Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/layers/regularization/activity_regularization.py: 53%
17 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Contains the ActivityRegularization layer."""
18from keras.src import regularizers
19from keras.src.engine.base_layer import Layer
21# isort: off
22from tensorflow.python.util.tf_export import keras_export
25@keras_export("keras.layers.ActivityRegularization")
26class ActivityRegularization(Layer):
27 """Layer that applies an update to the cost function based input activity.
29 Args:
30 l1: L1 regularization factor (positive float).
31 l2: L2 regularization factor (positive float).
33 Input shape:
34 Arbitrary. Use the keyword argument `input_shape`
35 (tuple of integers, does not include the samples axis)
36 when using this layer as the first layer in a model.
38 Output shape:
39 Same shape as input.
40 """
42 def __init__(self, l1=0.0, l2=0.0, **kwargs):
43 super().__init__(
44 activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs
45 )
46 self.supports_masking = True
47 self.l1 = l1
48 self.l2 = l2
50 def compute_output_shape(self, input_shape):
51 return input_shape
53 def get_config(self):
54 config = {"l1": self.l1, "l2": self.l2}
55 base_config = super().get_config()
56 return dict(list(base_config.items()) + list(config.items()))