Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/keras/src/layers/regularization/gaussian_noise.py: 54%
24 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Contains the GaussianNoise layer."""
18import tensorflow.compat.v2 as tf
20from keras.src import backend
21from keras.src.engine import base_layer
22from keras.src.utils import tf_utils
24# isort: off
25from tensorflow.python.util.tf_export import keras_export
28@keras_export("keras.layers.GaussianNoise")
29class GaussianNoise(base_layer.BaseRandomLayer):
30 """Apply additive zero-centered Gaussian noise.
32 This is useful to mitigate overfitting
33 (you could see it as a form of random data augmentation).
34 Gaussian Noise (GS) is a natural choice as corruption process
35 for real valued inputs.
37 As it is a regularization layer, it is only active at training time.
39 Args:
40 stddev: Float, standard deviation of the noise distribution.
41 seed: Integer, optional random seed to enable deterministic behavior.
43 Call arguments:
44 inputs: Input tensor (of any rank).
45 training: Python boolean indicating whether the layer should behave in
46 training mode (adding noise) or in inference mode (doing nothing).
48 Input shape:
49 Arbitrary. Use the keyword argument `input_shape`
50 (tuple of integers, does not include the samples axis)
51 when using this layer as the first layer in a model.
53 Output shape:
54 Same shape as input.
55 """
57 def __init__(self, stddev, seed=None, **kwargs):
58 super().__init__(seed=seed, **kwargs)
59 self.supports_masking = True
60 self.stddev = stddev
61 self.seed = seed
63 def call(self, inputs, training=None):
64 def noised():
65 return inputs + self._random_generator.random_normal(
66 shape=tf.shape(inputs),
67 mean=0.0,
68 stddev=self.stddev,
69 dtype=inputs.dtype,
70 )
72 return backend.in_train_phase(noised, inputs, training=training)
74 def get_config(self):
75 config = {"stddev": self.stddev, "seed": self.seed}
76 base_config = super().get_config()
77 return dict(list(base_config.items()) + list(config.items()))
79 @tf_utils.shape_type_conversion
80 def compute_output_shape(self, input_shape):
81 return input_shape