Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/distribute/central_storage_strategy.py: 61%
31 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Class implementing a single machine parameter server strategy."""
17from tensorflow.python.distribute import device_util
18from tensorflow.python.distribute import distribute_lib
19from tensorflow.python.distribute import parameter_server_strategy
20from tensorflow.python.util.tf_export import tf_export
23@tf_export('distribute.experimental.CentralStorageStrategy', v1=[])
24class CentralStorageStrategy(distribute_lib.Strategy):
25 """A one-machine strategy that puts all variables on a single device.
27 Variables are assigned to local CPU or the only GPU. If there is more
28 than one GPU, compute operations (other than variable update operations)
29 will be replicated across all GPUs.
31 For Example:
32 ```
33 strategy = tf.distribute.experimental.CentralStorageStrategy()
34 # Create a dataset
35 ds = tf.data.Dataset.range(5).batch(2)
36 # Distribute that dataset
37 dist_dataset = strategy.experimental_distribute_dataset(ds)
39 with strategy.scope():
40 @tf.function
41 def train_step(val):
42 return val + 1
44 # Iterate over the distributed dataset
45 for x in dist_dataset:
46 # process dataset elements
47 strategy.run(train_step, args=(x,))
48 ```
49 """
51 def __init__(self, compute_devices=None, parameter_device=None):
52 extended = parameter_server_strategy.ParameterServerStrategyExtended(
53 self,
54 compute_devices=compute_devices,
55 parameter_device=parameter_device)
56 """Initializes the strategy with optional device strings.
58 Args:
59 compute_devices: an optional list of strings for device to replicate models
60 on. If this is not provided, all local GPUs will be used; if there is no
61 GPU, local CPU will be used.
62 parameter_device: an optional device string for which device to put
63 variables on. The default one is CPU or GPU if there is only one.
64 """
65 super(CentralStorageStrategy, self).__init__(extended)
66 distribute_lib.distribution_strategy_gauge.get_cell('V2').set(
67 'CentralStorageStrategy')
69 @classmethod
70 def _from_num_gpus(cls, num_gpus):
71 return cls(device_util.local_devices_from_num_gpus(num_gpus))
73 def experimental_distribute_dataset(self, dataset, options=None): # pylint: disable=useless-super-delegation
74 """Distributes a tf.data.Dataset instance provided via dataset.
76 The returned dataset is a wrapped strategy dataset which creates a
77 multidevice iterator under the hood. It prefetches the input data to the
78 specified devices on the worker. The returned distributed dataset can be
79 iterated over similar to how regular datasets can.
81 NOTE: Currently, the user cannot add any more transformations to a
82 distributed dataset.
84 For Example:
85 ```
86 strategy = tf.distribute.CentralStorageStrategy() # with 1 CPU and 1 GPU
87 dataset = tf.data.Dataset.range(10).batch(2)
88 dist_dataset = strategy.experimental_distribute_dataset(dataset)
89 for x in dist_dataset:
90 print(x) # Prints PerReplica values [0, 1], [2, 3],...
92 ```
93 Args:
94 dataset: `tf.data.Dataset` to be prefetched to device.
95 options: `tf.distribute.InputOptions` used to control options on how this
96 dataset is distributed.
98 Returns:
99 A "distributed `Dataset`" that the caller can iterate over.
100 """
101 if (options and options.experimental_replication_moden ==
102 distribute_lib.InputReplicationMode.PER_REPLICA):
103 raise NotImplementedError(
104 'InputReplicationMode.PER_REPLICA '
105 'is only supported in '
106 '`experimental_distribute_datasets_from_function`.'
107 )
108 return super(CentralStorageStrategy, self).experimental_distribute_dataset(
109 dataset, options)
111 def experimental_local_results(self, value): # pylint: disable=useless-super-delegation
112 """Returns the list of all local per-replica values contained in `value`.
114 In `CentralStorageStrategy` there is a single worker so the value returned
115 will be all the values on that worker.
117 Args:
118 value: A value returned by `run()`, `extended.call_for_each_replica()`,
119 or a variable created in `scope`.
121 Returns:
122 A tuple of values contained in `value`. If `value` represents a single
123 value, this returns `(value,).`
124 """
125 return super(CentralStorageStrategy, self).experimental_local_results(value)
127 def run(self, fn, args=(), kwargs=None, options=None): # pylint: disable=useless-super-delegation
128 """Run `fn` on each replica, with the given arguments.
130 In `CentralStorageStrategy`, `fn` is called on each of the compute
131 replicas, with the provided "per replica" arguments specific to that device.
133 Args:
134 fn: The function to run. The output must be a `tf.nest` of `Tensor`s.
135 args: (Optional) Positional arguments to `fn`.
136 kwargs: (Optional) Keyword arguments to `fn`.
137 options: (Optional) An instance of `tf.distribute.RunOptions` specifying
138 the options to run `fn`.
140 Returns:
141 Return value from running `fn`.
142 """
143 return super(CentralStorageStrategy, self).run(fn, args, kwargs, options)
145 def reduce(self, reduce_op, value, axis): # pylint: disable=useless-super-delegation
146 """Reduce `value` across replicas.
148 Given a per-replica value returned by `run`, say a
149 per-example loss, the batch will be divided across all the replicas. This
150 function allows you to aggregate across replicas and optionally also across
151 batch elements. For example, if you have a global batch size of 8 and 2
152 replicas, values for examples `[0, 1, 2, 3]` will be on replica 0 and
153 `[4, 5, 6, 7]` will be on replica 1. By default, `reduce` will just
154 aggregate across replicas, returning `[0+4, 1+5, 2+6, 3+7]`. This is useful
155 when each replica is computing a scalar or some other value that doesn't
156 have a "batch" dimension (like a gradient). More often you will want to
157 aggregate across the global batch, which you can get by specifying the batch
158 dimension as the `axis`, typically `axis=0`. In this case it would return a
159 scalar `0+1+2+3+4+5+6+7`.
161 If there is a last partial batch, you will need to specify an axis so
162 that the resulting shape is consistent across replicas. So if the last
163 batch has size 6 and it is divided into [0, 1, 2, 3] and [4, 5], you
164 would get a shape mismatch unless you specify `axis=0`. If you specify
165 `tf.distribute.ReduceOp.MEAN`, using `axis=0` will use the correct
166 denominator of 6. Contrast this with computing `reduce_mean` to get a
167 scalar value on each replica and this function to average those means,
168 which will weigh some values `1/8` and others `1/4`.
170 For Example:
171 ```
172 strategy = tf.distribute.experimental.CentralStorageStrategy(
173 compute_devices=['CPU:0', 'GPU:0'], parameter_device='CPU:0')
174 ds = tf.data.Dataset.range(10)
175 # Distribute that dataset
176 dist_dataset = strategy.experimental_distribute_dataset(ds)
178 with strategy.scope():
179 @tf.function
180 def train_step(val):
181 # pass through
182 return val
184 # Iterate over the distributed dataset
185 for x in dist_dataset:
186 result = strategy.run(train_step, args=(x,))
188 result = strategy.reduce(tf.distribute.ReduceOp.SUM, result,
189 axis=None).numpy()
190 # result: array([ 4, 6, 8, 10])
192 result = strategy.reduce(tf.distribute.ReduceOp.SUM, result, axis=0).numpy()
193 # result: 28
194 ```
196 Args:
197 reduce_op: A `tf.distribute.ReduceOp` value specifying how values should
198 be combined.
199 value: A "per replica" value, e.g. returned by `run` to
200 be combined into a single tensor.
201 axis: Specifies the dimension to reduce along within each
202 replica's tensor. Should typically be set to the batch dimension, or
203 `None` to only reduce across replicas (e.g. if the tensor has no batch
204 dimension).
206 Returns:
207 A `Tensor`.
208 """
209 return super(CentralStorageStrategy, self).reduce(reduce_op, value, axis)
212@tf_export(v1=['distribute.experimental.CentralStorageStrategy']) # pylint: disable=missing-docstring
213class CentralStorageStrategyV1(distribute_lib.StrategyV1):
215 __doc__ = CentralStorageStrategy.__doc__
217 def __init__(self, compute_devices=None, parameter_device=None):
218 super(CentralStorageStrategyV1, self).__init__(
219 parameter_server_strategy.ParameterServerStrategyExtended(
220 self,
221 compute_devices=compute_devices,
222 parameter_device=parameter_device))
223 distribute_lib.distribution_strategy_gauge.get_cell('V1').set(
224 'CentralStorageStrategy')
226 __init__.__doc__ = CentralStorageStrategy.__init__.__doc__