Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/tensorflow/distribute/experimental/rpc/kernels/gen_rpc_ops.py: 16%
461 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-03 07:57 +0000
1"""Python wrappers around TensorFlow ops.
3This file is MACHINE GENERATED! Do not edit.
4"""
6import collections
8from tensorflow.python import pywrap_tfe as pywrap_tfe
9from tensorflow.python.eager import context as _context
10from tensorflow.python.eager import core as _core
11from tensorflow.python.eager import execute as _execute
12from tensorflow.python.framework import dtypes as _dtypes
13from tensorflow.security.fuzzing.py import annotation_types as _atypes
15from tensorflow.python.framework import op_def_registry as _op_def_registry
16from tensorflow.python.framework import ops as _ops
17from tensorflow.python.framework import op_def_library as _op_def_library
18from tensorflow.python.util.deprecation import deprecated_endpoints
19from tensorflow.python.util import dispatch as _dispatch
20from tensorflow.python.util.tf_export import tf_export
22from typing import TypeVar
24@_dispatch.add_fallback_dispatch_list
25@_dispatch.add_type_based_api_dispatcher
26@tf_export('delete_rpc_future_resource')
27def delete_rpc_future_resource(handle, deleter, name=None):
28 r"""TODO: add doc.
30 Args:
31 handle: A `Tensor` of type `resource`.
32 deleter: A `Tensor` of type `variant`.
33 name: A name for the operation (optional).
35 Returns:
36 The created Operation.
37 """
38 _ctx = _context._context or _context.context()
39 tld = _ctx._thread_local_data
40 if tld.is_eager:
41 try:
42 _result = pywrap_tfe.TFE_Py_FastPathExecute(
43 _ctx, "DeleteRpcFutureResource", name, handle, deleter)
44 return _result
45 except _core._NotOkStatusException as e:
46 _ops.raise_from_not_ok_status(e, name)
47 except _core._FallbackException:
48 pass
49 try:
50 _result = _dispatcher_for_delete_rpc_future_resource(
51 (handle, deleter, name,), None)
52 if _result is not NotImplemented:
53 return _result
54 return delete_rpc_future_resource_eager_fallback(
55 handle, deleter, name=name, ctx=_ctx)
56 except _core._SymbolicException:
57 pass # Add nodes to the TensorFlow graph.
58 except (TypeError, ValueError):
59 _result = _dispatch.dispatch(
60 delete_rpc_future_resource, (), dict(handle=handle,
61 deleter=deleter, name=name)
62 )
63 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
64 return _result
65 raise
66 else:
67 _result = _dispatcher_for_delete_rpc_future_resource(
68 (handle, deleter, name,), None)
69 if _result is not NotImplemented:
70 return _result
71 # Add nodes to the TensorFlow graph.
72 try:
73 _, _, _op, _outputs = _op_def_library._apply_op_helper(
74 "DeleteRpcFutureResource", handle=handle, deleter=deleter, name=name)
75 except (TypeError, ValueError):
76 _result = _dispatch.dispatch(
77 delete_rpc_future_resource, (), dict(handle=handle, deleter=deleter,
78 name=name)
79 )
80 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
81 return _result
82 raise
83 return _op
84DeleteRpcFutureResource = tf_export("raw_ops.DeleteRpcFutureResource")(_ops.to_raw_op(delete_rpc_future_resource))
85_dispatcher_for_delete_rpc_future_resource = delete_rpc_future_resource._tf_type_based_dispatcher.Dispatch
88def delete_rpc_future_resource_eager_fallback(handle, deleter, name, ctx):
89 handle = _ops.convert_to_tensor(handle, _dtypes.resource)
90 deleter = _ops.convert_to_tensor(deleter, _dtypes.variant)
91 _inputs_flat = [handle, deleter]
92 _attrs = None
93 _result = _execute.execute(b"DeleteRpcFutureResource", 0,
94 inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
95 name=name)
96 _result = None
97 return _result
99_RpcCallOutput = collections.namedtuple(
100 "RpcCall",
101 ["future", "deleter"])
104@_dispatch.add_fallback_dispatch_list
105@_dispatch.add_type_based_api_dispatcher
106@tf_export('rpc_call')
107def rpc_call(client, method_name, args, timeout_in_ms, name=None):
108 r"""TODO: add doc.
110 Args:
111 client: A `Tensor` of type `resource`.
112 method_name: A `Tensor` of type `string`.
113 args: A list of `Tensor` objects.
114 timeout_in_ms: A `Tensor` of type `int64`.
115 name: A name for the operation (optional).
117 Returns:
118 A tuple of `Tensor` objects (future, deleter).
120 future: A `Tensor` of type `resource`.
121 deleter: A `Tensor` of type `variant`.
122 """
123 _ctx = _context._context or _context.context()
124 tld = _ctx._thread_local_data
125 if tld.is_eager:
126 try:
127 _result = pywrap_tfe.TFE_Py_FastPathExecute(
128 _ctx, "RpcCall", name, client, method_name, args, timeout_in_ms)
129 _result = _RpcCallOutput._make(_result)
130 return _result
131 except _core._NotOkStatusException as e:
132 _ops.raise_from_not_ok_status(e, name)
133 except _core._FallbackException:
134 pass
135 try:
136 _result = _dispatcher_for_rpc_call(
137 (client, method_name, args, timeout_in_ms, name,), None)
138 if _result is not NotImplemented:
139 return _result
140 return rpc_call_eager_fallback(
141 client, method_name, args, timeout_in_ms, name=name, ctx=_ctx)
142 except _core._SymbolicException:
143 pass # Add nodes to the TensorFlow graph.
144 except (TypeError, ValueError):
145 _result = _dispatch.dispatch(
146 rpc_call, (), dict(client=client, method_name=method_name,
147 args=args, timeout_in_ms=timeout_in_ms,
148 name=name)
149 )
150 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
151 return _result
152 raise
153 else:
154 _result = _dispatcher_for_rpc_call(
155 (client, method_name, args, timeout_in_ms, name,), None)
156 if _result is not NotImplemented:
157 return _result
158 # Add nodes to the TensorFlow graph.
159 try:
160 _, _, _op, _outputs = _op_def_library._apply_op_helper(
161 "RpcCall", client=client, method_name=method_name, args=args,
162 timeout_in_ms=timeout_in_ms, name=name)
163 except (TypeError, ValueError):
164 _result = _dispatch.dispatch(
165 rpc_call, (), dict(client=client, method_name=method_name,
166 args=args, timeout_in_ms=timeout_in_ms,
167 name=name)
168 )
169 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
170 return _result
171 raise
172 _result = _outputs[:]
173 if _execute.must_record_gradient():
174 _attrs = ("Tin", _op.get_attr("Tin"))
175 _inputs_flat = _op.inputs
176 _execute.record_gradient(
177 "RpcCall", _inputs_flat, _attrs, _result)
178 _result = _RpcCallOutput._make(_result)
179 return _result
181RpcCall = tf_export("raw_ops.RpcCall")(_ops.to_raw_op(rpc_call))
182_dispatcher_for_rpc_call = rpc_call._tf_type_based_dispatcher.Dispatch
185def rpc_call_eager_fallback(client, method_name, args, timeout_in_ms, name, ctx):
186 _attr_Tin, args = _execute.convert_to_mixed_eager_tensors(args, ctx)
187 client = _ops.convert_to_tensor(client, _dtypes.resource)
188 method_name = _ops.convert_to_tensor(method_name, _dtypes.string)
189 timeout_in_ms = _ops.convert_to_tensor(timeout_in_ms, _dtypes.int64)
190 _inputs_flat = [client, method_name] + list(args) + [timeout_in_ms]
191 _attrs = ("Tin", _attr_Tin)
192 _result = _execute.execute(b"RpcCall", 2, inputs=_inputs_flat, attrs=_attrs,
193 ctx=ctx, name=name)
194 if _execute.must_record_gradient():
195 _execute.record_gradient(
196 "RpcCall", _inputs_flat, _attrs, _result)
197 _result = _RpcCallOutput._make(_result)
198 return _result
200_RpcCheckStatusOutput = collections.namedtuple(
201 "RpcCheckStatus",
202 ["error_code", "error"])
205@_dispatch.add_fallback_dispatch_list
206@_dispatch.add_type_based_api_dispatcher
207@tf_export('rpc_check_status')
208def rpc_check_status(status_or, name=None):
209 r"""TODO: add doc.
211 Args:
212 status_or: A `Tensor` of type `resource`.
213 name: A name for the operation (optional).
215 Returns:
216 A tuple of `Tensor` objects (error_code, error).
218 error_code: A `Tensor` of type `int64`.
219 error: A `Tensor` of type `string`.
220 """
221 _ctx = _context._context or _context.context()
222 tld = _ctx._thread_local_data
223 if tld.is_eager:
224 try:
225 _result = pywrap_tfe.TFE_Py_FastPathExecute(
226 _ctx, "RpcCheckStatus", name, status_or)
227 _result = _RpcCheckStatusOutput._make(_result)
228 return _result
229 except _core._NotOkStatusException as e:
230 _ops.raise_from_not_ok_status(e, name)
231 except _core._FallbackException:
232 pass
233 try:
234 _result = _dispatcher_for_rpc_check_status(
235 (status_or, name,), None)
236 if _result is not NotImplemented:
237 return _result
238 return rpc_check_status_eager_fallback(
239 status_or, name=name, ctx=_ctx)
240 except _core._SymbolicException:
241 pass # Add nodes to the TensorFlow graph.
242 except (TypeError, ValueError):
243 _result = _dispatch.dispatch(
244 rpc_check_status, (), dict(status_or=status_or, name=name)
245 )
246 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
247 return _result
248 raise
249 else:
250 _result = _dispatcher_for_rpc_check_status(
251 (status_or, name,), None)
252 if _result is not NotImplemented:
253 return _result
254 # Add nodes to the TensorFlow graph.
255 try:
256 _, _, _op, _outputs = _op_def_library._apply_op_helper(
257 "RpcCheckStatus", status_or=status_or, name=name)
258 except (TypeError, ValueError):
259 _result = _dispatch.dispatch(
260 rpc_check_status, (), dict(status_or=status_or, name=name)
261 )
262 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
263 return _result
264 raise
265 _result = _outputs[:]
266 if _execute.must_record_gradient():
267 _attrs = ()
268 _inputs_flat = _op.inputs
269 _execute.record_gradient(
270 "RpcCheckStatus", _inputs_flat, _attrs, _result)
271 _result = _RpcCheckStatusOutput._make(_result)
272 return _result
274RpcCheckStatus = tf_export("raw_ops.RpcCheckStatus")(_ops.to_raw_op(rpc_check_status))
275_dispatcher_for_rpc_check_status = rpc_check_status._tf_type_based_dispatcher.Dispatch
278def rpc_check_status_eager_fallback(status_or, name, ctx):
279 status_or = _ops.convert_to_tensor(status_or, _dtypes.resource)
280 _inputs_flat = [status_or]
281 _attrs = None
282 _result = _execute.execute(b"RpcCheckStatus", 2, inputs=_inputs_flat,
283 attrs=_attrs, ctx=ctx, name=name)
284 if _execute.must_record_gradient():
285 _execute.record_gradient(
286 "RpcCheckStatus", _inputs_flat, _attrs, _result)
287 _result = _RpcCheckStatusOutput._make(_result)
288 return _result
290_RpcClientOutput = collections.namedtuple(
291 "RpcClient",
292 ["client", "method_specs"])
295@_dispatch.add_fallback_dispatch_list
296@_dispatch.add_type_based_api_dispatcher
297@tf_export('rpc_client')
298def rpc_client(server_address, timeout_in_ms, shared_name="", list_registered_methods=False, name=None):
299 r"""TODO: add doc.
301 Args:
302 server_address: A `Tensor` of type `string`.
303 timeout_in_ms: A `Tensor` of type `int64`.
304 shared_name: An optional `string`. Defaults to `""`.
305 list_registered_methods: An optional `bool`. Defaults to `False`.
306 name: A name for the operation (optional).
308 Returns:
309 A tuple of `Tensor` objects (client, method_specs).
311 client: A `Tensor` of type `resource`.
312 method_specs: A `Tensor` of type `string`.
313 """
314 _ctx = _context._context or _context.context()
315 tld = _ctx._thread_local_data
316 if tld.is_eager:
317 try:
318 _result = pywrap_tfe.TFE_Py_FastPathExecute(
319 _ctx, "RpcClient", name, server_address, timeout_in_ms, "shared_name",
320 shared_name, "list_registered_methods", list_registered_methods)
321 _result = _RpcClientOutput._make(_result)
322 return _result
323 except _core._NotOkStatusException as e:
324 _ops.raise_from_not_ok_status(e, name)
325 except _core._FallbackException:
326 pass
327 try:
328 _result = _dispatcher_for_rpc_client(
329 (server_address, timeout_in_ms, shared_name,
330 list_registered_methods, name,), None)
331 if _result is not NotImplemented:
332 return _result
333 return rpc_client_eager_fallback(
334 server_address, timeout_in_ms, shared_name=shared_name,
335 list_registered_methods=list_registered_methods, name=name,
336 ctx=_ctx)
337 except _core._SymbolicException:
338 pass # Add nodes to the TensorFlow graph.
339 except (TypeError, ValueError):
340 _result = _dispatch.dispatch(
341 rpc_client, (), dict(server_address=server_address,
342 timeout_in_ms=timeout_in_ms,
343 shared_name=shared_name,
344 list_registered_methods=list_registered_methods,
345 name=name)
346 )
347 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
348 return _result
349 raise
350 else:
351 _result = _dispatcher_for_rpc_client(
352 (server_address, timeout_in_ms, shared_name, list_registered_methods,
353 name,), None)
354 if _result is not NotImplemented:
355 return _result
356 # Add nodes to the TensorFlow graph.
357 if shared_name is None:
358 shared_name = ""
359 shared_name = _execute.make_str(shared_name, "shared_name")
360 if list_registered_methods is None:
361 list_registered_methods = False
362 list_registered_methods = _execute.make_bool(list_registered_methods, "list_registered_methods")
363 try:
364 _, _, _op, _outputs = _op_def_library._apply_op_helper(
365 "RpcClient", server_address=server_address,
366 timeout_in_ms=timeout_in_ms, shared_name=shared_name,
367 list_registered_methods=list_registered_methods,
368 name=name)
369 except (TypeError, ValueError):
370 _result = _dispatch.dispatch(
371 rpc_client, (), dict(server_address=server_address,
372 timeout_in_ms=timeout_in_ms,
373 shared_name=shared_name,
374 list_registered_methods=list_registered_methods,
375 name=name)
376 )
377 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
378 return _result
379 raise
380 _result = _outputs[:]
381 if _execute.must_record_gradient():
382 _attrs = ("shared_name", _op.get_attr("shared_name"),
383 "list_registered_methods",
384 _op._get_attr_bool("list_registered_methods"))
385 _inputs_flat = _op.inputs
386 _execute.record_gradient(
387 "RpcClient", _inputs_flat, _attrs, _result)
388 _result = _RpcClientOutput._make(_result)
389 return _result
391RpcClient = tf_export("raw_ops.RpcClient")(_ops.to_raw_op(rpc_client))
392_dispatcher_for_rpc_client = rpc_client._tf_type_based_dispatcher.Dispatch
395def rpc_client_eager_fallback(server_address, timeout_in_ms, shared_name, list_registered_methods, name, ctx):
396 if shared_name is None:
397 shared_name = ""
398 shared_name = _execute.make_str(shared_name, "shared_name")
399 if list_registered_methods is None:
400 list_registered_methods = False
401 list_registered_methods = _execute.make_bool(list_registered_methods, "list_registered_methods")
402 server_address = _ops.convert_to_tensor(server_address, _dtypes.string)
403 timeout_in_ms = _ops.convert_to_tensor(timeout_in_ms, _dtypes.int64)
404 _inputs_flat = [server_address, timeout_in_ms]
405 _attrs = ("shared_name", shared_name, "list_registered_methods",
406 list_registered_methods)
407 _result = _execute.execute(b"RpcClient", 2, inputs=_inputs_flat,
408 attrs=_attrs, ctx=ctx, name=name)
409 if _execute.must_record_gradient():
410 _execute.record_gradient(
411 "RpcClient", _inputs_flat, _attrs, _result)
412 _result = _RpcClientOutput._make(_result)
413 return _result
416@_dispatch.add_fallback_dispatch_list
417@_dispatch.add_type_based_api_dispatcher
418@tf_export('rpc_get_value')
419def rpc_get_value(status_or, Tout, name=None):
420 r"""TODO: add doc.
422 Args:
423 status_or: A `Tensor` of type `resource`.
424 Tout: A list of `tf.DTypes`.
425 name: A name for the operation (optional).
427 Returns:
428 A list of `Tensor` objects of type `Tout`.
429 """
430 _ctx = _context._context or _context.context()
431 tld = _ctx._thread_local_data
432 if tld.is_eager:
433 try:
434 _result = pywrap_tfe.TFE_Py_FastPathExecute(
435 _ctx, "RpcGetValue", name, status_or, "Tout", Tout)
436 return _result
437 except _core._NotOkStatusException as e:
438 _ops.raise_from_not_ok_status(e, name)
439 except _core._FallbackException:
440 pass
441 try:
442 _result = _dispatcher_for_rpc_get_value(
443 (status_or, Tout, name,), None)
444 if _result is not NotImplemented:
445 return _result
446 return rpc_get_value_eager_fallback(
447 status_or, Tout=Tout, name=name, ctx=_ctx)
448 except _core._SymbolicException:
449 pass # Add nodes to the TensorFlow graph.
450 except (TypeError, ValueError):
451 _result = _dispatch.dispatch(
452 rpc_get_value, (), dict(status_or=status_or, Tout=Tout, name=name)
453 )
454 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
455 return _result
456 raise
457 else:
458 _result = _dispatcher_for_rpc_get_value(
459 (status_or, Tout, name,), None)
460 if _result is not NotImplemented:
461 return _result
462 # Add nodes to the TensorFlow graph.
463 if not isinstance(Tout, (list, tuple)):
464 raise TypeError(
465 "Expected list for 'Tout' argument to "
466 "'rpc_get_value' Op, not %r." % Tout)
467 Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
468 try:
469 _, _, _op, _outputs = _op_def_library._apply_op_helper(
470 "RpcGetValue", status_or=status_or, Tout=Tout, name=name)
471 except (TypeError, ValueError):
472 _result = _dispatch.dispatch(
473 rpc_get_value, (), dict(status_or=status_or, Tout=Tout, name=name)
474 )
475 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
476 return _result
477 raise
478 _result = _outputs[:]
479 if not _result:
480 return _op
481 if _execute.must_record_gradient():
482 _attrs = ("Tout", _op.get_attr("Tout"))
483 _inputs_flat = _op.inputs
484 _execute.record_gradient(
485 "RpcGetValue", _inputs_flat, _attrs, _result)
486 return _result
488RpcGetValue = tf_export("raw_ops.RpcGetValue")(_ops.to_raw_op(rpc_get_value))
489_dispatcher_for_rpc_get_value = rpc_get_value._tf_type_based_dispatcher.Dispatch
492def rpc_get_value_eager_fallback(status_or, Tout, name, ctx):
493 if not isinstance(Tout, (list, tuple)):
494 raise TypeError(
495 "Expected list for 'Tout' argument to "
496 "'rpc_get_value' Op, not %r." % Tout)
497 Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
498 status_or = _ops.convert_to_tensor(status_or, _dtypes.resource)
499 _inputs_flat = [status_or]
500 _attrs = ("Tout", Tout)
501 _result = _execute.execute(b"RpcGetValue", len(Tout), inputs=_inputs_flat,
502 attrs=_attrs, ctx=ctx, name=name)
503 if _execute.must_record_gradient():
504 _execute.record_gradient(
505 "RpcGetValue", _inputs_flat, _attrs, _result)
506 return _result
509@_dispatch.add_fallback_dispatch_list
510@_dispatch.add_type_based_api_dispatcher
511@tf_export('rpc_server')
512def rpc_server(server_address, name=None):
513 r"""TODO: add doc.
515 Args:
516 server_address: A `Tensor` of type `string`.
517 name: A name for the operation (optional).
519 Returns:
520 A `Tensor` of type `resource`.
521 """
522 _ctx = _context._context or _context.context()
523 tld = _ctx._thread_local_data
524 if tld.is_eager:
525 try:
526 _result = pywrap_tfe.TFE_Py_FastPathExecute(
527 _ctx, "RpcServer", name, server_address)
528 return _result
529 except _core._NotOkStatusException as e:
530 _ops.raise_from_not_ok_status(e, name)
531 except _core._FallbackException:
532 pass
533 try:
534 _result = _dispatcher_for_rpc_server(
535 (server_address, name,), None)
536 if _result is not NotImplemented:
537 return _result
538 return rpc_server_eager_fallback(
539 server_address, name=name, ctx=_ctx)
540 except _core._SymbolicException:
541 pass # Add nodes to the TensorFlow graph.
542 except (TypeError, ValueError):
543 _result = _dispatch.dispatch(
544 rpc_server, (), dict(server_address=server_address, name=name)
545 )
546 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
547 return _result
548 raise
549 else:
550 _result = _dispatcher_for_rpc_server(
551 (server_address, name,), None)
552 if _result is not NotImplemented:
553 return _result
554 # Add nodes to the TensorFlow graph.
555 try:
556 _, _, _op, _outputs = _op_def_library._apply_op_helper(
557 "RpcServer", server_address=server_address, name=name)
558 except (TypeError, ValueError):
559 _result = _dispatch.dispatch(
560 rpc_server, (), dict(server_address=server_address, name=name)
561 )
562 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
563 return _result
564 raise
565 _result = _outputs[:]
566 if _execute.must_record_gradient():
567 _attrs = ()
568 _inputs_flat = _op.inputs
569 _execute.record_gradient(
570 "RpcServer", _inputs_flat, _attrs, _result)
571 _result, = _result
572 return _result
574RpcServer = tf_export("raw_ops.RpcServer")(_ops.to_raw_op(rpc_server))
575_dispatcher_for_rpc_server = rpc_server._tf_type_based_dispatcher.Dispatch
578def rpc_server_eager_fallback(server_address, name, ctx):
579 server_address = _ops.convert_to_tensor(server_address, _dtypes.string)
580 _inputs_flat = [server_address]
581 _attrs = None
582 _result = _execute.execute(b"RpcServer", 1, inputs=_inputs_flat,
583 attrs=_attrs, ctx=ctx, name=name)
584 if _execute.must_record_gradient():
585 _execute.record_gradient(
586 "RpcServer", _inputs_flat, _attrs, _result)
587 _result, = _result
588 return _result
591@_dispatch.add_fallback_dispatch_list
592@_dispatch.add_type_based_api_dispatcher
593@tf_export('rpc_server_register')
594def rpc_server_register(server, method_name, captured_inputs, f, output_specs, input_specs="", name=None):
595 r"""TODO: add doc.
597 Args:
598 server: A `Tensor` of type `resource`.
599 method_name: A `Tensor` of type `string`.
600 captured_inputs: A list of `Tensor` objects.
601 f: A function decorated with @Defun.
602 output_specs: A `string`.
603 input_specs: An optional `string`. Defaults to `""`.
604 name: A name for the operation (optional).
606 Returns:
607 The created Operation.
608 """
609 _ctx = _context._context or _context.context()
610 tld = _ctx._thread_local_data
611 if tld.is_eager:
612 try:
613 _result = pywrap_tfe.TFE_Py_FastPathExecute(
614 _ctx, "RpcServerRegister", name, server, method_name, captured_inputs,
615 "f", f, "input_specs", input_specs, "output_specs", output_specs)
616 return _result
617 except _core._NotOkStatusException as e:
618 _ops.raise_from_not_ok_status(e, name)
619 except _core._FallbackException:
620 pass
621 try:
622 _result = _dispatcher_for_rpc_server_register(
623 (server, method_name, captured_inputs, f, output_specs, input_specs,
624 name,), None)
625 if _result is not NotImplemented:
626 return _result
627 return rpc_server_register_eager_fallback(
628 server, method_name, captured_inputs, f=f, input_specs=input_specs,
629 output_specs=output_specs, name=name, ctx=_ctx)
630 except _core._SymbolicException:
631 pass # Add nodes to the TensorFlow graph.
632 except (TypeError, ValueError):
633 _result = _dispatch.dispatch(
634 rpc_server_register, (), dict(server=server,
635 method_name=method_name,
636 captured_inputs=captured_inputs,
637 f=f, output_specs=output_specs,
638 input_specs=input_specs, name=name)
639 )
640 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
641 return _result
642 raise
643 else:
644 _result = _dispatcher_for_rpc_server_register(
645 (server, method_name, captured_inputs, f, output_specs, input_specs,
646 name,), None)
647 if _result is not NotImplemented:
648 return _result
649 # Add nodes to the TensorFlow graph.
650 output_specs = _execute.make_str(output_specs, "output_specs")
651 if input_specs is None:
652 input_specs = ""
653 input_specs = _execute.make_str(input_specs, "input_specs")
654 try:
655 _, _, _op, _outputs = _op_def_library._apply_op_helper(
656 "RpcServerRegister", server=server, method_name=method_name,
657 captured_inputs=captured_inputs, f=f,
658 output_specs=output_specs,
659 input_specs=input_specs, name=name)
660 except (TypeError, ValueError):
661 _result = _dispatch.dispatch(
662 rpc_server_register, (), dict(server=server,
663 method_name=method_name,
664 captured_inputs=captured_inputs, f=f,
665 output_specs=output_specs,
666 input_specs=input_specs, name=name)
667 )
668 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
669 return _result
670 raise
671 return _op
672RpcServerRegister = tf_export("raw_ops.RpcServerRegister")(_ops.to_raw_op(rpc_server_register))
673_dispatcher_for_rpc_server_register = rpc_server_register._tf_type_based_dispatcher.Dispatch
676def rpc_server_register_eager_fallback(server, method_name, captured_inputs, f, output_specs, input_specs, name, ctx):
677 output_specs = _execute.make_str(output_specs, "output_specs")
678 if input_specs is None:
679 input_specs = ""
680 input_specs = _execute.make_str(input_specs, "input_specs")
681 _attr_Tin, captured_inputs = _execute.convert_to_mixed_eager_tensors(captured_inputs, ctx)
682 server = _ops.convert_to_tensor(server, _dtypes.resource)
683 method_name = _ops.convert_to_tensor(method_name, _dtypes.string)
684 _inputs_flat = [server, method_name] + list(captured_inputs)
685 _attrs = ("Tin", _attr_Tin, "f", f, "input_specs", input_specs,
686 "output_specs", output_specs)
687 _result = _execute.execute(b"RpcServerRegister", 0, inputs=_inputs_flat,
688 attrs=_attrs, ctx=ctx, name=name)
689 _result = None
690 return _result
693@_dispatch.add_fallback_dispatch_list
694@_dispatch.add_type_based_api_dispatcher
695@tf_export('rpc_server_start')
696def rpc_server_start(server, name=None):
697 r"""TODO: add doc.
699 Args:
700 server: A `Tensor` of type `resource`.
701 name: A name for the operation (optional).
703 Returns:
704 The created Operation.
705 """
706 _ctx = _context._context or _context.context()
707 tld = _ctx._thread_local_data
708 if tld.is_eager:
709 try:
710 _result = pywrap_tfe.TFE_Py_FastPathExecute(
711 _ctx, "RpcServerStart", name, server)
712 return _result
713 except _core._NotOkStatusException as e:
714 _ops.raise_from_not_ok_status(e, name)
715 except _core._FallbackException:
716 pass
717 try:
718 _result = _dispatcher_for_rpc_server_start(
719 (server, name,), None)
720 if _result is not NotImplemented:
721 return _result
722 return rpc_server_start_eager_fallback(
723 server, name=name, ctx=_ctx)
724 except _core._SymbolicException:
725 pass # Add nodes to the TensorFlow graph.
726 except (TypeError, ValueError):
727 _result = _dispatch.dispatch(
728 rpc_server_start, (), dict(server=server, name=name)
729 )
730 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
731 return _result
732 raise
733 else:
734 _result = _dispatcher_for_rpc_server_start(
735 (server, name,), None)
736 if _result is not NotImplemented:
737 return _result
738 # Add nodes to the TensorFlow graph.
739 try:
740 _, _, _op, _outputs = _op_def_library._apply_op_helper(
741 "RpcServerStart", server=server, name=name)
742 except (TypeError, ValueError):
743 _result = _dispatch.dispatch(
744 rpc_server_start, (), dict(server=server, name=name)
745 )
746 if _result is not _dispatch.OpDispatcher.NOT_SUPPORTED:
747 return _result
748 raise
749 return _op
750RpcServerStart = tf_export("raw_ops.RpcServerStart")(_ops.to_raw_op(rpc_server_start))
751_dispatcher_for_rpc_server_start = rpc_server_start._tf_type_based_dispatcher.Dispatch
754def rpc_server_start_eager_fallback(server, name, ctx):
755 server = _ops.convert_to_tensor(server, _dtypes.resource)
756 _inputs_flat = [server]
757 _attrs = None
758 _result = _execute.execute(b"RpcServerStart", 0, inputs=_inputs_flat,
759 attrs=_attrs, ctx=ctx, name=name)
760 _result = None
761 return _result