Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/python/profiler/profiler_client.py: 61%
18 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Profiler client APIs."""
17from tensorflow.python.framework import errors
18from tensorflow.python.profiler.internal import _pywrap_profiler
20from tensorflow.python.util.tf_export import tf_export
22_GRPC_PREFIX = 'grpc://'
25@tf_export('profiler.experimental.client.trace', v1=[])
26def trace(service_addr,
27 logdir,
28 duration_ms,
29 worker_list='',
30 num_tracing_attempts=3,
31 options=None):
32 """Sends gRPC requests to one or more profiler servers to perform on-demand profiling.
34 This method will block the calling thread until it receives responses from all
35 servers or until deadline expiration. Both single host and multiple host
36 profiling are supported on CPU, GPU, and TPU.
37 The profiled results will be saved by each server to the specified TensorBoard
38 log directory (i.e. the directory you save your model checkpoints). Use the
39 TensorBoard profile plugin to view the visualization and analysis results.
41 Args:
42 service_addr: A comma delimited string of gRPC addresses of the workers to
43 profile.
44 e.g. service_addr='grpc://localhost:6009'
45 service_addr='grpc://10.0.0.2:8466,grpc://10.0.0.3:8466'
46 service_addr='grpc://localhost:12345,grpc://localhost:23456'
47 logdir: Path to save profile data to, typically a TensorBoard log directory.
48 This path must be accessible to both the client and server.
49 e.g. logdir='gs://your_tb_dir'
50 duration_ms: Duration of tracing or monitoring in milliseconds. Must be
51 greater than zero.
52 worker_list: An optional TPU only configuration. The list of workers to
53 profile in the current session.
54 num_tracing_attempts: Optional. Automatically retry N times when no trace
55 event is collected (default 3).
56 options: profiler.experimental.ProfilerOptions namedtuple for miscellaneous
57 profiler options.
59 Raises:
60 InvalidArgumentError: For when arguments fail validation checks.
61 UnavailableError: If no trace event was collected.
63 Example usage (CPU/GPU):
65 ```python
66 # Start a profiler server before your model runs.
67 tf.profiler.experimental.server.start(6009)
68 # (Model code goes here).
69 # Send gRPC request to the profiler server to collect a trace of your model.
70 tf.profiler.experimental.client.trace('grpc://localhost:6009',
71 '/nfs/tb_log', 2000)
72 ```
74 Example usage (Multiple GPUs):
76 ```python
77 # E.g. your worker IP addresses are 10.0.0.2, 10.0.0.3, 10.0.0.4, and you
78 # would like to schedule start of profiling 1 second from now, for a
79 # duration of 2 seconds.
80 options['delay_ms'] = 1000
81 tf.profiler.experimental.client.trace(
82 'grpc://10.0.0.2:8466,grpc://10.0.0.3:8466,grpc://10.0.0.4:8466',
83 'gs://your_tb_dir',
84 2000,
85 options=options)
86 ```
88 Example usage (TPU):
90 ```python
91 # Send gRPC request to a TPU worker to collect a trace of your model. A
92 # profiler service has been started in the TPU worker at port 8466.
93 # E.g. your TPU IP address is 10.0.0.2 and you want to profile for 2 seconds
94 # .
95 tf.profiler.experimental.client.trace('grpc://10.0.0.2:8466',
96 'gs://your_tb_dir', 2000)
97 ```
99 Example usage (Multiple TPUs):
101 ```python
102 # Send gRPC request to a TPU pod to collect a trace of your model on
103 # multiple TPUs. A profiler service has been started in all the TPU workers
104 # at the port 8466.
105 # E.g. your TPU IP addresses are 10.0.0.2, 10.0.0.3, 10.0.0.4, and you want
106 # to profile for 2 seconds.
107 tf.profiler.experimental.client.trace(
108 'grpc://10.0.0.2:8466',
109 'gs://your_tb_dir',
110 2000,
111 '10.0.0.2:8466,10.0.0.3:8466,10.0.0.4:8466')
112 ```
114 Launch TensorBoard and point it to the same logdir you provided to this API.
116 ```shell
117 # logdir can be gs://your_tb_dir as in the above examples.
118 $ tensorboard --logdir=/tmp/tb_log
119 ```
121 Open your browser and go to localhost:6006/#profile to view profiling results.
123 """
124 if duration_ms <= 0:
125 raise errors.InvalidArgumentError(None, None,
126 'duration_ms must be greater than zero.')
128 opts = dict(options._asdict()) if options is not None else {}
129 _pywrap_profiler.trace(
130 _strip_addresses(service_addr, _GRPC_PREFIX), logdir, worker_list, True,
131 duration_ms, num_tracing_attempts, opts)
134@tf_export('profiler.experimental.client.monitor', v1=[])
135def monitor(service_addr, duration_ms, level=1):
136 """Sends grpc requests to profiler server to perform on-demand monitoring.
138 The monitoring result is a light weight performance summary of your model
139 execution. This method will block the caller thread until it receives the
140 monitoring result. This method currently supports Cloud TPU only.
142 Args:
143 service_addr: gRPC address of profiler service e.g. grpc://10.0.0.2:8466.
144 duration_ms: Duration of monitoring in ms.
145 level: Choose a monitoring level between 1 and 2 to monitor your job. Level
146 2 is more verbose than level 1 and shows more metrics.
148 Returns:
149 A string of monitoring output.
151 Example usage:
153 ```python
154 # Continuously send gRPC requests to the Cloud TPU to monitor the model
155 # execution.
157 for query in range(0, 100):
158 print(
159 tf.profiler.experimental.client.monitor('grpc://10.0.0.2:8466', 1000))
160 ```
162 """
163 return _pywrap_profiler.monitor(
164 _strip_prefix(service_addr, _GRPC_PREFIX), duration_ms, level, True)
167def _strip_prefix(s, prefix):
168 return s[len(prefix):] if s.startswith(prefix) else s
171def _strip_addresses(addresses, prefix):
172 return ','.join([_strip_prefix(s, prefix) for s in addresses.split(',')])