/rust/registry/src/index.crates.io-1949cf8c6b5b557f/ring-0.17.14/src/hmac.rs
Line  | Count  | Source  | 
1  |  | // Copyright 2015-2016 Brian Smith.  | 
2  |  | //  | 
3  |  | // Permission to use, copy, modify, and/or distribute this software for any  | 
4  |  | // purpose with or without fee is hereby granted, provided that the above  | 
5  |  | // copyright notice and this permission notice appear in all copies.  | 
6  |  | //  | 
7  |  | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES  | 
8  |  | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF  | 
9  |  | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY  | 
10  |  | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES  | 
11  |  | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION  | 
12  |  | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN  | 
13  |  | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.  | 
14  |  |  | 
15  |  | //! HMAC is specified in [RFC 2104].  | 
16  |  | //!  | 
17  |  | //! After a `Key` is constructed, it can be used for multiple signing or  | 
18  |  | //! verification operations. Separating the construction of the key from the  | 
19  |  | //! rest of the HMAC operation allows the per-key precomputation to be done  | 
20  |  | //! only once, instead of it being done in every HMAC operation.  | 
21  |  | //!  | 
22  |  | //! Frequently all the data to be signed in a message is available in a single  | 
23  |  | //! contiguous piece. In that case, the module-level `sign` function can be  | 
24  |  | //! used. Otherwise, if the input is in multiple parts, `Context` should be  | 
25  |  | //! used.  | 
26  |  | //!  | 
27  |  | //! # Examples:  | 
28  |  | //!  | 
29  |  | //! ## Signing a value and verifying it wasn't tampered with  | 
30  |  | //!  | 
31  |  | //! ```  | 
32  |  | //! use ring::{hmac, rand}; | 
33  |  | //!  | 
34  |  | //! let rng = rand::SystemRandom::new();  | 
35  |  | //! let key = hmac::Key::generate(hmac::HMAC_SHA256, &rng)?;  | 
36  |  | //!  | 
37  |  | //! let msg = "hello, world";  | 
38  |  | //!  | 
39  |  | //! let tag = hmac::sign(&key, msg.as_bytes());  | 
40  |  | //!  | 
41  |  | //! // [We give access to the message to an untrusted party, and they give it  | 
42  |  | //! // back to us. We need to verify they didn't tamper with it.]  | 
43  |  | //!  | 
44  |  | //! hmac::verify(&key, msg.as_bytes(), tag.as_ref())?;  | 
45  |  | //!  | 
46  |  | //! # Ok::<(), ring::error::Unspecified>(())  | 
47  |  | //! ```  | 
48  |  | //!  | 
49  |  | //! ## Using the one-shot API:  | 
50  |  | //!  | 
51  |  | //! ```  | 
52  |  | //! use ring::{digest, hmac, rand}; | 
53  |  | //! use ring::rand::SecureRandom;  | 
54  |  | //!  | 
55  |  | //! let msg = "hello, world";  | 
56  |  | //!  | 
57  |  | //! // The sender generates a secure key value and signs the message with it.  | 
58  |  | //! // Note that in a real protocol, a key agreement protocol would be used to  | 
59  |  | //! // derive `key_value`.  | 
60  |  | //! let rng = rand::SystemRandom::new();  | 
61  |  | //! let key_value: [u8; digest::SHA256_OUTPUT_LEN] = rand::generate(&rng)?.expose();  | 
62  |  | //!  | 
63  |  | //! let s_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());  | 
64  |  | //! let tag = hmac::sign(&s_key, msg.as_bytes());  | 
65  |  | //!  | 
66  |  | //! // The receiver (somehow!) knows the key value, and uses it to verify the  | 
67  |  | //! // integrity of the message.  | 
68  |  | //! let v_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());  | 
69  |  | //! hmac::verify(&v_key, msg.as_bytes(), tag.as_ref())?;  | 
70  |  | //!  | 
71  |  | //! # Ok::<(), ring::error::Unspecified>(())  | 
72  |  | //! ```  | 
73  |  | //!  | 
74  |  | //! ## Using the multi-part API:  | 
75  |  | //! ```  | 
76  |  | //! use ring::{digest, hmac, rand}; | 
77  |  | //! use ring::rand::SecureRandom;  | 
78  |  | //!  | 
79  |  | //! let parts = ["hello", ", ", "world"];  | 
80  |  | //!  | 
81  |  | //! // The sender generates a secure key value and signs the message with it.  | 
82  |  | //! // Note that in a real protocol, a key agreement protocol would be used to  | 
83  |  | //! // derive `key_value`.  | 
84  |  | //! let rng = rand::SystemRandom::new();  | 
85  |  | //! let mut key_value: [u8; digest::SHA384_OUTPUT_LEN] = rand::generate(&rng)?.expose();  | 
86  |  | //!  | 
87  |  | //! let s_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());  | 
88  |  | //! let mut s_ctx = hmac::Context::with_key(&s_key);  | 
89  |  | //! for part in &parts { | 
90  |  | //!     s_ctx.update(part.as_bytes());  | 
91  |  | //! }  | 
92  |  | //! let tag = s_ctx.sign();  | 
93  |  | //!  | 
94  |  | //! // The receiver (somehow!) knows the key value, and uses it to verify the  | 
95  |  | //! // integrity of the message.  | 
96  |  | //! let v_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());  | 
97  |  | //! let mut msg = Vec::<u8>::new();  | 
98  |  | //! for part in &parts { | 
99  |  | //!     msg.extend(part.as_bytes());  | 
100  |  | //! }  | 
101  |  | //! hmac::verify(&v_key, &msg.as_ref(), tag.as_ref())?;  | 
102  |  | //!  | 
103  |  | //! # Ok::<(), ring::error::Unspecified>(())  | 
104  |  | //! ```  | 
105  |  | //!  | 
106  |  | //! [RFC 2104]: https://tools.ietf.org/html/rfc2104  | 
107  |  |  | 
108  |  | use crate::{ | 
109  |  |     bb, cpu,  | 
110  |  |     digest::{self, Digest, FinishError}, | 
111  |  |     error, hkdf, rand,  | 
112  |  | };  | 
113  |  |  | 
114  |  | pub(crate) use crate::digest::InputTooLongError;  | 
115  |  |  | 
116  |  | /// An HMAC algorithm.  | 
117  |  | #[derive(Clone, Copy, Debug, PartialEq, Eq)]  | 
118  |  | pub struct Algorithm(&'static digest::Algorithm);  | 
119  |  |  | 
120  |  | impl Algorithm { | 
121  |  |     /// The digest algorithm this HMAC algorithm is based on.  | 
122  |  |     #[inline]  | 
123  | 0  |     pub fn digest_algorithm(&self) -> &'static digest::Algorithm { | 
124  | 0  |         self.0  | 
125  | 0  |     }  | 
126  |  | }  | 
127  |  |  | 
128  |  | /// HMAC using SHA-1. Obsolete.  | 
129  |  | pub static HMAC_SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm(&digest::SHA1_FOR_LEGACY_USE_ONLY);  | 
130  |  |  | 
131  |  | /// HMAC using SHA-256.  | 
132  |  | pub static HMAC_SHA256: Algorithm = Algorithm(&digest::SHA256);  | 
133  |  |  | 
134  |  | /// HMAC using SHA-384.  | 
135  |  | pub static HMAC_SHA384: Algorithm = Algorithm(&digest::SHA384);  | 
136  |  |  | 
137  |  | /// HMAC using SHA-512.  | 
138  |  | pub static HMAC_SHA512: Algorithm = Algorithm(&digest::SHA512);  | 
139  |  |  | 
140  |  | /// An HMAC tag.  | 
141  |  | ///  | 
142  |  | /// For a given tag `t`, use `t.as_ref()` to get the tag value as a byte slice.  | 
143  |  | #[derive(Clone, Copy, Debug)]  | 
144  |  | pub struct Tag(Digest);  | 
145  |  |  | 
146  |  | impl AsRef<[u8]> for Tag { | 
147  |  |     #[inline]  | 
148  | 0  |     fn as_ref(&self) -> &[u8] { | 
149  | 0  |         self.0.as_ref()  | 
150  | 0  |     }  | 
151  |  | }  | 
152  |  |  | 
153  |  | /// A key to use for HMAC signing.  | 
154  |  | #[derive(Clone)]  | 
155  |  | pub struct Key { | 
156  |  |     inner: digest::BlockContext,  | 
157  |  |     outer: digest::BlockContext,  | 
158  |  | }  | 
159  |  |  | 
160  |  | impl core::fmt::Debug for Key { | 
161  | 0  |     fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { | 
162  | 0  |         f.debug_struct("Key") | 
163  | 0  |             .field("algorithm", self.algorithm().digest_algorithm()) | 
164  | 0  |             .finish()  | 
165  | 0  |     }  | 
166  |  | }  | 
167  |  |  | 
168  |  | impl Key { | 
169  |  |     /// Generate an HMAC signing key using the given digest algorithm with a  | 
170  |  |     /// random value generated from `rng`.  | 
171  |  |     ///  | 
172  |  |     /// The key will be `digest_alg.output_len` bytes long, based on the  | 
173  |  |     /// recommendation in [RFC 2104 Section 3].  | 
174  |  |     ///  | 
175  |  |     /// [RFC 2104 Section 3]: https://tools.ietf.org/html/rfc2104#section-3  | 
176  | 0  |     pub fn generate(  | 
177  | 0  |         algorithm: Algorithm,  | 
178  | 0  |         rng: &dyn rand::SecureRandom,  | 
179  | 0  |     ) -> Result<Self, error::Unspecified> { | 
180  | 0  |         Self::construct(algorithm, |buf| rng.fill(buf), cpu::features())  | 
181  | 0  |     }  | 
182  |  |  | 
183  | 0  |     fn construct<F>(  | 
184  | 0  |         algorithm: Algorithm,  | 
185  | 0  |         fill: F,  | 
186  | 0  |         cpu: cpu::Features,  | 
187  | 0  |     ) -> Result<Self, error::Unspecified>  | 
188  | 0  |     where  | 
189  | 0  |         F: FnOnce(&mut [u8]) -> Result<(), error::Unspecified>,  | 
190  |  |     { | 
191  | 0  |         let mut key_bytes = [0; digest::MAX_OUTPUT_LEN];  | 
192  | 0  |         let key_bytes = &mut key_bytes[..algorithm.0.output_len()];  | 
193  | 0  |         fill(key_bytes)?;  | 
194  | 0  |         Self::try_new(algorithm, key_bytes, cpu).map_err(error::erase::<InputTooLongError>)  | 
195  | 0  |     } Unexecuted instantiation: <ring::hmac::Key>::construct::<<ring::hmac::Key>::generate::{closure#0}>Unexecuted instantiation: <ring::hmac::Key>::construct::<<ring::hmac::Key as core::convert::From<ring::hkdf::Okm<ring::hmac::Algorithm>>>::from::{closure#0}> | 
196  |  |  | 
197  |  |     /// Construct an HMAC signing key using the given digest algorithm and key  | 
198  |  |     /// value.  | 
199  |  |     ///  | 
200  |  |     /// `key_value` should be a value generated using a secure random number  | 
201  |  |     /// generator (e.g. the `key_value` output by  | 
202  |  |     /// `SealingKey::generate_serializable()`) or derived from a random key by  | 
203  |  |     /// a key derivation function (e.g. `ring::hkdf`). In particular,  | 
204  |  |     /// `key_value` shouldn't be a password.  | 
205  |  |     ///  | 
206  |  |     /// As specified in RFC 2104, if `key_value` is shorter than the digest  | 
207  |  |     /// algorithm's block length (as returned by `digest::Algorithm::block_len()`,  | 
208  |  |     /// not the digest length returned by `digest::Algorithm::output_len()`) then  | 
209  |  |     /// it will be padded with zeros. Similarly, if it is longer than the block  | 
210  |  |     /// length then it will be compressed using the digest algorithm.  | 
211  |  |     ///  | 
212  |  |     /// You should not use keys larger than the `digest_alg.block_len` because  | 
213  |  |     /// the truncation described above reduces their strength to only  | 
214  |  |     /// `digest_alg.output_len * 8` bits. Support for such keys is likely to be  | 
215  |  |     /// removed in a future version of *ring*.  | 
216  | 0  |     pub fn new(algorithm: Algorithm, key_value: &[u8]) -> Self { | 
217  | 0  |         Self::try_new(algorithm, key_value, cpu::features())  | 
218  | 0  |             .map_err(error::erase::<InputTooLongError>)  | 
219  | 0  |             .unwrap()  | 
220  | 0  |     }  | 
221  |  |  | 
222  | 0  |     pub(crate) fn try_new(  | 
223  | 0  |         algorithm: Algorithm,  | 
224  | 0  |         key_value: &[u8],  | 
225  | 0  |         cpu_features: cpu::Features,  | 
226  | 0  |     ) -> Result<Self, InputTooLongError> { | 
227  | 0  |         let digest_alg = algorithm.0;  | 
228  | 0  |         let mut key = Self { | 
229  | 0  |             inner: digest::BlockContext::new(digest_alg),  | 
230  | 0  |             outer: digest::BlockContext::new(digest_alg),  | 
231  | 0  |         };  | 
232  |  |  | 
233  | 0  |         let block_len = digest_alg.block_len();  | 
234  |  |  | 
235  |  |         let key_hash;  | 
236  | 0  |         let key_value = if key_value.len() <= block_len { | 
237  | 0  |             key_value  | 
238  |  |         } else { | 
239  | 0  |             key_hash = Digest::compute_from(digest_alg, key_value, cpu_features)?;  | 
240  | 0  |             key_hash.as_ref()  | 
241  |  |         };  | 
242  |  |  | 
243  |  |         const IPAD: u8 = 0x36;  | 
244  |  |  | 
245  | 0  |         let mut padded_key = [IPAD; digest::MAX_BLOCK_LEN];  | 
246  | 0  |         let padded_key = &mut padded_key[..block_len];  | 
247  |  |  | 
248  |  |         // If the key is shorter than one block then we're supposed to act like  | 
249  |  |         // it is padded with zero bytes up to the block length. `x ^ 0 == x` so  | 
250  |  |         // we can just leave the trailing bytes of `padded_key` untouched.  | 
251  | 0  |         bb::xor_assign_at_start(&mut padded_key[..], key_value);  | 
252  |  |  | 
253  | 0  |         let leftover = key.inner.update(padded_key, cpu_features);  | 
254  | 0  |         debug_assert_eq!(leftover.len(), 0);  | 
255  |  |  | 
256  |  |         const OPAD: u8 = 0x5C;  | 
257  |  |  | 
258  |  |         // Remove the `IPAD` masking, leaving the unmasked padded key, then  | 
259  |  |         // mask with `OPAD`, all in one step.  | 
260  | 0  |         bb::xor_assign(&mut padded_key[..], IPAD ^ OPAD);  | 
261  | 0  |         let leftover = key.outer.update(padded_key, cpu_features);  | 
262  | 0  |         debug_assert_eq!(leftover.len(), 0);  | 
263  |  |  | 
264  | 0  |         Ok(key)  | 
265  | 0  |     }  | 
266  |  |  | 
267  |  |     /// The digest algorithm for the key.  | 
268  |  |     #[inline]  | 
269  | 0  |     pub fn algorithm(&self) -> Algorithm { | 
270  | 0  |         Algorithm(self.inner.algorithm)  | 
271  | 0  |     }  | 
272  |  |  | 
273  | 0  |     pub(crate) fn sign(&self, data: &[u8], cpu: cpu::Features) -> Result<Tag, InputTooLongError> { | 
274  | 0  |         let mut ctx = Context::with_key(self);  | 
275  | 0  |         ctx.update(data);  | 
276  | 0  |         ctx.try_sign(cpu)  | 
277  | 0  |     }  | 
278  |  |  | 
279  | 0  |     fn verify(&self, data: &[u8], tag: &[u8], cpu: cpu::Features) -> Result<(), VerifyError> { | 
280  | 0  |         let computed = self  | 
281  | 0  |             .sign(data, cpu)  | 
282  | 0  |             .map_err(VerifyError::InputTooLongError)?;  | 
283  | 0  |         bb::verify_slices_are_equal(computed.as_ref(), tag)  | 
284  | 0  |             .map_err(|_: error::Unspecified| VerifyError::Mismatch)  | 
285  | 0  |     }  | 
286  |  | }  | 
287  |  |  | 
288  |  | impl hkdf::KeyType for Algorithm { | 
289  | 0  |     fn len(&self) -> usize { | 
290  | 0  |         self.digest_algorithm().output_len()  | 
291  | 0  |     }  | 
292  |  | }  | 
293  |  |  | 
294  |  | impl From<hkdf::Okm<'_, Algorithm>> for Key { | 
295  | 0  |     fn from(okm: hkdf::Okm<Algorithm>) -> Self { | 
296  | 0  |         Self::construct(*okm.len(), |buf| okm.fill(buf), cpu::features()).unwrap()  | 
297  | 0  |     }  | 
298  |  | }  | 
299  |  |  | 
300  |  | /// A context for multi-step (Init-Update-Finish) HMAC signing.  | 
301  |  | ///  | 
302  |  | /// Use `sign` for single-step HMAC signing.  | 
303  |  | #[derive(Clone)]  | 
304  |  | pub struct Context { | 
305  |  |     inner: digest::Context,  | 
306  |  |     outer: digest::BlockContext,  | 
307  |  | }  | 
308  |  |  | 
309  |  | impl core::fmt::Debug for Context { | 
310  | 0  |     fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { | 
311  | 0  |         f.debug_struct("Context") | 
312  | 0  |             .field("algorithm", self.inner.algorithm()) | 
313  | 0  |             .finish()  | 
314  | 0  |     }  | 
315  |  | }  | 
316  |  |  | 
317  |  | impl Context { | 
318  |  |     /// Constructs a new HMAC signing context using the given digest algorithm  | 
319  |  |     /// and key.  | 
320  | 0  |     pub fn with_key(signing_key: &Key) -> Self { | 
321  | 0  |         Self { | 
322  | 0  |             inner: digest::Context::clone_from(&signing_key.inner),  | 
323  | 0  |             outer: signing_key.outer.clone(),  | 
324  | 0  |         }  | 
325  | 0  |     }  | 
326  |  |  | 
327  |  |     /// Updates the HMAC with all the data in `data`. `update` may be called  | 
328  |  |     /// zero or more times until `finish` is called.  | 
329  | 0  |     pub fn update(&mut self, data: &[u8]) { | 
330  | 0  |         self.inner.update(data);  | 
331  | 0  |     }  | 
332  |  |  | 
333  |  |     /// Finalizes the HMAC calculation and returns the HMAC value. `sign`  | 
334  |  |     /// consumes the context so it cannot be (mis-)used after `sign` has been  | 
335  |  |     /// called.  | 
336  |  |     ///  | 
337  |  |     /// It is generally not safe to implement HMAC verification by comparing  | 
338  |  |     /// the return value of `sign` to a tag. Use `verify` for verification  | 
339  |  |     /// instead.  | 
340  | 0  |     pub fn sign(self) -> Tag { | 
341  | 0  |         self.try_sign(cpu::features())  | 
342  | 0  |             .map_err(error::erase::<InputTooLongError>)  | 
343  | 0  |             .unwrap()  | 
344  | 0  |     }  | 
345  |  |  | 
346  | 0  |     pub(crate) fn try_sign(self, cpu_features: cpu::Features) -> Result<Tag, InputTooLongError> { | 
347  |  |         // Consequently, `num_pending` is valid.  | 
348  | 0  |         debug_assert_eq!(self.inner.algorithm(), self.outer.algorithm);  | 
349  | 0  |         debug_assert!(self.inner.algorithm().output_len() < self.outer.algorithm.block_len());  | 
350  |  |  | 
351  | 0  |         let inner = self.inner.try_finish(cpu_features)?;  | 
352  | 0  |         let inner = inner.as_ref();  | 
353  | 0  |         let num_pending = inner.len();  | 
354  | 0  |         let buffer = &mut [0u8; digest::MAX_BLOCK_LEN];  | 
355  |  |         const _BUFFER_IS_LARGE_ENOUGH_TO_HOLD_INNER: () =  | 
356  |  |             assert!(digest::MAX_OUTPUT_LEN < digest::MAX_BLOCK_LEN);  | 
357  | 0  |         buffer[..num_pending].copy_from_slice(inner);  | 
358  |  |  | 
359  | 0  |         self.outer  | 
360  | 0  |             .try_finish(buffer, num_pending, cpu_features)  | 
361  | 0  |             .map(Tag)  | 
362  | 0  |             .map_err(|err| match err { | 
363  | 0  |                 FinishError::InputTooLong(i) => { | 
364  |  |                     // Unreachable, as we gave the inner context exactly the  | 
365  |  |                     // same input we gave the outer context, and  | 
366  |  |                     // `inner.try_finish` already succeeded. However, it is  | 
367  |  |                     // quite difficult to prove this, and we already return  | 
368  |  |                     // `InputTooLongError`, so just forward it along.  | 
369  | 0  |                     i  | 
370  |  |                 }  | 
371  |  |                 FinishError::PendingNotAPartialBlock(_) => { | 
372  |  |                     // Follows from the assertions above.  | 
373  | 0  |                     unreachable!()  | 
374  |  |                 }  | 
375  | 0  |             })  | 
376  | 0  |     }  | 
377  |  | }  | 
378  |  |  | 
379  |  | /// Calculates the HMAC of `data` using the key `key` in one step.  | 
380  |  | ///  | 
381  |  | /// Use `Context` to calculate HMACs where the input is in multiple parts.  | 
382  |  | ///  | 
383  |  | /// It is generally not safe to implement HMAC verification by comparing the  | 
384  |  | /// return value of `sign` to a tag. Use `verify` for verification instead.  | 
385  | 0  | pub fn sign(key: &Key, data: &[u8]) -> Tag { | 
386  | 0  |     key.sign(data, cpu::features())  | 
387  | 0  |         .map_err(error::erase::<InputTooLongError>)  | 
388  | 0  |         .unwrap()  | 
389  | 0  | }  | 
390  |  |  | 
391  |  | /// Calculates the HMAC of `data` using the signing key `key`, and verifies  | 
392  |  | /// whether the resultant value equals `tag`, in one step.  | 
393  |  | ///  | 
394  |  | /// This is logically equivalent to, but more efficient than, constructing a  | 
395  |  | /// `Key` with the same value as `key` and then using `verify`.  | 
396  |  | ///  | 
397  |  | /// The verification will be done in constant time to prevent timing attacks.  | 
398  | 0  | pub fn verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), error::Unspecified> { | 
399  | 0  |     key.verify(data, tag, cpu::features())  | 
400  | 0  |         .map_err(|_: VerifyError| error::Unspecified)  | 
401  | 0  | }  | 
402  |  |  | 
403  |  | enum VerifyError { | 
404  |  |     // Theoretically somebody could have calculated a valid tag with a gigantic  | 
405  |  |     // input that we do not support. If we were to support every theoretically  | 
406  |  |     // valid input length, for *every* digest algorithm, then we could argue  | 
407  |  |     // that hitting the input length limit implies a mismatch since nobody  | 
408  |  |     // could have calculated such a tag with the given input.  | 
409  |  |     #[allow(dead_code)]  | 
410  |  |     InputTooLongError(InputTooLongError),  | 
411  |  |  | 
412  |  |     Mismatch,  | 
413  |  | }  | 
414  |  |  | 
415  |  | #[cfg(test)]  | 
416  |  | mod tests { | 
417  |  |     use crate::{hmac, rand}; | 
418  |  |  | 
419  |  |     // Make sure that `Key::generate` and `verify_with_own_key` aren't  | 
420  |  |     // completely wacky.  | 
421  |  |     #[test]  | 
422  |  |     pub fn hmac_signing_key_coverage() { | 
423  |  |         let rng = rand::SystemRandom::new();  | 
424  |  |  | 
425  |  |         const HELLO_WORLD_GOOD: &[u8] = b"hello, world";  | 
426  |  |         const HELLO_WORLD_BAD: &[u8] = b"hello, worle";  | 
427  |  |  | 
428  |  |         for algorithm in &[  | 
429  |  |             hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,  | 
430  |  |             hmac::HMAC_SHA256,  | 
431  |  |             hmac::HMAC_SHA384,  | 
432  |  |             hmac::HMAC_SHA512,  | 
433  |  |         ] { | 
434  |  |             let key = hmac::Key::generate(*algorithm, &rng).unwrap();  | 
435  |  |             let tag = hmac::sign(&key, HELLO_WORLD_GOOD);  | 
436  |  |             assert!(hmac::verify(&key, HELLO_WORLD_GOOD, tag.as_ref()).is_ok());  | 
437  |  |             assert!(hmac::verify(&key, HELLO_WORLD_BAD, tag.as_ref()).is_err())  | 
438  |  |         }  | 
439  |  |     }  | 
440  |  | }  |