypto_word_t mask,  | 
218  |  |                                                    crypto_word_t a,  | 
219  | 0  |                                                    crypto_word_t b) { | 
220  |  |   // Clang recognizes this pattern as a select. While it usually transforms it  | 
221  |  |   // to a cmov, it sometimes further transforms it into a branch, which we do  | 
222  |  |   // not want.  | 
223  |  |   //  | 
224  |  |   // Hiding the value of the mask from the compiler evades this transformation.  | 
225  | 0  |   mask = value_barrier_w(mask);  | 
226  | 0  |   return (mask & a) | (~mask & b);  | 
227  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_select_w Unexecuted instantiation: aes_nohw.c:constant_time_select_w Unexecuted instantiation: montgomery.c:constant_time_select_w Unexecuted instantiation: montgomery_inv.c:constant_time_select_w Unexecuted instantiation: gfp_p384.c:constant_time_select_w Unexecuted instantiation: limbs.c:constant_time_select_w Unexecuted instantiation: mem.c:constant_time_select_w Unexecuted instantiation: poly1305.c:constant_time_select_w Unexecuted instantiation: cpu_intel.c:constant_time_select_w Unexecuted instantiation: curve25519_64_adx.c:constant_time_select_w Unexecuted instantiation: p256-nistz.c:constant_time_select_w Unexecuted instantiation: ecp_nistz.c:constant_time_select_w  | 
228  |  |  | 
229  |  | // constant_time_select_8 acts like |constant_time_select| but operates on  | 
230  |  | // 8-bit values.  | 
231  |  | static inline uint8_t constant_time_select_8(crypto_word_t mask, uint8_t a,  | 
232  | 0  |                                              uint8_t b) { | 
233  |  |   // |mask| is a word instead of |uint8_t| to avoid materializing 0x000..0MM  | 
234  |  |   // Making both |mask| and its value barrier |uint8_t| would allow the compiler  | 
235  |  |   // to materialize 0x????..?MM instead, but only clang is that clever.  | 
236  |  |   // However, vectorization of bitwise operations seems to work better on  | 
237  |  |   // |uint8_t| than a mix of |uint64_t| and |uint8_t|, so |m| is cast to  | 
238  |  |   // |uint8_t| after the value barrier but before the bitwise operations.  | 
239  | 0  |   uint8_t m = value_barrier_w(mask);  | 
240  | 0  |   return (m & a) | (~m & b);  | 
241  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_select_8 Unexecuted instantiation: aes_nohw.c:constant_time_select_8 Unexecuted instantiation: montgomery.c:constant_time_select_8 Unexecuted instantiation: montgomery_inv.c:constant_time_select_8 Unexecuted instantiation: gfp_p384.c:constant_time_select_8 Unexecuted instantiation: limbs.c:constant_time_select_8 Unexecuted instantiation: mem.c:constant_time_select_8 Unexecuted instantiation: poly1305.c:constant_time_select_8 Unexecuted instantiation: cpu_intel.c:constant_time_select_8 Unexecuted instantiation: curve25519_64_adx.c:constant_time_select_8 Unexecuted instantiation: p256-nistz.c:constant_time_select_8 Unexecuted instantiation: ecp_nistz.c:constant_time_select_8  | 
242  |  |  | 
243  |  | // constant_time_conditional_memcpy copies |n| bytes from |src| to |dst| if  | 
244  |  | // |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory  | 
245  |  | // ranges at |dst| and |src| must not overlap, as when calling |memcpy|.  | 
246  |  | static inline void constant_time_conditional_memcpy(void *dst, const void *src,  | 
247  |  |                                                     const size_t n,  | 
248  | 0  |                                                     const crypto_word_t mask) { | 
249  | 0  |   debug_assert_nonsecret(!buffers_alias(dst, n, src, n));  | 
250  | 0  |   uint8_t *out = (uint8_t *)dst;  | 
251  | 0  |   const uint8_t *in = (const uint8_t *)src;  | 
252  | 0  |   for (size_t i = 0; i < n; i++) { | 
253  | 0  |     out[i] = constant_time_select_8(mask, in[i], out[i]);  | 
254  | 0  |   }  | 
255  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_conditional_memcpy Unexecuted instantiation: aes_nohw.c:constant_time_conditional_memcpy Unexecuted instantiation: montgomery.c:constant_time_conditional_memcpy Unexecuted instantiation: montgomery_inv.c:constant_time_conditional_memcpy Unexecuted instantiation: gfp_p384.c:constant_time_conditional_memcpy Unexecuted instantiation: limbs.c:constant_time_conditional_memcpy Unexecuted instantiation: mem.c:constant_time_conditional_memcpy Unexecuted instantiation: poly1305.c:constant_time_conditional_memcpy Unexecuted instantiation: cpu_intel.c:constant_time_conditional_memcpy Unexecuted instantiation: curve25519_64_adx.c:constant_time_conditional_memcpy Unexecuted instantiation: p256-nistz.c:constant_time_conditional_memcpy Unexecuted instantiation: ecp_nistz.c:constant_time_conditional_memcpy  | 
256  |  |  | 
257  |  | // constant_time_conditional_memxor xors |n| bytes from |src| to |dst| if  | 
258  |  | // |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory  | 
259  |  | // ranges at |dst| and |src| must not overlap, as when calling |memcpy|.  | 
260  |  | static inline void constant_time_conditional_memxor(void *dst, const void *src,  | 
261  |  |                                                     size_t n,  | 
262  | 0  |                                                     const crypto_word_t mask) { | 
263  | 0  |   debug_assert_nonsecret(!buffers_alias(dst, n, src, n));  | 
264  | 0  |   aliasing_uint8_t *out = dst;  | 
265  | 0  |   const aliasing_uint8_t *in = src;  | 
266  |  | #if defined(__GNUC__) && !defined(__clang__)  | 
267  |  |   // gcc 13.2.0 doesn't automatically vectorize this loop regardless of barrier  | 
268  |  |   typedef aliasing_uint8_t v32u8 __attribute__((vector_size(32), aligned(1), may_alias));  | 
269  |  |   size_t n_vec = n&~(size_t)31;  | 
270  |  |   v32u8 masks = ((aliasing_uint8_t)mask-(v32u8){}); // broadcast | 
271  |  |   for (size_t i = 0; i < n_vec; i += 32) { | 
272  |  |     *(v32u8*)&out[i] ^= masks & *(v32u8 const*)&in[i];  | 
273  |  |   }  | 
274  |  |   out += n_vec;  | 
275  |  |   n -= n_vec;  | 
276  |  | #endif  | 
277  | 0  |   for (size_t i = 0; i < n; i++) { | 
278  | 0  |     out[i] ^= value_barrier_w(mask) & in[i];  | 
279  | 0  |   }  | 
280  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_conditional_memxor Unexecuted instantiation: aes_nohw.c:constant_time_conditional_memxor Unexecuted instantiation: montgomery.c:constant_time_conditional_memxor Unexecuted instantiation: montgomery_inv.c:constant_time_conditional_memxor Unexecuted instantiation: gfp_p384.c:constant_time_conditional_memxor Unexecuted instantiation: limbs.c:constant_time_conditional_memxor Unexecuted instantiation: mem.c:constant_time_conditional_memxor Unexecuted instantiation: poly1305.c:constant_time_conditional_memxor Unexecuted instantiation: cpu_intel.c:constant_time_conditional_memxor Unexecuted instantiation: curve25519_64_adx.c:constant_time_conditional_memxor Unexecuted instantiation: p256-nistz.c:constant_time_conditional_memxor Unexecuted instantiation: ecp_nistz.c:constant_time_conditional_memxor  | 
281  |  |  | 
282  |  | #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)  | 
283  |  |  | 
284  |  | // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region  | 
285  |  | // of memory as secret. Secret data is tracked as it flows to registers and  | 
286  |  | // other parts of a memory. If secret data is used as a condition for a branch,  | 
287  |  | // or as a memory index, it will trigger warnings in valgrind.  | 
288  |  | #define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len)  | 
289  |  |  | 
290  |  | // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that  | 
291  |  | // region of memory as public. Public data is not subject to constant-time  | 
292  |  | // rules.  | 
293  |  | #define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len)  | 
294  |  |  | 
295  |  | #else  | 
296  |  |  | 
297  |  | #define CONSTTIME_SECRET(ptr, len)  | 
298  |  | #define CONSTTIME_DECLASSIFY(ptr, len)  | 
299  |  |  | 
300  |  | #endif  // BORINGSSL_CONSTANT_TIME_VALIDATION  | 
301  |  |  | 
302  | 0  | static inline crypto_word_t constant_time_declassify_w(crypto_word_t v) { | 
303  | 0  |   // Return |v| through a value barrier to be safe. Valgrind-based constant-time  | 
304  | 0  |   // validation is partly to check the compiler has not undone any constant-time  | 
305  | 0  |   // work. Any place |BORINGSSL_CONSTANT_TIME_VALIDATION| influences  | 
306  | 0  |   // optimizations, this validation is inaccurate.  | 
307  | 0  |   //  | 
308  | 0  |   // However, by sending pointers through valgrind, we likely inhibit escape  | 
309  | 0  |   // analysis. On local variables, particularly booleans, we likely  | 
310  | 0  |   // significantly impact optimizations.  | 
311  | 0  |   //  | 
312  | 0  |   // Thus, to be safe, stick a value barrier, in hopes of comparably inhibiting  | 
313  | 0  |   // compiler analysis.  | 
314  | 0  |   CONSTTIME_DECLASSIFY(&v, sizeof(v));  | 
315  | 0  |   return value_barrier_w(v);  | 
316  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_declassify_w Unexecuted instantiation: aes_nohw.c:constant_time_declassify_w Unexecuted instantiation: montgomery.c:constant_time_declassify_w Unexecuted instantiation: montgomery_inv.c:constant_time_declassify_w Unexecuted instantiation: gfp_p384.c:constant_time_declassify_w Unexecuted instantiation: limbs.c:constant_time_declassify_w Unexecuted instantiation: mem.c:constant_time_declassify_w Unexecuted instantiation: poly1305.c:constant_time_declassify_w Unexecuted instantiation: cpu_intel.c:constant_time_declassify_w Unexecuted instantiation: curve25519_64_adx.c:constant_time_declassify_w Unexecuted instantiation: p256-nistz.c:constant_time_declassify_w Unexecuted instantiation: ecp_nistz.c:constant_time_declassify_w  | 
317  |  |  | 
318  | 0  | static inline int constant_time_declassify_int(int v) { | 
319  | 0  |   OPENSSL_STATIC_ASSERT(sizeof(uint32_t) == sizeof(int),  | 
320  | 0  |                 "int is not the same size as uint32_t");  | 
321  | 0  |   // See comment above.  | 
322  | 0  |   CONSTTIME_DECLASSIFY(&v, sizeof(v));  | 
323  | 0  |   return value_barrier_u32((uint32_t)v);  | 
324  | 0  | } Unexecuted instantiation: curve25519.c:constant_time_declassify_int Unexecuted instantiation: aes_nohw.c:constant_time_declassify_int Unexecuted instantiation: montgomery.c:constant_time_declassify_int Unexecuted instantiation: montgomery_inv.c:constant_time_declassify_int Unexecuted instantiation: gfp_p384.c:constant_time_declassify_int Unexecuted instantiation: limbs.c:constant_time_declassify_int Unexecuted instantiation: mem.c:constant_time_declassify_int Unexecuted instantiation: poly1305.c:constant_time_declassify_int Unexecuted instantiation: cpu_intel.c:constant_time_declassify_int Unexecuted instantiation: curve25519_64_adx.c:constant_time_declassify_int Unexecuted instantiation: p256-nistz.c:constant_time_declassify_int Unexecuted instantiation: ecp_nistz.c:constant_time_declassify_int  | 
325  |  |  | 
326  |  | #if defined(_MSC_VER) && !defined(__clang__)  | 
327  |  | // '=': conversion from 'int64_t' to 'int32_t', possible loss of data  | 
328  |  | #pragma warning(pop)  | 
329  |  | #endif  | 
330  |  | #if defined(__GNUC__) || defined(__clang__)  | 
331  |  | #pragma GCC diagnostic pop  | 
332  |  | #endif  | 
333  |  |  | 
334  |  | // declassify_assert behaves like |assert| but declassifies the result of  | 
335  |  | // evaluating |expr|. This allows the assertion to branch on the (presumably  | 
336  |  | // public) result, but still ensures that values leading up to the computation  | 
337  |  | // were secret.  | 
338  | 0  | #define declassify_assert(expr) dev_assert_secret(constant_time_declassify_int(expr))  | 
339  |  |  | 
340  |  | // Endianness conversions.  | 
341  |  |  | 
342  |  | #if defined(__GNUC__) && __GNUC__ >= 2  | 
343  | 0  | static inline uint32_t CRYPTO_bswap4(uint32_t x) { | 
344  | 0  |   return __builtin_bswap32(x);  | 
345  | 0  | } Unexecuted instantiation: curve25519.c:CRYPTO_bswap4 Unexecuted instantiation: aes_nohw.c:CRYPTO_bswap4 Unexecuted instantiation: montgomery.c:CRYPTO_bswap4 Unexecuted instantiation: montgomery_inv.c:CRYPTO_bswap4 Unexecuted instantiation: gfp_p384.c:CRYPTO_bswap4 Unexecuted instantiation: limbs.c:CRYPTO_bswap4 Unexecuted instantiation: mem.c:CRYPTO_bswap4 Unexecuted instantiation: poly1305.c:CRYPTO_bswap4 Unexecuted instantiation: cpu_intel.c:CRYPTO_bswap4 Unexecuted instantiation: curve25519_64_adx.c:CRYPTO_bswap4 Unexecuted instantiation: p256-nistz.c:CRYPTO_bswap4 Unexecuted instantiation: ecp_nistz.c:CRYPTO_bswap4  | 
346  |  |  | 
347  | 0  | static inline uint64_t CRYPTO_bswap8(uint64_t x) { | 
348  | 0  |   return __builtin_bswap64(x);  | 
349  | 0  | } Unexecuted instantiation: curve25519.c:CRYPTO_bswap8 Unexecuted instantiation: aes_nohw.c:CRYPTO_bswap8 Unexecuted instantiation: montgomery.c:CRYPTO_bswap8 Unexecuted instantiation: montgomery_inv.c:CRYPTO_bswap8 Unexecuted instantiation: gfp_p384.c:CRYPTO_bswap8 Unexecuted instantiation: limbs.c:CRYPTO_bswap8 Unexecuted instantiation: mem.c:CRYPTO_bswap8 Unexecuted instantiation: poly1305.c:CRYPTO_bswap8 Unexecuted instantiation: cpu_intel.c:CRYPTO_bswap8 Unexecuted instantiation: curve25519_64_adx.c:CRYPTO_bswap8 Unexecuted instantiation: p256-nistz.c:CRYPTO_bswap8 Unexecuted instantiation: ecp_nistz.c:CRYPTO_bswap8  | 
350  |  | #elif defined(_MSC_VER)  | 
351  |  | #pragma warning(push, 3)  | 
352  |  | #include <stdlib.h>  | 
353  |  | #pragma warning(pop)  | 
354  |  | #pragma intrinsic(_byteswap_ulong)  | 
355  |  | static inline uint32_t CRYPTO_bswap4(uint32_t x) { | 
356  |  |   return _byteswap_ulong(x);  | 
357  |  | }  | 
358  |  | #endif  | 
359  |  |  | 
360  |  | #if !defined(RING_CORE_NOSTDLIBINC)  | 
361  |  | #include <string.h>  | 
362  |  | #endif  | 
363  |  |  | 
364  | 0  | static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) { | 
365  | 0  | #if !defined(RING_CORE_NOSTDLIBINC)  | 
366  | 0  |   if (n == 0) { | 
367  | 0  |     return dst;  | 
368  | 0  |   }  | 
369  | 0  |   return memcpy(dst, src, n);  | 
370  |  | #else  | 
371  |  |   aliasing_uint8_t *d = dst;  | 
372  |  |   const aliasing_uint8_t *s = src;  | 
373  |  |   for (size_t i = 0; i < n; ++i) { | 
374  |  |     d[i] = s[i];  | 
375  |  |   }  | 
376  |  |   return dst;  | 
377  |  | #endif  | 
378  | 0  | } Unexecuted instantiation: curve25519.c:OPENSSL_memcpy Unexecuted instantiation: aes_nohw.c:OPENSSL_memcpy Unexecuted instantiation: montgomery.c:OPENSSL_memcpy Unexecuted instantiation: montgomery_inv.c:OPENSSL_memcpy Unexecuted instantiation: gfp_p384.c:OPENSSL_memcpy Unexecuted instantiation: limbs.c:OPENSSL_memcpy Unexecuted instantiation: mem.c:OPENSSL_memcpy Unexecuted instantiation: poly1305.c:OPENSSL_memcpy Unexecuted instantiation: cpu_intel.c:OPENSSL_memcpy Unexecuted instantiation: curve25519_64_adx.c:OPENSSL_memcpy Unexecuted instantiation: p256-nistz.c:OPENSSL_memcpy Unexecuted instantiation: ecp_nistz.c:OPENSSL_memcpy  | 
379  |  |  | 
380  | 0  | static inline void *OPENSSL_memset(void *dst, int c, size_t n) { | 
381  | 0  | #if !defined(RING_CORE_NOSTDLIBINC)  | 
382  | 0  |   if (n == 0) { | 
383  | 0  |     return dst;  | 
384  | 0  |   }  | 
385  | 0  |   return memset(dst, c, n);  | 
386  |  | #else  | 
387  |  |   aliasing_uint8_t *d = dst;  | 
388  |  |   for (size_t i = 0; i < n; ++i) { | 
389  |  |     d[i] = (aliasing_uint8_t)c;  | 
390  |  |   }  | 
391  |  |   return dst;  | 
392  |  | #endif  | 
393  | 0  | } Unexecuted instantiation: curve25519.c:OPENSSL_memset Unexecuted instantiation: aes_nohw.c:OPENSSL_memset Unexecuted instantiation: montgomery.c:OPENSSL_memset Unexecuted instantiation: montgomery_inv.c:OPENSSL_memset Unexecuted instantiation: gfp_p384.c:OPENSSL_memset Unexecuted instantiation: limbs.c:OPENSSL_memset Unexecuted instantiation: mem.c:OPENSSL_memset Unexecuted instantiation: poly1305.c:OPENSSL_memset Unexecuted instantiation: cpu_intel.c:OPENSSL_memset Unexecuted instantiation: curve25519_64_adx.c:OPENSSL_memset Unexecuted instantiation: p256-nistz.c:OPENSSL_memset Unexecuted instantiation: ecp_nistz.c:OPENSSL_memset  | 
394  |  |  | 
395  |  |  | 
396  |  | // Loads and stores.  | 
397  |  | //  | 
398  |  | // The following functions load and store sized integers with the specified  | 
399  |  | // endianness. They use |memcpy|, and so avoid alignment or strict aliasing  | 
400  |  | // requirements on the input and output pointers.  | 
401  |  |  | 
402  |  | #if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)  | 
403  |  | #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__  | 
404  |  | #define RING_BIG_ENDIAN  | 
405  |  | #endif  | 
406  |  | #endif  | 
407  |  |  | 
408  | 0  | static inline uint32_t CRYPTO_load_u32_le(const void *in) { | 
409  | 0  |   uint32_t v;  | 
410  | 0  |   OPENSSL_memcpy(&v, in, sizeof(v));  | 
411  |  | #if defined(RING_BIG_ENDIAN)  | 
412  |  |   return CRYPTO_bswap4(v);  | 
413  |  | #else  | 
414  | 0  |   return v;  | 
415  | 0  | #endif  | 
416  | 0  | } Unexecuted instantiation: curve25519.c:CRYPTO_load_u32_le Unexecuted instantiation: aes_nohw.c:CRYPTO_load_u32_le Unexecuted instantiation: montgomery.c:CRYPTO_load_u32_le Unexecuted instantiation: montgomery_inv.c:CRYPTO_load_u32_le Unexecuted instantiation: gfp_p384.c:CRYPTO_load_u32_le Unexecuted instantiation: limbs.c:CRYPTO_load_u32_le Unexecuted instantiation: mem.c:CRYPTO_load_u32_le Unexecuted instantiation: poly1305.c:CRYPTO_load_u32_le Unexecuted instantiation: cpu_intel.c:CRYPTO_load_u32_le Unexecuted instantiation: curve25519_64_adx.c:CRYPTO_load_u32_le Unexecuted instantiation: p256-nistz.c:CRYPTO_load_u32_le Unexecuted instantiation: ecp_nistz.c:CRYPTO_load_u32_le  | 
417  |  |  | 
418  | 0  | static inline void CRYPTO_store_u32_le(void *out, uint32_t v) { | 
419  |  | #if defined(RING_BIG_ENDIAN)  | 
420  |  |   v = CRYPTO_bswap4(v);  | 
421  |  | #endif  | 
422  | 0  |   OPENSSL_memcpy(out, &v, sizeof(v));  | 
423  | 0  | } Unexecuted instantiation: curve25519.c:CRYPTO_store_u32_le Unexecuted instantiation: aes_nohw.c:CRYPTO_store_u32_le Unexecuted instantiation: montgomery.c:CRYPTO_store_u32_le Unexecuted instantiation: montgomery_inv.c:CRYPTO_store_u32_le Unexecuted instantiation: gfp_p384.c:CRYPTO_store_u32_le Unexecuted instantiation: limbs.c:CRYPTO_store_u32_le Unexecuted instantiation: mem.c:CRYPTO_store_u32_le Unexecuted instantiation: poly1305.c:CRYPTO_store_u32_le Unexecuted instantiation: cpu_intel.c:CRYPTO_store_u32_le Unexecuted instantiation: curve25519_64_adx.c:CRYPTO_store_u32_le Unexecuted instantiation: p256-nistz.c:CRYPTO_store_u32_le Unexecuted instantiation: ecp_nistz.c:CRYPTO_store_u32_le  | 
424  |  |  | 
425  | 0  | static inline uint32_t CRYPTO_load_u32_be(const void *in) { | 
426  | 0  |   uint32_t v;  | 
427  | 0  |   OPENSSL_memcpy(&v, in, sizeof(v));  | 
428  | 0  | #if !defined(RING_BIG_ENDIAN)  | 
429  | 0  |   return CRYPTO_bswap4(v);  | 
430  |  | #else  | 
431  |  |   return v;  | 
432  |  | #endif  | 
433  | 0  | } Unexecuted instantiation: curve25519.c:CRYPTO_load_u32_be Unexecuted instantiation: aes_nohw.c:CRYPTO_load_u32_be Unexecuted instantiation: montgomery.c:CRYPTO_load_u32_be Unexecuted instantiation: montgomery_inv.c:CRYPTO_load_u32_be Unexecuted instantiation: gfp_p384.c:CRYPTO_load_u32_be Unexecuted instantiation: limbs.c:CRYPTO_load_u32_be Unexecuted instantiation: mem.c:CRYPTO_load_u32_be Unexecuted instantiation: poly1305.c:CRYPTO_load_u32_be Unexecuted instantiation: cpu_intel.c:CRYPTO_load_u32_be Unexecuted instantiation: curve25519_64_adx.c:CRYPTO_load_u32_be Unexecuted instantiation: p256-nistz.c:CRYPTO_load_u32_be Unexecuted instantiation: ecp_nistz.c:CRYPTO_load_u32_be  | 
434  |  |  | 
435  | 0  | static inline void CRYPTO_store_u32_be(void *out, uint32_t v) { | 
436  | 0  | #if !defined(RING_BIG_ENDIAN)  | 
437  | 0  |   v = CRYPTO_bswap4(v);  | 
438  | 0  | #endif  | 
439  | 0  |   OPENSSL_memcpy(out, &v, sizeof(v));  | 
440  | 0  | } Unexecuted instantiation: curve25519.c:CRYPTO_store_u32_be Unexecuted instantiation: aes_nohw.c:CRYPTO_store_u32_be Unexecuted instantiation: montgomery.c:CRYPTO_store_u32_be Unexecuted instantiation: montgomery_inv.c:CRYPTO_store_u32_be Unexecuted instantiation: gfp_p384.c:CRYPTO_store_u32_be Unexecuted instantiation: limbs.c:CRYPTO_store_u32_be Unexecuted instantiation: mem.c:CRYPTO_store_u32_be Unexecuted instantiation: poly1305.c:CRYPTO_store_u32_be Unexecuted instantiation: cpu_intel.c:CRYPTO_store_u32_be Unexecuted instantiation: curve25519_64_adx.c:CRYPTO_store_u32_be Unexecuted instantiation: p256-nistz.c:CRYPTO_store_u32_be Unexecuted instantiation: ecp_nistz.c:CRYPTO_store_u32_be  | 
441  |  |  | 
442  |  | // Runtime CPU feature support  | 
443  |  |  | 
444  |  | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)  | 
445  |  | // OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or  | 
446  |  | // x86-64 system.  | 
447  |  | //  | 
448  |  | //   Index 0:  | 
449  |  | //     EDX for CPUID where EAX = 1  | 
450  |  | //     Bit 30 is used to indicate an Intel CPU  | 
451  |  | //   Index 1:  | 
452  |  | //     ECX for CPUID where EAX = 1  | 
453  |  | //   Index 2:  | 
454  |  | //     EBX for CPUID where EAX = 7, ECX = 0  | 
455  |  | //     Bit 14 (for removed feature MPX) is used to indicate a preference for ymm  | 
456  |  | //       registers over zmm even when zmm registers are supported  | 
457  |  | //   Index 3:  | 
458  |  | //     ECX for CPUID where EAX = 7, ECX = 0  | 
459  |  | //  | 
460  |  | // Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the XMM, YMM,  | 
461  |  | // and AVX512 bits in XCR0, so it is not necessary to check those. (WARNING: See  | 
462  |  | // caveats in cpu_intel.c.)  | 
463  |  | #if defined(OPENSSL_X86_64)  | 
464  |  | extern uint32_t avx2_available;  | 
465  |  | extern uint32_t adx_bmi2_available;  | 
466  |  | #endif  | 
467  |  | #endif  | 
468  |  |  | 
469  |  |  | 
470  |  | #if defined(OPENSSL_ARM)  | 
471  |  | extern alignas(4) uint32_t neon_available;  | 
472  |  | #endif  // OPENSSL_ARM  | 
473  |  |  | 
474  |  | #endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H  |