Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/keras/utils/dataset_creator.py: 44%
18 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15# pylint: disable=g-classes-have-attributes
16"""Input dataset creator for `model.fit`."""
18from tensorflow.python.distribute import distribute_lib
19from tensorflow.python.types import data as data_types
20from tensorflow.python.util.tf_export import keras_export
23@keras_export('keras.utils.experimental.DatasetCreator', v1=[])
24class DatasetCreator(object):
25 """Object that returns a `tf.data.Dataset` upon invoking.
27 `tf.keras.utils.experimental.DatasetCreator` is designated as a supported type
28 for `x`, or the input, in `tf.keras.Model.fit`. Pass an instance of this class
29 to `fit` when using a callable (with a `input_context` argument) that returns
30 a `tf.data.Dataset`.
32 ```python
33 model = tf.keras.Sequential([tf.keras.layers.Dense(10)])
34 model.compile(tf.keras.optimizers.SGD(), loss="mse")
36 def dataset_fn(input_context):
37 global_batch_size = 64
38 batch_size = input_context.get_per_replica_batch_size(global_batch_size)
39 dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat()
40 dataset = dataset.shard(
41 input_context.num_input_pipelines, input_context.input_pipeline_id)
42 dataset = dataset.batch(batch_size)
43 dataset = dataset.prefetch(2)
44 return dataset
46 input_options = tf.distribute.InputOptions(
47 experimental_fetch_to_device=True,
48 experimental_per_replica_buffer_size=2)
49 model.fit(tf.keras.utils.experimental.DatasetCreator(
50 dataset_fn, input_options=input_options), epochs=10, steps_per_epoch=10)
51 ```
53 `Model.fit` usage with `DatasetCreator` is intended to work across all
54 `tf.distribute.Strategy`s, as long as `Strategy.scope` is used at model
55 creation:
57 ```python
58 strategy = tf.distribute.experimental.ParameterServerStrategy(
59 cluster_resolver)
60 with strategy.scope():
61 model = tf.keras.Sequential([tf.keras.layers.Dense(10)])
62 model.compile(tf.keras.optimizers.SGD(), loss="mse")
63 ...
64 ```
66 Note: When using `DatasetCreator`, `steps_per_epoch` argument in `Model.fit`
67 must be provided as the cardinality of such input cannot be inferred.
69 Args:
70 dataset_fn: A callable that takes a single argument of type
71 `tf.distribute.InputContext`, which is used for batch size calculation and
72 cross-worker input pipeline sharding (if neither is needed, the
73 `InputContext` parameter can be ignored in the `dataset_fn`), and returns
74 a `tf.data.Dataset`.
75 input_options: Optional `tf.distribute.InputOptions`, used for specific
76 options when used with distribution, for example, whether to prefetch
77 dataset elements to accelerator device memory or host device memory, and
78 prefetch buffer size in the replica device memory. No effect if not used
79 with distributed training. See `tf.distribute.InputOptions` for more
80 information.
81 """
83 def __init__(self, dataset_fn, input_options=None):
84 if not callable(dataset_fn):
85 raise TypeError('`dataset_fn` for `DatasetCreator` must be a `callable`.')
86 if input_options and (not isinstance(input_options,
87 distribute_lib.InputOptions)):
88 raise TypeError('`input_options` for `DatasetCreator` must be a '
89 '`tf.distribute.InputOptions`.')
91 self.dataset_fn = dataset_fn
92 self.input_options = input_options
94 def __call__(self, *args, **kwargs):
95 # When a `DatasetCreator` is invoked, it forwards args/kwargs straight to
96 # the callable.
97 dataset = self.dataset_fn(*args, **kwargs)
98 if not isinstance(dataset, data_types.DatasetV2):
99 raise TypeError('The `callable` provided to `DatasetCreator` must return '
100 'a Dataset.')
101 return dataset